TWI387556B - Nano-material film structure - Google Patents

Nano-material film structure Download PDF

Info

Publication number
TWI387556B
TWI387556B TW98116231A TW98116231A TWI387556B TW I387556 B TWI387556 B TW I387556B TW 98116231 A TW98116231 A TW 98116231A TW 98116231 A TW98116231 A TW 98116231A TW I387556 B TWI387556 B TW I387556B
Authority
TW
Taiwan
Prior art keywords
nano
film structure
film
composite
nanoparticles
Prior art date
Application number
TW98116231A
Other languages
Chinese (zh)
Other versions
TW201040104A (en
Inventor
Jia-Ping Wang
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98116231A priority Critical patent/TWI387556B/en
Publication of TW201040104A publication Critical patent/TW201040104A/en
Application granted granted Critical
Publication of TWI387556B publication Critical patent/TWI387556B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

奈米材料薄膜結構Nanomaterial film structure

本發明涉及一種奈米材料薄膜結構,尤其涉及一種由奈米線組成的奈米材料薄膜結構。The invention relates to a nano material film structure, in particular to a nano material film structure composed of nanowires.

奈米材料於基礎研究及實際應用,如催化、傳感等方面有著很大價值。所以,製備具有宏觀結構的奈米材料成為研究的熱點。Nanomaterials are of great value in basic research and practical applications such as catalysis and sensing. Therefore, the preparation of nanomaterials with macrostructures has become a hot topic of research.

目前,奈米材料的製備方法包括自發生長法(spontaneous growth)、模板合成法(template-based synthesis)、平板印刷法(lithography)等。然而,上述方法製備的奈米材料通常成粉末狀而無法形成一自支撐結構,即該奈米材料需一支撐結構的支撐來保持一特定形狀,如線狀或膜狀。故,限制了奈米材料的應用範圍。At present, preparation methods of nanomaterials include spontaneous growth, template-based synthesis, lithography, and the like. However, the nanomaterial prepared by the above method is usually in the form of a powder and cannot form a self-supporting structure, that is, the nanomaterial requires a support structure to maintain a specific shape such as a line or a film. Therefore, the application range of nano materials is limited.

先前技術提供一種二氧化鈦奈米結構及其製備方法,請參見“Fabrication of Titania Nanofibers by Electrospinning”,Dan Li et al,Nano Letters,vol. 3,No. 4,p555-560(2003)。該方法將礦物油與聚乙烯吡咯烷酮(PVP)的乙醇溶液及二氧化鈦前驅體混合制得漿料,然後通過電紡紗方法製備二氧化鈦奈米結構。進一步,通過加熱使礦物油與聚乙烯吡咯烷酮蒸發,可得到純的二氧化鈦奈米結構。該方法製備的二氧化鈦奈米結構為複數個二氧化鈦奈米線組成的薄膜結構,且複數個二氧化鈦奈米線相互纏繞形成一自支撐結構。然而,該二氧化鈦奈米結構中的複數個二氧化鈦奈米線雜亂分佈,限制了其應用範圍。The prior art provides a titanium dioxide nanostructure and a process for its preparation, see "Fabrication of Titania Nanofibers by Electrospinning", Dan Li et al, Nano Letters, vol. 3, No. 4, p555-560 (2003). The method comprises mixing a mineral oil with an ethanol solution of polyvinylpyrrolidone (PVP) and a titanium dioxide precursor to prepare a slurry, and then preparing a titanium dioxide nanostructure by an electrospinning method. Further, the mineral oil and polyvinylpyrrolidone are evaporated by heating to obtain a pure titanium oxide nanostructure. The titanium dioxide nanostructure prepared by the method is a thin film structure composed of a plurality of titanium dioxide nanowires, and a plurality of titanium dioxide nanowires are intertwined to form a self-supporting structure. However, the disordered distribution of a plurality of titanium dioxide nanowires in the titanium dioxide nanostructure limits the range of application.

有鑒於此,確有必要提供一種由有序排列的奈米線組成的奈米材料薄膜結構。In view of this, it is indeed necessary to provide a thin film structure of a nanomaterial composed of ordered nanowires.

一種奈米材料薄膜結構,其包括至少一層奈米膜,其中,該奈米膜包括複數個基本沿同一方向排列的奈米線,且該奈米線由複數個連續的奈米顆粒組成。A nanomaterial film structure comprising at least one nano film, wherein the nano film comprises a plurality of nanowires arranged substantially in the same direction, and the nanowire is composed of a plurality of continuous nanoparticles.

一種奈米材料薄膜結構,其包括至少一複合奈米膜,其中,該複合奈米膜包括複數個基本沿同一方向排列的複合奈米線,且該每個複合奈米線包括至少一奈米碳管及包覆於該奈米碳管表面的複數個連續的奈米顆粒。A nano material film structure comprising at least one composite nano film, wherein the composite nano film comprises a plurality of composite nanowires arranged substantially in the same direction, and each composite nanowire comprises at least one nanometer a carbon tube and a plurality of continuous nano particles coated on the surface of the carbon nanotube.

一種奈米材料薄膜結構,其包括至少一複合奈米膜,其中,該複合奈米膜包括複數個基本沿同一方向排列的奈米碳管線及複數個連續的奈米顆粒包覆於每個奈米碳管線的至少部分表面。A nano material film structure comprising at least one composite nano film, wherein the composite nano film comprises a plurality of nano carbon lines arranged substantially in the same direction and a plurality of continuous nano particles coated on each of the nano At least part of the surface of the rice carbon line.

相較於先前技術,由於本發明提供的奈米材料薄膜結構包括至少一奈米膜,且該奈米膜包括複數個基本沿同一方向排列的奈米線,使其具有定向導熱或導電的特性,擴大了奈米材料薄膜結構的應用範圍。Compared with the prior art, since the nano material film structure provided by the present invention comprises at least one nano film, and the nano film comprises a plurality of nanowires arranged substantially in the same direction, the directional conductive or conductive property is obtained. The application range of the thin film structure of nano material is expanded.

以下將結合附圖對本發明提供的奈米材料薄膜結構及其製備方法作進一步的詳細說明。The structure of the nano material film and the preparation method thereof provided by the present invention will be further described in detail below with reference to the accompanying drawings.

請參閱圖1,本發明第一實施例提供一種奈米材料薄膜結構10,其包括一複合奈米膜102。所述複合奈米膜102包括複數個基本沿同一方向排列的複合奈米線104。優選地,所述複數個複合奈米線104平行於複合奈米膜102表面且彼此平行排列。Referring to FIG. 1, a first embodiment of the present invention provides a nanomaterial film structure 10 comprising a composite nano film 102. The composite nanofilm 102 includes a plurality of composite nanowires 104 aligned substantially in the same direction. Preferably, the plurality of composite nanowires 104 are parallel to the surface of the composite nanofilm 102 and are arranged parallel to each other.

所述複合奈米膜102中的相鄰兩個複合奈米線104之間可相互接觸,且通過凡德瓦爾力緊密連接,使該複合奈米膜102形成一自支撐結構。可以理解,所述複合奈米膜102中的相鄰兩個複合奈米線104也可間隔設置,相鄰兩個複合奈米線104之間的距離可大於等於0.5奈米且小於等於100微米。所述複合奈米膜102的厚度為0.5奈米~100微米。所述複合奈米線104的長度不限,可達數米以上。所述複合奈米線104的直徑小於500奈米。所述複合奈米線104的長度可與複合奈米膜102的長度相等,故至少有一個複合奈米線104從所述複合奈米膜102的一端延伸至另一端,從而跨越整個複合奈米膜102。所述複合奈米膜102的長度受複合奈米線104的長度的限制。本實施例中,所述複合奈米線104的長度大於1厘米。The adjacent two composite nanowires 104 in the composite nanofilm 102 are in contact with each other, and are closely connected by van der Waals force to form the composite nano film 102 into a self-supporting structure. It can be understood that two adjacent composite nanowires 104 in the composite nanofilm 102 can also be spaced apart, and the distance between two adjacent composite nanowires 104 can be greater than or equal to 0.5 nanometers and less than or equal to 100 micrometers. . The composite nanofilm 102 has a thickness of from 0.5 nm to 100 μm. The length of the composite nanowire 104 is not limited, and may be several meters or more. The composite nanowire 104 has a diameter of less than 500 nanometers. The length of the composite nanowire 104 can be equal to the length of the composite nanofilm 102, so that at least one composite nanowire 104 extends from one end of the composite nanofilm 102 to the other end, thereby spanning the entire composite nanometer. Film 102. The length of the composite nanofilm 102 is limited by the length of the composite nanowire 104. In this embodiment, the length of the composite nanowire 104 is greater than 1 cm.

所述每個複合奈米線104包括至少一奈米碳管1042及包覆於該奈米碳管1042表面的複數個連續的奈米顆粒(圖未標),且相鄰的奈米顆粒通過凡德瓦爾力或化學鍵緊密連接於一起形成一奈米線1044。所述複合奈米線104可包括一奈米碳管1042或複數個首尾相連的奈米碳管1042基本沿同一方向排列。所述奈米顆粒沿首尾相連的奈米碳管1042的延伸方向排列,且包覆於奈米碳管1042表面。可以理解,複數個首尾相連的奈米碳管1042基本沿同一方向排列形成一奈米碳管線(圖未標),複數個連續的奈米顆粒包覆於每個奈米碳管線的至少部分表面。所述複合奈米線104中的複數個連續的奈米顆粒包覆於奈米碳管1042的至少部分表面或將整個奈米碳管1042完全包覆。由於奈米顆粒包覆於奈米碳管1042表面,且奈米顆粒與奈米碳管1042之間通過凡德瓦爾力或化學鍵緊密結合,故,奈米顆粒與奈米碳管1042牢固的結合於一起。Each of the composite nanowires 104 includes at least one carbon nanotube 1042 and a plurality of continuous nanoparticles (not labeled) coated on the surface of the carbon nanotubes 1042, and adjacent nanoparticles pass through The van der Waals force or chemical bonds are tightly joined together to form a nanowire 1044. The composite nanowire 104 can include a carbon nanotube 1042 or a plurality of end-to-end carbon nanotubes 1042 arranged substantially in the same direction. The nanoparticles are arranged along the extending direction of the end-to-end carbon nanotubes 1042 and are coated on the surface of the carbon nanotubes 1042. It can be understood that a plurality of end-to-end carbon nanotubes 1042 are arranged substantially in the same direction to form a nano carbon line (not shown), and a plurality of continuous nano particles are coated on at least part of the surface of each nano carbon line. . The plurality of continuous nanoparticles in the composite nanowire 104 are coated on at least a portion of the surface of the carbon nanotubes 1042 or completely encapsulate the entire carbon nanotubes 1042. Since the nano particles are coated on the surface of the carbon nanotubes 1042, and the nano particles and the carbon nanotubes 1042 are tightly bonded by van der Waals force or chemical bonds, the nano particles and the carbon nanotubes 1042 are firmly bonded. Together.

所述奈米顆粒的粒徑大於等於1奈米且小於等於500奈米。所述奈米顆粒包括金屬奈米顆粒、非金屬奈米顆粒、合金奈米顆粒、金屬化合物奈米顆粒及聚合物奈米顆粒中的一種或幾種。優選地,所述奈米顆粒包括金屬氧化物奈米顆粒、金屬氮化物奈米顆粒、金屬碳化物奈米顆粒、矽氧化物奈米顆粒、矽氮化物奈米顆粒及矽碳化物奈米顆粒中的一種或多種。本實施例中,所述奈米顆粒為二氧化鈦奈米顆粒。所述奈米顆粒的形狀不限,可為球狀、橢球狀、棒狀或線狀等中的一種或幾種。所述奈米顆粒的大小均勻,即奈米顆粒的粒徑尺寸分佈範圍較小。本實施例中,所述奈米顆粒的粒徑尺寸為大於等於50奈米且小於等於150奈米。The nanoparticle has a particle diameter of 1 nm or more and 500 nm or less. The nanoparticle includes one or more of metal nanoparticle, non-metallic nanoparticle, alloy nanoparticle, metal compound nanoparticle, and polymer nanoparticle. Preferably, the nanoparticle comprises metal oxide nanoparticle, metal nitride nanoparticle, metal carbide nanoparticle, niobium oxide nanoparticle, niobium nitride nanoparticle, and niobium carbide nanoparticle One or more of them. In this embodiment, the nanoparticle is titanium dioxide nanoparticle. The shape of the nanoparticle is not limited and may be one or more of a spherical shape, an ellipsoidal shape, a rod shape, or a linear shape. The size of the nanoparticles is uniform, that is, the particle size distribution of the nanoparticles is small. In this embodiment, the nanoparticle has a particle size of 50 nm or more and 150 nm or less.

請參閱圖2及圖3,本發明第一實施例提供的奈米材料薄膜結構10的製備方法可包括以下步驟:Referring to FIG. 2 and FIG. 3, the method for preparing the nano material film structure 10 provided by the first embodiment of the present invention may include the following steps:

步驟一,提供至少一奈米碳管膜100,該奈米碳管膜100包括複數個連續且定向排列的奈米碳管1042。In step one, at least one carbon nanotube film 100 is provided, and the carbon nanotube film 100 includes a plurality of continuous and aligned carbon nanotubes 1042.

請參閱圖4及圖5,本實施例中,該奈米碳管膜包括複數個連續且定向排列的奈米碳管片段143。該複數個奈米碳管片段143通過凡德瓦爾力首尾相連。每一奈米碳管片段143包括複數個相互平行的奈米碳管145,該複數個相互平行的奈米碳管145通過凡德瓦爾力緊密結合。該奈米碳管片段143具有任意的寬度、厚度、均勻性及形狀。該奈米碳管膜中的奈米碳管145基本沿同一方向排列。所述奈米碳管膜的厚度為0.050微米~100微米。所述奈米碳管膜可通過拉取一奈米碳管陣列直接獲得。所述奈米碳管膜及其製備方法具體請參見范守善等人於2007年2月12日申請的,於2008年8月16日公開的第200833862號中華民國公開專利申請“奈米碳管膜結構及其製備方法”。Referring to FIG. 4 and FIG. 5, in the embodiment, the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by Van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 145 that are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any width, thickness, uniformity, and shape. The carbon nanotubes 145 in the carbon nanotube film are arranged substantially in the same direction. The carbon nanotube film has a thickness of from 0.050 micrometers to 100 micrometers. The carbon nanotube film can be obtained directly by pulling a carbon nanotube array. For the specific description of the carbon nanotube film and the preparation method thereof, please refer to the patent application "Nano Carbon Tube Film" of the Chinese Patent Publication No. 200833862, which was filed on Feb. 12, 2008, which was filed on Jan. 16, 2008. Structure and preparation method thereof".

可以理解,所述奈米碳管膜100還可包括複數個平行排列的奈米碳管1402,且每個奈米碳管1402從奈米碳管膜100的一端延伸至另一端。該奈米碳管膜100的結構及其製備方法請參見范守善等人於2008年2月29日申請的第97107078號中華民國專利申請“奈米碳管薄膜結構及其製備方法”;及范守善等人於2008年6月13日申請的第97122118號中華民國專利申請“帶狀奈米碳管薄膜的製備方法”。It can be understood that the carbon nanotube film 100 can further include a plurality of parallel arranged carbon nanotubes 1402, and each of the carbon nanotubes 1402 extends from one end of the carbon nanotube film 100 to the other end. For the structure of the carbon nanotube film 100 and the preparation method thereof, please refer to the patent application "Nano Carbon Tube Film Structure and Preparation Method" of No. 97107078, which was applied by Fan Shoushan et al. on February 29, 2008; and Fan Shoushan et al. The method of preparing a ribbon-shaped carbon nanotube film of the Republic of China patent application No. 97122118 filed on June 13, 2008.

所述奈米碳管膜100可進一步設置於一支撐體上。該支撐體可為一基板或框架。本實施例中,將兩個奈米碳管膜100重疊鋪設於一金屬基板上,且兩個奈米碳管膜100中的奈米碳管1042的排列方向一致。The carbon nanotube film 100 can be further disposed on a support. The support can be a substrate or a frame. In this embodiment, two carbon nanotube films 100 are superposed on one metal substrate, and the arrangement directions of the carbon nanotubes 1042 in the two carbon nanotube films 100 are the same.

步驟二,向該奈米碳管膜100中引入至少兩種反應原料106,於該奈米碳管膜100的表面形成厚度為50奈米~100奈米的反應原料層(圖未示)。In the second step, at least two kinds of reaction raw materials 106 are introduced into the carbon nanotube film 100, and a reaction raw material layer (not shown) having a thickness of 50 nm to 100 nm is formed on the surface of the carbon nanotube film 100.

所述反應原料106的材料與所需形成的奈米線1044的材料相關。所述反應原料106可為固態、液態或氣態。所述向奈米碳管膜100中引入至少兩種反應原料106的方法具體包括兩種情形。The material of the reaction feedstock 106 is associated with the material of the nanowire 1044 that is desired to be formed. The reaction feedstock 106 can be in a solid, liquid or gaseous state. The method of introducing at least two kinds of reaction raw materials 106 into the carbon nanotube film 100 specifically includes two cases.

第一種:首先,於該奈米碳管膜100表面形成一層厚度為50~奈米100奈米的第一反應原料層。First: First, a first reaction material layer having a thickness of 50 nm and 100 nm is formed on the surface of the carbon nanotube film 100.

所述第一反應原料層的材料與所要製備的奈米線1044的材料有關,可為金屬、非金屬及半導體中的一種或多種。如,當奈米線1044的材料為金屬化合物,如金屬氧化物或金屬矽化物,第一反應原料層為金屬層,如鈦層、鋁層或鎳層等;當奈米線1044的材料為非金屬化合物,如氮化矽或碳化矽,第一反應原料層為矽層。The material of the first reaction raw material layer is related to the material of the nanowire 1044 to be prepared, and may be one or more of a metal, a non-metal, and a semiconductor. For example, when the material of the nanowire 1044 is a metal compound such as a metal oxide or a metal halide, the first reaction material layer is a metal layer such as a titanium layer, an aluminum layer or a nickel layer; and when the material of the nanowire 1044 is A non-metallic compound such as tantalum nitride or tantalum carbide, and the first reaction raw material layer is a tantalum layer.

所述於奈米碳管膜100表面形成一第一反應原料層的方法不限,可包括物理氣相沈積法、化學氣相沈積法、浸漬法、噴塗法及絲網印刷法等中的一種或多種。可以理解,根據第一反應原料層的材料不同,可選擇不同的方法於奈米碳管膜100中的奈米碳管表面形成第一反應原料層的材料。如,通過物理氣相沈積法可將金屬濺射到奈米碳管表面;通過化學氣相沈積法可於奈米碳管表面形成非金屬;通過噴塗法或絲網印刷法可將含有金屬的有機漿料形成於奈米碳管的表面。The method for forming a first reaction raw material layer on the surface of the carbon nanotube film 100 is not limited, and may include one of physical vapor deposition, chemical vapor deposition, dipping, spraying, and screen printing. Or a variety. It can be understood that different materials can be selected to form the material of the first reaction raw material layer on the surface of the carbon nanotubes in the carbon nanotube film 100 according to the material of the first reaction raw material layer. For example, the metal can be sputtered onto the surface of the carbon nanotube by physical vapor deposition; the non-metal can be formed on the surface of the carbon nanotube by chemical vapor deposition; the metal-containing can be sprayed or screen printed The organic slurry is formed on the surface of the carbon nanotube.

其次,向該奈米碳管膜100引入氣態或液態第二反應原料。Next, a gaseous or liquid second reaction material is introduced into the carbon nanotube film 100.

所述氣態第二反應原料可為氧氣、氮氣、矽源氣體及碳源氣體中的一種或多種。所述向奈米碳管膜100引入氣態第二反應原料的方法可包括直接將氣態第二反應原料通入到設置有奈米碳管膜100的反應室(圖未示)或將奈米碳管膜100設置於一含有氣態第二反應原料的氣氛中,從而使氣態第二反應原料分佈於奈米碳管膜100及第一反應原料層周圍。The gaseous second reaction raw material may be one or more of oxygen, nitrogen, helium source gas and carbon source gas. The method of introducing the gaseous second reaction raw material to the carbon nanotube film 100 may include directly introducing the gaseous second reaction raw material into a reaction chamber (not shown) provided with the carbon nanotube film 100 or by using nanocarbon The tube film 100 is disposed in an atmosphere containing a gaseous second reaction material, so that the gaseous second reaction material is distributed around the carbon nanotube film 100 and the first reaction material layer.

所述液態第二反應原料可為甲醇、乙醇、丙酮及液態樹脂等中的一種或多種。所述向奈米碳管膜100引入液態第二反應原料的方法可包括直接將液態第二反應原料滴到奈米碳管膜100表面或將奈米碳管膜100浸潤於一液態第二反應原料中,從而使液態第二反應原料分佈於奈米碳管膜100及第一反應原料層周圍。The liquid second reaction raw material may be one or more of methanol, ethanol, acetone, and a liquid resin. The method of introducing the liquid second reaction raw material into the carbon nanotube film 100 may include directly dropping the liquid second reaction raw material onto the surface of the carbon nanotube film 100 or infiltrating the carbon nanotube film 100 into a liquid second reaction. In the raw material, the liquid second reaction raw material is distributed around the carbon nanotube film 100 and the first reaction raw material layer.

第二種:首先,於該奈米碳管膜100表面形成一第一反應原料層;其次,於該第一反應原料層上形成一第二反應原料層。所述第一反應原料層與第二反應原料層的總厚度為50奈米~100奈米。當第一反應原料層為金屬層,第二反應原料層為非金屬層時,第一反應原料層可為鋁層或鈦層,第二反應原料層可為矽層等。當第一反應原料層與第二反應原料層均為金屬層時,第一反應原料層與第二反應原料層均可分別為鋁層與鈦層、鋁層與鎳層等。Secondly, first, a first reaction raw material layer is formed on the surface of the carbon nanotube film 100; secondly, a second reaction raw material layer is formed on the first reaction raw material layer. The total thickness of the first reaction raw material layer and the second reaction raw material layer is 50 nm to 100 nm. When the first reaction raw material layer is a metal layer and the second reaction raw material layer is a non-metal layer, the first reaction raw material layer may be an aluminum layer or a titanium layer, and the second reaction raw material layer may be a germanium layer or the like. When both the first reaction raw material layer and the second reaction raw material layer are metal layers, the first reaction raw material layer and the second reaction raw material layer may each be an aluminum layer and a titanium layer, an aluminum layer and a nickel layer.

可以理解,當沈積於所述奈米碳管膜100表面的反應原料層的厚度較小時,如厚度為小於50奈米,反應原料反應後可形成複數個間隔的奈米顆粒。當所述奈米碳管膜100表面的反應原料層的厚度較大時,如大於50奈米,反應原料反應後容易形成連續的奈米顆粒,即奈米線1044。It can be understood that when the thickness of the reaction raw material layer deposited on the surface of the carbon nanotube film 100 is small, such as a thickness of less than 50 nm, a plurality of spaced nanoparticles can be formed after the reaction raw materials are reacted. When the thickness of the reaction raw material layer on the surface of the carbon nanotube film 100 is large, for example, more than 50 nm, the reaction raw material is likely to form continuous nano particles, that is, the nanowire 1044.

可以理解,不同的反應原料106對厚度的要求不同。本實施例中,通過磁控濺射法於奈米碳管膜100表面沈積一層100奈米厚的鈦層。請參見圖6,鈦顆粒均勻分佈於奈米碳管膜中的奈米碳管表面。然後,將該沈積有鈦層的奈米碳管膜100置於大氣環境中,使得奈米碳管膜100表面的鈦顆粒與大氣中的氧氣接觸。當鈦層的厚度小於50奈米時,鈦層與氧氣反應後可形成複數個間隔的二氧化鈦奈米顆粒。當鈦層的厚度大於50奈米時,鈦層與氧氣反應後容易形成連續的二氧化鈦奈米線。It will be appreciated that different reaction materials 106 have different thickness requirements. In this embodiment, a 100 nm thick titanium layer is deposited on the surface of the carbon nanotube film 100 by magnetron sputtering. Referring to Figure 6, the titanium particles are uniformly distributed on the surface of the carbon nanotubes in the carbon nanotube film. Then, the carbon nanotube film 100 on which the titanium layer is deposited is placed in an atmosphere such that the titanium particles on the surface of the carbon nanotube film 100 are in contact with oxygen in the atmosphere. When the thickness of the titanium layer is less than 50 nm, the titanium layer reacts with oxygen to form a plurality of spaced titanium dioxide nanoparticles. When the thickness of the titanium layer is greater than 50 nm, the titanium layer easily forms a continuous titanium dioxide nanowire after reacting with oxygen.

步驟三,引發反應原料106進行反應,生長奈米材料薄膜結構10。In step three, the reaction raw material 106 is initiated to react, and the nanostructure material film structure 10 is grown.

所述引發反應原料106進行反應的方法包括加熱,電火花,及雷射掃描中的一種或多種。可以理解,根據反應條件的不同,可選擇不同的方法來引發反應原料106進行反應。如通過加熱可使矽與碳源氣反應製備碳化矽奈米線;通過雷射掃描可使金屬與氧氣反應製備金屬氧化物奈米線。The method of initiating the reaction of the reaction starting material 106 includes one or more of heating, sparking, and laser scanning. It will be appreciated that depending on the reaction conditions, different methods may be employed to initiate the reaction of the reaction feedstock 106. For example, by heating, cerium can be reacted with a carbon source gas to prepare a strontium carbide nanowire; a metal scan can be used to prepare a metal oxide nanowire by laser scanning.

本實施例中,採用雷射掃描引發反應原料106進行反應。採用雷射掃描引發反應原料106進行反應包括兩種情形:第一種為採用雷射掃描整個奈米碳管膜100的表面,使奈米碳管膜100表面的反應原料106進行反應;第二種為採用雷射掃描奈米碳管膜100的部分表面,使奈米碳管膜100表面的反應原料106由雷射掃描的位置開始沿著奈米碳管排列方向進行自擴散反應。當採用第二種方法時,可將奈米碳管膜100設置於一基板(圖未示)上,通過選擇不同導熱係數的基板以控制生長奈米線1044的速度。所述基板的導熱係數越大,熱量向基板傳導就越快,而沿奈米碳管方向傳導就越慢,奈米線1044的生長速度越慢。反之則生長速度越快。由於空氣的導熱係數很小,故,當奈米碳管膜100懸空設置時,奈米線1044具有最快的生長速度。In this embodiment, the reaction raw material 106 is initiated by a laser scanning reaction. The reaction of initiating the reaction raw material 106 by laser scanning includes two cases: the first is to scan the surface of the entire carbon nanotube film 100 by laser, and react the reaction raw material 106 on the surface of the carbon nanotube film 100; The partial surface of the laser scanning carbon nanotube film 100 is used to cause the reaction raw material 106 on the surface of the carbon nanotube film 100 to self-diffusion reaction in the direction in which the carbon nanotubes are arranged from the position of the laser scanning. When the second method is employed, the carbon nanotube film 100 can be placed on a substrate (not shown) to control the growth of the nanowire 1044 by selecting substrates of different thermal conductivity. The greater the thermal conductivity of the substrate, the faster the heat is conducted to the substrate, and the slower the conduction along the direction of the carbon nanotubes, the slower the growth rate of the nanowire 1044. Otherwise, the faster the growth rate. Since the thermal conductivity of the air is small, the nanowire 1044 has the fastest growth rate when the carbon nanotube film 100 is suspended.

所述反應原料106於反應條件下進行反應生長奈米線1044。該奈米線1044沿奈米碳管1042長度方向生長,且均勻分散或包覆於奈米碳管1042表面形成一複合奈米線104。由於奈米碳管膜100中的奈米碳管1042首尾相連,故製備的奈米材料薄膜結構10為一膜狀,且該奈米材料薄膜結構10包括複數個平行設置的複合奈米線104。該奈米材料薄膜結構10包括複數個複合奈米線104,且該複合奈米線104的長度與奈米碳管膜100的長度有關。由於奈米碳管膜100的長度不限,可達到數米以上,故所製備的奈米材料薄膜結構10中的複合奈米線104的長度可達到數米以上。The reaction starting material 106 is subjected to reaction growth of the nanowire 1044 under the reaction conditions. The nanowire 1044 grows along the length of the carbon nanotube 1042 and is uniformly dispersed or coated on the surface of the carbon nanotube 1042 to form a composite nanowire 104. Since the carbon nanotubes 1042 in the carbon nanotube film 100 are connected end to end, the prepared nanomaterial film structure 10 is a film shape, and the nano material film structure 10 includes a plurality of composite nanowires 104 arranged in parallel. . The nanomaterial film structure 10 includes a plurality of composite nanowires 104, and the length of the composite nanowire 104 is related to the length of the carbon nanotube film 100. Since the length of the carbon nanotube film 100 is not limited to several meters, the length of the composite nanowire 104 in the prepared nanomaterial film structure 10 can be several meters or more.

本實施例中,採用雷射掃描,引發自擴散反應,得到二氧化鈦薄膜結構。其中,雷射掃描的速度為10厘米/秒~200厘米/秒,雷射掃描的功率大於0.5瓦。該自擴散反應的速度大於10厘米/秒。請參見圖7,該圖為本發明第一實施例製備的二氧化鈦奈米線/奈米碳管複合薄膜結構的掃描電鏡照片。由圖7可看出,該二氧化鈦奈米線/奈米碳管複合薄膜結構包括複數個基本沿同一方向排列的二氧化鈦奈米線沿著奈米碳管膜中的奈米碳管的長度方向生長。請參見圖8,該圖為本發明第一實施例製備的二氧化鈦奈米線/奈米碳管複合薄膜結構中的二氧化鈦奈米線的透射電鏡照片。由圖8可看出,二氧化鈦奈米線的微觀形貌為複數個連續的類似橢球狀的小顆粒,且均勻分散或包覆於奈米碳管表面。In this embodiment, a laser scanning is used to initiate a self-diffusion reaction to obtain a titanium oxide film structure. Among them, the speed of laser scanning is 10 cm / sec ~ 200 cm / sec, the power of laser scanning is greater than 0.5 watt. The rate of the self-diffusion reaction is greater than 10 cm/sec. Please refer to FIG. 7, which is a scanning electron micrograph of the structure of the titanium dioxide nanowire/nanocarbon tube composite film prepared according to the first embodiment of the present invention. As can be seen from FIG. 7, the titanium dioxide nanowire/nanocarbon nanotube composite film structure comprises a plurality of titanium dioxide nanowires arranged substantially in the same direction along the length of the carbon nanotubes in the carbon nanotube film. . Please refer to FIG. 8 , which is a transmission electron micrograph of a titanium dioxide nanowire in a titanium dioxide nanowire/nanocarbon nanotube composite film structure prepared according to a first embodiment of the present invention. It can be seen from Fig. 8 that the microstructure of the titanium dioxide nanowire is a plurality of continuous ellipsoid-like small particles uniformly dispersed or coated on the surface of the carbon nanotube.

所述奈米線1044的排列方向與作為模板的奈米碳管膜100中的奈米碳管1042的排列方向有關。由於奈米線1044均勻分散或包覆於奈米碳管1042表面,故一般情況下,所述奈米線1044的排列方向與奈米碳管膜100中的奈米碳管1042的排列方向大致相同。當作為模板的奈米碳管膜100中的奈米碳管1042沿同一方向排列時,所形成的奈米線1044可相互平行,且沿奈米碳管膜100中的奈米碳管1042的排列方向排列。The arrangement direction of the nanowires 1044 is related to the arrangement direction of the carbon nanotubes 1042 in the carbon nanotube film 100 as a template. Since the nanowire 1044 is uniformly dispersed or coated on the surface of the carbon nanotube 1042, generally, the arrangement direction of the nanowires 1044 is substantially the same as the arrangement direction of the carbon nanotubes 1042 in the carbon nanotube film 100. the same. When the carbon nanotubes 1042 in the carbon nanotube film 100 as a template are aligned in the same direction, the formed nanowires 1044 may be parallel to each other and along the carbon nanotubes 1042 in the carbon nanotube film 100. Arrange in the direction of arrangement.

請參閱圖9,本發明第二實施例提供一種奈米材料薄膜結構20,其包括一奈米膜202。其中,所述奈米膜202包括複數個基本沿同一方向排列的奈米線204。優選地,所述複數個奈米線204平行於奈米膜202表面且彼此平行排列。Referring to FIG. 9, a second embodiment of the present invention provides a nanomaterial film structure 20 comprising a nano film 202. Wherein, the nano film 202 comprises a plurality of nanowires 204 arranged substantially in the same direction. Preferably, the plurality of nanowires 204 are parallel to the surface of the nanofilm 202 and are arranged parallel to each other.

所述奈米膜202中的相鄰兩個奈米線204之間可相互接觸,且通過凡德瓦爾力緊密連接,使該奈米膜202形成一自支撐結構。可以理解,所述奈米膜202中的相鄰兩個奈米線204也可間隔設置,相鄰兩個奈米線204之間的距離可大於等於0.5奈米且小於等於100微米。所述奈米膜202的厚度為0.5奈米~100微米。所述奈米線204的長度不限,可達數米以上。所述奈米線204的直徑小於500奈米。所述奈米線204的長度可與奈米膜202的長度相等,故至少有一個奈米線204從所述奈米膜202的一端延伸至另一端,從而跨越整個奈米膜202。所述奈米膜202的長度受奈米線204的長度的限制。本實施例中,所述奈米線204的長度大於1厘米。所述奈米線204包括複數個連續的奈米顆粒,且相鄰的奈米顆粒通過凡德瓦爾力或化學鍵緊密連接於一起。所述奈米顆粒與第一實施例的奈米顆粒相同。The adjacent two nanowires 204 in the nano film 202 are in contact with each other, and are closely connected by van der Waals force to form the nano film 202 into a self-supporting structure. It can be understood that the adjacent two nanowires 204 in the nano membrane 202 can also be spaced apart, and the distance between two adjacent nanowires 204 can be greater than or equal to 0.5 nanometers and less than or equal to 100 micrometers. The thickness of the nano film 202 is from 0.5 nm to 100 μm. The length of the nanowire 204 is not limited, and may be several meters or more. The nanowire 204 has a diameter of less than 500 nanometers. The length of the nanowire 204 can be equal to the length of the nanofilm 202 such that at least one nanowire 204 extends from one end of the nanofilm 202 to the other end, thereby spanning the entire nanofilm 202. The length of the nanofilm 202 is limited by the length of the nanowire 204. In this embodiment, the length of the nanowire 204 is greater than 1 cm. The nanowire 204 includes a plurality of continuous nanoparticles, and adjacent nanoparticles are tightly joined together by van der Waals force or chemical bonds. The nanoparticles of the nanoparticles are the same as the nanoparticles of the first embodiment.

可以理解,將上述第一實施例製備的奈米材料薄膜結構10去除奈米碳管膜100,即可獲得一純奈米材料薄膜結構20。所述去除奈米碳管膜100的方法與奈米線1044的材料相關。優選地,可通過高溫氧化的過程將奈米碳管膜100除去。如,將反應產物置於高溫爐中,於500℃~1000℃條件下保溫1小時~4小時。可以理解,高溫氧化除去奈米碳管膜100的方法僅限於奈米線1044為耐高溫材料時使用,如:金屬氧化物,非金屬氮化物等。It can be understood that by removing the carbon nanotube film 100 from the nano-material film structure 10 prepared in the first embodiment, a pure nano-material film structure 20 can be obtained. The method of removing the carbon nanotube film 100 is related to the material of the nanowire 1044. Preferably, the carbon nanotube film 100 can be removed by a process of high temperature oxidation. For example, the reaction product is placed in a high temperature furnace and kept at 500 ° C ~ 1000 ° C for 1 hour to 4 hours. It can be understood that the method of removing the carbon nanotube film 100 by high temperature oxidation is limited to when the nanowire 1044 is a high temperature resistant material, such as a metal oxide, a non-metal nitride or the like.

本實施例中,將上述二氧化鈦薄膜結構於大氣環境下熱處理以除去奈米碳管膜100得到一純的二氧化鈦薄膜結構。所述熱處理溫度為900℃,所述熱處理的升溫速度為10K/分鐘。請參見圖10,所述複數個純二氧化鈦奈米線形成一具有自支撐特性的二氧化鈦奈米膜。該二氧化鈦奈米膜的厚度小於100奈米。該二氧化鈦奈米膜中的二氧化鈦奈米線的長度大於等於900微米,直徑小於等於100奈米。In this embodiment, the titanium dioxide film structure is heat-treated in an atmosphere to remove the carbon nanotube film 100 to obtain a pure titanium oxide film structure. The heat treatment temperature was 900 ° C, and the heat treatment rate of the heat treatment was 10 K / min. Referring to FIG. 10, the plurality of pure titanium dioxide nanowires form a titanium dioxide nano film having self-supporting properties. The titanium dioxide nanofilm has a thickness of less than 100 nm. The titanium dioxide nanowire in the titanium dioxide nano film has a length of 900 μm or more and a diameter of 100 nm or less.

請參閱圖11,本發明第三實施例提供一種奈米材料薄膜結構30,其包括複數個層迭設置的複合奈米膜302。所述複合奈米膜302與本發明第一實施例提供的複合奈米膜102結構相同。所述相鄰兩個複合奈米膜302中的複合奈米線304的排列方向形成一夾角α,α大於等於0度且小於等於90度。當α大於0度時,複數個複合奈米線304交叉設置,於所述奈米材料薄膜結構30中形成複數個均勻分佈的微孔306,該微孔306的孔徑為1奈米~5微米。相互接觸且交叉設置的兩個複合奈米線304之間可通過凡德瓦爾力結合,也可反應形成一共同節點308,即通過化學鍵緊密連接,使該奈米材料薄膜結構30形成一自支撐結構。當相互接觸且交叉設置的兩個複合奈米線304之間反應形成一共同節點308時,使得該奈米材料薄膜結構30的結構更加牢固,機械強度更大,使用時不易破裂。Referring to FIG. 11, a third embodiment of the present invention provides a nanomaterial film structure 30 comprising a plurality of laminated composite nanomembranes 302. The composite nano film 302 has the same structure as the composite nano film 102 provided by the first embodiment of the present invention. The alignment direction of the composite nanowires 304 in the adjacent two composite nanofilms 302 forms an angle α, which is greater than or equal to 0 degrees and less than or equal to 90 degrees. When α is greater than 0 degrees, a plurality of composite nanowires 304 are disposed at intersection, and a plurality of uniformly distributed micropores 306 are formed in the nanomaterial film structure 30, and the pores of the micropores 306 are 1 nm to 5 μm. . The two composite nanowires 304 which are in contact with each other and are disposed at the same time can be combined by van der Waals force, or can be reacted to form a common node 308, that is, the chemical bond is tightly connected to form a self-supporting film structure 30 of the nano material. structure. When the two composite nanowires 304 which are in contact with each other and are disposed to form a common node 308, the structure of the nano-material thin film structure 30 is made stronger, the mechanical strength is greater, and it is not easily broken during use.

請參閱圖12,本發明第三實施例的奈米材料薄膜結構30的製備方法包括以下步驟:Referring to FIG. 12, a method for fabricating a nanomaterial film structure 30 according to a third embodiment of the present invention includes the following steps:

步驟一,提供至少兩個奈米碳管膜300。In step one, at least two carbon nanotube films 300 are provided.

所述奈米碳管膜300與本發明第一實施例提供的奈米碳管膜100結構相同。本實施例中,將兩個奈米碳管膜300重疊且交叉設置於一金屬基板上,且兩個奈米碳管膜300中的奈米碳管的排列方向垂直。The carbon nanotube film 300 has the same structure as the carbon nanotube film 100 provided by the first embodiment of the present invention. In this embodiment, the two carbon nanotube films 300 are overlapped and disposed on a metal substrate, and the arrangement directions of the carbon nanotubes in the two carbon nanotube films 300 are perpendicular.

步驟二,向該奈米碳管膜300中引入至少兩種反應原料310,於該奈米碳管結構300的表面形成厚度為50奈米~100奈米的反應原料層(圖未示)。In the second step, at least two kinds of reaction raw materials 310 are introduced into the carbon nanotube film 300, and a reaction raw material layer (not shown) having a thickness of 50 nm to 100 nm is formed on the surface of the carbon nanotube structure 300.

所述引入反應原料310的方法與本發明第一實施例中引入反應原料106的方法相同。The method of introducing the reaction raw material 310 is the same as the method of introducing the reaction raw material 106 in the first embodiment of the present invention.

本實施例中,通過磁控濺射法於交叉設置的奈米碳管膜300兩個相對的表面各沈積一層100奈米厚的鈦層。In this embodiment, a layer of 100 nm thick titanium is deposited on each of two opposite surfaces of the carbon nanotube film 300 disposed by intersection by magnetron sputtering.

步驟三,引發反應原料310進行反應,生長奈米材料薄膜結構30。In the third step, the reaction raw material 310 is initiated to react to grow the nanostructure material film structure 30.

所述引發反應原料310進行反應的方法與本發明第一實施例引發反應原料306進行反應的方法相同。The method of initiating the reaction of the starting material 310 is the same as the method of initiating the reaction of the starting material 306 in the first embodiment of the present invention.

本實施例中,採用雷射掃描引發自擴散反應得到二氧化鈦薄膜結構。其中,雷射掃描的速度為10厘米/秒~200厘米/秒,雷射掃描的功率為0.4瓦~10瓦。該自擴散反應的速度大於10厘米/秒。In this embodiment, a self-diffusion reaction initiated by laser scanning is used to obtain a titanium dioxide film structure. Among them, the speed of laser scanning is 10 cm / sec ~ 200 cm / sec, the power of laser scanning is 0.4 watt ~ 10 watts. The rate of the self-diffusion reaction is greater than 10 cm/sec.

請參見圖13,該圖為本發明第三實施例製備的二氧化鈦奈米線/奈米碳管複合薄膜結構的掃描電鏡照片。由圖13可看出,本實施例生長的二氧化鈦奈米線/奈米碳管複合薄膜結構包括兩個二氧化鈦奈米線/奈米碳管複合薄膜。每個二氧化鈦奈米線/奈米碳管複合薄膜包括複數個基本沿同一方向排列的二氧化鈦奈米線沿著奈米碳管膜中的奈米碳管的長度方向生長,且兩個二氧化鈦奈米膜中的二氧化鈦奈米線的排列方向垂直。可以理解,通過控制奈米碳管拉膜的鋪設角度,可製備不同形貌的二氧化鈦薄膜結構。Please refer to FIG. 13, which is a scanning electron micrograph of the structure of a titanium dioxide nanowire/nanocarbon tube composite film prepared according to a third embodiment of the present invention. As can be seen from FIG. 13, the titanium dioxide nanowire/nanocarbon nanotube composite film structure grown in this embodiment comprises two titanium dioxide nanowire/nanocarbon nanotube composite films. Each of the titanium dioxide nanowire/nanocarbon nanotube composite film comprises a plurality of titanium dioxide nanowires arranged substantially in the same direction along the length of the carbon nanotubes in the carbon nanotube film, and two titanium dioxide nanoparticles The arrangement direction of the titanium dioxide nanowires in the film is perpendicular. It can be understood that by controlling the laying angle of the carbon nanotube film, different TiO 2 film structures can be prepared.

請參閱圖14,本發明第四實施例提供一種奈米材料薄膜結構40,其包括複數個層迭設置的奈米膜402。所述奈米膜402與本發明第二實施例提供的奈米膜202結構相同。所述相鄰兩個奈米膜402中的奈米線404的排列方向形成一夾角α,α大於等於0度且小於等於90度。當α大於0度時,複數個奈米線404交叉設置,於所述奈米材料薄膜結構40中形成複數個均勻分佈的微孔406,該微孔406的孔徑為1奈米~5微米。相互接觸且交叉設置的兩個奈米線404之間可通過凡德瓦爾力結合,也可反應形成一共同節點408,即通過化學鍵緊密連接,使該奈米材料薄膜結構40形成一自支撐結構。當相互接觸且交叉設置的兩個奈米線404之間反應形成一共同節點408時,使得該奈米材料薄膜結構40的結構更加牢固,機械強度更大,使用時不易破裂。Referring to FIG. 14, a fourth embodiment of the present invention provides a nanomaterial film structure 40 comprising a plurality of laminated nanofilms 402. The nano film 402 has the same structure as the nano film 202 provided by the second embodiment of the present invention. The alignment direction of the nanowires 404 in the adjacent two nanofilms 402 forms an angle α, which is greater than or equal to 0 degrees and less than or equal to 90 degrees. When α is greater than 0 degrees, a plurality of nanowires 404 are disposed to intersect each other, and a plurality of uniformly distributed microholes 406 are formed in the nanomaterial film structure 40, and the pores of the microholes 406 are 1 nm to 5 μm. The two nanowires 404 which are in contact with each other and are disposed at the same time can be combined by van der Waals force, and can also react to form a common node 408, that is, the chemical bond is tightly connected, so that the nano-material film structure 40 forms a self-supporting structure. . When the two nanowires 404 which are in contact with each other and are disposed to form a common node 408, the structure of the nano-material film structure 40 is made stronger, the mechanical strength is greater, and it is not easily broken during use.

可以理解,將第三實施例中提供的奈米材料薄膜結構30去除奈米碳管膜300即可獲得一純奈米材料薄膜結構40。本實施例中,通過高溫氧化的過程將奈米碳管膜300除去。高溫氧化的過程中,相互接觸且交叉設置的兩個奈米線404之間會反應形成一共同節點408。It can be understood that the nano-material film structure 40 can be obtained by removing the carbon nanotube film 300 from the nano-material film structure 30 provided in the third embodiment. In the present embodiment, the carbon nanotube film 300 is removed by a high temperature oxidation process. During the high temperature oxidation, two nanowires 404 that are in contact with each other and intersect to form a common node 408.

由於本發明提供的奈米材料薄膜結構包括至少一奈米膜,且該奈米膜包括複數個基本沿同一方向排列的奈米線,故,該奈米材料薄膜結構各向異性,使其具有定向導熱或導電的特性,擴大了奈米材料薄膜結構的應用範圍。Since the nano material film structure provided by the present invention comprises at least one nano film, and the nano film comprises a plurality of nanowires arranged substantially in the same direction, the nano material film has an anisotropic structure, so that The directional heat conduction or electrical conductivity characteristics expand the application range of the nano material film structure.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10,20,30,40...奈米材料薄膜結構10,20,30,40. . . Nanomaterial film structure

100,300...奈米碳管膜100,300. . . Nano carbon tube film

102,302...複合奈米膜102,302. . . Composite nano film

104,304...複合奈米線104,304. . . Composite nanowire

1042...奈米碳管1042. . . Carbon nanotube

1044,204,404...奈米線1044,204,404. . . Nanowire

106,310...反應原料106,310. . . Reaction material

202,402...奈米膜202,402. . . Nano film

306,406...微孔306,406. . . Microporous

308,408...節點308,408. . . node

圖1為本發明第一實施例的奈米材料薄膜結構的示意圖。1 is a schematic view showing the structure of a thin film of a nano material according to a first embodiment of the present invention.

圖2為本發明第一實施例的奈米材料薄膜結構的製備方法流程圖。2 is a flow chart of a method for preparing a thin film structure of a nano material according to a first embodiment of the present invention.

圖3為本發明第一實施例的奈米材料薄膜結構的製備工藝流程圖。3 is a flow chart showing a process for preparing a thin film structure of a nano material according to a first embodiment of the present invention.

圖4為本發明第一實施例製備的奈米碳管膜的掃描電鏡照片。Figure 4 is a scanning electron micrograph of a carbon nanotube film prepared in accordance with a first embodiment of the present invention.

圖5為圖4中的奈米碳管膜中的奈米碳管片段的結構示意圖。Fig. 5 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of Fig. 4.

圖6為本發明第一實施例製備的沈積有鈦層的奈米碳管膜的掃描電鏡照片。Figure 6 is a scanning electron micrograph of a carbon nanotube film deposited with a titanium layer prepared in accordance with a first embodiment of the present invention.

圖7為本發明第一實施例製備的二氧化鈦奈米線/奈米碳管複合薄膜結構的掃描電鏡照片。Fig. 7 is a scanning electron micrograph of the structure of a titanium dioxide nanowire/nanocarbon tube composite film prepared according to the first embodiment of the present invention.

圖8為圖7中的二氧化鈦奈米線/奈米碳管複合薄膜結構中的二氧化鈦奈米線的透射電鏡照片。Figure 8 is a transmission electron micrograph of the titanium dioxide nanowire in the titanium dioxide nanowire/nanocarbon nanotube composite film structure of Figure 7.

圖9為本發明第二實施例的奈米材料薄膜結構的示意圖。Figure 9 is a schematic view showing the structure of a thin film of a nano material according to a second embodiment of the present invention.

圖10為本發明第二實施例製備的二氧化鈦薄膜結構的掃描電鏡照片。Figure 10 is a scanning electron micrograph of a titanium oxide film structure prepared in accordance with a second embodiment of the present invention.

圖11為本發明第三實施例的奈米材料薄膜結構的示意圖。Figure 11 is a schematic view showing the structure of a thin film of a nano material according to a third embodiment of the present invention.

圖12為本發明第三實施例的奈米材料薄膜結構的製備工藝流程圖。12 is a flow chart showing a process for preparing a thin film structure of a nano material according to a third embodiment of the present invention.

圖13為本發明第三實施例製備的二氧化鈦奈米線/奈米碳管複合薄膜結構的掃描電鏡照片。Figure 13 is a scanning electron micrograph of a structure of a titanium dioxide nanowire/nanocarbon nanotube composite film prepared according to a third embodiment of the present invention.

圖14為本發明第四實施例的奈米材料薄膜結構的示意圖。Figure 14 is a schematic view showing the structure of a thin film of a nano material according to a fourth embodiment of the present invention.

20...奈米材料薄膜結構20. . . Nanomaterial film structure

202...奈米膜202. . . Nano film

204...奈米線204. . . Nanowire

Claims (26)

一種奈米材料薄膜結構,其包括至少一層奈米膜,其改良在於,該奈米膜包括複數個基本沿同一方向排列的奈米線,且該奈米線由複數個連續的奈米顆粒組成。A nanomaterial film structure comprising at least one layer of nano film, the improvement comprising: the nano film comprising a plurality of nanowires arranged substantially in the same direction, and the nanowire consisting of a plurality of continuous nanoparticles . 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米膜中的奈米線從奈米膜的一端延伸至另一端。The nano material film structure according to claim 1, wherein the nanowire in the nano film extends from one end of the nano film to the other end. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米膜中的複數個奈米線彼此基本平行排列。The nano material film structure according to claim 1, wherein the plurality of nanowires in the nano film are arranged substantially in parallel with each other. 如申請專利範圍第3項所述的奈米材料薄膜結構,其中,所述奈米膜中的相鄰兩個奈米線之間相互接觸,且通過凡德瓦爾力緊密連接。The nano material film structure according to claim 3, wherein two adjacent nanowires in the nano film are in contact with each other and are closely connected by a van der Waals force. 如申請專利範圍第4項所述的奈米材料薄膜結構,其中,所述奈米膜為一自支撐結構。The film structure of nanomaterials according to claim 4, wherein the nano film is a self-supporting structure. 如申請專利範圍第3項所述的奈米材料薄膜結構,其中,所述奈米膜中的相鄰兩個奈米線之間的距離大於等於0.5奈米且小於等於100微米。The film structure of the nano material according to claim 3, wherein a distance between two adjacent nanowires in the nano film is greater than or equal to 0.5 nm and less than or equal to 100 μm. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米膜的厚度為0.5奈米~100微米。The nano material film structure according to claim 1, wherein the nano film has a thickness of 0.5 nm to 100 μm. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米材料薄膜結構包括至少兩個層迭設置的奈米膜,相鄰兩個奈米膜之間通過凡德瓦爾力或化學鍵緊密連接。The film structure of the nano material according to claim 1, wherein the film structure of the nano material comprises at least two laminated nano films, and the adjacent two nano films pass through the van der Waals Force or chemical bonds are tightly connected. 如申請專利範圍第8項所述的奈米材料薄膜結構,其中,所述相鄰兩個奈米膜中的奈米線交叉設置。The nanomaterial film structure according to claim 8, wherein the nanowires in the adjacent two nanofilms are disposed to intersect. 如申請專利範圍第9項所述的奈米材料薄膜結構,其中,所述奈米材料薄膜結構包括複數個均勻分佈的微孔,該微孔的孔徑大於等於1奈米且小於等於5微米。The film structure of the nano material according to claim 9, wherein the film structure of the nano material comprises a plurality of uniformly distributed micropores having a pore diameter of 1 nm or more and 5 μm or less. 如申請專利範圍第9項所述的奈米材料薄膜結構,其中,所述相互接觸且交叉設置的兩個奈米線之間反應形成一共同節點。The nanomaterial thin film structure according to claim 9, wherein the two nanowires that are in contact with each other and intersect to form a common node. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米顆粒的粒徑大於等於1奈米且小於等於500奈米。The nanomaterial film structure according to claim 1, wherein the nanoparticle has a particle diameter of 1 nm or more and 500 nm or less. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米線中相鄰的奈米顆粒通過凡德瓦爾力或化學鍵緊密連接於一起。The nanomaterial film structure according to claim 1, wherein the adjacent nanoparticles in the nanowire are closely connected together by van der Waals force or chemical bond. 如申請專利範圍第1項所述的奈米材料薄膜結構,其中,所述奈米顆粒包括金屬奈米顆粒、非金屬奈米顆粒、合金奈米顆粒、金屬化合物奈米顆粒及聚合物奈米顆粒中的一種或幾種。The nano material film structure according to claim 1, wherein the nano particles comprise metal nanoparticles, non-metallic nanoparticles, alloy nanoparticles, metal compound nanoparticles and polymer nanoparticles. One or several of the particles. 如申請專利範圍第14項所述的奈米材料薄膜結構,其中,所述奈米顆粒包括金屬氧化物奈米顆粒、金屬氮化物奈米顆粒、金屬碳化物奈米顆粒、矽氧化物奈米顆粒、矽氮化物奈米顆粒及矽碳化物奈米顆粒中的一種或多種。The nano material film structure according to claim 14, wherein the nano particles comprise metal oxide nanoparticles, metal nitride nanoparticles, metal carbide nanoparticles, and cerium oxide nanoparticles. One or more of particles, niobium nitride nanoparticles, and niobium carbide nanoparticles. 一種奈米材料薄膜結構,其包括至少一複合奈米膜,其改良在於,該複合奈米膜包括複數個基本沿同一方向排列的複合奈米線,且該每個複合奈米線包括至少一奈米碳管及包覆於該奈米碳管表面的複數個連續的奈米顆粒。A nano material film structure comprising at least one composite nano film, the improvement comprising: the composite nano film comprising a plurality of composite nanowires arranged substantially in the same direction, and each composite nanowire comprises at least one A carbon nanotube and a plurality of continuous nanoparticles coated on the surface of the carbon nanotube. 如申請專利範圍第16項所述的奈米材料薄膜結構,其中,所述複合奈米膜中的複合奈米線從複合奈米膜的一端延伸至另一端。The nanomaterial film structure according to claim 16, wherein the composite nanowire in the composite nanofilm extends from one end of the composite nanofilm to the other end. 如申請專利範圍第16項所述的奈米材料薄膜結構,其中,所述每個複合奈米線包括複數個首尾相連的奈米碳管及複數個包覆於首尾相連的奈米碳管表面的連續的奈米顆粒。The nano material film structure of claim 16, wherein each of the composite nanowires comprises a plurality of end-to-end carbon nanotubes and a plurality of carbon nanotube surfaces coated on the end-to-end Continuous nanoparticle. 如申請專利範圍第16項所述的奈米材料薄膜結構,其中,所述奈米顆粒與奈米碳管之間通過凡德瓦爾力或化學鍵緊密結合。The film structure of the nanomaterial according to claim 16, wherein the nanoparticle and the carbon nanotube are tightly bonded by a van der Waals force or a chemical bond. 如申請專利範圍第16項所述的奈米材料薄膜結構,其中,所述複合奈米線中的複數個連續的奈米顆粒包覆於奈米碳管的至少部分表面。The nanomaterial film structure of claim 16, wherein the plurality of continuous nanoparticles in the composite nanowire are coated on at least a portion of a surface of the carbon nanotube. 如申請專利範圍第16項所述的奈米材料薄膜結構,其中,所述複合奈米線中的複數個連續的奈米顆粒將整個奈米碳管完全包覆。The nanomaterial film structure of claim 16, wherein the plurality of continuous nanoparticles in the composite nanowire completely encapsulates the entire carbon nanotube. 一種奈米材料薄膜結構,其包括至少一複合奈米膜,其改良在於,該複合奈米膜包括複數個基本沿同一方向排列的奈米碳管線及複數個連續的奈米顆粒包覆於每個奈米碳管線的至少部分表面。A nano material film structure comprising at least one composite nano film, the improvement comprising: the composite nano film comprising a plurality of nano carbon lines arranged substantially in the same direction and a plurality of continuous nano particles coated on each At least part of the surface of a nanocarbon pipeline. 如申請專利範圍第22項所述的奈米材料薄膜結構,其中,所述奈米碳管線包括複數個首尾相連的奈米碳管基本沿同一方向排列。The nano material thin film structure according to claim 22, wherein the nano carbon pipeline comprises a plurality of carbon nanotubes connected end to end in substantially the same direction. 如申請專利範圍第22項所述的奈米材料薄膜結構,其中,所述奈米顆粒與奈米碳管線之間通過凡德瓦爾力或化學鍵緊密結合。The nanomaterial film structure according to claim 22, wherein the nanoparticle and the nanocarbon pipeline are tightly bonded by a van der Waals force or a chemical bond. 如申請專利範圍第22項所述的奈米材料薄膜結構,其中,所述複合奈米線中的複數個連續的奈米顆粒包覆於奈米碳管線的至少部分表面。The nanomaterial film structure of claim 22, wherein the plurality of continuous nanoparticles in the composite nanowire are coated on at least a portion of a surface of the nanocarbon pipeline. 如申請專利範圍第22項所述的奈米材料薄膜結構,其中,所述複合奈米線中的複數個連續的奈米顆粒將整個奈米碳管線完全包覆。The nanomaterial film structure of claim 22, wherein the plurality of continuous nanoparticles in the composite nanowire completely encapsulates the entire nanocarbon pipeline.
TW98116231A 2009-05-15 2009-05-15 Nano-material film structure TWI387556B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98116231A TWI387556B (en) 2009-05-15 2009-05-15 Nano-material film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98116231A TWI387556B (en) 2009-05-15 2009-05-15 Nano-material film structure

Publications (2)

Publication Number Publication Date
TW201040104A TW201040104A (en) 2010-11-16
TWI387556B true TWI387556B (en) 2013-03-01

Family

ID=44995821

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98116231A TWI387556B (en) 2009-05-15 2009-05-15 Nano-material film structure

Country Status (1)

Country Link
TW (1) TWI387556B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426046B (en) * 2011-01-05 2014-02-11 Hon Hai Prec Ind Co Ltd Method for forming defect on carbon nanotube
CN102263171B (en) * 2011-06-24 2013-10-09 清华大学 Epitaxial substrate, preparation method for epitaxial substrate and application of epitaxial substrate as grown epitaxial layer
CN103665908B (en) 2012-09-11 2016-01-13 北京富纳特创新科技有限公司 Carbon nano-tube compound film
CN103665907B (en) * 2012-09-11 2016-05-04 北京富纳特创新科技有限公司 Carbon nano-tube compound film and preparation method thereof
CN103663406B (en) 2012-09-11 2015-09-02 北京富纳特创新科技有限公司 The preparation method of carbon nano-tube compound film

Also Published As

Publication number Publication date
TW201040104A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
CN101880023B (en) Nanomaterial membrane structure
TWI327177B (en) Carbon nanotube film and method for making same
US9840773B2 (en) Method for making nanowire structure
TWI481554B (en) Method for making nanowire structure
TWI504436B (en) Reactor and a method for growing carbon nanotube
CN101837287B (en) Preparation of carbon nano-tube nano-particle composite material
TWI490032B (en) Reactor and a method for growing carbon nanotube
TWI387556B (en) Nano-material film structure
TWI545079B (en) Reactor and a method for growing carbon nanotube
WO2009139331A1 (en) Carbon wire, nanostructure composed of carbon film, method for producing the carbon wire, and method for producing nanostructure
TW201136828A (en) Fullerene-doped nanostructures and methods therefor
CN101734618A (en) Preparation method of nanostructure
TWI573892B (en) A method for making a film of nanotue
TWI411574B (en) Carbon nanotube composite material and method for making the same
TW201538417A (en) A film of nanotube
TW201600454A (en) Method of making nanostructure
TWI476149B (en) Method for making carbon nanotube film
TWI393669B (en) Carbon nanotube composite and method for making the same
Zhao et al. Synthesis of vertically aligned carbon nanotubes on silicalite-1 monolayer-supported substrate
JP5549983B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
Parthangal et al. Restructuring tungsten thin films into nanowires and hollow square cross-section microducts
JP6031146B2 (en) Nanotube film and manufacturing method thereof
JP4701451B2 (en) Zinc sulfide nanocable coated with silicon carbide film and method for producing the same
WO2007145080A1 (en) Carbon nanotube network composite material and method for manufacturing same
JP2007203180A (en) Manufacturing method of carbon nanostructure, catalytic metal particle composite material and its manufacturing method