KR102579378B1 - Method for preparing electron transfer material using biochar produced from microalgae sludge - Google Patents

Method for preparing electron transfer material using biochar produced from microalgae sludge Download PDF

Info

Publication number
KR102579378B1
KR102579378B1 KR1020180057423A KR20180057423A KR102579378B1 KR 102579378 B1 KR102579378 B1 KR 102579378B1 KR 1020180057423 A KR1020180057423 A KR 1020180057423A KR 20180057423 A KR20180057423 A KR 20180057423A KR 102579378 B1 KR102579378 B1 KR 102579378B1
Authority
KR
South Korea
Prior art keywords
biochar
enzyme
cobalt hydroxide
microalgae
sludge
Prior art date
Application number
KR1020180057423A
Other languages
Korean (ko)
Other versions
KR20190132134A (en
Inventor
김승욱
박철환
한성옥
이자현
김동섭
이주훈
이수권
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020180057423A priority Critical patent/KR102579378B1/en
Publication of KR20190132134A publication Critical patent/KR20190132134A/en
Application granted granted Critical
Publication of KR102579378B1 publication Critical patent/KR102579378B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Biotechnology (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 미세조류 슬러지로부터 바이오차를 제조하는 방법, 상기 제조된 바이오차를 이용하여 전자전달물질을 제조하는 방법 및 상기 제조된 전자전달물질을 이용한 효소연료전지 및 바이오센서에 관한 것이다.
본 발명에 따르면, 미세조류를 활용하고 버려진 미세조류 슬러지로부터 바이오차를 생산하고, 이를 전자전달물질로 활용함으로써 버려지는 미세조류 슬러지를 생물자원으로 사용하는 새로운 방법을 제공한다.
또한, 상기 제조된 바이오차와 수산화코발트, 키토산이 결합된 합성물을 전극 기재의 표면에 균일하게 증착시키고, 산화반응용 효소 또는 환원반응용 효소를 고정화함으로써 균일성과 안정성이 높고, 효소의 활성도가 향상된 전극을 제공하며, 상기 전극을 효소연료전지 또는 글루코오스 바이오센서에 적용함으로써 전력량과 센서 감도를 현저히 향상시킬 수 있다.
The present invention relates to a method of producing biochar from microalgae sludge, a method of producing an electron transfer material using the produced biochar, and an enzyme fuel cell and biosensor using the produced electron transfer material.
According to the present invention, a new method of using discarded microalgae sludge as a biological resource is provided by utilizing microalgae, producing biochar from discarded microalgae sludge, and using it as an electron transport material.
In addition, the composite of biochar, cobalt hydroxide, and chitosan prepared above is deposited uniformly on the surface of the electrode base, and the enzyme for the oxidation reaction or the enzyme for the reduction reaction is immobilized, resulting in high uniformity and stability and improved enzyme activity. An electrode is provided, and the power amount and sensor sensitivity can be significantly improved by applying the electrode to an enzyme fuel cell or glucose biosensor.

Description

미세조류 슬러지로부터 생산된 바이오차를 이용한 전자전달물질의 제조방법{Method for preparing electron transfer material using biochar produced from microalgae sludge}Method for preparing electron transfer material using biochar produced from microalgae sludge}

본 발명은 미세조류 슬러지로부터 바이오차를 제조하는 방법, 상기 제조된 바이오차를 이용하여 전자전달물질을 제조하는 방법 및 상기 제조된 전자전달물질을 이용한 효소연료전지 및 바이오센서에 관한 것이다.The present invention relates to a method of producing biochar from microalgae sludge, a method of producing an electron transfer material using the produced biochar, and an enzyme fuel cell and biosensor using the produced electron transfer material.

미세조류는 조류 중에서 크기가 매우 작고 물속에서 자유롭게 떠다니며 스스로 광합성을 통해 영양분을 생성하는 독립영양생물이자 단세포 생물이다. 종래 미세조류는 단순히 적조와 녹조의 발생에 영향을 끼치는 불필요한 생물로 여겨졌으나, 최근 광합성을 통한 산소의 생산, 다양한 물질과 영양분의 보유라는 특성을 통해 바이오에너지 생산, 미래의 식량, 화장품의 원료, 온실가스의 감소 등 다양한 분야에서 기존 원료에 비해 우수한 능력을 가진다는 점이 알려지면서 미세조류를 활용하기 위한 많은 연구가 진행되고 있다.Microalgae are very small among algae and are autotrophic and unicellular organisms that float freely in water and produce nutrients through photosynthesis. Previously, microalgae were considered unnecessary organisms that simply affected the occurrence of red and green tides, but recently, through their characteristics of producing oxygen through photosynthesis and retaining various substances and nutrients, they have been used to produce bioenergy, future food, and raw materials for cosmetics. As it has become known that it has superior capabilities compared to existing raw materials in various fields, such as reducing greenhouse gases, much research is being conducted to utilize microalgae.

한편, 효소연료전지(enzymatic fuel cell)가 최근 많은 연구자들의 관심을 받고 있다. 효소연료전지는 효소를 촉매로 사용하며, 상온, 상압, 자연 발생적 pH 등의 조건하에서 작동이 가능하도록 인체에 무해한 물질을 이용하여 제조되며, 그 크기가 작다는 점에서 의학, 바이오연료센서(biosensor), 소형 전자제품의 배터리 등 실생활에서 많은 응용이 가능하다.Meanwhile, enzymatic fuel cells have recently attracted the attention of many researchers. Enzyme fuel cells use enzymes as catalysts and are manufactured using materials that are harmless to the human body so that they can operate under conditions such as room temperature, normal pressure, and naturally occurring pH. Their small size makes them suitable for medical and biofuel sensors (biosensors). ), it has many applications in real life, such as batteries for small electronic products.

이러한 효소연료전지에 있어서 효소의 안정도와 활성도를 높이고, 최적화된 전자전달 환경을 형성하는 것은 무엇보다도 중요하다. 따라서, 전자 전달체에 대한 다양한 연구가 진행되고 있다. 그러나, 효소연료전지는 효소의 안정성과 관련하여 짧은 존속기간, 낮은 전류밀도, 낮은 출력밀도 등의 문제가 야기되기 때문에 이러한 문제를 해결하기 위한 지속적인 연구가 요구되고 있다.In such enzyme fuel cells, it is of utmost importance to increase the stability and activity of enzymes and to form an optimized electron transfer environment. Therefore, various studies on electron transporters are being conducted. However, enzyme fuel cells have problems related to the stability of enzymes, such as short lifespan, low current density, and low power density, so continuous research is required to solve these problems.

본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 미세조류를 활용하고 버려진 미세조류 슬러지로부터 바이오차를 제조하고, 상기 바이오차를 이용하여 전자전달물질을 제조하는 방법, 상기 제조된 전자전달물질을 포함함으로써 균일성과 안정성이 높고, 효소의 활성도가 향상된 효소연료전지 및 바이오센서를 제공하는 것을 목적으로 한다.The present invention was devised to solve the above-mentioned problems, and in the present invention, biochar is produced from discarded microalgae sludge using microalgae, a method of producing an electron transport material using the biochar, and a method of producing an electron transport material using the biochar. The purpose is to provide an enzyme fuel cell and biosensor with high uniformity and stability and improved enzyme activity by including an electron transfer material.

본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems, the present invention

미세조류 슬러지를 탄화시켜 바이오차를 제조하는 단계;를 포함하는 바이오차의 제조방법을 제공한다.It provides a method for producing biochar including the step of producing biochar by carbonizing microalgae sludge.

본 발명에 따르면, 상기 탄화는 질소가스 분위기 및 600-1000 ℃의 온도로 1-3 시간 동안 수행될 수 있다.According to the present invention, the carbonization can be performed in a nitrogen gas atmosphere and at a temperature of 600-1000° C. for 1-3 hours.

또한, 본 발명은 상기 제조된 바이오차를 분산시킨 용액에 CoCl2·H2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 바이오차/수산화코발트 합성물을 제조하는 단계; 및 상기 바이오차/수산화코발트 합성물을 키토산 용액과 반응시켜 바이오차/수산화코발트/키토산 합성물을 제조하는 단계;를 포함하는 전자전달물질의 제조방법을 제공한다.In addition, the present invention includes the steps of reacting CoCl 2 ·H 2 O in the solution in which the prepared biochar is dispersed, and then reacting by adding NH 4 OH to the reaction solution to produce a biochar/cobalt hydroxide composite; and reacting the biochar/cobalt hydroxide composite with a chitosan solution to produce a biochar/cobalt hydroxide/chitosan composite.

본 발명에 따르면, 상기 키토산 용액은 용매로서 아세트산(acetic acid)을 포함할 수 있다.According to the present invention, the chitosan solution may include acetic acid as a solvent.

또한, 본 발명은 전극 기재; 상기 전극 기재 표면에 증착된, 제3항에 따라 제조된 전자전달물질; 및 상기 전자전달물질의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 전극을 포함하는 효소연료전지를 제공한다.In addition, the present invention relates to an electrode substrate; The electron transport material prepared according to claim 3 deposited on the surface of the electrode substrate; and an electrode containing an enzyme for an oxidation reaction or an enzyme for a reduction reaction immobilized on the surface of the electron transport material.

또한, 본 발명은 전극 기재; 상기 전극 기재 표면에 증착된, 제3항에 따라 제조된 전자전달물질; 및 상기 전자전달물질의 표면에 고정화된 산화반응용 효소를 포함하는 전극을 포함하는 글루코오스 바이오센서를 제공한다. In addition, the present invention relates to an electrode substrate; The electron transport material prepared according to claim 3 deposited on the surface of the electrode substrate; and an electrode containing an enzyme for oxidation reaction immobilized on the surface of the electron transport material.

본 발명에 따르면, 미세조류를 활용하고 버려진 미세조류 슬러지로부터 바이오차를 생산하고, 이를 전자전달물질로 활용함으로써 버려지는 미세조류 슬러지를 생물자원으로 사용하는 새로운 방법을 제공한다.According to the present invention, a new method of using discarded microalgae sludge as a biological resource is provided by utilizing microalgae, producing biochar from discarded microalgae sludge, and using it as an electron transport material.

또한, 상기 제조된 바이오차와 수산화코발트, 키토산이 결합된 합성물을 전극 기재의 표면에 균일하게 증착시키고, 산화반응용 효소 또는 환원반응용 효소를 고정화함으로써 균일성과 안정성이 높고, 효소의 활성도가 향상된 전극을 제공하며, 상기 전극을 효소연료전지 또는 글루코오스 바이오센서에 적용함으로써 전력량과 센서 감도를 현저히 향상시킬 수 있다.In addition, the composite of biochar, cobalt hydroxide, and chitosan prepared above is deposited uniformly on the surface of the electrode base, and the enzyme for the oxidation reaction or the enzyme for the reduction reaction is immobilized, resulting in high uniformity and stability and improved enzyme activity. An electrode is provided, and the power amount and sensor sensitivity can be significantly improved by applying the electrode to an enzyme fuel cell or glucose biosensor.

도 1은 본 발명의 실시예에서 사용된 클로렐라 피레노이도사(Chlorella pyrenoidosa) 조류의 물질 수지를 측정한 결과를 나타낸 것이다.
도 2의 (a)는 본 발명의 실시예에서 사용된 클로렐라 피레노이도사(Chlorella pyrenoidosa) 조류의 산 추출 공정전 표면을 나타낸 SEM 이미지, (b)는 산 추출 공정을 통해 수득한 조류 슬러지의 표면을 나타낸 SEM 이미지이고, (c) 및 (d)는 조류 슬러지를 탄화시켜 제조한 바이오차의 표면을 나타낸 SEM 및 HRTEM 이미지이다.
도 3의 (a), (b)는 바이오차/수산화코발트 합성물의 표면을 나타낸 SEM 이미지 및 HRTEM 이미지이고, (c)는 바이오차/수산화코발트/키토산 합성물의 표면을 나타낸 SEM 이미지 및 EDX 분석 결과를 나타낸 것이다.
도 4는 바이오차/수산화코발트/키토산 합성물을 효소 연료전지 시스템에 적용하여 순환전압전류를 측정한 결과를 나타낸 그래프이다.
도 5는 바이오차/수산화코발트/키토산 합성물을 효소 연료전지 시스템에 적용하여 출력밀도를 측정한 결과를 나타낸 그래프이다.
도 6은 그라파이트 옥사이드/수산화코발트/키토산 합성물을 효소 연료전지 시스템에 적용하여 출력밀도를 측정한 결과를 나타낸 그래프이다.
도 7은 바이오차/수산화코발트/키토산 합성물을 글루코오스 바이오센서에 적용하여 센서 감도를 측정한 결과를 나타낸 그래프이다.
Figure 1 shows the results of measuring the mass balance of Chlorella pyrenoidosa algae used in the examples of the present invention.
Figure 2 (a) is an SEM image showing the surface of Chlorella pyrenoidosa algae used in an example of the present invention before the acid extraction process, and (b) is the surface of the algal sludge obtained through the acid extraction process. (c) and (d) are SEM and HRTEM images showing the surface of biochar produced by carbonizing algae sludge.
Figures 3 (a) and (b) are SEM images and HRTEM images showing the surface of the biochar/cobalt hydroxide composite, and (c) is the SEM image showing the surface of the biochar/cobalt hydroxide/chitosan composite and EDX analysis results. It represents.
Figure 4 is a graph showing the results of measuring the cyclic voltage current by applying the biochar/cobalt hydroxide/chitosan composite to the enzyme fuel cell system.
Figure 5 is a graph showing the results of measuring power density by applying a biochar/cobalt hydroxide/chitosan composite to an enzyme fuel cell system.
Figure 6 is a graph showing the results of measuring power density by applying a graphite oxide/cobalt hydroxide/chitosan composite to an enzyme fuel cell system.
Figure 7 is a graph showing the results of measuring sensor sensitivity by applying a biochar/cobalt hydroxide/chitosan composite to a glucose biosensor.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 미세조류 슬러지를 탄화시켜 바이오차를 제조하는 단계;를 포함하는 바이오차의 제조방법을 제공한다.The present invention provides a method for producing biochar including the step of carbonizing microalgae sludge to produce biochar.

이때, 상기 미세조류는 클로렐라 또는 스피룰리나일수 있으며, 바람직하게는 클로렐라 피레노이도사(Chlorella pyrenoidosa)일 수 있다.At this time, the microalgae may be Chlorella or Spirulina, and preferably Chlorella pyrenoidosa .

상기 미세조류 슬러지는 미세조류를 건조시킨 후 분쇄하여 제조한 분말에 대해 산 추출 공정을 수행하여 수득한 것일 수 있다.The microalgae sludge may be obtained by performing an acid extraction process on a powder prepared by drying and pulverizing microalgae.

또한, 상기 미세조류 슬러지로부터 바이오차로 전환되는 효율을 향상시키기 위해 상기 탄화는 질소가스 분위기 및 600-1000 ℃의 온도로 1-3 시간 동안 수행되는 것이 바람직하다. Additionally, in order to improve the conversion efficiency of the microalgae sludge into biochar, the carbonization is preferably performed for 1-3 hours in a nitrogen gas atmosphere and at a temperature of 600-1000°C.

본 발명에 따라 제조된 미세조류 슬러지로부터 생산된 바이오차는 하기 실시예에서 알 수 있는 바와 같이 다양한 표면 특성과 층 구조에 의한 특징을 가지며, 특히 넓은 표면적을 가지는 등, 그라파이트 옥사이드와 유사한 특징을 가지는 바 종래 전기에너지의 전환/저장 시스템을 위한 탄소 물질로 이용되는 산화 그라파이트를 대체할 수 있다.As can be seen in the examples below, the biochar produced from the microalgae sludge prepared according to the present invention has various surface characteristics and layer structures, and in particular has similar characteristics to graphite oxide, such as a large surface area. It can replace graphite oxide, which is conventionally used as a carbon material for electric energy conversion/storage systems.

또한, 본 발명은 상기 제조된 바이오차를 분산시킨 용액에 CoCl2·H2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 바이오차/수산화코발트 합성물을 제조하는 단계; 및 상기 바이오차/수산화코발트 합성물을 키토산 용액과 반응시켜 바이오차/수산화코발트/키토산 합성물을 제조하는 단계;를 포함하는 전자전달물질의 제조방법을 제공한다.In addition, the present invention includes the steps of reacting CoCl 2 ·H 2 O in the solution in which the prepared biochar is dispersed, and then reacting by adding NH 4 OH to the reaction solution to produce a biochar/cobalt hydroxide composite; and reacting the biochar/cobalt hydroxide composite with a chitosan solution to produce a biochar/cobalt hydroxide/chitosan composite.

수산화코발트(cobalt hydroxide)는 전기화학적 산화환원 활성물질이며, 큰 층상 구조로 이루어져 있기 때문에 알카리 베터리, 연료전지, 2차전지, 슈퍼캐패시터의 소재로 많이 활용되고 있다.Cobalt hydroxide is an electrochemical redox active material, and because it has a large layered structure, it is widely used as a material for alkaline batteries, fuel cells, secondary batteries, and supercapacitors.

따라서, 상기 바이오차/수산화코발트 합성물은 바이오차와 수산화코발트가 결합되어 전기화학적인 특성을 증가시키는 효과를 가진 전자전달체(mediator)의 역할을 수행하게 된다.Therefore, the biochar/cobalt hydroxide composite serves as an electron carrier (mediator) that has the effect of increasing electrochemical properties by combining biochar and cobalt hydroxide.

또한, 상기 바이오차/수산화코발트 합성물은 상기 키토산 용액과의 반응을 통해 상기 바이오차/수산화코발트 합성물의 표면에 키토산이 균일하게 고정되며, 높은 안정성을 가지게 되므로, 이를 효소연료전지용 전극에 적용할 경우 효소의 안정성과 활성도가 증가할 뿐만 아니라 효소연료전지의 출력밀도와 전류밀도를 향상시킬 수 있다.In addition, the biochar/cobalt hydroxide composite has chitosan uniformly fixed to the surface of the biochar/cobalt hydroxide composite through reaction with the chitosan solution and has high stability, so when applied to an electrode for an enzyme fuel cell, Not only does the stability and activity of the enzyme increase, but it can also improve the power density and current density of the enzyme fuel cell.

또한, 본 발명은 상기 전자전달물질을 포함하는 효소연료전지 및 글루코오스 바이오센서를 제공한다.Additionally, the present invention provides an enzyme fuel cell and a glucose biosensor containing the above electron transport material.

구체적으로 상기 효소연료전지는 전극 기재; 상기 전극 기재 표면에 증착된, 상기 제조된 전자전달물질; 및 상기 전자전달물질의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 전극을 포함할 수 있으며, Specifically, the enzyme fuel cell includes an electrode base; The prepared electron transport material deposited on the surface of the electrode substrate; And it may include an electrode containing an enzyme for an oxidation reaction or an enzyme for a reduction reaction immobilized on the surface of the electron transport material,

상기 글루코오스 바이오센서는 전극 기재; 상기 전극 기재 표면에 증착된, 상기 제조된 전자전달물질; 및 상기 전자전달물질의 표면에 고정화된 산화반응용 효소를 포함하는 전극을 포함할 수 있다.The glucose biosensor includes an electrode base; The prepared electron transport material deposited on the surface of the electrode substrate; And it may include an electrode containing an enzyme for oxidation reaction immobilized on the surface of the electron transport material.

이때, 상기 전극 기재로는 금, 은, 백금, 구리, 알루미늄, 탄소나노튜브, 그라핀 등 다양한 금속 소재 및 탄소 소재가 사용될 수 있다.At this time, various metal materials and carbon materials such as gold, silver, platinum, copper, aluminum, carbon nanotubes, and graphene may be used as the electrode substrate.

또한, 상기 전자전자전달 물질의 증착은 예컨대, 바이오차/수산화코발트/키토산 합성물(전자전달물질)이 용해되어 있는 용액에 전극 기재를 담그고, 상기 전극 기재가 (-) 전하를 띠도록 전기를 인가하여 상기 전극 기재의 표면에 바이오차/수산화코발트/키토산 합성물이 증착되게 하는 과정으로 수행될 수 있다.In addition, the deposition of the electron transfer material is, for example, immersed in a solution in which the biochar/cobalt hydroxide/chitosan composite (electron transfer material) is dissolved, and electricity is applied so that the electrode base has a negative charge. This can be performed as a process of depositing the biochar/cobalt hydroxide/chitosan composite on the surface of the electrode substrate.

또한, 상기 산화반응용 효소 또는 환원반응용 효소의 고정화는 예컨대, 산화반응용 효소 또는 환원반응용 효소와 바이오차/수산화코발트/키토산 합성물의 가교화합물을 사용하여 수행될 수 있다.In addition, the immobilization of the enzyme for the oxidation reaction or the enzyme for the reduction reaction can be performed, for example, using a crosslinking compound of the enzyme for the oxidation reaction or the enzyme for the reduction reaction and the biochar/cobalt hydroxide/chitosan composite.

이때, 상기 가교화합물로는 EDC 및 NHS를 사용할 수 있으며, 보다 구체적으로 산화반응용 효소 또는 환원반응용 효소와 가교화합물인 EDC 및 NHS를 혼합한 용액을 제조하고, 여기에 상기 바이오차/수산화코발트/키토산 합성물이 표면에 증착된 전극 기재를 담가서 산화반응용 효소 또는 환원반응용 효소가바이오차/수산화코발트/키토산 합성물의 표면에 EDC 및 NHS를 매개하여 고정화되게 하는 방식으로 수행될 수 있다.At this time, EDC and NHS can be used as the cross-linking compounds. More specifically, a solution is prepared by mixing an enzyme for an oxidation reaction or an enzyme for a reduction reaction with the cross-linking compounds EDC and NHS, and the biochar/cobalt hydroxide is added thereto. /It can be performed by immersing the electrode base on which the chitosan composite is deposited on the surface so that the enzyme for the oxidation reaction or the enzyme for the reduction reaction is immobilized on the surface of the biochar/cobalt hydroxide/chitosan composite through EDC and NHS.

상기 EDC 및 NHS는 공유결합에 의해 산화반응용 효소 또는 환원반응용 효소와 바이오차/수산화코발트/키토산 합성물을 결합시킨다.The EDC and NHS combine an enzyme for an oxidation reaction or an enzyme for a reduction reaction with the biochar/cobalt hydroxide/chitosan composite by covalent bonding.

상기에서 산화반응용 효소 또는 환원반응용 효소를 산화그라파이트/수산화코발트/키토산 합성물의 표면에 고정시키는 방법은 상기 공유결합에 의한 방법 외에 이 분야에서 공지된 방법들이 제한 없이 사용될 수 있다.As for the method of fixing the enzyme for the oxidation reaction or the enzyme for the reduction reaction to the surface of the graphite oxide/cobalt hydroxide/chitosan composite, methods known in the field other than the method using covalent bonding may be used without limitation.

이때, 상기 산화반응용 효소 및 환원반응용 효소로는 이 분야에서 공지된 것들이 사용될 수 있으며, 예컨대, 포도당을 기질로 사용하는 경우, 산화반응용 효소로는 글루코오스 옥시다아제(glucose oxidase), 글루코오스 디하이드로지네이즈(glucose dehydrogenase), 셀룰로오스 디하이드로지네이즈(cellobiose dehydrogenase), 디하이드로지네이즈(dehydrogenase) 등이 사용될 수 있으며, 환원반응용 효소로는 라케이즈(laccase), 홀스래디쉬퍼옥시다아제(horseradish peroxidas), 빌리루빈 옥시다아제(bilirubin oxidase) 등이 사용될 수 있다.At this time, the enzymes for the oxidation reaction and the enzymes for the reduction reaction may be those known in the field. For example, when glucose is used as a substrate, the enzymes for the oxidation reaction include glucose oxidase and glucose dehydrogenase. Glucose dehydrogenase, cellobiose dehydrogenase, dehydrogenase, etc. can be used, and enzymes for reduction reactions include laccase and horseradish peroxidase. , bilirubin oxidase, etc. can be used.

이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail, including preferred embodiments. However, these examples are for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.

실시예Example 1. 조류 1. Birds 슬러지sludge 분말 제조 powder manufacturing

미세조류로서, 클로렐라 피레노이도사(Chlorella pyrenoidosa)를 건조시켜 제조한 분말을 WUDI LV QI BIOENGINEERING Co., Ltd. (중국)로부터 구입하였다. 상기 미세조류 분말 1 kg에 대해 산 추출공정을 통해 조류 슬러지를 제조하였다. 구체적으로, 상기 미세조류 분말을 20 mL vial에서 고/액비 100 g/L, 산 농도 2%로 설정하고, 멸균기에서 121℃, 15분 동안 열처리하였다. 원심분리를 통해 가수분해된 상층액의 유용 물질을 제외한 슬러지를 건조 후에 분말화시켜 조류 슬러지 분말(900 g)을 제조하였다.As a microalgae, Chlorella pyrenoidosa ( Chlorella pyrenoidosa ) powder prepared by drying WUDI LV QI BIOENGINEERING Co., Ltd. Purchased from (China). Algal sludge was prepared through an acid extraction process for 1 kg of the microalgae powder. Specifically, the microalgae powder was set to a solid/liquid ratio of 100 g/L and an acid concentration of 2% in a 20 mL vial, and heat-treated in a sterilizer at 121°C for 15 minutes. Algae sludge powder (900 g) was prepared by drying the sludge, excluding useful substances from the hydrolyzed supernatant through centrifugation, and powdering it.

실시예Example 2. 조류 2. Birds 슬러지로부터from sludge 바이오차biochar 제조 manufacturing

상기 실시예 1을 통해 제조된 조류 슬러지 분말을 알루미나 시료 접시에 넣고, 질소 가스(300 ml/min)를 주입하면서 800도에서 2시간 동안 탄화시켜 바이오차(270 g)를 제조하였다.The algal sludge powder prepared in Example 1 was placed in an alumina sample dish and carbonized at 800 degrees for 2 hours while injecting nitrogen gas (300 ml/min) to prepare biochar (270 g).

실시예Example 3. 3. 바이오차biochar /수산화코발트/키토산 합성물(전자전달물질) 제조/Manufacture of cobalt hydroxide/chitosan composite (electron transport material)

(1) (One) 바이오차biochar /수산화코발트 합성물 제조/Manufacture of cobalt hydroxide composite

상기 실시예 2를 통해 제조된 바이오차 0.1g을 증류수 10ml에 분산시켰다. 그 다음 2M CoCl2·H2O을 증류수 10ml에 녹였다. 이 두 용액을 혼합하여 24시간 동안 교반하면서 바이오차에 코발트 이온이 흡착되게 하였다. 반응 후, NH4OH를 넣어 pH 9.0로 맞추고, 24시간 동안 교반하여 바이오차에 흡착된 코발트 이온들이 수산화코발트가 되게 하였다. 이렇게 형성된 바이오차/코발트 합성물을 증류수로 세척한 후 60℃ 진공 오븐에서 2시간 동안 건조시켰다.0.1 g of biochar prepared through Example 2 was dispersed in 10 ml of distilled water. Then, 2M CoCl 2 ·H 2 O was dissolved in 10 ml of distilled water. These two solutions were mixed and stirred for 24 hours to allow cobalt ions to be adsorbed onto the biochar. After the reaction, NH 4 OH was added to adjust the pH to 9.0 and stirred for 24 hours so that the cobalt ions adsorbed on the biochar became cobalt hydroxide. The biochar/cobalt composite thus formed was washed with distilled water and dried in a vacuum oven at 60°C for 2 hours.

(2) (2) 바이오차biochar /수산화코발트/키토산 합성물 제조/Manufacture of cobalt hydroxide/chitosan composite

키토산 0.1g을 25×TAE(Tris-acetate-EDTA) 버퍼 100ml, 3% 아세트산(acetic acid)이 혼합된 용액에서 녹인 후(100 ℃), 나일론 필터로 걸렀다. 그 다음 바이오차/수산화코발트 합성물 3g과 키토산 용액 0.1 wt%(혼합물 총 중량 대비)를 혼합하여 바이오차/수산화코발트 합성물에 키토산 용액이 코팅되도록 함으로써 바이오차/수산화코발트/키토산 합성물을 제조하였다.0.1 g of chitosan was dissolved in a mixed solution of 100 ml of 25×TAE (Tris-acetate-EDTA) buffer and 3% acetic acid (100°C), and then filtered through a nylon filter. Next, a biochar/cobalt hydroxide/chitosan composite was prepared by mixing 3 g of the biochar/cobalt hydroxide composite and 0.1 wt% of the chitosan solution (relative to the total weight of the mixture) and coating the biochar/cobalt hydroxide composite with the chitosan solution.

실시예Example 4. 효소연료전지 제조 4. Enzyme fuel cell manufacturing

상기 바이오차/수산화코발트/키토산 합성물 용액에, 전원공급장치(power supply)의 Au 양극과 Au 음극을 담그고 50V를 인가하여 2분 동안 바이오차/수산화코발트/키토산 합성물을 Au 전극에 증착시켰다. 바이오차/수산화코발트/키토산 합성물은 용해된 키토산이 (+)전하를 띄므로 전기적으로 음극인 Au 극에 증착된다.The Au anode and Au cathode of the power supply were immersed in the biochar/cobalt hydroxide/chitosan composite solution, and 50 V was applied to deposit the biochar/cobalt hydroxide/chitosan composite on the Au electrode for 2 minutes. The biochar/cobalt hydroxide/chitosan composite is deposited on the electrically negative Au electrode because the dissolved chitosan has a positive charge.

다음으로, 산화 또는 환원 반응용 효소가 고정화된 양극(anode) 또는 음극(cathode)을 제조하기 위하여, 0.1M 인산 버퍼(phosphate buffer, pH 7.0)에 산화반응용 효소인 포도당 산화반응용 효소(glucose oxidase) 또는 환원반응용 효소인 라케이즈(laccase) 01mg/ml, 05mg/ml, 1mg/ml, 2mg/ml, 3mg/ml 및 4mg/ml를 각각 혼합하였고, 0.12M EDC와 0.14M NHS를 같이 혼합한 후, 상기 혼합 용액에 바이오차/수산화코발트/키토산 합성물이 증착된 Au 전극을 8시간 동안 4℃ 상에서 담가두었다. 이때, EDC/NHS 반응에 의해서 효소가 바이오차/수산화코발트/키토산 합성물 상에 고정화된다. 이러한 반응은 효소에 있는 카르복실 그룹과 키토산의 아민 그룹의 공유결합에 의해 일어난다. 이렇게 고정화가 진행되도록 한 후 0.1M 인산버퍼와 3차 증류수로 세척하였다.Next, in order to manufacture an anode or cathode on which an enzyme for an oxidation or reduction reaction is immobilized, glucose, an enzyme for an oxidation reaction, is added to 0.1M phosphate buffer (pH 7.0). oxidase or laccase, an enzyme for reduction reaction, at 01 mg/ml, 05 mg/ml, 1 mg/ml, 2 mg/ml, 3 mg/ml, and 4 mg/ml, respectively, were mixed, and 0.12M EDC and 0.14M NHS were mixed together. After mixing, the Au electrode on which the biochar/cobalt hydroxide/chitosan composite was deposited was immersed in the mixed solution at 4°C for 8 hours. At this time, the enzyme is immobilized on the biochar/cobalt hydroxide/chitosan composite by the EDC/NHS reaction. This reaction occurs by covalent bonding between the carboxyl group in the enzyme and the amine group in chitosan. After allowing the immobilization to proceed, it was washed with 0.1M phosphate buffer and tertiary distilled water.

다음으로, 상기 바이오차/수산화코발트/키토산 합성물 상에 글루코오스 산화효소가 고정화된 전극을 양극(anode), 라케이즈 환원효소가 고정화된 전극을 음극(cathode)으로 사용하여 서로 연결시키고, 0.05M 인산 버퍼(pH 7.0)에 1% 글루코오스을 포함하는 전해질(electrolyte)을 사용하여 이온막이 없는 기본적인 효소연료전지를 제조하였다.Next, the electrode on which glucose oxidase was immobilized on the biochar/cobalt hydroxide/chitosan composite was used as an anode, and the electrode on which Lacase reductase was immobilized was used as a cathode, and were connected to each other using 0.05M phosphoric acid. A basic enzyme fuel cell without an ion membrane was manufactured using an electrolyte containing 1% glucose in a buffer (pH 7.0).

실시예Example 5. 글루코오스 바이오센서 제조 5. Glucose biosensor manufacturing

상기 실시예 4에 개시된 방법을 통해 제조된, 바이오차/수산화코발트/키토산 합성물 상에 글루코오스 산화효소가 고정화된 전극을 양극(anode)으로 사용하여 기본적인 글루코오스 바이오센서를 제조하였다.A basic glucose biosensor was manufactured using the electrode on which glucose oxidase was immobilized on the biochar/cobalt hydroxide/chitosan composite prepared through the method disclosed in Example 4 as an anode.

시험예Test example 1. 미세조류의 물질 수지 측정 1. Mass balance measurement of microalgae

도 1은 본 발명의 실시예에서 사용된 클로렐라 피레노이도사(Chlorella pyrenoidosa) 조류의 물질 수지를 측정한 결과를 나타낸 것이다. 도 1에 나타난 바와 같이 상기 실시예 1에서 1kg의 미세조류 분말에 대해 산 추출 공정을 수행할 경우 오일 4.6g, 가수분해물 63.5g이 생산되었으며, 오일, 가수분해물과 같은 유용물질을 제외하고 남은 슬러지는 900 g으로 측정되었다. 상기 미세조류 슬러지에 대해 상기 실시예 2와 같은 탄화공정을 수행할 경우 270 g의 바이오차가 생산되는 것을 확인하였다.Figure 1 shows the results of measuring the mass balance of Chlorella pyrenoidosa algae used in the examples of the present invention. As shown in Figure 1, when the acid extraction process was performed on 1 kg of microalgae powder in Example 1, 4.6 g of oil and 63.5 g of hydrolyzate were produced, and the remaining sludge excluding useful substances such as oil and hydrolyzate was measured as 900 g. It was confirmed that when the carbonization process as in Example 2 was performed on the microalgae sludge, 270 g of biochar was produced.

시험예Test example 2. 미세조류, 미세조류 2. Microalgae, microalgae 슬러지sludge and 바이오차의of biochar 표면 분석 surface analysis

도 2의 (a)는 본 발명의 실시예에서 사용된 클로렐라 피레노이도사(Chlorella pyrenoidosa) 조류의 전처리 전 표면을 나타낸 SEM 이미지로서, 산 추출 공정 전 미세조류는 구형의 형태를 보임을 확인하였다.Figure 2 (a) is an SEM image showing the surface before pretreatment of Chlorella pyrenoidosa algae used in the examples of the present invention, and it was confirmed that the microalgae had a spherical shape before the acid extraction process.

도 2의 (b)는 산 추출 공정을 통해 수득한 미세조류 슬러지의 표면을 나타낸 SEM 이미지로서, 산 추출에 의해 세포벽 골격이 분해되어 구형의 세포의 표면 구조가 변형됨을 확인하였다.Figure 2 (b) is an SEM image showing the surface of microalgae sludge obtained through an acid extraction process. It was confirmed that the cell wall skeleton was decomposed by acid extraction and the surface structure of the spherical cells was deformed.

도 2의 (c)는 조류 슬러지를 탄화시켜 제조한 바이오차의 표면을 나타낸 SEM 이미지로서, 바이오차의 표면은 탄화 과정을 통해 탈수, 탄산 등의 분해가 일어나서 산소가 O2, CO, CO2 등의 형태로 방출되고 휘발분은 거의 제거되어 고정탄소만 남게되어 표면이 개질된 것을 확인하였다.Figure 2(c) is an SEM image showing the surface of biochar produced by carbonizing algae sludge. The surface of biochar undergoes dehydration and decomposition of carbonic acid through the carbonization process, causing oxygen to form O 2 , CO, and CO 2 It was confirmed that the surface was modified as the volatile matter was almost removed and only the fixed carbon remained.

도 2의 (d)는 조류 슬러지를 탄화시켜 제조한 바이오차의 표면을 나타낸 SEM 및 HRTEM 이미지로서, 바이오차는 입자가 얇은 박막으로 둘러싸여 있는 것처럼 보이며 얇은 판막이 층상 구조를 이루고 있는 것으로 확인되어, 그라파이트 옥사이드와 유사한 특징을 가짐을 확인하였다.Figure 2 (d) is an SEM and HRTEM image showing the surface of biochar produced by carbonizing algae sludge. It was confirmed that the biochar particles appear to be surrounded by a thin film and the thin plates form a layered structure, making it graphite. It was confirmed that it had similar characteristics to oxide.

마지막으로 바이오차에 대하여 EDX 분석을 수행한 결과(도면 미도시), 바이오차의 구성 성분은 C: 96.7%, O: 0.8%로 나타났다.Finally, as a result of performing EDX analysis on biochar (not shown), the composition of biochar was found to be C: 96.7% and O: 0.8%.

시험예Test example 3. 3. 바이오차biochar /수산화코발트 합성물 및 /Cobalt hydroxide composite and 바이오차biochar /수산화코발트/키토산 합성물의 표면 분석/Surface analysis of cobalt hydroxide/chitosan composite

도 3의 (a), (b)는 바이오차/수산화코발트 합성물의 표면을 나타낸 SEM 이미지 및 HRTEM 이미지이고, (c)는 바이오차/수산화코발트/키토산 합성물의 표면을 나타낸 SEM 이미지 및 EDX 분석 결과를 나타낸 것이다.Figures 3 (a) and (b) are SEM images and HRTEM images showing the surface of the biochar/cobalt hydroxide composite, and (c) is the SEM image showing the surface of the biochar/cobalt hydroxide/chitosan composite and EDX analysis results. It represents.

도 3을 통해 바이오차의 표면에 수산화코발트 입자가 흡착되어 있는 것을 확인하였으며, 바이오차/수산화코발트 표면에 키토산 사슬이 코팅되어 있음을 확인하였다. 또한, EDX 분석에서 5.4%의 N가 생성된 것을 확인하였는바, 이를 통해 아민기가 형성되었으며, 전자전달물질로서 바이오차/수산화코발트/키토산 합성물의 합성이 잘 되었다는 것을 확인하였다.Through Figure 3, it was confirmed that cobalt hydroxide particles were adsorbed on the surface of biochar, and it was confirmed that chitosan chains were coated on the surface of biochar/cobalt hydroxide. In addition, it was confirmed that 5.4% of N was generated in EDX analysis, which confirmed that an amine group was formed and that the synthesis of the biochar/cobalt hydroxide/chitosan composite as an electron transport material was successful.

시험예Test example 4. 효소연료전지의 전압-전류 및 전력 생산 평가, 글루코오스 바이오센서의 감도 측정 4. Evaluation of voltage-current and power production of enzyme fuel cells, measurement of sensitivity of glucose biosensor

상기 실시예 4를 통해 제조된 효소연료전지의 전지에 대하여 0.1M 글루코스를 기질로 순환전압전류법과 전력밀도를 측정하여 전압-전류 및 전력 생산을 평가하였다. 구체적으로 VersaSTAT 3 device (AMETEK, Princeton Applied Research, USA)에 연결하고 25℃에서 전압-전류 및 출력 밀도(Power density)를 측정하였다.For the enzyme fuel cell manufactured in Example 4, voltage-current and power production were evaluated by measuring cyclic voltammetry and power density using 0.1M glucose as a substrate. Specifically, it was connected to a VersaSTAT 3 device (AMETEK, Princeton Applied Research, USA) and voltage-current and power density were measured at 25°C.

도 4는 바이오차/수산화코발트/키토산 합성물을 효소 연료전지 시스템에 적용하여 순환전압전류를 측정한 결과를 나타낸 그래프이다. 구체적으로 상온에서 100 mV/s의 주사속도로 -0.6~0.6V 전압 범위에서 순환전압전류를 측정하였으며, 이를 통해 산화반응 피크가 크게 증가하는 것을 확인하였다.Figure 4 is a graph showing the results of measuring the cyclic voltage current by applying the biochar/cobalt hydroxide/chitosan composite to the enzyme fuel cell system. Specifically, cyclic voltammetry was measured in the voltage range of -0.6 to 0.6 V at a scanning rate of 100 mV/s at room temperature, and it was confirmed that the oxidation reaction peak increased significantly.

도 5는 바이오차/수산화코발트/키토산 합성물을 효소연료전지 시스템에 적용하여 출력밀도를 측정한 결과를 나타낸 그래프이다. 구체적으로 도 5는 EFC의 전류 밀도와 전압 관계를 각각의 전력 밀도와 함께 나타낸 것이며, 측정 결과 전류밀도가 9.7 mA/cm2에서 3.1 mW/cm2의 power density를 나타내는 것을 확인하였다.Figure 5 is a graph showing the results of measuring power density by applying a biochar/cobalt hydroxide/chitosan composite to an enzyme fuel cell system. Specifically, Figure 5 shows the relationship between the current density and voltage of the EFC along with the respective power densities, and as a result of measurement, it was confirmed that the current density was 9.7 mA/cm 2 and the power density was 3.1 mW/cm 2 .

비교를 위해 그라파이트 옥사이드/수산화코발트/키토산 합성물을 효소 연료전지 시스템에 적용하여 출력밀도를 측정하여 도 6에 나타내었다. 이를 통해 종래 그라파이트 옥사이드/수산화코발트/키토산 합성물을 효소연료전지 시스템에 적용할 경우 본 발명에 따른 바이오차/수산화코발트/키토산 합성물을 효소연료전지 시스템에 적용한 경우 대비 약 3배 낮은 1 mW/cm2의 power density를 나타내는 것으로 확인되었는바, 본 발명에 따른 바이오차/수산화코발트/키토산 합성물의 전자전달 능력이 매우 높다는 것을 확인하였다.For comparison, the graphite oxide/cobalt hydroxide/chitosan composite was applied to an enzyme fuel cell system and the power density was measured and shown in Figure 6. Through this, when the conventional graphite oxide/cobalt hydroxide/chitosan composite is applied to the enzyme fuel cell system, the power output is about 3 times lower than when the biochar/cobalt hydroxide/chitosan composite according to the present invention is applied to the enzyme fuel cell system, which is 1 mW/cm 2 It was confirmed that the electron transfer ability of the biochar/cobalt hydroxide/chitosan composite according to the present invention was very high.

다음으로, 실시예 5에 따라 제조된 글루코오스 바이오센서를 ersaSTAT 3 device (AMETEK, Princeton Applied Research, USA)에 연결하고 25℃에서 2mM 포도당를 넣어주면서 감도를 측정하였으며, 그 결과를 도 7에 나타내었다. 도 7은 2mM의 글루코스를 연속적으로 첨가할 때의 일반적인 전류-농도 반응을 나타낸 것으로, 글루코스의 전기 화학적 산화에 대한 전류 밀도는 글루코오스 농도에 따라 증가하였으며, 감도는 0.488 mA/mM cm2 으로, 우수한 감도를 나타냄을 확인하였다.Next, the glucose biosensor manufactured according to Example 5 was connected to an ersaSTAT 3 device (AMETEK, Princeton Applied Research, USA) and sensitivity was measured by adding 2mM glucose at 25°C. The results are shown in FIG. 7. Figure 7 shows a general current-concentration response when 2mM of glucose is continuously added. The current density for electrochemical oxidation of glucose increased with the glucose concentration, and the sensitivity was 0.488 mA/mM cm 2 , excellent It was confirmed that it shows sensitivity.

Claims (6)

삭제delete 삭제delete 삭제delete 삭제delete 전극 기재;
상기 전극 기재 표면에 증착된, 전자전달물질; 및
상기 전자전달물질의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 전극을 포함하고,
상기 전자전달물질은 바이오차를 분산시킨 용액에 CoCl2·H2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 바이오차/수산화코발트 합성물을 제조하는 단계; 및 상기 바이오차/수산화코발트 합성물을 키토산 용액과 반응시켜 바이오차/수산화코발트/키토산 합성물을 제조하는 단계;를 포함하고, 상기 바이오차는 미세조류 슬러지를 질소가스 분위기 및 600-1000 ℃의 온도로 1-3 시간 동안 탄화시켜 제조된 것을 특징으로 하는 효소연료전지.
electrode substrate;
An electron transport material deposited on the surface of the electrode substrate; and
It includes an electrode containing an enzyme for an oxidation reaction or an enzyme for a reduction reaction immobilized on the surface of the electron transport material,
The electron transport material is reacted by adding CoCl 2 ·H 2 O to a solution in which biochar is dispersed, and then reacting by adding NH 4 OH to the reaction solution to produce a biochar/cobalt hydroxide composite; And reacting the biochar/cobalt hydroxide composite with a chitosan solution to produce a biochar/cobalt hydroxide/chitosan composite, wherein the biochar is prepared by mixing microalgae sludge in a nitrogen gas atmosphere and at a temperature of 600-1000°C. -An enzyme fuel cell manufactured by carbonization for 3 hours.
전극 기재;
상기 전극 기재 표면에 증착된, 전자전달물질; 및
상기 전자전달물질의 표면에 고정화된 산화반응용 효소를 포함하는 전극을 포함하고,
상기 전자전달물질은 바이오차를 분산시킨 용액에 CoCl2·H2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 바이오차/수산화코발트 합성물을 제조하는 단계; 및 상기 바이오차/수산화코발트 합성물을 키토산 용액과 반응시켜 바이오차/수산화코발트/키토산 합성물을 제조하는 단계;를 포함하고, 상기 바이오차는 미세조류 슬러지를 질소가스 분위기 및 600-1000 ℃의 온도로 1-3 시간 동안 탄화시켜 제조된 것을 특징으로 하는 글루코오스 바이오센서.
electrode substrate;
An electron transport material deposited on the surface of the electrode substrate; and
It includes an electrode containing an enzyme for oxidation reaction immobilized on the surface of the electron transport material,
The electron transport material is reacted by adding CoCl 2 ·H 2 O to a solution in which biochar is dispersed, and then reacting by adding NH 4 OH to the reaction solution to produce a biochar/cobalt hydroxide composite; And reacting the biochar/cobalt hydroxide composite with a chitosan solution to produce a biochar/cobalt hydroxide/chitosan composite, wherein the biochar is prepared by mixing microalgae sludge in a nitrogen gas atmosphere and at a temperature of 600-1000°C. -A glucose biosensor manufactured by carbonization for 3 hours.
KR1020180057423A 2018-05-18 2018-05-18 Method for preparing electron transfer material using biochar produced from microalgae sludge KR102579378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180057423A KR102579378B1 (en) 2018-05-18 2018-05-18 Method for preparing electron transfer material using biochar produced from microalgae sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180057423A KR102579378B1 (en) 2018-05-18 2018-05-18 Method for preparing electron transfer material using biochar produced from microalgae sludge

Publications (2)

Publication Number Publication Date
KR20190132134A KR20190132134A (en) 2019-11-27
KR102579378B1 true KR102579378B1 (en) 2023-09-14

Family

ID=68730093

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180057423A KR102579378B1 (en) 2018-05-18 2018-05-18 Method for preparing electron transfer material using biochar produced from microalgae sludge

Country Status (1)

Country Link
KR (1) KR102579378B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111326743A (en) * 2019-12-09 2020-06-23 中国人民解放军军事科学院军事医学研究院 Application of porous carbon derived from bamboo as electrode material for glucose biosensing and glucose biofuel cell
CN111363569B (en) * 2020-03-04 2021-05-18 华中科技大学 System for co-production of gas-liquid fuel, chemicals and carbon materials by catalytic pyrolysis of biomass
CN115259131B (en) * 2022-06-23 2024-04-30 长江水利委员会长江科学院 Green method for preparing multifunctional biochar by utilizing sludge and application of biochar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363297B1 (en) * 2012-12-24 2014-02-19 고려대학교 산학협력단 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same
CN105800588A (en) 2016-03-22 2016-07-27 中国科学院上海高等研究院 Preparation method of microalga-based biochar material for heavy metal ion adsorption
KR101793039B1 (en) * 2016-08-26 2017-11-02 한국세라믹기술원 Manufacturing method of electrode active material for ultracapacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102529667B1 (en) * 2015-11-12 2023-05-08 고려대학교 산학협력단 The composition for electrodes for enzymatic fuel cells comprising sugar extracted from using algae

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363297B1 (en) * 2012-12-24 2014-02-19 고려대학교 산학협력단 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same
CN105800588A (en) 2016-03-22 2016-07-27 中国科学院上海高等研究院 Preparation method of microalga-based biochar material for heavy metal ion adsorption
KR101793039B1 (en) * 2016-08-26 2017-11-02 한국세라믹기술원 Manufacturing method of electrode active material for ultracapacitor

Also Published As

Publication number Publication date
KR20190132134A (en) 2019-11-27

Similar Documents

Publication Publication Date Title
US20130230744A1 (en) Electrode for microbial fuel cell and microbial fuel cell using the same
Qiao et al. Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry
KR102579378B1 (en) Method for preparing electron transfer material using biochar produced from microalgae sludge
Scott et al. Biological and microbial fuel cells
EP3647434A1 (en) Engineered electrode for electrobiocatalysis and process to construct the same
Srivastava et al. Microbial fuel cells: Technologically advanced devices and approach for sustainable/renewable energy development
Mahmoud et al. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions
WO2010117844A2 (en) Generating electrical power by coupling aerobic microbial photosynthesis to an electron-harvesting system
WO2011025021A1 (en) Electrode for microbial fuel cell, and microbial fuel cell using same
KR101581120B1 (en) Enzyme -graphine oxide complex for electrochemical applications and method for fabricating the same
CN105261761A (en) Graphene-based enzyme-modified anode of biological fuel cell and preparation and application
KR101363297B1 (en) Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same
Khater et al. Electricity generation using Glucose as substrate in microbial fuel cell
Hu et al. In-situ growth of N@ MoO2 microflowers on carbon cloth for high-performance anodes in microbial fuel cells
Khater et al. Activated sludge-based microbial fuel cell for bio-electricity generation
Karoń et al. Recent advances in the design of bacteria-based supercapacitors: Current limitations and future opportunities
CN110729487B (en) Microbial fuel cell based on molybdenum disulfide composite material as anode
CN110890554B (en) High-power flexible single-enzyme glucose fuel cell and preparation method thereof
Ensafi et al. Application of conductive polymers in electrochemistry
CN110085877B (en) Phenol sewage power generation device based on single-enzyme inorganic composite nanoflower and preparation method and application thereof
Mahrokh et al. An efficient microbial fuel cell using a CNT–RTIL based nanocomposite
CN115064676A (en) Sodium-ion battery positive electrode material and preparation method and application thereof
Herzallh et al. Cellulose to electricity conversion by an enzymatic biofuel cell
Labarile et al. In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer
Wu et al. Doping molybdenum oxides with different non-metal atoms to promote bioelectrocatalysis in microbial fuel cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant