TWI327177B - Carbon nanotube film and method for making same - Google Patents

Carbon nanotube film and method for making same Download PDF

Info

Publication number
TWI327177B
TWI327177B TW96105016A TW96105016A TWI327177B TW I327177 B TWI327177 B TW I327177B TW 96105016 A TW96105016 A TW 96105016A TW 96105016 A TW96105016 A TW 96105016A TW I327177 B TWI327177 B TW I327177B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube film
carbon
film structure
film
Prior art date
Application number
TW96105016A
Other languages
Chinese (zh)
Other versions
TW200833862A (en
Inventor
Chen Feng
Kai-Li Jiang
Liang Liu
Xiao-Bo Zhang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96105016A priority Critical patent/TWI327177B/en
Publication of TW200833862A publication Critical patent/TW200833862A/en
Application granted granted Critical
Publication of TWI327177B publication Critical patent/TWI327177B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 本發明涉及一種奈米碳管薄膜結構及其製備方法。 【先前技術】 奈米峻管係九十年代初才發現的一種新型一維奈米材 料。奈米碳管的特殊結構決定了其具有特殊的性質,如高 抗張強度與高熱穩定性;隨著奈米碳管螺旋方式的變化, 奈米碳管可呈現出金屬性或半導體性等。由於奈米碳管具 有理想的一維結構以及在力學、電學、熱學等領域優良的 性質’其在材料科學、化學、物理學等交又學科領域已展 現出廣闊的應用前景,在科學研究以及產業應用上也受到 越來越多的關注。 雖奈米碳管性能優異,具有廣泛的應用,然一般情況 下製備得_奈米碳管為齡狀或粉末狀,這對人們的應 用造成了很多不便。 為製成薄膜狀的奈米碳管結構,先前的方法主要包 直接生長法;噴塗法或_爾.布洛節塔(Langmuir* •tt,LB)法。其中,直接生長法一般通過控制反應條 ,’如以硫俩為添加劑或設置多層催化料,通過化學 氣相沉積法直接生長得騎米碳㈣赌構。噴塗法一般 通過將奈米碳管粉末形成水性溶液並塗覆於—基材表面, ,乾燥後形成奈米碳管_結構。LB法—般通過將一奈米 ^管溶液混入另一具有不同密度之溶液(如有機溶劑)中, 利用分子自喊運動,奈《管浮出溶液表面形成奈米碳 1327177 管薄膜結構。 然而,上述通過直接生長法或喷塗法獲得的奈米碳管 薄膜結構中,奈米碳管往往容易聚集成團導致薄膜厚度不 均。上述通過LB法製備得到的奈米碳管薄膜結構一般為均 勻網狀結構’奈米碳管分散均勻,不團聚,^,奈米碳管 在薄膜中健為無序排列,仰於充分發揮奈米碳管的性 能,其應用仍然受到限制。 有蓉於此’提供-種奈米碳管薄膜結構,其中奈 管在薄膜中均勻分散且有序排列實為必要。 反 【發明内容】 -種奈米碳管_結構_備方法, 步驟:提供-奈米絲陣列; ^括以下 ;二車列中拉取獲得至少兩奈米〜薄 :二::上述奈米碳管薄膜重叠地枯附于固定框架 成夕層的奈米碳管薄膜結構;以及^ 處理上述多層奈米碳管薄膜結構。 4劑 -種奈米碳管薄膜結構’包括: Ϊ = 米碳管薄膜,該奈米碳“: 薄膜結構進-步包括由多個奈米碳管束 相較于先前技術,所述的奈米 備太沬^Ira 丁木蛟管薄膜結構的製 来碳管薄膜重愚m 直接拉出的多個奈 簡單易r__處理形成, 早易仃。所述的以碳管_結構中包括多層定向 8 排列的多個奈米碳管束,其中,每層奈米碳管薄膜中 奈米碳管束首尾相連,多層奈米碳管薄膜中的奈米碳 管束形成微孔結構。該奈米碳管薄膜表面體積比小, 無粘性,且具有良好的機械強度及韌性,能方便地應 用於宏觀領域。 【實施方式】 下面將結合附圖對本發明作進一步的詳細說明。 請參閱圖1,本發明實施例奈米碳管薄膜結構的製 備方法主要包括以下幾個步驟: 步驟一:提供一奈米碳管陣列,優選地,該陣列 為超順排奈米碳管陣列。 本實施例中,超順排奈米碳管陣列的製備方法採 用化學氣相沉積法,其具體步驟包括:(a)提供一平 整基底,該基底可選用P型或N型矽基底,或選用形 成有氧化層的矽基底,本實施例優選為採用4英寸的 矽基底;(b)在基底表面均勻形成一催化劑層,該催 化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其 任意組合的合金之一;(c)將上述形成有催化劑層的 基底在700〜900°C的空氣中退火約30分鐘〜90分鐘; (d)將處理過的基底置於反應爐中,在保護氣體環 境下加熱到500〜740°C,然後通入碳源氣體反應約 5〜30分鐘,生長得到超順排奈米碳管陣列,其高度為 200〜400微米。該超順排奈米碳管陣列為多個彼此平 行且垂直於基底生長的奈米碳管形成的純奈米碳管 9 陣列。通過上述控制生長條件,該超順排奈米碳管陣 列中基本不含有雜質,如無定型碳或殘留的催化劑金 屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。 本實施例中碳源氣可選用乙块等化學性質較活潑 的碳氫化合物,保護氣體可選用氮氣、氨氣或惰性氣 體。 步驟二··採用一拉伸工具從奈米碳管陣列令拉取 獲得一第—奈米碳管薄膜。其具體包括以下步驟:(a) 從上述奈米碳管陣列中選定寬度的多個奈米碳 管片斷’本實施例優選為採用具有一定寬度的膠帶接 觸奈米碳管陣列以選定—定寬度的多個奈米碳管片 斷’(b) a a速度沿基本垂直于奈米碳管陣列生長 方向拉伸該多個奈米碳管片斷,以形成—連續的第一 奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片斷在拉力 作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦 爾力作用’該選定的多個奈米碳管片斷分別與其他奈 米石斷首尾相連地連續地被拉出,從而形成一奈 官薄膜。該奈米碳管薄膜為定向排列的多個奈米 碳管束首尾相連形成的具有一定寬度的奈米碳管薄 膜。該奈米碳管薄膜中奈米碳管的排列方向基本平行 于奈米碳管薄膜的拉伸方向。 本實%例中,該第一奈米碳管薄膜的寬度與奈米 1327177 碳管陣騎生長的基朗尺寸有關,該第-奈米碳管 薄膜的長度不限,可根據實際需求制得。本實施例中 ' 採用4英寸的基底生長超順排奈米碳管陣列,該第一 奈米碳管薄膜的寬度可為lcm〜1〇cro,該第一奈米碳管 薄膜的厚度為0.01〜1〇〇微米。 *步驟三:提供一固定框架,將上述第一奈米碳管 薄膜沿第-方向招附於固定框架,並去除固定框架外 鲁 的多餘的奈米碳管薄膜。 本實施例中,該固定框架為一方形的金屬框架, 用於固定奈求碳管薄膜,其材質不限。該固定框架的 大小可依據實際需求確定,當固定框架的寬度大於上 料-奈米碳管薄膜的寬度時,可將多個上述第二奈 米碳管薄膜並排覆蓋並粘附在固定框架上。 由於本實施例步驟一中提供的超順排奈米碳管陣 列中的奈米碳管非常純淨,且由於奈米碳管本身的比 # 表面積非常大’所以該第一奈米碳管薄膜本身具有較 強的枯性。步驟三中該第一奈求碳管薄膜可利用苴本 身的枯性直接枯附於固定框架’使該第一奈米碳管薄 __通過固定框架固定’該第一奈米碳管薄膜的 中間部分懸空。 步驟四:按照與步驟二相同的方法獲得—第二太 米碳管薄膜’將該第二奈米碳管薄膜沿第二方向才㈣ 於上述固定框架,並覆蓋上述第一奈来碳管薄膜形成 一兩層的奈米碳管薄膜結構。 < £ 11 1327177 該第一奈米碳管薄膜與第二奈米碳管薄膜之間由 於凡德瓦爾力緊密連接形成穩定的兩層奈#碳 膜結構。且’該第二方向與第一方向之間形成一夾角 α,0°<α<90°,優選地’相鄰的薄膜之間的夾角α 為 90。。 進一步地,本實施例可類似地將一具有與上述奈 米碳管薄膜相同結構的第三奈米碳管薄膜或更多層 的奈米奴官溥膜依次覆盡於上述第二奈米碳管薄 膜’進而形成多層的奈米碳管薄膜結構。該奈米碳管 薄膜結構的層數不限,具體可依據實際需求製備。 步驟五:使用有機溶劑處理上述多層奈米碳管薄 膜。 ’ 可通過試管將有機溶劑滴落在奈米碳管薄膜表面 ^潤,個奈米碳管薄膜,或者,也可將上述形成有奈 米碳管薄膜的固定框架整個浸入盛有有機溶劑的容 器中浸潤。該有機溶劑為揮發性有機溶劑,如乙醇、 甲醇、丙_、二氣乙烷或氣仿,本實施例中採用乙醇。 該多層奈米碳管薄膜經有機溶劑浸潤處理後,在揮發 :生有機溶劑的表面張力的作用下’奈米碳管薄膜中的 平仃的奈米碳管片斷會部分聚集成奈米碳管束,因 此,該奈米碳管賴表面體積比小,無祕,且具有 良好的機械強度及祕,能方便地應用於宏觀領域。 η奈米碳管薄膜中奈米碳管聚集成束,使得該奈 、碳官薄膜申平行的奈米碳管束之間基本相互間IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a carbon nanotube film structure and a preparation method thereof. [Prior Art] Nanojun tube is a new type of one-dimensional nanomaterial discovered only in the early 1990s. The special structure of the carbon nanotubes determines its special properties, such as high tensile strength and high thermal stability. With the change of the helical mode of the carbon nanotubes, the carbon nanotubes can exhibit metallic or semiconducting properties. Because carbon nanotubes have an ideal one-dimensional structure and excellent properties in the fields of mechanics, electricity, heat, etc., they have shown broad application prospects in the fields of materials science, chemistry, physics, etc., in scientific research and Industrial applications are also receiving more and more attention. Although the performance of the carbon nanotubes is excellent and has a wide range of applications, the carbon nanotubes prepared in general are aged or powdery, which causes a lot of inconvenience to people's applications. In order to form a film-like carbon nanotube structure, the prior method mainly comprises a direct growth method; a spray method or a Langmuir* tt (LB) method. Among them, the direct growth method generally controls the reaction strip, such as using sulfur as an additive or setting a multi-layer catalytic material, and directly growing by the chemical vapor deposition method to obtain a carbon fiber (four). The spraying method generally forms a carbon nanotube structure by drying the carbon nanotube solution into an aqueous solution and coating it on the surface of the substrate. The LB method generally uses a nanotube solution to be mixed into another solution having a different density (such as an organic solvent) to utilize the molecular self-spoken motion, and the tube floats out of the solution surface to form a nano-carbon 1327177 tube film structure. However, in the above-described carbon nanotube film structure obtained by the direct growth method or the spray coating method, the carbon nanotubes tend to aggregate easily, resulting in uneven film thickness. The above-mentioned carbon nanotube film structure prepared by the LB method generally has a uniform network structure. The carbon nanotubes are uniformly dispersed and do not agglomerate, and the carbon nanotubes are disorderly arranged in the film, and the carbon nanotubes are fully utilized. The performance of carbon nanotubes is still limited in its application. There is a kind of nano-carbon tube film structure provided by the powder, wherein it is necessary to uniformly disperse and arrange the naphthalene tube in the film. [Contents of the invention] - a carbon nanotube _ structure _ preparation method, the steps: provide - nanowire array; ^ include the following; pull in the second train to obtain at least two nanometers ~ thin: two:: the above nano The carbon tube film is superposed to adhere to the carbon nanotube film structure of the fixed frame, and the multilayer carbon nanotube film structure is processed. The 4 dose-type carbon nanotube film structure 'includes: Ϊ = m carbon tube film, the nano carbon ": the film structure further comprises a plurality of carbon nanotube bundles compared to the prior art, said nano The preparation of the carbon nanotube film of the film structure of the 沬 沬 ^Ira 丁 蛟 重 m m m m m m m m 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接 直接The plurality of carbon nanotube bundles, wherein the carbon nanotube bundles in each layer of the carbon nanotube film are connected end to end, and the carbon nanotube bundles in the multilayer carbon nanotube film form a microporous structure. The surface volume of the carbon nanotube film The invention is further described in detail with reference to the accompanying drawings. The embodiment of the present invention will be further described in detail with reference to the accompanying drawings. The preparation method of the carbon nanotube film structure mainly comprises the following steps: Step 1: providing a carbon nanotube array, preferably, the array is a super-sequential carbon nanotube array. In this embodiment, the super-shun System of carbon nanotube array The preparation method adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, which is preferably employed in this embodiment. a 4-inch tantalum substrate; (b) uniformly forming a catalyst layer on the surface of the substrate, the catalyst layer material being selected from one of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) The substrate on which the catalyst layer is formed is annealed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) the treated substrate is placed in a reaction furnace and heated to 500 to 740 ° under a protective gas atmosphere. C, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array having a height of 200 to 400 μm. The super-aligned carbon nanotube array is parallel and perpendicular to each other. An array of pure carbon nanotubes formed by a carbon nanotube grown on the substrate. The super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, by controlling the growth conditions described above. In the array of carbon nanotubes The carbon nanotubes are in close contact with each other to form an array by van der Waals force. In this embodiment, the carbon source gas may be selected from a chemically active hydrocarbon such as a block B, and the protective gas may be selected from nitrogen, ammonia or an inert gas. Applying a first carbon nanotube film from a carbon nanotube array using a stretching tool, which specifically includes the following steps: (a) selecting a plurality of nanocarbons of a width from the carbon nanotube array Tube segment 'This embodiment preferably uses a tape having a width to contact the array of carbon nanotubes to select a plurality of carbon nanotube segments of a predetermined width' (b) aa velocity along a direction substantially perpendicular to the growth of the nanotube array Stretching the plurality of carbon nanotube segments to form a continuous first carbon nanotube film. During the stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate by the tensile force in the stretching direction. At the same time, due to the effect of the van der Waals force, the selected plurality of carbon nanotube segments are continuously pulled out in conjunction with the other nano-stones, thereby forming a necrotic film. The carbon nanotube film is a carbon nanotube film having a certain width formed by connecting a plurality of aligned carbon nanotube bundles end to end. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. In the present example, the width of the first carbon nanotube film is related to the size of the base of the nano 1327177 carbon tube array, and the length of the first carbon nanotube film is not limited, and can be obtained according to actual needs. . In this embodiment, a 4-inch substrate is used to grow a super-sequential carbon nanotube array. The width of the first carbon nanotube film may be 1 cm to 1 〇cro, and the thickness of the first carbon nanotube film is 0.01. ~1〇〇 micron. *Step 3: A fixed frame is provided to attach the first carbon nanotube film to the fixed frame in the first direction, and remove the excess carbon nanotube film from the outer frame of the fixed frame. In this embodiment, the fixing frame is a square metal frame for fixing the carbon tube film, and the material thereof is not limited. The size of the fixing frame can be determined according to actual needs. When the width of the fixing frame is larger than the width of the feeding-carbon nanotube film, a plurality of the above-mentioned second carbon nanotube films can be covered side by side and adhered to the fixing frame. . Since the carbon nanotubes in the super-sequential carbon nanotube array provided in the first step of the embodiment are very pure, and because the surface area of the carbon nanotube itself is very large, the first carbon nanotube film itself Has a strong dryness. In the third step, the first carbon nanotube film can be directly adhered to the fixed frame by utilizing the dryness of the crucible itself, so that the first carbon nanotube is thinned and fixed by the fixing frame. The middle part is suspended. Step 4: Obtaining the second carbon nanotube film in the same manner as in the second step. The second carbon nanotube film is in the second direction (4) on the fixed frame, and covers the first carbon nanotube film. A two-layered carbon nanotube film structure is formed. < £ 11 1327177 The first carbon nanotube film and the second carbon nanotube film are closely connected by a van der Waals force to form a stable two-layer carbon film structure. And an angle α, 0° < α < 90° is formed between the second direction and the first direction, and preferably the angle α between adjacent films is 90. . Further, in this embodiment, a third carbon nanotube film or a plurality of layers of nano-tank film having the same structure as the above-mentioned carbon nanotube film can be similarly coated on the second nano carbon. The tube film' in turn forms a multilayered carbon nanotube film structure. The number of layers of the carbon nanotube film structure is not limited, and can be prepared according to actual needs. Step 5: The above multilayer carbon nanotube film is treated with an organic solvent. 'The organic solvent can be dripped on the surface of the carbon nanotube film by a test tube, and the carbon nanotube film can be immersed in the container containing the organic solvent. Infiltration. The organic solvent is a volatile organic solvent such as ethanol, methanol, propane, di-ethane or gas, and ethanol is used in this embodiment. After the multi-layered carbon nanotube film is treated by organic solvent infiltration, under the action of volatilization: surface tension of the organic solvent, the flat carbon nanotube fragments in the carbon nanotube film are partially aggregated into the carbon nanotube bundle. Therefore, the carbon nanotube has a small surface volume ratio, no secret, and has good mechanical strength and secret, and can be conveniently applied to a macroscopic field. The carbon nanotubes in the η nanocarbon tube film are gathered into a bundle, so that the carbon nanotube bundles of the carbon nanotubes and the carbon film are substantially parallel to each other.

12 1327177 且多層奈米碳管薄膜中的奈米碳管束交又排列形 成微孔結構。因此,該奈米碳可用於濾膜、鐘 1池電極等結構。另’由於奈米碳管具有極佳的導電 性能’本實施例奈米碳管薄膜結構中採用首尾相連的 奈米碳管束交叉排列形成導電網路,因此也可應用於 電磁遮罩。 本技術領域技術人員應明白,本實施例奈米碳管 鲁 相結構中的微孔結構與奈米碳管薄膜的層數有 關,當層數越多時,所形成的微孔結構的孔徑越小。 另,本實施例還可利用將多層奈米碳管薄膜部分堆疊 形成具有任意寬度與長度的奈米碳管薄膜結構,不受 本實_上述方法從奈米碳管陣列直餘出的奈米 碳管薄膜的寬度限制。 …請參關2,本實_依照上述方法將兩層奈米碳 管薄膜以90。角重叠形成的奈米碳管薄膜結構每一 # 2奈米碳管薄财的奈米碳管均定向㈣,兩奈求碳 管薄膜之間通過凡德瓦爾力結合。進一步地,將上述 獲仔的兩層結構的奈米碳管薄膜部分使用乙醇處理 後,在表面張力的作用下’處理後的部分該奈米碳管 薄膜=奈米碳管聚集成束,使得該奈米碳管薄膜中 奈米碳官束之間的空隙變大,該奈米碳管束交又形成 多個微孔結構,其中微孔直徑為1〇奈米〜1〇微米。 請參閱圖3,本實施例依照上述方法將四層奈米碳 管薄膜重疊形成的奈米碳管薄膜結構,每一層奈米碳 13 1327177 管薄膜中的奈米碳管均定向排列,相鄰兩奈米碳管薄 膜中的奈米碳管形成90°夾角。進一步地,請將上述 獲得的四層結構的奈米碳管薄膜部分使用乙醇處理 後,在表面張力的作用下,處理後的部分該奈米碳管 薄膜中的奈米碳管聚集成束,使得該奈米碳管薄膜中 奈米碳管束之間的空隙變大,該奈米碳管束交叉形成 多個微孔結構,其中微孔直徑為1奈米〜1微米。 綜上所述,本發明確已符合發明專利之要件,遂 依法提出專利申請。惟,以上所述者僅為本發明之較 佳實施例,自不能以此限制本案之申請專利範圍。舉 凡熟悉本案技藝之人士援依本發明之精神所作之等 效修飾或變化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施例奈米碳管薄膜結構的製備方 法的流程不意圖。 圖2係本發明實施例獲得的兩層奈米碳管薄膜結 構部分使用乙醇處理後的掃描電鏡照片。 圖3係本發明實施例獲得的四層奈米碳管薄膜結 構部分使用乙醇處理後的掃描電鏡照片。 【主要元件符號說明】 #**>12 1327177 And the carbon nanotube bundles in the multi-layered carbon nanotube film are arranged to form a microporous structure. Therefore, the nanocarbon can be used for structures such as a membrane, a cell, and the like. In addition, since the carbon nanotubes have excellent electrical conductivity, the carbon nanotube film structure of the present embodiment uses a combination of end-to-end carbon nanotube bundles to form a conductive network, and thus can also be applied to an electromagnetic mask. It will be understood by those skilled in the art that the microporous structure in the phase structure of the carbon nanotubes of the present embodiment is related to the number of layers of the carbon nanotube film. When the number of layers is larger, the pore diameter of the formed microporous structure is higher. small. In addition, the embodiment can also utilize the partial stacking of the multi-layered carbon nanotube film to form a carbon nanotube film structure having an arbitrary width and length, and is not free from the nanometer directly from the carbon nanotube array. The width of the carbon tube film is limited. ...Please refer to 2, the actual _ according to the above method, the two layers of carbon nanotube film is 90. The angular overlap formed by the carbon nanotube film structure of each #2 nm carbon tube thin carbon nanotubes are oriented (four), and the two carbon nanotube films are combined by van der Waals force. Further, after the above-mentioned two-layered carbon nanotube film portion obtained by the treatment is treated with ethanol, the treated portion of the carbon nanotube film=nano carbon tube aggregates into a bundle under the action of surface tension, so that The gap between the carbon nanotubes in the carbon nanotube film becomes large, and the carbon nanotube bundles form a plurality of microporous structures, wherein the micropore diameter is 1 〇 nanometer to 1 〇 micrometer. Referring to FIG. 3, in this embodiment, a carbon nanotube film structure formed by overlapping four layers of carbon nanotube films is arranged according to the above method, and the carbon nanotubes in each layer of nanocarbon 13 1327177 tube film are aligned and adjacent. The carbon nanotubes in the two carbon nanotube film form an angle of 90°. Further, after the carbon nanotube film portion of the four-layer structure obtained above is treated with ethanol, the treated portion of the carbon nanotubes in the carbon nanotube film is aggregated under the action of surface tension. The voids between the bundles of carbon nanotubes in the carbon nanotube film are made larger, and the bundle of carbon nanotubes intersect to form a plurality of microporous structures, wherein the micropores have a diameter of 1 nm to 1 μm. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic flow chart showing a method of preparing a carbon nanotube film structure according to an embodiment of the present invention. Fig. 2 is a scanning electron micrograph of a structure of a two-layered carbon nanotube film obtained in an embodiment of the present invention after treatment with ethanol. Fig. 3 is a scanning electron micrograph of a structure of a four-layered carbon nanotube film obtained in an embodiment of the present invention after treatment with ethanol. [Main component symbol description] #**>

14 < S14 < S

Claims (1)

1327177 十、申請專利範圍 1· 一種奈米碳管薄膜結構的製備方法,其包括以下 提供一奈米碳管陣列; 採用拉伸工具從奈米碳管陣列中拉取獲得至小 兩奈米碳管薄膜; 提供-固定㈣’將上述奈米碳管_重疊地點 附于固核架形成—多層的奈米碳管薄膜結構; 2有機㈣處理上述乡層奈米碳管薄膜結 如申請專利範圍第β所述的奈米碳 ^備方法’其中,該奈米碳管薄膜包括多 :: 向排列的連續的奈米碳管束。1327177 X. Patent Application Scope 1. A method for preparing a carbon nanotube film structure, which comprises the following providing a carbon nanotube array; using a stretching tool to extract from a carbon nanotube array to a small two nanometer carbon Tube film; providing-fixing (four) 'attaching the above carbon nanotubes_overlapping site to the solid frame to form a multi-layered carbon nanotube film structure; 2 organic (four) processing the above-mentioned layer of carbon nanotube film knots as claimed The nanocarbon preparation method according to [beta], wherein the carbon nanotube film comprises a plurality of:: aligned continuous carbon nanotube bundles. 3. 4. ==範】Γ項所述的奈米碳管薄膜結構 方法,其中,該多個奈米碳管束具有相等 通過凡德瓦爾力首尾相連形成連續的奈 範::1項:述的奈米碳管薄膜結構 八中,該多個奈米碳管薄膜沿 方向重疊地粘附於固定框架。 、 Q ==範圍第1項所述的奈米碳管薄膜結構 ::方法’其中,該多個奈米碳管薄膜分 不同方向重疊地粘附於固定框架。 。 如申請專利範圍第1項所述的奈米碳管薄膜结構 c 15 1327177 的製備方法,其中,該有機溶劑為乙醇、甲醇、 丙酮、二氯乙烧或氯仿。 7. 如申請專利範圍第1項所述的奈米碳管薄膜結構 的製備方法,其中,上述從奈米碳管陣列拉取獲 得奈米碳管薄膜的方法包括以下步驟: 從上述奈米碳管陣列中選定一定寬度的多個奈米 碳管片斷;以及 以一定速度沿基本垂直于奈米碳管陣列生長方向 拉伸該多個奈米碳管片斷,以形成一連續的奈米 碳管薄膜。 8. 如申請專利範圍第1項所述的奈米碳管薄膜結構 的製備方法,其中,上述使用有機溶劑處理奈米 碳管薄膜的方法包括通過試管將有機溶劑滴落在 奈米碳管薄膜表面浸潤整個奈米碳管薄膜,或將 上述形成有奈米碳管薄膜的固定框架整個浸入盛 有有機溶劑的容器中浸潤。 9. 如申請專利範圍第1項所述的奈米碳管薄膜結構 的製備方法,其中,上述奈米碳管陣列的製備方 法包括以下步驟: 提供一平整基底; 在基底表面均勻形成一催化劑層; 將上述形成有催化劑層的基底在700〜900°C的空 氣中退火約30分鐘〜90分鐘;以及 將處理過的基底置於反應爐中,在保護氣體環境 16 2 下加熱到5GG〜74G°C ’然後通人碳源氣反應約 生長得到高度為·〜働微米的奈米 10. 一種奈米碳管薄膜結構,包括··至少兩層重疊且 ,又設置的奈米碳管薄膜,該奈米碳管薄膜包括 :個首尾相連且定向排列的奈米碳管束,該多層 f步包括由多個奈米碳管束 11 12. 槿申Γ專利㈣第10項所述的奈米碳管薄膜結 ,八中,該微孔直徑為丨奈米〜1()微米。 申利範圍第10項所述的奈米碳管薄臈結 管炭开:Γ相鄰的兩層奈米碳管薄膜中的奈米碳 果形成一夾角α。 :3.=利=9:2。項所述的奈米碳管薄膜結 14.:申:項所述的奈米碳管薄膜結 連接才目鄰奈求碳管束之間通過凡德瓦爾力 < s 173. 4. == 范] The carbon nanotube film structure method described in the item, wherein the plurality of carbon nanotube bundles have the same continuity through the van der Waals force to form a continuous nafan::1 item: In the carbon nanotube film structure 8, the plurality of carbon nanotube films are adhered to the fixed frame in an overlapping manner in the direction. , Q == The carbon nanotube film structure described in the above item 1: The method wherein the plurality of carbon nanotube films are adhered to the fixed frame in overlapping directions in different directions. . The method for producing a carbon nanotube film structure c 15 1327177 according to claim 1, wherein the organic solvent is ethanol, methanol, acetone, dichloroethane or chloroform. 7. The method for preparing a carbon nanotube film structure according to claim 1, wherein the method for obtaining a carbon nanotube film from the carbon nanotube array comprises the following steps: Selecting a plurality of carbon nanotube segments of a certain width in the tube array; and stretching the plurality of carbon nanotube segments at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array growth to form a continuous carbon nanotube film. 8. The method for preparing a carbon nanotube film structure according to claim 1, wherein the method for treating a carbon nanotube film by using an organic solvent comprises dropping an organic solvent into a carbon nanotube film through a test tube. The surface is infiltrated with the entire carbon nanotube film, or the above-mentioned fixing frame formed with the carbon nanotube film is entirely immersed in a container containing an organic solvent to be infiltrated. 9. The method for preparing a carbon nanotube film structure according to claim 1, wherein the method for preparing the carbon nanotube array comprises the steps of: providing a flat substrate; uniformly forming a catalyst layer on the surface of the substrate. The substrate formed with the catalyst layer is annealed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; and the treated substrate is placed in a reaction furnace and heated to 5 GG to 74 G in a protective gas atmosphere 16 2 °C 'then pass the carbon source gas reaction to grow about nanometer height ~ ~ 働 micron 10. A carbon nanotube film structure, including · at least two layers of overlapping, and set of carbon nanotube film, The carbon nanotube film comprises: a bundle of end-to-end and aligned carbon nanotubes, the multi-layer f step comprising a plurality of carbon nanotube bundles 11 12. The carbon nanotubes described in claim 10 (4) The film junction, eight, the diameter of the micropores is 丨 nanometer ~ 1 () micron. The carbon nanotubes of the thin carbon nanotubes described in claim 10 of the Shenli range: the nanocarbons in the adjacent two layers of carbon nanotube film form an angle α. :3.=利=9:2. The carbon nanotube film junction described in the item is as follows: The carbon nanotube film junction described in the application of the item: the connection between the carbon nanotube bundles and the van der Waals force < s 17
TW96105016A 2007-02-12 2007-02-12 Carbon nanotube film and method for making same TWI327177B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96105016A TWI327177B (en) 2007-02-12 2007-02-12 Carbon nanotube film and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96105016A TWI327177B (en) 2007-02-12 2007-02-12 Carbon nanotube film and method for making same

Publications (2)

Publication Number Publication Date
TW200833862A TW200833862A (en) 2008-08-16
TWI327177B true TWI327177B (en) 2010-07-11

Family

ID=44819250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96105016A TWI327177B (en) 2007-02-12 2007-02-12 Carbon nanotube film and method for making same

Country Status (1)

Country Link
TW (1) TWI327177B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426540B (en) * 2010-12-06 2014-02-11 Hon Hai Prec Ind Co Ltd Electron emitter and electron emitting element
TWI427659B (en) * 2010-12-06 2014-02-21 Hon Hai Prec Ind Co Ltd Electron emitter and electron emitting element
TWI606156B (en) * 2014-03-31 2017-11-21 鴻海精密工業股份有限公司 Method for making carbon nanotube structure
TWI615599B (en) * 2016-01-22 2018-02-21 鴻海精密工業股份有限公司 Device and method for detecting light wavelength
TWI617790B (en) * 2016-01-22 2018-03-11 鴻海精密工業股份有限公司 Image sensor
TWI630172B (en) * 2014-03-31 2018-07-21 鴻海精密工業股份有限公司 Methods for transferring carbon nanotube array and making carbon nanotube structure
TWI639865B (en) * 2017-04-20 2018-11-01 鴻海精密工業股份有限公司 Communication method based on terahertz wave

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
TWI383691B (en) * 2008-10-31 2013-01-21 Hon Hai Prec Ind Co Ltd Soft acoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
TWI397701B (en) * 2009-04-17 2013-06-01 Hon Hai Prec Ind Co Ltd Device and method for detecting electromagnetic wave
CN101870465B (en) 2009-04-22 2012-05-30 清华大学 Preparation method of carbon nano tube film
TWI415790B (en) * 2009-04-30 2013-11-21 Hon Hai Prec Ind Co Ltd Carbon nanotube poisson's ratio material
TWI415791B (en) * 2009-05-15 2013-11-21 Hon Hai Prec Ind Co Ltd Method for making carbon nanotube film
CN101922755A (en) 2009-06-09 2010-12-22 清华大学 Heating wall
TWI402210B (en) * 2009-06-12 2013-07-21 Hon Hai Prec Ind Co Ltd Carbon nanotube wire structure and method for making the same
TWI394302B (en) * 2009-07-20 2013-04-21 Hon Hai Prec Ind Co Ltd Electrostrictive material and actuator using the same
CN101990152B (en) 2009-08-07 2013-08-28 清华大学 Thermal sounding device and manufacturing method thereof
CN102006542B (en) 2009-08-28 2014-03-26 清华大学 Sound generating device
CN102001641B (en) 2009-08-28 2013-06-05 清华大学 Method for preparing carbon nanotube linear structure
CN102023297B (en) 2009-09-11 2015-01-21 清华大学 Sonar system
CN102044627A (en) 2009-10-22 2011-05-04 清华大学 Electrostrictive composite material and electrostrictive element
CN102056064B (en) 2009-11-06 2013-11-06 清华大学 Loudspeaker
CN102056065B (en) 2009-11-10 2014-11-12 北京富纳特创新科技有限公司 Sound production device
CN102065363B (en) 2009-11-16 2013-11-13 北京富纳特创新科技有限公司 Sound production device
TWI394303B (en) * 2009-12-18 2013-04-21 Hon Hai Prec Ind Co Ltd Electrostrictive material and actuator using the same
TWI459055B (en) * 2009-12-18 2014-11-01 Hon Hai Prec Ind Co Ltd Polarization element and method for manufacturing thereof
TWI477442B (en) * 2010-04-07 2015-03-21 Beijing Funate Innovation Tech Method for making carbon nanotube film
CN101859892B (en) 2010-04-27 2012-11-21 清华大学 Lithium-ion battery anode and preparation method thereof
TWI489681B (en) * 2010-09-08 2015-06-21 Univ Feng Chia Cathode structure of lithium battery with three - dimensional conductive carbon fiber plate and its making method
CN102795613B (en) 2011-05-27 2014-09-10 清华大学 Preparation method of graphene-carbon nano tube composite structure
CN102796991B (en) 2011-05-27 2014-08-20 清华大学 Method for preparing graphene carbon nanotube composite membrane structure
CN102800419B (en) 2011-05-27 2014-07-09 清华大学 Method for preparing graphene conductive film structure
CN102802109B (en) 2011-05-27 2014-10-08 清华大学 Preparation method for thermophone element
CN102794945B (en) * 2011-05-27 2014-08-20 清华大学 Method for preparing graphene carbon nano tube composite membrane structure
CN102306800B (en) 2011-08-16 2015-11-25 清华大学 collector and lithium ion battery
CN103474170B (en) * 2012-06-07 2015-12-09 清华大学 The preparation method of superconducting wire
CN103731941B (en) * 2012-10-12 2015-12-02 清华大学 The preparation method of heating element
CN105399044B (en) * 2014-06-13 2017-07-07 清华大学 The preparation method of carbon nano-tube film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426540B (en) * 2010-12-06 2014-02-11 Hon Hai Prec Ind Co Ltd Electron emitter and electron emitting element
TWI427659B (en) * 2010-12-06 2014-02-21 Hon Hai Prec Ind Co Ltd Electron emitter and electron emitting element
TWI606156B (en) * 2014-03-31 2017-11-21 鴻海精密工業股份有限公司 Method for making carbon nanotube structure
TWI630172B (en) * 2014-03-31 2018-07-21 鴻海精密工業股份有限公司 Methods for transferring carbon nanotube array and making carbon nanotube structure
TWI615599B (en) * 2016-01-22 2018-02-21 鴻海精密工業股份有限公司 Device and method for detecting light wavelength
TWI617790B (en) * 2016-01-22 2018-03-11 鴻海精密工業股份有限公司 Image sensor
TWI639865B (en) * 2017-04-20 2018-11-01 鴻海精密工業股份有限公司 Communication method based on terahertz wave

Also Published As

Publication number Publication date
TW200833862A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
TWI327177B (en) Carbon nanotube film and method for making same
US9144962B2 (en) Graphene-polymer layered composite and process for preparing the same
CN101712468B (en) Carbon nanotube composite material and preparation method thereof
US8790744B2 (en) Method for making nanowire structure
US9682862B2 (en) Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
JP5438039B2 (en) Method of manufacturing transmission electron microscope grid, and method of manufacturing graphene sheet-carbon nanotube film composite structure used for transmission electron microscope grid
CN101837287B (en) Preparation of carbon nano-tube nano-particle composite material
JP5243478B2 (en) Nanomaterial thin film
TWI481554B (en) Method for making nanowire structure
CN101239712A (en) Carbon nano-tube thin film structure and preparation method thereof
TW201238892A (en) Graphene-carbon nanotube film structure
JP2011198749A (en) Transmission electron microscope grid and graphene sheet-carbon nanotube film composite structure to be used for the same
TW201136828A (en) Fullerene-doped nanostructures and methods therefor
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
TWI411574B (en) Carbon nanotube composite material and method for making the same
TWI339465B (en) Electromagnetic shielding layer and method for making the same
CN101734618A (en) Preparation method of nanostructure
TW200920689A (en) Apparatus and method for synthesizing films of carbon nanotubes
TWI387556B (en) Nano-material film structure
TWI393669B (en) Carbon nanotube composite and method for making the same
TW200842105A (en) Transmission electron microscope grid and method for making same
TWI438150B (en) Hydrophilic carbon nanotube composite structure
Ren et al. Technologies to achieve carbon nanotube alignment
TW201008871A (en) Method for making a carbon nanotube/conductive polymer composite
TWI438149B (en) Metohd for making hydrophilic carbon nanotube composite structure