WO2011025021A1 - Electrode for microbial fuel cell, and microbial fuel cell using same - Google Patents

Electrode for microbial fuel cell, and microbial fuel cell using same Download PDF

Info

Publication number
WO2011025021A1
WO2011025021A1 PCT/JP2010/064764 JP2010064764W WO2011025021A1 WO 2011025021 A1 WO2011025021 A1 WO 2011025021A1 JP 2010064764 W JP2010064764 W JP 2010064764W WO 2011025021 A1 WO2011025021 A1 WO 2011025021A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fuel cell
microbial fuel
electron
nanowire
Prior art date
Application number
PCT/JP2010/064764
Other languages
French (fr)
Japanese (ja)
Inventor
橋本和仁
石井和之
中村龍平
渡邉一哉
趙勇
Original Assignee
独立行政法人科学技術振興機構
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, 国立大学法人東京大学 filed Critical 独立行政法人科学技術振興機構
Priority to JP2011528902A priority Critical patent/JPWO2011025021A1/en
Publication of WO2011025021A1 publication Critical patent/WO2011025021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode used in a microbial fuel cell, more specifically, an electrode comprising an electrode substrate having a nanowire structure on the surface, and a microbial fuel cell using the same.
  • Microbial fuel cells are attracting attention as a new power generation system that replaces conventional fossil fuels.
  • a microbial fuel cell is a power generation system that converts chemical energy into electrical energy using the biological activity of microorganisms.
  • Microbial fuel cells have the advantage of being a sustainable power generation system and capable of decomposing organic waste in parallel with power generation because they can use unused biomass such as organic waste liquid, sludge, and food residues as fuel. Have.
  • microorganisms having the ability to use pollutants are used, it is possible to purify the environment such as processing of contaminated waste liquid.
  • the microorganism itself functions as a biocatalyst for extracting electrons from organic substances, it does not require a gas exchange process or the like as in a conventional chemical fuel cell such as a hydrogen fuel cell, and has a very high energy conversion efficiency at low cost. There is also an advantage.
  • the current microbial fuel cell has a big problem that the output current density is low, and further improvement is required to obtain a practical power generation.
  • the increase in output current density in a microbial fuel cell depends on the efficiency of charge transfer from the microorganism to the electrode. The charge transfer efficiency is affected by the electrode surface area and electrode characteristics.
  • an electron mediator such as HNQ (2-hydroxy-1,4-naphthoquinone) is added to the electrolytic cell to improve the efficiency of electron transfer from the microorganism to the electrode.
  • HNQ electron transfer-hydroxy-1,4-naphthoquinone
  • Attempts have been made to increase the output current density (Non-patent Document 1).
  • the electronic mediator itself is generally expensive, and there are many problems that are harmful to the human body. Furthermore, the amount of current generated is insufficient in terms of practicality.
  • Patent Document 1 discloses a microbial fuel cell in which polyaniline is further applied or dipped on carbon fibers serving as an electrode base using an electron storage type microbial mutant.
  • carbon fiber By using carbon fiber, the surface of the electrode is increased, and polyaniline is coated as an electron mediator so that electrons can be efficiently extracted directly from microorganisms.
  • this microbial fuel cell only has a thin film of polyaniline formed on the carbon fiber surface, and there is room for further improvement in improving the electron transfer between the microorganism and the electrode.
  • the present invention aims to develop and provide an electrode for a microbial fuel cell capable of generating a high output current by further increasing the charge transfer efficiency from the microorganism to the electrode in the microbial fuel cell.
  • the present inventors have formed a nanowire structure with a conductive polymer on the surface of the electrode substrate to increase the electrode surface area, thereby improving the efficiency of charge transfer from microorganisms to the electrode.
  • This invention is based on the said knowledge, ie, provides the following.
  • An electrode for a microbial fuel cell comprising an electrode substrate and a conductive polymer having a nanowire structure formed on all or part of the surface thereof.
  • the conductive polymer is a polymer composed of aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or a derivative thereof, or a combination thereof, or a mixture of the above polymers.
  • the electrode according to any one of (1) to (7).
  • a microbial fuel cell comprising an anode and / or a cathode comprising the electrode according to any one of (1) to (9), an electrolyte solution, and an electrolytic cell containing them,
  • the microbial fuel cell wherein the electrolyte solution in the tank further comprises an electron donating microorganism consisting of a single species or a plurality of species and a nutrient substrate necessary for metabolism of the microorganism.
  • the surface area of the electrode can be remarkably increased by the nanowire structure.
  • an electrode capable of generating a high output current density can be provided.
  • the output can be dramatically improved as compared with the conventional microbial fuel cell.
  • (A) shows the structural unit of polyaniline.
  • (B) is a partial structure constituting an aniline / aminophenol copolymer (in this figure, aminophenol is orthoaminophenol, but may be metaaminophenol), and the aniline / amino of the present invention
  • a phenol copolymer has at least one said structure in the structure which an aniline structural unit (a) superposes
  • at least one aniline structural unit (a) may be included in the structure of the structural unit that is polymerized.
  • (C) constitutes an aniline / diaminophenol copolymer (in this figure the diaminophenol is 2,4-diaminophenol, but may be 2,2-diaminophenol or 2,3-diaminophenol) It is a partial structure, and the aniline / diaminophenol copolymer of the present invention has at least one such structure in the structure in which the aniline structural unit (a) is polymerized. Conversely, at least one aniline structural unit (a) may be included in the structure of the structural unit that is polymerized.
  • Microbial fuel cell electrode (b) and one of the present invention comprising a carbon felt (a) and a fiber structure assembly in which a polyaniline nanowire structure (in this figure, a nanowire network is formed) is formed on the surface thereof.
  • assembly of this invention which formed the nanowire structure of polyaniline on the surface of carbon fiber (c) of this invention.
  • (A) shows an ITO electrode
  • (b) shows an ITO / polyaniline smooth electrode
  • (c) shows an ITO / polyaniline nanowire electrode.
  • (A) is a carbon plate (CP) electrode, (b) is a CP / polyaniline nanowire electrode, (c) is a CP / PAAP nanowire electrode, and (d) is a CP / PADAP nanowire electrode.
  • (A) is an ITO electrode, (b) is an ITO / polyaniline smooth electrode, (c) is an ITO / PAAP smooth electrode, and (d) is an ITO / PADAP smooth electrode.
  • the conceptual diagram which shows an example of the microbial fuel cell of this invention.
  • (A) is a carbon felt electrode
  • (b) is a carbon felt / polyaniline thin layer electrode
  • (c) is a carbon felt / polyaniline nanowire electrode.
  • (A) is a carbon felt electrode
  • (b) is a carbon felt / polyaniline thin layer electrode
  • (c) is a carbon felt / polyaniline nanowire electrode.
  • FIG. (A) is a carbon felt electrode
  • (b) is a carbon felt / polyaniline thin layer electrode
  • (c) is a carbon felt / polyaniline nanowire electrode.
  • Microbial fuel cell electrode 1-1 Configuration of Microbial Fuel Cell Electrode
  • One aspect of the present invention is a microbial fuel cell electrode.
  • a microbial fuel cell uses an electron-donating microorganism as a biocatalyst to acquire or extract electrons generated by metabolism such as respiration of the microorganism and transmit it to an electrode to generate electricity. Refers to the device.
  • the “electron-donating microorganism” refers to an electron generated by metabolism directly (for example, by contact between an electron carrier present in a cell membrane and the electrode) or indirectly ( A microorganism that can transmit (for example, via an electron-transmitting intermediary).
  • Electrode transfer mediator refers to an electron carrier capable of transporting electrons from a microorganism to an electrode, such as a redox mediator compound, an electron mediator and / or conductive fine particles.
  • Redox mediator compound is mainly produced in an electron-donating microorganism, then released to the outside of the cell, and transports electrons generated by the metabolism of the microorganism by its own redox while reciprocating between the microorganism and the electrode.
  • An electronic shuttle compound that can be used. Examples include phenazine-1-carboxamide, pyocyanin, 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ).
  • Electrode refers to an artificially synthesized redox compound having the same function as the redox mediator compound. For example, neutral red, safranine, phenazine etsulfate, thionine, methylene blue, toluidine blue O, phenothiazinone, resorufin, galocyanine, 2-hydroxy-1,4-naphthoquinone, porphyrin.
  • Conductive fine particles are fine particles made of metal or semiconductor that can bind to electron-donating microorganisms and extract the electrons from the microorganisms, and then transfer the electrons to the electrodes.
  • iron oxide, iron sulfide, oxidized Manganese is mentioned.
  • the type of electron-donating microorganism is not particularly limited as long as it is a microorganism that can transfer electrons to the electrode for a microbial fuel cell of the present invention. Preferred is a microorganism having an extracellular electron transfer capability. “Extracellular electron transfer ability” refers to a series of processes that oxidize and reduce electron carriers to acquire energy necessary for life activity and to transfer generated electrons to cell membranes (for example, membrane-bound type). (Lovley DR; Nat. Rev. Microbiol., 2006, 4, 497-508).
  • the electrons held in the electron carrier on the cell membrane can be easily transferred by direct contact between the electron carrier and the electrode, and an intermediate such as a redox mediator compound can be used.
  • an intermediate such as a redox mediator compound
  • Substances are preferred because they can easily extract electrons from microorganisms.
  • electron-donating microorganisms having extracellular electron transfer ability include catabolic metal reducing bacteria such as the genus Shewanella and the genus Geobacter, the genus Pseudomonas and the genus Rhodoferax. Can be mentioned.
  • Specific examples of bacteria belonging to the genus Shewanella include S. loihica, S. oneidensis, S. putrefaciens, and S. algae. Can be mentioned.
  • bacteria belonging to the genus Geobacter include Geobacter sulfreduscens (G. sulfurreducens) and Geobacter metallireducens (G. metallireducens).
  • Geobacter sulfreduscens G. sulfurreducens
  • Geobacter metallireducens G. metallireducens
  • Pseudomonas P. aeruginosa
  • P. aeruginosa Specific examples of bacteria belonging to the genus Rhodoferax include R. ferrireducens.
  • an electron donating microorganism capable of producing a redox mediator compound and releasing it to the outside of the cell is particularly preferable in the present invention. This is because the oxidation-reduction mediator compound can exert the effects of the present invention more by performing direct electron transfer with the nanowire structure of the present invention.
  • the electron-donating microorganism that produces and releases the redox mediator compound include, for example, the genus Chewanella, Pseudomonas, and Rhodoferax.
  • Electron-transporting microorganisms can be of any wild type or mutant type.
  • a mutant electron-donating microorganism that releases more electrons out of the cell by genetic manipulation and / or a mutant electron-donating microorganism that generates and releases more redox mediator compounds meet the object of the present invention. More preferable.
  • Electrode for microbial fuel cell refers to an electrode used for the microbial fuel cell.
  • electrons from a microorganism to an electrode can be directly contacted between the electrode and an electron-donating microorganism or indirectly through the redox mediator compound, electron mediator, or conductive fine particles. Is caused to occur, whereby a potential is generated.
  • This electrode normally functions as an anode (cathode, negative electrode or negative electrode) when used in a microbial fuel cell, but can also be used as a cathode (anode, positive electrode or positive electrode).
  • the electrode for microbial fuel cells of the present invention can be used not only for microbial fuel cells but also for other applications to which the electrode of the present invention can be applied due to its configuration. This will be described in detail later in “1-2. Other Applications of Microbial Fuel Cell Electrode”.
  • the electrode for a microbial fuel cell according to the present invention is composed of an electrode substrate and a conductive polymer, and the conductive polymer forms a nanowire structure so that the electrode surface area is significantly increased as compared with a conventional electrode. It is characterized by having.
  • each component in the electrode of this invention and the electrode for microbial fuel cells of this invention of this invention are demonstrated.
  • Electrode base refers to a conductor constituting an electrode body.
  • the electrode substrate has a connection terminal for connecting a lead wire connecting the electrode body and an external circuit.
  • the conductor may be an electronic conductor, an ionic conductor, or an electron / ion mixed conductor.
  • the electronic conductor include metal, carbon (including carbon black, graphite, and the like) or a combination thereof.
  • the metal include titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), and ruthenium (Ru).
  • the metal may be a single metal, its metal oxide, an alloy composed of a plurality of metals, or a combination thereof.
  • ITO Indium Tin Oxide
  • ITO Indium Tin Oxide
  • the electrode substrate has a rigidity that can hold the shape of the electrode itself.
  • a rigidity that can hold the shape of the electrode itself.
  • the electrode substrate itself also serves as an electrode support.
  • the electrode substrate does not have to be rigid enough to hold the shape of the electrode.
  • the electrode substrate is formed on a support surface made of another material that imparts an electrode shape.
  • the material of the “support made of another substance” is not particularly limited as long as it is a rigid insulator and is preferably a water-resistant substance.
  • glass, plastic, synthetic rubber, ceramics, water-resistant paper or plant pieces can be used.
  • Examples of the method for supporting the electrode substrate on the surface of the support include application (including immersion), spraying, sticking, and vapor deposition. These may be performed based on methods known in the art. For example, a method in which carbon powder is mixed with an appropriate adhesive and applied onto the surface of the glass plate can be mentioned.
  • the thickness of the electrode substrate formed on the surface of the support can form a nanowire structure of a conductive polymer, which will be described later, on the surface, and transmits the electrons received from the electron-donating microorganisms to the lead wire connected to the electrode substrate.
  • a conductive polymer which will be described later, on the surface, and transmits the electrons received from the electron-donating microorganisms to the lead wire connected to the electrode substrate.
  • size of an electrode the production cost of an electrode, the environment in the tank which throws an electrode, etc.
  • the thicker the electrode substrate the higher the strength.
  • the ITO when ITO is supported on a glass plate as a support, the ITO only needs to have a
  • Conductive polymer is a general term for polymer compounds having electrical conductivity.
  • Examples of the conductive polymer in the present invention include aniline, aminophenol (including orthoaminophenol, metaaminophenol, and paraaminophenol), diaminophenol (2,2-diaminophenol, 2,3-diaminophenol, 2,4- (Including diaminophenol), pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer composed of a single monomer having a derivative thereof as a structural unit.
  • PANI Polyaniline
  • polyaminophenol including polyorthoaminophenol, polymetaaminophenol, polyparaaminophenol), polydiaminophenol (poly 2,2-diamino) And polymers of phenol, poly 2,3-diaminophenol, poly 2,4-diaminophenol), polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene, and derivatives thereof.
  • the conductive polymer in the present invention may be a copolymer composed of a combination of two or more different monomers and their derivatives.
  • an aniline / aminophenol copolymer composed of aniline and aminophenol (FIG. 1 (b))
  • an aniline / diaminophenol copolymer composed of aniline and diaminophenol (FIG. 1 (c))
  • 2,2-diaminophenol and 2,4 -2,2- / 2,4-diaminophenol copolymers composed of diaminophenol and aniline / 1,2,4-triaminobenzene copolymers composed of aniline and 1,2,4-triaminobenzene (polyaniline, aniline / aminophenol copolymer, and aniline / diaminophenol copolymer are preferably used, but are not limited thereto.
  • the mixing ratio of each monomer constituting it is not particularly limited.
  • the ratio of aminophenol: aniline is 1: 1 to 1:30, 1: 1 to 1:25, 1: 1 to 1:20, 1: 1 to 1:15, The ratio may be from 1: 1 to 1:10 or from 1: 1 to 1: 5.
  • the ratio of dianiphenol to aniline is 1: 1 to 1:30, 1: 1 to 1:25, 1: 1 to 1:20, 1: 1 to 1:15, It may be 1: 1 to 1:10 or 1: 1 to 1: 5.
  • the conductive polymer constituting the electrode of the present invention is usually composed of a single polymer species, it may be composed of a mixture (composite) of a plurality of different conductive polymers. Specifically, for example, a mixture of a conductive polymer composed of a single monomer such as polyaniline and polypyrrole, or a mixture of a conductive polymer composed of a single monomer such as polyaniline and a copolymer such as an aniline / aminophenol copolymer. Is mentioned.
  • the conductive polymer in the present invention is characterized by having a nanowire structure formed on all or a part of the surface of the electrode substrate.
  • Nanowire is an artificial linear nanostructure composed of various materials such as metals, semiconductors, and polymers.
  • a nanowire structure made of any of the above materials can be used for the electrode for a microbial fuel cell of the present invention.
  • a case where a nanowire made of a conductive polymer is used as an example is shown below.
  • Nanowire structure refers to a structure having nanowires as a structural unit.
  • the nanowire structure of the present specification includes a two-dimensional nanowire structure and / or a nanowire network composed of a plurality of independent nanowires extending on the same plane as one form of the structure.
  • a “nanowire network” is formed by fusing together individual nanowires that are adjacent to each other on the same plane and / or different planes by growing in contact and / or longitudinal and / or radial directions.
  • a three-dimensional network structure For example, the structure shown in FIGS. 2, 3b, and 3d is applicable.
  • the nanowire network normally has innumerable pores of about 10 nm to about 1 ⁇ m that can be invaded by an electron-transmitting mediator such as a redox mediator compound, although microorganisms cannot invade.
  • an electron-transmitting mediator such as a redox mediator compound
  • the nanowire structure of the conductive polymer of the present invention can be prepared by a method known in the art (for example, Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S ., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41: 7053-7057, and Debiemme-Chouvy C., 2009, Electrochem. Commun., 11 Wanna)
  • a nanowire structure is generally prepared by immersing the electrode substrate in a solution containing a monomer that is a constituent of a conductive polymer at a predetermined concentration, and then applying an electric current to deposit the electrode substrate on the electrode substrate. it can.
  • a specific production method will be described in the section “1-3. Production of electrode for microbial fuel cell” described later.
  • the shape of the microbial fuel cell electrode of the present invention is not particularly limited as long as it can function as an electrode. What is necessary is just to determine suitably according to the shape etc. of the microbial fuel cell which uses this electrode. For example, a flat plate shape, a substantially flat plate shape, a column shape, a substantially columnar shape, a spherical shape, a substantially spherical shape, or a combination thereof can be given.
  • Such an electrode shape can be determined by configuring the electrode substrate in the desired shape when the electrode substrate itself has rigidity capable of holding the electrode shape. If the electrode substrate itself does not have sufficient rigidity to hold the electrode shape, it can be determined by configuring the support in a desired shape.
  • the electrode of the present invention is a fiber structure aggregate or a porous structure.
  • the electrode By forming the electrode as a fiber structure aggregate or a porous structure, a large number of irregularities are formed on the surface of the electrode, so that the surface area of the electrode increases as compared to a flat electrode such as a flat electrode. As a result, the chances of contact with the electron-donating microorganism or the electron-transmitting mediator increase, and the electron transfer rate from these to the electrode is improved, so that electrons generated from the electron-donating microorganism can be efficiently transmitted to the electrode.
  • the “fiber structure assembly” means that a plurality of thin linear electrode units (for example, electrodes having a structure as shown in FIG.
  • the fiber structure aggregate include a carbon fiber aggregate (for example, carbon felt, carbon wool) or a metal fiber aggregate (for example, metal wool) in which a conductive polymer having a nanowire structure is formed entirely or partially on the surface thereof. ), Or a glass fiber aggregate (for example, glass wool), a cellulose fiber aggregate (for example, paper), or a fibrous protein carrying an electrode substrate on which a conductive polymer having a nanowire structure is formed on the entire surface or a part thereof Examples include aggregates (for example, silk felt) or plastic fiber aggregates.
  • porous structure examples include a porous carbon or porous metal in which a conductive polymer having a nanowire structure is formed on the whole or a part of the surface, or a conductive polymer having a nanowire structure on the whole or a part of the surface.
  • porous ceramics porous plastics, plant pieces (for example, wood), animal pieces (for example, bones, shells, sponges) and the like that support the electrode substrate formed in the above.
  • the electrode having a fibrous structure aggregate or porous structure includes one or more gaps or pores larger than the electron-donating microorganism used.
  • the electron-donating microorganisms enter the gaps or pores of the electrodes, the chances of contact between the electrodes and the electron-donating microorganisms or electron-transmitting mediators are increased compared to the smooth electrode. This is because the electron transfer rate can be improved and the electron-donating microorganism can be fixed and propagated in the gaps or pores.
  • the size of the electron-donating microorganism used in the electrode for the microbial fuel cell is about 0.5 to 2 ⁇ m in diameter for cocci, and about 0.2 to 1 ⁇ m in short diameter and about 1 to 2 in long diameter in the case of Neisseria gonorrhoeae. 8 ⁇ m.
  • the size of the gaps or pores may be such that these microorganisms can easily enter, for example, the gap may have a length and width of 6 ⁇ m to 20 ⁇ m, preferably 8 ⁇ m to 18 ⁇ m. In the case of holes, the diameter may be 6 ⁇ m to 20 ⁇ m, preferably 8 ⁇ m to 18 ⁇ m.
  • one or more gaps or pores larger than the above-described size may be provided.
  • the electrode for a microbial fuel cell of the present invention may contain an electron donating microorganism in the gap or pore.
  • a microbial fuel cell generates power using an electron-donating microorganism as a biocatalyst and biomass such as organic wastewater as fuel. Therefore, the microbial fuel cell electrode of the present invention is used by immersing it in the biomass.
  • various kinds of microorganisms other than electron-donating microorganisms are mixed in such biomass.
  • the electron-donating microorganism is previously included and occupied in the gaps or pores of the electrode of the present invention. This configuration is convenient when it is desired to transfer electrons between a predetermined electron-donating microorganism and an electrode, or when biomass containing many microorganisms other than the electron-donating microorganism is used as a fuel.
  • the electron-donating microorganisms used here are not limited to a single species, and may be a plurality of species as long as they can coexist and do not inhibit the electron transfer between each microorganism and the electrode.
  • the method for including the electron donating microorganism in advance in the gaps or pores of the electrode is not particularly limited.
  • the electrode of the present invention is placed in a solution such as a culture solution containing only the electron donating microorganism as a microorganism for a predetermined period of time. For example, it may be immersed for 30 minutes to 3 days, 1 hour to 1 day, 6 hours to 12 hours.
  • Such electrodes are preferably kept water or moisturized until use in order to prevent drying or the like, or sealed in the case of anaerobic electron donating microorganisms.
  • the electrode of the present invention containing the electron-donating microorganism may be covered with a housing having pores smaller than those of the microorganism.
  • a housing having pores smaller than those of the microorganism As a result, it is possible to completely eliminate the entry of microorganisms other than electron donating microorganisms from biomass into the gaps or pores during use of the present electrode, and it can be contained in or around the electrode so that the electron donating microorganisms do not diffuse. Therefore, the current can be generated more efficiently.
  • “Beyond microorganisms” means that it is more than microorganisms normally present in biomass, and includes other microorganisms as well as electron-donating microorganisms.
  • the term “pore smaller than the microorganism” means that the microorganism cannot pass through, but the organic substance that can be used as a fuel for the electron-donating microorganism and its degradation product, and the electron transfer carrier such as the electron mediator and conductive fine particles can pass through.
  • a hole Specifically, for example, it is 0.45 ⁇ m or less, preferably 0.2 ⁇ m or less.
  • the casing does not necessarily have rigidity as long as the electrode of the present invention and the microorganisms in the biomass can be isolated.
  • the material of the housing is not particularly limited as long as it is water-resistant and has a hole of the above size.
  • cellulose acetate, hydrophilic polyvinylidene fluoride, hydrophilic polyether sulfone and the like used in commercially available filter sterilization filters can be used.
  • the electrode for a microbial fuel cell having such a configuration is particularly effective when it is desired to generate electricity using only a specific electron-donating microorganism by using biomass or the like in which various microorganisms exist as fuel.
  • the conductive polymer in the electrode for a microbial fuel cell of the present invention is formed so as to cover all or a part of the surface of the electrode substrate, and has a nanowire structure.
  • This structure dramatically reduces the surface area compared to an electrode having a (quasi-) smooth polyaniline thin layer coating (for example, see JP-A-2007-324005), which is known in conventional microbial fuel cells. It can be increased. In general, electrode performance depends on its surface area. Therefore, the electrode of the present invention can obtain a dramatic output value as compared with the conventional microbial fuel cell electrode.
  • the nanowire structure dramatically increases the electrode surface, electron donating microorganisms cannot normally enter the gaps and / or pores formed by the structure.
  • the electrode for a microbial fuel cell of the present invention which will be described later, it is considered that the above-described electron-transmitting intervening material enters this gap and / or pore and effectively utilizes the increased surface area due to the nanowire structure. Therefore, even if the electron donating microorganisms cannot enter, the electrode of the present invention can efficiently collect electrons.
  • the electrode surface area is further increased by using the electrode as a fiber structure aggregate or a porous structure.
  • the microbial fuel cell electrodes of the present invention can be used for applications other than microbial fuel cells.
  • the electrode for a microbial fuel cell of the present invention increases the direct or indirect electron transfer efficiency with an electron conductive microorganism by dramatically increasing its surface area compared to a conventional electrode by a nanowire structure. As a result, the generated potential is remarkably increased.
  • the electrode of the present invention can be used in the same manner for electrodes in other fields to which the principle can be applied.
  • Examples include microbial solar cell electrodes, microbial electrolysis cells, and biosensors.
  • the microbial solar cell uses a photosynthetic bacterium such as cyanobacteria and transmits electrons generated when the bacterium performs photosynthesis to an electrode, as described in the aforementioned Japanese Patent Application Laid-Open No. 2007-32405.
  • the microbial solar cell electrode is used as the electrode.
  • a microbial electrolysis cell is a device that has the same configuration as a microbial fuel cell and generates hydrogen from protons at a low potential electrode using a current generated by microorganisms from organic matter.
  • the biosensor here refers to a detection device using microorganisms having the same configuration as that of a microbial fuel cell.
  • An example is a BOD sensor.
  • the microbial fuel cell electrode of the present invention can be produced using any method known in the art for forming a conductive polymer nanowire structure on a conductive substrate. For example, Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41: 7053-7057, and Debiemme-Chouvy C., 2009, Electrochem. Commun., 11.
  • a specific method for producing the electrode for a microbial fuel cell of the present invention will be described with an example.
  • the electrode substrate itself has rigidity to be a support, it is prepared in a size and / or shape as required.
  • a commercially available carbon felt having a suitable thickness may be cut into a desired size and shape by matching the shape of the microbial fuel cell.
  • an appropriate support such as a glass fiber is prepared in a size and / or shape as required, and then the electrode is formed on the support.
  • the base carbon or metal may be formed by a technique known in the art, for example, coating, vapor deposition, or the like.
  • a commercially available electrode substrate having such a configuration can be used. Examples thereof include ITO supported on a glass plate.
  • “Monomer solution” refers to an electrolytic solution containing a monomer of a conductive polymer formed on an electrode substrate, such as an aniline monomer, a pyrrole monomer, a thiophene monomer, or the like, or a mixture thereof.
  • the “monomer solution solvent” refers to a solvent capable of dissolving the monomer. Examples thereof include sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), perchloric acid (HClO 4 ), and the like.
  • the concentration of the solvent may be the same or substantially the same as the solvent in the monomer solution.
  • the immersion time may vary depending on the size, shape, etc. of the electrode substrate, but it is usually 1 hour to 2 days, preferably 3 hours to 1 day. After the treatment, it is preferable to sufficiently wash with pure water or the like.
  • the conductive polymer having a nanowire structure can be usually formed by electrolytic reduction at room temperature. That is, it can be formed by using the electrode substrate as a working electrode and immersing it in an electrolytic cell together with a counter electrode, which is an energizing electrode, and applying an appropriate electrolysis voltage to the electrode to cause electrodeposition on the electrode substrate surface.
  • a counter electrode which is an energizing electrode
  • whether or not the monomer forms a conductive polymer having a nanowire structure is determined by the monomer concentration, the current or potential scan speed applied to the electrode substrate, the number of current or potential scans, and the like.
  • the method for forming a conductive polymer having a nanowire structure of the present invention will be specifically described in order, but the present invention is not limited to this method.
  • one end of a conducting wire such as a titanium wire is connected to one end of the electrode substrate prepared in the above (1), and this is used as a working electrode.
  • the other end of the conducting wire is connected to the power supply device.
  • the power supply device is preferably one that can make the potential or current applied to the working electrode constant in order to control the current or potential scan speed and the current or potential scan frequency applied to the electrode substrate.
  • a potentiostat or a galvanostat is mentioned. In this example, a case where a power supply device is connected to a potentiostat will be described.
  • the reference electrode is an electrode necessary for measuring or controlling the potential of the working electrode.
  • the monomer concentration in the monomer solution varies depending on the monomer used and / or the desired nanowire structure to be formed on the electrode substrate, but is generally 0.02 mol / L to 0.8 mol / L, preferably 0.03 mol / L to 0.7. mol / L, more preferably 0.04 mol / L to 0.6 mol / L, still more preferably 0.05 mol / L to 0.5 mol / L.
  • concentration is lower than 0.02 mol / L, there is a high possibility that only a thin layer of conductive polymer with a smooth or semi-smooth shape will be formed on the electrode substrate, and conversely when the concentration exceeds 0.8 mol / L.
  • Nanowires are not preferred because they are likely to become thick due to rapid growth, making it difficult to form a desired nanowire structure, particularly a nanowire network.
  • the working electrode potential is set within the range of ⁇ 0.1 V to 2.0 V, preferably ⁇ 0.3 V to 1.6 V, more preferably ⁇ 0.5 V to 1.3 V with respect to the reference electrode.
  • the scanning speed is in the range of 10 mV / sec to 100 mV / sec, and the number of scans is applied 5 to 20 round trips.
  • the scanning speed means a speed at which the potential is changed.
  • the scan speed on the side where the set potential is low is slow, the number of scans is large, and the scan speed on the side where the set potential is high is reversed. What is necessary is just to reduce the number of scans quickly.
  • the combination of the monomer concentration, the scan speed, and the number of scans may be appropriately determined in consideration of the conditions for forming a desired nanowire structure within each numerical range.
  • One aspect of the present invention is a microbial fuel cell using the electrode for a microbial fuel cell according to any one of the present invention.
  • a conceptual diagram of the microbial fuel cell of the present invention shown in FIG. 8 will be used.
  • the microbial fuel cell of the present invention is usually electrically connected to a pair of electrodes (81 and 82), an electrolytic cell (80) containing a diaphragm (83) and an electrolyte solution (84 and 85), and the pair of electrodes. Connected external circuit (eg, data logger) (86).
  • the configuration of the microbial fuel cell of the present invention is not limited to the above configuration, and includes any known microbial fuel cell that can use the electrode for the microbial fuel cell of the present invention. Shall be.
  • Electrode The microbial fuel cell of the present invention includes an anode (fuel electrode) (81) and a cathode (air electrode) (82) as a pair of electrodes.
  • the electrode for a microbial fuel cell of the present invention is used for the anode. At least one surface of the anode needs to be in direct contact with an electrolyte solution in an anode tank described later. Usually, the anode is used by being immersed in an electrolyte solution of an electrolytic cell.
  • the cathode is not particularly limited.
  • any material including a conductor such as carbon or metal may be used.
  • the cathode may be an air cathode (air positive electrode) that is open to the atmosphere.
  • the cathode preferably has gas (especially oxygen) permeability. Examples thereof include carbon paper, carbon cloth, and 4-polytetrafluoroethylene (PTFE) carrying platinum particles.
  • PTFE 4-polytetrafluoroethylene
  • the diaphragm (83) is configured to separate the pair of electrodes in the electrolytic cell.
  • the material of the diaphragm is not particularly limited as long as it can selectively permeate cations.
  • An example is a proton (H + ) exchange membrane (PEM).
  • the proton exchange membrane is a proton-conducting ion exchange polymer electrolyte, and examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins or organic / inorganic composite compounds.
  • the perfluorosulfonic acid-based fluorine ion exchange resin is, for example, a polymer unit based on perfluorovinyl ether having a sulfo group (—SO 3 H) and / or a carboxyl group (—COOH), and tetrafluoroethylene. And a copolymer containing polymer units.
  • a specific example is Nafion (registered trademark: DuPont).
  • the organic / inorganic composite compound is a substance composed of a compound in which a hydrocarbon polymer (for example, mainly polyvinyl alcohol) and an inorganic compound (for example, tungstic acid) are combined. These are known membranes, and since many are commercially available like Nafion, they can also be used.
  • the cathode when the cathode is opened to the atmosphere, the cathode (air cathode) and the diaphragm can be combined and integrated.
  • Such an integrated cathode / diaphragm can be used in a single tank microbial fuel cell.
  • the diaphragm (83) is not an essential component. However, considering the practicality of the battery, such as the life of the electrode, it is desirable to have a diaphragm.
  • the electrolyte solution (84) is a solution containing an electrolyte.
  • the electrolyte used in the microbial fuel cell of the present invention is not particularly limited as long as it is a substance that can be ionized in water. Moreover, it is not restricted to a single kind, The mixture of a some electrolyte can also be used. Specific examples of the electrolyte include K 2 HPO 4 / KH 2 PO 4 , NaCO 3 / NaHCO 3, and the like.
  • Electrolytic cell constitutes the main body of the microbial fuel cell of the present invention.
  • the electrolytic cell there are known a two-cell type separated into an anode cell and a cathode cell by a diaphragm, and a single cell type having a configuration in which an air cathode and a diaphragm are integrated and only an anode cell is formed. Any type of microbial fuel cell of the invention can be used.
  • the anode tank is arranged in the anode tank, and the cathode tank in the cathode tank is arranged in such a manner that all or a part thereof is in direct contact with the electrolyte solution.
  • the anode tank which is a fuel tank, contains, in addition to the electrolyte solution, an electron-donating microorganism, its fuel and electron donor, and, if necessary, electron mediators such as an electron mediator and conductive fine particles.
  • the electron-donating microorganism used in the anode tank may be either a single species or a plurality of species.
  • mixed systems consisting of multiple types of electron-donating microorganisms can use the electron-donating microorganisms that originally live in them without adding electron-donating microorganisms from the outside.
  • Excellent in advantages For example, Pseudomonas aeruginosa and Geobacter inhabit every part of the natural environment such as soil, fresh water, and seawater. Therefore, if sludge is used as fuel, it can be used without being added from the outside. Further, as described above, Pseudomonas aeruginosa is very useful as the electron-donating microorganism of the present invention because it can produce a redox mediator compound.
  • the cathode tank which is an air layer is configured to be able to supply air containing oxygen.
  • Fuel is a nutrient substrate necessary for maintenance and / or growth of electron donating microorganisms.
  • the nutrient substrate is not particularly limited as long as the microorganism can be metabolized by the microorganism.
  • alcohols such as methanol and ethanol
  • monosaccharides such as glucose, starch, amylose, amylopectin, glycogen, cellulose, maltose, sucrose
  • useful resources such as polysaccharides such as lactose, and agricultural industrial waste
  • Unused resources such as organic drainage, human waste, sludge, and food residues, that is, organic waste can be used.
  • the fuel may also contain a substance that can be an electron donor of an electron donating microorganism (for example, lactic acid). Fuel can be added as needed for the maintenance and growth of electron donating microorganisms in the anode cell and / or for the supply of electron donors.
  • the electron-transmitting intervening material may be added to the electrolytic cell as necessary. As long as at least one of the included electron donating microorganisms can produce / release the redox mediator compound, the electron-transmitting mediator does not necessarily have to be added. On the other hand, when any of the included electron donating microorganisms is a species that cannot produce / release the redox mediator compound, it is essential to add an electron transferable mediator.
  • Electrode substrate of the electrode substrate of the present invention and a conductive polymer (nanowire conductive polymer) having a nanowire structure formed on all or part of its surface”).
  • ITO / conductive polymer nanowire electrode (A) and carbon / conductive polymer nanowire electrode (B) as well as their control electrodes (C) ) Will be described.
  • ITO / conductive polymer nanowire electrode Production of ITO / conductive polymer nanowire electrode An ITO / conductive polymer nanowire electrode in which the nanowire conductive polymer formed on the surface of ITO, which is the electrode substrate, is composed of polyaniline or a polyaniline copolymer was produced.
  • the monomer solution as the electrolytic solution was a 1M sulfuric acid solution containing 0.2M aniline monomer (Wako Pure Chemical Industries).
  • One end of a titanium wire as a lead wire was connected to one end of ITO prepared in (1), which was used as a working electrode, and the other end of the lead wire was connected to a potentiostat (HZ-5000, Hokuto Denko). Furthermore, a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) were connected to the potentiostat. These electrodes were immersed in the monomer solution. Subsequently, the potential of the working electrode is set between ⁇ 0.3 V and 1.3 V with respect to the reference electrode, and is scanned 10 times back and forth at an electrode scan speed of 50 mV / sec. Nanowire polyaniline was electrodeposited.
  • FIGS. 2a and 2b show a polyaniline nanowire structure (in this figure, forming a polyaniline network) (a) and an enlarged view (b) thereof on the surface of a plate ITO electrode substrate prepared by this method. It can be seen that the polyaniline nanowires are fused with other adjacent polyaniline nanowires to form a three-dimensional network structure (network) having numerous pores.
  • the working electrode was removed from the potentiostat, washed three times with distilled water, and then dried to obtain an electrode for a microbial fuel cell (ITO / polyaniline nanowire electrode) comprising ITO / nanowire polyaniline of the present invention.
  • PAAP aniline / aminophenol copolymer
  • PADAP aniline / diaminophenol copolymer
  • one end of a titanium wire which is a conductor, is connected to one end of ITO prepared in (1), which is used as a working electrode, and the other end of the conductor is a potentiostat (HZ-5000, Hokuto Denko). ).
  • the active area of the ITO working electrode is 3.14 cm 2 .
  • a reference electrode Au / AgCl electrode immersed in a saturated KCl solution
  • a counter electrode platinum
  • the potential of the working electrode is set between ⁇ 0.4 V to 1.1 V with respect to the reference electrode, and is scanned 10 times back and forth at an electrode scan speed of 50 mV / sec.
  • Nanowire polyaniline copolymer was electrodeposited.
  • Figures 2c-f show the nanowire structure of the polyaniline copolymer on the surface of the planar ITO electrode substrate prepared by this method.
  • c and d indicate PAAP
  • e and f indicate PADAP
  • d and f are enlarged views of c and e, respectively. It can be seen that the nanowire structures of PAAP and PADAP shown in these figures are formed by fusing adjacent nanowires to form a three-dimensional network structure (network) having innumerable pores.
  • the working electrode is removed from the potentiostat, washed with distilled water three times, and then dried. Nanowire electrode or ITO / PADAP nanowire electrode).
  • Carbon felt or carbon plate (CP: Carbon Plate) is used as the electrode base, and the nanowire conductive polymer formed on the surface is carbon made of nanowire polyaniline or nanowire polyaniline copolymer. / Conductive polymer nanowire electrodes were prepared.
  • the monomer solution as the electrolytic solution was a 1M sulfuric acid solution containing 0.2M aniline monomer (Wako Pure Chemical Industries).
  • One end of a titanium wire as a conducting wire was connected to one end of the carbon felt or CP prepared in (1), which was used as a working electrode, and the other end of the conducting wire was connected to a potentiostat (HZ-5000, Hokuto Denko). Further, one end of a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) was connected to the potentiostat. These electrodes are immersed in the monomer solution, and then the potential of the working electrode is -0.5V to 1.3V with respect to the reference electrode in the case of carbon felt, and with respect to the reference electrode in the case of CP.
  • FIG. 3 shows a polyaniline nanowire structure (FIG. 3b) on the surface of a carbon felt electrode substrate (FIGS. 3a and c) prepared by this method and an enlarged view (FIG. 3d). It can be seen that adjacent nanowires formed on the same and / or different carbon fiber surfaces are fused to form a complex three-dimensional nanowire structure (nanowire network) together with the carbon felt of the fibrous assembly.
  • the working electrode after the electrodeposition of nanowire polyaniline was removed from the potentiostat, washed 3 times with distilled water, and dried. This was used as a microbial fuel cell electrode (carbon felt / polyaniline nanowire electrode) comprising the carbon felt / nanowire polyaniline of the present invention.
  • One end of a titanium wire as a conducting wire was connected to one end of the CP prepared in (2), which was used as a working electrode, and the other end of the conducting wire was connected to a potentiostat (HZ-5000, Hokuto Denko).
  • the active area of the CP working electrode is 3.14 cm 2 .
  • one end of a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) was connected to the potentiostat. These electrodes are immersed in the monomer solution, and then the potential of the working electrode is set between ⁇ 0.4 V and 1.3 V with respect to the reference electrode, and then 15 to 20 reciprocations at an electrode scanning speed of 50 mV / sec.
  • the nanowire polyaniline copolymer was electrodeposited on the CP surface as the electrode substrate according to the number of scans.
  • the working electrode after electrodeposition of the nanowire polyaniline copolymer was removed from the potentiostat, washed three times with distilled water, and then dried. This was used as a microbial fuel cell electrode (CP / PAAP nanowire electrode or CP / PADAP nanowire electrode) comprising the CP / nanowire polyaniline copolymer of the present invention.
  • C Preparation of smooth surface thin layer electrode (smooth surface electrode)
  • C-1 Preparation of ITO / polyaniline smooth surface electrode According to the preparation method of A (1) and (2). However, the concentration of the aniline monomer in the step A (2) was set to 1/10, that is, 0.02M.
  • C-3 Preparation of ITO / PADAP smooth electrode According to the preparation methods of A (1) and (3). However, the concentrations of the aniline monomer and 2,4-diaminophenol in step A (3) were 1/10, that is, 0.02M and 0.001M, respectively. The number of electrode scans was set to 5.
  • C-4 Preparation of carbon felt / polyaniline smooth electrode According to the preparation method of B (1) and (3). However, the concentration of the aniline monomer in the step B (3) was 1/10, that is, 0.02M.
  • control electrode D-1 Preparation of ITO electrode According to the preparation method of A (1).
  • D-2 Production of carbon felt electrode The same method as in B (1) was used.
  • Example 2 Verification of power generation capability in electrode for microbial fuel cell of the present invention> The power generation capability of the microbial fuel cell electrode of the present invention was verified by an electrochemical cell using a potentiostat system.
  • Electrode The working electrode as the anode was used in the following combinations.
  • Example 1 The ITO / polyaniline nanowire electrode and the ITO / polyaniline smooth surface electrode produced in Example 1 and the electrode (ITO electrode) made of only ITO supported on the glass plate were used.
  • an experiment in which the power generation performance is verified with this combination of electrodes is referred to as “experiment A”.
  • Each electrode size is the same.
  • a platinum electrode and an Ag / AgCl (saturated KCl) electrode were used as a counter electrode and a reference electrode, respectively.
  • Electron-donating microorganism In any of Experiments A to C, Shewanella loihica PV-4 strain (American type culture collection: ATCC No. BAA-1088; 2008 edition) was used as the electron-donating microorganism.
  • S. loihica PV-4 was inoculated in advance into 10 ml of 20 g / L Marine Broth 2216 medium (MB medium: Wako Pure Chemical Industries) and cultured aerobically at 30 ° C. for 1 day. Subsequently, MB medium was replaced with DM medium (Difined Media), and aerobically cultured at 30 ° C. for 2 days was used as a preculture solution.
  • MB medium Marine Broth 2216 medium
  • DM medium Difined Media
  • the composition of the DM medium is 2.5 g / L NaHCO 3 , 0.08 g / L CaCl 2 ⁇ 2H 2 O, 1.0 g / L NH 4 Cl, 0.2 g / L MgCl 2 ⁇ 6H 2 O, 10 g / L NaCl, 7.2 g / L HEPES.
  • 10 mM sodium lactate (Wako Pure Chemical Industries) is used as an electron donor to S. loihica PV-4, and 0.5 g / L is supplied to supply micronutrients necessary for the growth of S. loihica PV-4 during main culture.
  • Yeast Extract (Wako Pure Chemical Industries) was added.
  • the DM medium containing sodium lactate is referred to as DM-L medium.
  • FIG. 4 shows a potentiostat system used in this example.
  • a working electrode (41) as an anode was laid on the bottom of the electrolytic cell (40), 5 ml of DM-L medium was placed in the cell, and purged with pure nitrogen for 10 minutes.
  • a potentiostat HV-100, Hokuto Denko
  • a constant voltage of 0.2 V is applied to the reference electrode (Ag / AgCl electrode).
  • FIG. 5 shows the results of Experiment A
  • FIG. 6 shows the results of Experiment B
  • FIG. 7 shows the results of Experiment C.
  • the microbial fuel cell electrode of the present invention is a microbial fuel cell electrode compared to conventional biofuel cell electrodes because of its high affinity with electron-donating microorganisms and high electron recovery efficiency. It became clear that it has very good power generation capacity.
  • Experiment B First, when a CP electrode was used as the anode, the current started to increase immediately after addition of S. loihica PV-4 (indicated by the arrow in “PV-4 addition” in FIG. 6), and then about 20 ⁇ A It remained at a constant value of / cm 2 (a). This result reflects that S. loihica PV-4 oxidizes lactic acid and transfers the generated electrons directly to the anode, similar to the ITO electrode of Experiment A.
  • CP / PADAP nanowire electrode With 1.3 to 2 times the CP / PADAP nanowire electrode, a current about 2 to 3 times higher than that of the CP / polyaniline nanowire electrode was obtained. This ranges from about 30 times the CP electrode (CP / PAAP nanowire electrode) or about 40 times (CP / PADAP nanowire electrode).
  • PAAP and PADAP nanowire electrodes which are copolymers, have higher power generation efficiency than polyaniline nanowire electrodes, which are polymers of monomolecular compounds (aniline).
  • polyaniline nanowire electrodes which are polymers of monomolecular compounds (aniline).
  • One reason for this is the difference in specific surface area of each conductive polymer formed on the substrate surface as shown in Table 1, that is, the difference in surface area per electrode weight.
  • the conductive polymer constituting the microbial fuel cell electrode of the present invention is preferably a material having a property of having a larger specific surface area when a nanowire structure is formed on the substrate surface.
  • the electrode for the microbial fuel cell of the present invention can obtain the same power generation ability even when the ITO or CP base is different, and a polyaniline copolymer (for example, this example) than when polyaniline is used.
  • a polyaniline copolymer for example, this example
  • PAAP or PADAP has a larger specific surface area and better power generation capability.
  • the power generation efficiency was less than 6 ⁇ A / cm 2, which was significantly lower than the electrode having the conductive polymer nanowire structure used in Experiments A and B (FIG. 7). That is, this shows that the output current density of the nanowire electrode of the present invention is higher than that of the conventional smooth surface electrode even when the electrode substrate surface is coated with the same conductive polymer.
  • the electrodes (b to d) having a conductive polymer on the surface had a 3 to 5 times higher output current density than the ITO electrode (a). Furthermore, even with the conductive polymer, the ITO / PADAP smooth electrode (d) was about 1.5 times higher in output current density than the ITO / polyaniline smooth electrode (b). In FIG. 6, the output current density of the CP / PADAP nanowire electrode (d) was higher than that of the CP / polyaniline nanowire electrode (b). This is because the specific surface area of the PADAP nanowire is that of the polyaniline nanowire as described above.
  • PADAP which is a copolymer rather than polyaniline, which is a polymer of monomolecular compounds
  • PADAP is a microbial fuel cell electrode with higher power generation efficiency, as well as higher properties as a conductive polymer material. Is shown.
  • Example 3 Verification of power generation capability in an electrode for a microbial fuel cell of the present invention composed of a fiber structure assembly> The power generation capability of the electrode for a microbial fuel cell of the present invention composed of a fiber structure aggregate was verified using a microbial fuel cell not containing an electron mediator and conductive fine particles.
  • Electrode As the anode, the carbon felt / polyaniline nanowire electrode and the carbon felt / polyaniline thin layer electrode prepared in Example 1 and an electrode composed of only carbon felt (carbon felt electrode) were used. Each electrode size is the same.
  • the air cathode consists of 4-polytetrafluoroethylene (PTFE) carrying 8 mg / cm 2 platinum particles (Sigma).
  • the paddy soil microorganisms were cultured according to the following procedure.
  • 12 ml of PS medium (NH 4 CL 10 mM, KH 2 PO 4 1 mM, MgCl 2 0.5 mM, CaCl 2 0.5 mM, NaHCO 3 5 mM, HEPES 10 mM, Yeast extract 0.5 g / L) was used.
  • sodium acetate (10 mM) was added as an electron donor.
  • 0.5 g / L of Yeast exatract was added to supply a small amount of fuel necessary for microorganisms.
  • 20 mg (wet weight) of paddy field soil was added to the PS medium.
  • the culture was performed at 30 ° C., and sodium acetate (10 mM) was added again when the current density decreased (when acetic acid was deficient).
  • the electrode cell used in this example is a single cell type electrolytic cell having no diaphragm (83) in the microbial fuel cell of the present invention shown in FIG.
  • an electrolytic solution to which an electron donating microorganism and a nutrient substrate are added is accommodated in the tank.
  • 12 ml of buffer solution containing 200 mM K 2 HPO 4 / KH 2 PO 4 (pH 6.8) is placed as an electrolyte solution in an electrolytic cell having a capacity of 15 ml, and starch is used as a nutrient substrate.
  • FIGS. 9 and 10 show the polarization curve and output of the microbial fuel cell when each anode is used, respectively.
  • the power density of the short-circuit current density and 24 ⁇ W / cm 2 of 107 ⁇ A / cm 2 were obtained (Fig. 9a and 10a).
  • the power density of the short-circuit current density and 70 ⁇ W / cm 2 of 270 ⁇ A / cm 2 were obtained ( Figure 9b and 10b). That is, the output increased by a factor of 3 or more by coating the carbon felt surface with a smooth polyaniline.
  • Example 2 it is considered that the affinity with the electron donating microorganism was increased by polyaniline.
  • a carbon felt / polyaniline nanowires electrodes is an electrode for a microbial fuel cell of the present invention
  • the power density of the short-circuit current density and 230 ⁇ W / cm 2 of 2.5 mA / cm 2 were obtained (Fig. 9c And 10c). That is, according to the carbon felt / polyaniline nanowire electrode of the present invention, it has been clarified that the current and output are increased by one digit compared with those of the electrode having the conventional configuration.
  • the microbial fuel cell of this example is composed of a system closer to the microbial fuel cell used in the practical application stage.
  • the electron-donating microorganism used was included in paddy soil and has not been identified.
  • the soil also includes many other microorganisms that cannot be the electron-donating microorganism of the present invention.
  • this system does not necessarily add electron-donating microorganisms from the outside, but by using sludge or organic effluents that are used as fuel in actual microbial fuel cells as they are, electron donation that exists universally to them is used. It has been shown that the microorganism fuel cell of the present invention can sufficiently achieve the effects of the present invention by microorganisms.
  • Example 4 Cyclic voltammogram of each microbial fuel cell electrode> The cyclic voltammogram was measured in the microbial fuel cell using each anode in Example 3, and the electron transfer characteristics in the presence of the microbial mixture were examined. The cyclic voltammogram is a measurement of the current flowing in the electrochemical cell by continuously changing the potential of the working electrode with respect to the reference electrode. The redox potential of this reaction system is obtained from the midpoint of the + and-peaks at that time.
  • FIG. (A) shows a case where a carbon felt electrode is used for the anode
  • (b) shows a case where a carbon felt / polyaniline thin layer electrode is used
  • (c) shows a case where the carbon felt / polyaniline nanowire electrode of the present invention is used.
  • the anode or cathode of the peak current density of each electrode respectively (a) at 0.8 and 0.6 mA / cm 2, 35 and 32 mA / cm 2 met with (b) at 2.7 and 2.8 mA / cm 2 and, (c) It was. That is, the current density of the microbial fuel cell electrode of the present invention was increased by about 40 times compared to that of the electrode made of only the conductive carbon fiber. In general, it is known that the charge density of an electrode in a particular reaction is related to the electrode surface area and its properties. Considering this result, it is considered that the electrode for microbial fuel cell of the present invention has a significantly increased electrode surface area due to the nanowire structure of polyaniline, so that the electron recovery efficiency is enhanced and a remarkably high current density is obtained. .

Abstract

Disclosed are: an electrode for a microbial fuel cell, which can generate a high-output electric current in a microbial fuel cell; and a microbial fuel cell equipped with the electrode. Specifically disclosed is an electrode for a microbial fuel cell, which comprises an electrode base and an electrically conductive polymer formed on the whole or a part of the surface of the electrode base and having a nano-wire structure, and which can be used as an anode for a microbial fuel cell. In the electrode, the surface area is significantly increased. Therefore, the affinity between an electron conductive microorganism and the electrode is increased, and consequently the efficiency of the charge transfer from the microorganism to the electrode can be dramatically increased.

Description

微生物燃料電池用電極及びそれを用いた微生物燃料電池Microbial fuel cell electrode and microbial fuel cell using the same
 本発明は、微生物燃料電池に用いる電極、より具体的には、表面にナノワイヤ構造を有する電極基盤からなる電極、及びそれを用いた微生物燃料電池に関する。 The present invention relates to an electrode used in a microbial fuel cell, more specifically, an electrode comprising an electrode substrate having a nanowire structure on the surface, and a microbial fuel cell using the same.
 従来の化石燃料に替わる新たな発電システムとして微生物燃料電池が注目を集めている。 Microbial fuel cells are attracting attention as a new power generation system that replaces conventional fossil fuels.
 微生物燃料電池とは、微生物の生物活性能力を利用して化学エネルギーを電気エネルギーに変換する発電システムである。微生物燃料電池は、燃料として有機排液、汚泥、食物残渣等の未利用のバイオマスを使用できることから、持続可能な発電システムであり、かつ発電に並行して有機廃棄物を分解処理できるという利点を有する。また、汚染物質を利用する能力を持つ微生物を使用すれば、汚染廃液の処理等の環境浄化も可能である。さらに、微生物自体が有機物から電子を取り出す生体触媒として機能するため、水素燃料電池等の従来の化学燃料電池のようなガス交換プロセス等を必要とせず、低コストで、極めて高いエネルギー変換効率を有するという利点もある。 A microbial fuel cell is a power generation system that converts chemical energy into electrical energy using the biological activity of microorganisms. Microbial fuel cells have the advantage of being a sustainable power generation system and capable of decomposing organic waste in parallel with power generation because they can use unused biomass such as organic waste liquid, sludge, and food residues as fuel. Have. In addition, if microorganisms having the ability to use pollutants are used, it is possible to purify the environment such as processing of contaminated waste liquid. Furthermore, since the microorganism itself functions as a biocatalyst for extracting electrons from organic substances, it does not require a gas exchange process or the like as in a conventional chemical fuel cell such as a hydrogen fuel cell, and has a very high energy conversion efficiency at low cost. There is also an advantage.
 一方、現在の微生物燃料電池は、出力電流密度が低いという大きな問題を有しており、実用的な発電力を得るにはさらなる改良を必要としている。一般に、微生物燃料電池における出力電流密度の増加は、微生物から電極への電荷移動効率に依存する。また、この電荷移動効率は、電極表面積及び電極特性に影響される。 On the other hand, the current microbial fuel cell has a big problem that the output current density is low, and further improvement is required to obtain a practical power generation. In general, the increase in output current density in a microbial fuel cell depends on the efficiency of charge transfer from the microorganism to the electrode. The charge transfer efficiency is affected by the electrode surface area and electrode characteristics.
 そこで、上記問題を解決するために、例えば、HNQ(2-hydroxy-1,4-naphthoquinone)等の電子メディエータ(電子伝達体)を電解槽に添加して微生物から電極への電子伝達効率を向上させることで出力電流密度を高めるという試みがなされている(非特許文献1)。しかし、電子メディエータは、それ自体が一般的に高価であり、また人体等に対して有害なものが多いという問題があった。さらに、得られる電流発生量も実用性の面では不十分であった。 In order to solve the above problems, for example, an electron mediator (electron carrier) such as HNQ (2-hydroxy-1,4-naphthoquinone) is added to the electrolytic cell to improve the efficiency of electron transfer from the microorganism to the electrode. Attempts have been made to increase the output current density (Non-patent Document 1). However, the electronic mediator itself is generally expensive, and there are many problems that are harmful to the human body. Furthermore, the amount of current generated is insufficient in terms of practicality.
 また、特許文献1では、電子蓄積型微生物変異体を用いて、さらに電極基盤となる炭素繊維にポリアニリンを塗布又はディッピングした微生物燃料電池が開示されている。炭素繊維を用いることで電極表面を増大させ、かつ電子メディエータとしてポリアニリンを被覆することで微生物から直接電子を効率よく抽出できるようにしたものである。しかし、この微生物燃料電池は、炭素繊維表面にポリアニリンの薄層被膜を形成しただけであり、微生物と電極の電子授受の向上にはさらなる改善の余地があった。 Also, Patent Document 1 discloses a microbial fuel cell in which polyaniline is further applied or dipped on carbon fibers serving as an electrode base using an electron storage type microbial mutant. By using carbon fiber, the surface of the electrode is increased, and polyaniline is coated as an electron mediator so that electrons can be efficiently extracted directly from microorganisms. However, this microbial fuel cell only has a thin film of polyaniline formed on the carbon fiber surface, and there is room for further improvement in improving the electron transfer between the microorganism and the electrode.
特開2007-324005号公報JP 2007-32405 A
 本発明は上記した問題点に鑑み、微生物燃料電池において微生物から電極への電荷移動効率をより一層高めることで高出力電流を発生することが可能な微生物燃料電池用電極の開発とその提供を目的とする。 In view of the above-described problems, the present invention aims to develop and provide an electrode for a microbial fuel cell capable of generating a high output current by further increasing the charge transfer efficiency from the microorganism to the electrode in the microbial fuel cell. And
 また、その電極を用いた高出力微生物燃料電池を提供することを目的とする。 It is another object of the present invention to provide a high-power microbial fuel cell using the electrode.
 本発明者らは、上記問題を解決するために鋭意研究を行った結果、電極基盤表面に導電性ポリマーによりナノワイヤ構造を形成させて電極表面積を増大することにより、微生物から電極への電荷移動効率が従来の微生物燃料電池用電極と比較して10倍~100倍も増強することを見出した。本発明は、当該知見に基づくものであり、すなわち以下を提供する。 As a result of intensive studies to solve the above problems, the present inventors have formed a nanowire structure with a conductive polymer on the surface of the electrode substrate to increase the electrode surface area, thereby improving the efficiency of charge transfer from microorganisms to the electrode. Has been found to be 10 to 100 times stronger than the conventional microbial fuel cell electrode. This invention is based on the said knowledge, ie, provides the following.
(1)電極基盤及びその表面の全部又は一部に形成されたナノワイヤ構造を有する導電性ポリマーからなる微生物燃料電池用電極。 (1) An electrode for a microbial fuel cell comprising an electrode substrate and a conductive polymer having a nanowire structure formed on all or part of the surface thereof.
(2)ナノワイヤ構造がナノワイヤネットワークを含む、(1)に記載の電極。 (2) The electrode according to (1), wherein the nanowire structure includes a nanowire network.
(3)電極基盤が、金属又はカーボンを含む、(1)又は(2)に記載の電極。 (3) The electrode according to (1) or (2), wherein the electrode substrate contains metal or carbon.
(4)電極が繊維構造集合体又は多孔質構造体である、(1)~(3)のいずれかに記載の電極。 (4) The electrode according to any one of (1) to (3), wherein the electrode is a fiber structure aggregate or a porous structure.
(5)電極が電子供与微生物の細胞サイズよりも大きい間隙又は細孔を含む、(1)~(4)のいずれかに記載の電極。 (5) The electrode according to any one of (1) to (4), wherein the electrode includes gaps or pores larger than the cell size of the electron-donating microorganism.
(6)間隙の長さ及び/又は幅、及び細孔の直径が6μm~20μmである、(5)に記載の電極。 (6) The electrode according to (5), wherein the length and / or width of the gap and the diameter of the pores are 6 μm to 20 μm.
(7)前記間隙又は細孔内に電子供与微生物を含む、(5)又は(6)に記載の電極。 (7) The electrode according to (5) or (6), which contains an electron donating microorganism in the gap or pore.
(8)導電性ポリマーがアニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体、又はそれらの組み合わせからなる重合体、あるいは前記重合体の混合物である、(1)~(7)のいずれかに記載の電極。 (8) The conductive polymer is a polymer composed of aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or a derivative thereof, or a combination thereof, or a mixture of the above polymers. The electrode according to any one of (1) to (7).
(9)導電性ポリマーがポリアニリン、アニリン/アミノフェノールコポリマー又はアニリン/ジアミノフェノールコポリマーである、(8)に記載の電極。 (9) The electrode according to (8), wherein the conductive polymer is polyaniline, aniline / aminophenol copolymer or aniline / diaminophenol copolymer.
(10)(1)~(9)のいずれかに記載の電極を用いた微生物燃料電池。 (10) A microbial fuel cell using the electrode according to any one of (1) to (9).
(11)(1)~(9)のいずれかに記載の電極からなるアノード及び/又はカソード、電解質溶液、及びそれらを収容する電解槽を含んでなる微生物燃料電池であって、前記電解槽において、槽内の前記電解質溶液が、単一又は複数の種からなる電子供与微生物及び当該微生物の代謝に必要な栄養基質をさらに含む前記微生物燃料電池。 (11) A microbial fuel cell comprising an anode and / or a cathode comprising the electrode according to any one of (1) to (9), an electrolyte solution, and an electrolytic cell containing them, The microbial fuel cell, wherein the electrolyte solution in the tank further comprises an electron donating microorganism consisting of a single species or a plurality of species and a nutrient substrate necessary for metabolism of the microorganism.
(12)カソードがガス透過性を有するエア・カソードで、電解槽がアノード槽のみで構成される単槽構造を有する、(11)に記載の微生物燃料電池。 (12) The microbial fuel cell according to (11), wherein the cathode has a gas permeable air cathode and the electrolytic cell has a single cell structure composed only of an anode cell.
(13)アノード又はカソードが設置される槽内に酸化還元メディエータ化合物、電子メディエータ及び/又は導電性微粒子をさらに含む、(11)~(12)のいずれかに記載の微生物燃料電池。 (13) The microbial fuel cell according to any one of (11) to (12), further comprising a redox mediator compound, an electron mediator and / or conductive fine particles in a tank in which the anode or the cathode is installed.
 本明細書は本願の優先権の基礎である日本国特許出願2009-200422号の明細書及び/又は図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2009-200422 which is the basis of the priority of the present application.
 本発明の微生物燃料電池用電極によれば、ナノワイヤ構造により電極の表面積を著しく増大させることが可能となる。その結果、高出力電流密度を発生可能な電極を提供することができる。 According to the microbial fuel cell electrode of the present invention, the surface area of the electrode can be remarkably increased by the nanowire structure. As a result, an electrode capable of generating a high output current density can be provided.
 本発明の微生物燃料電池によれば、従来の微生物燃料電池と比較して出力を飛躍的に向上させることができる。 According to the microbial fuel cell of the present invention, the output can be dramatically improved as compared with the conventional microbial fuel cell.
本発明における導電性ポリマーの化学構造の具体例。(a)は、ポリアニリンの構成単位を示す。(b)は、アニリン/アミノフェノールコポリマー(この図では、アミノフェノールがオルトアミノフェノールであるが、メタアミノフェノールであってもよい)を構成する一部構造であって、本発明のアニリン/アミノフェノールコポリマーは、アニリン構成単位(a)が重合する構造中に少なくとも一の当該構成を有する。逆に、当該構成単位の重合する構造中に少なくとも一のアニリン構成単位(a)を有していてもよい。(c)は、アニリン/ジアミノフェノールコポリマー(この図では、ジアミノフェノールが2,4-ジアミノフェノールであるが、2,2-ジアミノフェノール又は2,3-ジアミノフェノールであってもよい)を構成する一部構造であって、本発明のアニリン/ジアミノフェノールコポリマーは、アニリン構成単位(a)が重合する構造中に少なくとも一の当該構成を有する。逆に、当該構成単位の重合する構造中に少なくとも一のアニリン構成単位(a)を有していてもよい。The specific example of the chemical structure of the conductive polymer in this invention. (A) shows the structural unit of polyaniline. (B) is a partial structure constituting an aniline / aminophenol copolymer (in this figure, aminophenol is orthoaminophenol, but may be metaaminophenol), and the aniline / amino of the present invention A phenol copolymer has at least one said structure in the structure which an aniline structural unit (a) superposes | polymerizes. Conversely, at least one aniline structural unit (a) may be included in the structure of the structural unit that is polymerized. (C) constitutes an aniline / diaminophenol copolymer (in this figure the diaminophenol is 2,4-diaminophenol, but may be 2,2-diaminophenol or 2,3-diaminophenol) It is a partial structure, and the aniline / diaminophenol copolymer of the present invention has at least one such structure in the structure in which the aniline structural unit (a) is polymerized. Conversely, at least one aniline structural unit (a) may be included in the structure of the structural unit that is polymerized. ガラス平板上に担持されたITOの表面に形成されている導電性ポリマーのナノワイヤ構造(本図では、ナノワイヤネットワークを形成している)の走査電子顕微鏡図(a、c及びe)及びそれらの拡大図(b、d及びf)。a及びbはポリアニリンを、c及びdはアニリン/アミノフェノールコポリマー(アニリン:オルトアミノフェノール=20:1)を、e及びfはアニリン/ジアミノフェノールコポリマー(アニリン:2,4-ジアミノフェノール=20:1)を、それぞれ示す。Scanning electron micrographs (a, c and e) of the nanowire structure of conductive polymer (in this figure, forming a nanowire network) formed on the surface of ITO supported on a glass plate and their magnification Figures (b, d and f). a and b are polyaniline, c and d are aniline / aminophenol copolymers (aniline: orthoaminophenol = 20: 1), e and f are aniline / diaminophenol copolymers (aniline: 2,4-diaminophenol = 20: 1) is shown respectively. カーボンフェルト(a)とその表面上にポリアニリンのナノワイヤ構造(本図では、ナノワイヤネットワークを形成している)を形成した繊維構造集合体からなる本発明の微生物燃料電池用電極(b)及び1本のカーボンファイバ(c)とその表面上にポリアニリンのナノワイヤ構造を形成した本発明の繊維構造集合体としての微生物燃料電池用電極構成単位(d)の走査電子顕微鏡図。Microbial fuel cell electrode (b) and one of the present invention comprising a carbon felt (a) and a fiber structure assembly in which a polyaniline nanowire structure (in this figure, a nanowire network is formed) is formed on the surface thereof. The scanning electron microscope figure of the electrode structural unit (d) for microbial fuel cells as a fiber structure aggregate | assembly of this invention which formed the nanowire structure of polyaniline on the surface of carbon fiber (c) of this invention. 実施例2で使用した電気化学セル。The electrochemical cell used in Example 2. 実施例2の実験Aにおいて各アノードの使用によって得られた発生電流。(a)は、ITO電極、(b)は、ITO/ポリアニリン滑面電極、そして(c)は、ITO/ポリアニリンナノワイヤ電極をそれぞれ示す。The generated current obtained by the use of each anode in Experiment A of Example 2. (A) shows an ITO electrode, (b) shows an ITO / polyaniline smooth electrode, and (c) shows an ITO / polyaniline nanowire electrode. 実施例2の実験Bにおいて各アノードの使用によって得られた発生電流。(a)は、カーボンプレート(CP)電極、(b)は、CP/ポリアニリンナノワイヤ電極、(c)は、CP/PAAPナノワイヤ電極、そして(d)は、CP/PADAPナノワイヤ電極をそれぞれ示す。Generated current obtained by use of each anode in Experiment B of Example 2. (A) is a carbon plate (CP) electrode, (b) is a CP / polyaniline nanowire electrode, (c) is a CP / PAAP nanowire electrode, and (d) is a CP / PADAP nanowire electrode. 実施例2の実験Cにおいて各アノードの使用によって得られた電流密度。(a)は、ITO電極、(b)は、ITO/ポリアニリン滑面電極、(c)は、ITO/PAAP滑面電極、そして(d)は、ITO/PADAP滑面電極をそれぞれ示す。Current density obtained by use of each anode in Experiment C of Example 2. (A) is an ITO electrode, (b) is an ITO / polyaniline smooth electrode, (c) is an ITO / PAAP smooth electrode, and (d) is an ITO / PADAP smooth electrode. 本発明の微生物燃料電池の一例を示す概念図。The conceptual diagram which shows an example of the microbial fuel cell of this invention. 実施例3の各アノードによる微生物燃料電池の分極曲線。(a)は、カーボンフェルト電極、(b)は、カーボンフェルト/ポリアニリン薄層電極、(c)は、カーボンフェルト/ポリアニリンナノワイヤ電極をそれぞれ示す。The polarization curve of the microbial fuel cell by each anode of Example 3. (A) is a carbon felt electrode, (b) is a carbon felt / polyaniline thin layer electrode, and (c) is a carbon felt / polyaniline nanowire electrode. 実施例3の各アノードによる微生物燃料電池の出力。(a)は、カーボンフェルト電極、(b)は、カーボンフェルト/ポリアニリン薄層電極、(c)は、カーボンフェルト/ポリアニリンナノワイヤ電極をそれぞれ示す。The output of the microbial fuel cell by each anode of Example 3. (A) is a carbon felt electrode, (b) is a carbon felt / polyaniline thin layer electrode, and (c) is a carbon felt / polyaniline nanowire electrode. 実施例3の各アノードによる微生物燃料電池のサイクリックボルタモグラム。(a)は、カーボンフェルト電極、(b)は、カーボンフェルト/ポリアニリン薄層電極、(c)は、カーボンフェルト/ポリアニリンナノワイヤ電極をそれぞれ示す。The cyclic voltammogram of the microbial fuel cell by each anode of Example 3. FIG. (A) is a carbon felt electrode, (b) is a carbon felt / polyaniline thin layer electrode, and (c) is a carbon felt / polyaniline nanowire electrode.
1.微生物燃料電池用電極
1-1.微生物燃料電池用電極の構成
 本発明の一の態様は、微生物燃料電池用電極である。
1. Microbial fuel cell electrode 1-1. Configuration of Microbial Fuel Cell Electrode One aspect of the present invention is a microbial fuel cell electrode.
 「微生物燃料電池」(microbial fuel cell: MFC)とは、電子供与微生物を生体触媒として、その微生物の呼吸等の代謝によって発生する電子を獲得又は抽出し、それを電極に伝達させることによって発電させる装置をいう。 A microbial fuel cell (」MFC) uses an electron-donating microorganism as a biocatalyst to acquire or extract electrons generated by metabolism such as respiration of the microorganism and transmit it to an electrode to generate electricity. Refers to the device.
 ここで「電子供与微生物」とは、代謝によって発生した電子を本発明の微生物燃料電池用電極に直接的に(例えば、細胞膜に存在する電子伝達体と電極との接触によって)又は間接的に(例えば、電子伝達性介在物質を介して)伝達することのできる微生物をいう。 Here, the “electron-donating microorganism” refers to an electron generated by metabolism directly (for example, by contact between an electron carrier present in a cell membrane and the electrode) or indirectly ( A microorganism that can transmit (for example, via an electron-transmitting intermediary).
 「電子伝達性介在物質」とは、例えば、酸化還元メディエータ化合物、電子メディエータ及び/又は導電性微粒子のように微生物から電極に電子を運搬できる電子運搬体をいう。 “Electron transfer mediator” refers to an electron carrier capable of transporting electrons from a microorganism to an electrode, such as a redox mediator compound, an electron mediator and / or conductive fine particles.
 「酸化還元メディエータ化合物」とは、主として電子供与微生物内で生産された後、細胞外に放出され、微生物/電極間を往復しながら自身の酸化還元によって微生物の代謝により発生した電子を電極に運搬することができる電子シャトル化合物をいう。例えば、フェナジン-1-カルボキサミド、ピオシアニン、2-アミノ-3-カルボキシ-1,4-ナフトキノン(ACNQ)が挙げられる。 "Redox mediator compound" is mainly produced in an electron-donating microorganism, then released to the outside of the cell, and transports electrons generated by the metabolism of the microorganism by its own redox while reciprocating between the microorganism and the electrode. An electronic shuttle compound that can be used. Examples include phenazine-1-carboxamide, pyocyanin, 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ).
 「電子メディエータ」とは、酸化還元メディエータ化合物と同様の機能を有する人工的に合成された酸化還元化合物をいう。例えば、ニュートラルレッド、サフラニン、フェナジンエトスルフェート、チオニン、メチレンブルー、トルイジンブルーO、フェノチアジノン、レゾルフィン、ガロシアニン、2-ヒドロキシー1,4-ナフトキノン、ポルフィリンが挙げられる。 “Electron mediator” refers to an artificially synthesized redox compound having the same function as the redox mediator compound. For example, neutral red, safranine, phenazine etsulfate, thionine, methylene blue, toluidine blue O, phenothiazinone, resorufin, galocyanine, 2-hydroxy-1,4-naphthoquinone, porphyrin.
 「導電性微粒子」とは、電子供与微生物と結合し当該微生物から電子を抽出した後、その電子を電極に伝達し得る、金属又は半導体からなる微粒子であり、例えば、酸化鉄、硫化鉄、酸化マンガンが挙げられる。 “Conductive fine particles” are fine particles made of metal or semiconductor that can bind to electron-donating microorganisms and extract the electrons from the microorganisms, and then transfer the electrons to the electrodes. For example, iron oxide, iron sulfide, oxidized Manganese is mentioned.
 電子供与微生物の種類は、本発明の微生物燃料電池用電極に電子を伝達可能な微生物であれば、特に限定はしない。好適には、細胞外電子伝達能を有する微生物である。「細胞外電子伝達能」とは、電子伝達体を酸化還元する一連の流れによって、生命活動に必要なエネルギーを獲得すると共に、発生した電子を細胞膜に存在する電子伝達体(例えば、膜結合型シトクロム)に伝達する能力をいう(Lovley D.R. ; Nat.Rev.Microbiol., 2006, 4, 497-508)。このような能力を有する微生物であれば、細胞膜上の電子伝達体に保持された電子を、電子伝達体と電極との直接的な接触によって容易に伝達でき、また酸化還元メディエータ化合物のような介在物質が微生物から容易に電子を抽出することができるので好ましい。細胞外電子伝達能を有する電子供与微生物としては、例えば、シェワネラ(Shewanella)属及びジオバクター(Geobacter)属のような異化的金属還元細菌、シュードモナス(Pseudomonas)属及びロドフェラックス(Rhodoferax)属等が挙げられる。シェワネラ属の細菌の具体例としては、シェワネラ・ロイヒカ(S. loihica)、シェワネラ・オネイデンシス(S. oneidensis)、シェワネラ・プトレファシエンス(S. putrefaciens)、及びシェワネラ・アルガ(S. algae)が挙げられる。ジオバクター属の細菌の具体例としては、ジオバクター・サルフレドゥセンス(G. sulfurreducens)及びジオバクター・メタリレドゥセンス(G.metallireducens)が挙げられる。シュードモナス(Pseudomonas)属の細菌の具体例としては、シュードモナス・エアルギノーザ(P. aeruginosa)が挙げられる。ロドフェラックス(Rhodoferax)属の細菌の具体例としては、ロドフェラックス・フェリレドゥセンス(R. ferrireducens)が挙げられる。 The type of electron-donating microorganism is not particularly limited as long as it is a microorganism that can transfer electrons to the electrode for a microbial fuel cell of the present invention. Preferred is a microorganism having an extracellular electron transfer capability. “Extracellular electron transfer ability” refers to a series of processes that oxidize and reduce electron carriers to acquire energy necessary for life activity and to transfer generated electrons to cell membranes (for example, membrane-bound type). (Lovley DR; Nat. Rev. Microbiol., 2006, 4, 497-508). If it is a microorganism having such a capability, the electrons held in the electron carrier on the cell membrane can be easily transferred by direct contact between the electron carrier and the electrode, and an intermediate such as a redox mediator compound can be used. Substances are preferred because they can easily extract electrons from microorganisms. Examples of electron-donating microorganisms having extracellular electron transfer ability include catabolic metal reducing bacteria such as the genus Shewanella and the genus Geobacter, the genus Pseudomonas and the genus Rhodoferax. Can be mentioned. Specific examples of bacteria belonging to the genus Shewanella include S. loihica, S. oneidensis, S. putrefaciens, and S. algae. Can be mentioned. Specific examples of bacteria belonging to the genus Geobacter include Geobacter sulfreduscens (G. sulfurreducens) and Geobacter metallireducens (G. metallireducens). Specific examples of bacteria belonging to the genus Pseudomonas include P. aeruginosa. Specific examples of bacteria belonging to the genus Rhodoferax include R. ferrireducens.
 さらに、酸化還元メディエータ化合物を産生し、それを細胞外に放出することのできる電子供与微生物は、本発明上、特に好ましい。酸化還元メディエータ化合物が本発明のナノワイヤ構造と直接電子伝達を行うことにより、本発明の効果をより発揮し得るからである。酸化還元メディエータ化合物を生産・放出する電子供与微生物の例としては、例えば、前記シェワネラ属、シュードモナス属及びロドフェラックス属等が挙げられる。 Furthermore, an electron donating microorganism capable of producing a redox mediator compound and releasing it to the outside of the cell is particularly preferable in the present invention. This is because the oxidation-reduction mediator compound can exert the effects of the present invention more by performing direct electron transfer with the nanowire structure of the present invention. Examples of the electron-donating microorganism that produces and releases the redox mediator compound include, for example, the genus Chewanella, Pseudomonas, and Rhodoferax.
 電子伝達性微生物は、野生型及び変異型を問わない。例えば、遺伝子操作によって、より多くの電子を細胞外に放出する変異型電子供与微生物及び/又はより多くの酸化還元メディエータ化合物を生成・放出する変異型電子供与微生物は、本発明の目的に合致し、より好ましい。 Electron-transporting microorganisms can be of any wild type or mutant type. For example, a mutant electron-donating microorganism that releases more electrons out of the cell by genetic manipulation and / or a mutant electron-donating microorganism that generates and releases more redox mediator compounds meet the object of the present invention. More preferable.
 「微生物燃料電池用電極」とは、前記微生物燃料電池に用いる電極をいう。特に、微生物燃料電池内においては、本電極と電子供与微生物との直接的な接触又は、前記酸化還元メディエータ化合物、電子メディエータ若しくは導電性微粒子を介した間接的な接触によって、微生物から電極への電子の移動が起こり、それによって電位が発生するように構成されている。 “Electrode for microbial fuel cell” refers to an electrode used for the microbial fuel cell. In particular, in a microbial fuel cell, electrons from a microorganism to an electrode can be directly contacted between the electrode and an electron-donating microorganism or indirectly through the redox mediator compound, electron mediator, or conductive fine particles. Is caused to occur, whereby a potential is generated.
 本電極は、微生物燃料電池において使用する場合には通常アノード(陰極、負極又はマイナス極)として機能するが、カソード(陽極、正極又はプラス極)として用いることもできる。また、本発明の微生物燃料電池用電極は、微生物燃料電池のみならずその構成上、本発明の電極が応用可能な他の用途においても使用することができる。これについては、後述する「1-2.微生物燃料電池用電極のその他の用途」にて詳述する。 This electrode normally functions as an anode (cathode, negative electrode or negative electrode) when used in a microbial fuel cell, but can also be used as a cathode (anode, positive electrode or positive electrode). Moreover, the electrode for microbial fuel cells of the present invention can be used not only for microbial fuel cells but also for other applications to which the electrode of the present invention can be applied due to its configuration. This will be described in detail later in “1-2. Other Applications of Microbial Fuel Cell Electrode”.
 本発明の微生物燃料電池用電極は、電極基盤及び導電性ポリマーから構成され、かつその導電性ポリマーがナノワイヤ構造を形成することにより、従来の電極と比較して電極表面積を著しく増大させた構造を有することを特徴とする。以下、本発明の電極における各構成要素及び本発明の本発明の微生物燃料電池用電極について説明をする。 The electrode for a microbial fuel cell according to the present invention is composed of an electrode substrate and a conductive polymer, and the conductive polymer forms a nanowire structure so that the electrode surface area is significantly increased as compared with a conventional electrode. It is characterized by having. Hereafter, each component in the electrode of this invention and the electrode for microbial fuel cells of this invention of this invention are demonstrated.
 1-1-1.電極基盤
 「電極基盤」とは、電極本体を構成する導電体をいう。電極基盤は、原則として、電極本体と外部回路とを連絡する導線とを接続するための接続端子を有する。
1-1-1. Electrode base “Electrode base” refers to a conductor constituting an electrode body. In principle, the electrode substrate has a connection terminal for connecting a lead wire connecting the electrode body and an external circuit.
 導電体は、電子導電体、イオン導電体、又は電子/イオン混合導電体のいずれであってもよい。電子導電体の例としては、金属、カーボン(カーボンブラック、グラファイト等を含む)又はそれらの組み合わせ等が挙げられる。前記金属としては、例えば、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスニウム(Os)、イリジウム(Ir)、インジウム(In)、スズ(Sn)等が挙げられる。ここで、金属は、単一金属、その酸化金属、複数の金属からなる合金又それらの組み合わせであってもよい。例えば、酸化金属の例として、酸化インジウムスズ(ITO:Indium Tin Oxide)が挙げられる。 The conductor may be an electronic conductor, an ionic conductor, or an electron / ion mixed conductor. Examples of the electronic conductor include metal, carbon (including carbon black, graphite, and the like) or a combination thereof. Examples of the metal include titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), and ruthenium (Ru). ), Rhodium (Rh), palladium (Pd), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), indium (In), tin (Sn) ) And the like. Here, the metal may be a single metal, its metal oxide, an alloy composed of a plurality of metals, or a combination thereof. For example, indium tin oxide (ITO: Indium Tin Oxide) is an example of the metal oxide.
 一の実施形態で、電極基盤は、それ自体が電極の形状を保持できる剛性を有する。例えば、電極が金属又はカーボンで構成される場合、その厚さ又は太さを所定の大きさ以上にすることによって、電極として一定形状を保持できるようになる。この場合、電極基盤自体が電極の支持体を兼ねる。 In one embodiment, the electrode substrate has a rigidity that can hold the shape of the electrode itself. For example, when an electrode is comprised with a metal or carbon, it becomes possible to hold | maintain a fixed shape as an electrode by making the thickness or thickness into a predetermined magnitude or more. In this case, the electrode substrate itself also serves as an electrode support.
 他の実施形態で、電極基盤は、電極の形状を保持できる剛性を有さなくともよい。例えば、電極がパウダ状の微粒子の場合や、被膜のように極めて薄い薄膜の場合等が該当する。この場合、電極基盤は、電極形状を付与する他の物質から成る支持体表面上に形成される。電極基盤の材質が高価な場合及び/又はその材質の性質上剛性を持ち難い場合には、この構成が便利である。「他の物質からなる支持体」の材質は、剛性を有する絶縁体で、かつ好ましくは耐水性の物質であれば特に限定はしない。例えば、ガラス、プラスチック、合成ゴム、セラミックス、又は耐水処理した紙や植物片が挙げられる。電極基盤を支持体表面上に担持させる方法として、例えば、塗布(浸漬を含む)、吹き付け、貼付、蒸着等が挙げられる。これらは、当該分野で公知の方法に基づいて行えばよい。例えば、カーボンパウダを適当な接着剤と混合し、ガラス板表面上に塗布する方法が挙げられる。支持体表面上に形成される電極基盤の厚さは、その表面上に、後述する導電性ポリマーのナノワイヤ構造を形成でき、かつ電極基盤に接続された導線に電子供与微生物から受け取った電子を伝達可能であれば、特に限定はしない。電極の大きさ、電極の生産コスト、電極を投入する槽内の環境等に応じて適宜定めればよい。一般的には、電極基盤の厚さが厚い程、その強度は高くなる。一例として、支持体としてのガラス板上にITOを担持させる場合、ITOは、0.01~100μmの厚さを有していればよい。 In other embodiments, the electrode substrate does not have to be rigid enough to hold the shape of the electrode. For example, the case where the electrode is powder-like fine particles or the case where the electrode is a very thin thin film such as a coating film is applicable. In this case, the electrode substrate is formed on a support surface made of another material that imparts an electrode shape. This configuration is convenient when the material of the electrode substrate is expensive and / or when it is difficult to have rigidity due to the nature of the material. The material of the “support made of another substance” is not particularly limited as long as it is a rigid insulator and is preferably a water-resistant substance. For example, glass, plastic, synthetic rubber, ceramics, water-resistant paper or plant pieces can be used. Examples of the method for supporting the electrode substrate on the surface of the support include application (including immersion), spraying, sticking, and vapor deposition. These may be performed based on methods known in the art. For example, a method in which carbon powder is mixed with an appropriate adhesive and applied onto the surface of the glass plate can be mentioned. The thickness of the electrode substrate formed on the surface of the support can form a nanowire structure of a conductive polymer, which will be described later, on the surface, and transmits the electrons received from the electron-donating microorganisms to the lead wire connected to the electrode substrate. There is no particular limitation if possible. What is necessary is just to determine suitably according to the magnitude | size of an electrode, the production cost of an electrode, the environment in the tank which throws an electrode, etc. In general, the thicker the electrode substrate, the higher the strength. As an example, when ITO is supported on a glass plate as a support, the ITO only needs to have a thickness of 0.01 to 100 μm.
 1-1-2.導電性ポリマー
 「導電性ポリマー」とは、導電性を有する高分子化合物の総称である。本発明における導電性ポリマーは、例えば、アニリン、アミノフェノール(オルトアミノフェノール、メタアミノフェノール、パラアミノフェノールを含む)、ジアミノフェノール(2,2-ジアミノフェノール、2,3-ジアミノフェノール、2,4-ジアミノフェノールを含む)、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマーからなる重合体が挙げられる。具体的には、例えば、ポリアニリン(PANI:PolyANIline;図1(a))、ポリアミノフェノール(ポリオルトアミノフェノール、ポリメタアミノフェノール、ポリパラアミノフェノールを含む)、ポリジアミノフェノール(ポリ2,2-ジアミノフェノール、ポリ2,3-ジアミノフェノール、ポリ2,4-ジアミノフェノールを含む)、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン、及びそれらの誘導体の重合体が挙げられる。
1-1-2. Conductive polymer “Conductive polymer” is a general term for polymer compounds having electrical conductivity. Examples of the conductive polymer in the present invention include aniline, aminophenol (including orthoaminophenol, metaaminophenol, and paraaminophenol), diaminophenol (2,2-diaminophenol, 2,3-diaminophenol, 2,4- (Including diaminophenol), pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer composed of a single monomer having a derivative thereof as a structural unit. Specifically, for example, polyaniline (PANI: PolyANIline; FIG. 1 (a)), polyaminophenol (including polyorthoaminophenol, polymetaaminophenol, polyparaaminophenol), polydiaminophenol (poly 2,2-diamino) And polymers of phenol, poly 2,3-diaminophenol, poly 2,4-diaminophenol), polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene, and derivatives thereof.
 また、本発明における導電性ポリマーは、異なる二以上の前記モノマー及びそれらの誘導体の組合せからなるコポリマー(copolymer)であってもよい。例えば、アニリンとアミノフェノールからなるアニリン/アミノフェノールコポリマー(図1(b))、アニリンとジアミノフェノールからなるアニリン/ジアミノフェノールコポリマー(図1(c))、2,2-ジアミノフェノールと2,4-ジアミノフェノールからなる2,2-/2,4-ジアミノフェノールコポリマー、アニリンと1,2,4-トリアミノベンゼンからなるアニリン/1,2,4-トリアミノベンゼンコポリマーが挙げられる。本発明においては、ポリアニリン、アニリン/アミノフェノールコポリマー、及びアニリン/ジアミノフェノールコポリマーが好適に使用されるが、それに限定はしない。 The conductive polymer in the present invention may be a copolymer composed of a combination of two or more different monomers and their derivatives. For example, an aniline / aminophenol copolymer composed of aniline and aminophenol (FIG. 1 (b)), an aniline / diaminophenol copolymer composed of aniline and diaminophenol (FIG. 1 (c)), 2,2-diaminophenol and 2,4 -2,2- / 2,4-diaminophenol copolymers composed of diaminophenol and aniline / 1,2,4-triaminobenzene copolymers composed of aniline and 1,2,4-triaminobenzene. In the present invention, polyaniline, aniline / aminophenol copolymer, and aniline / diaminophenol copolymer are preferably used, but are not limited thereto.
 コポリマーの場合、それを構成する各モノマーの混合比は、特に限定はしない。例えば、アニリン/アミノフェノールコポリマーの場合、アミノフェノール:アニリンの比率が1:1~1:30、1:1~1:25、1:1~1:20、1:1~1:15、1:1~1:10又は1:1~1:5であればよい。また、アニリン/ジアミノフェノールコポリマーの場合、ジアミノフェノールに:アニリンの比率が1:1~1:30、1:1~1:25、1:1~1:20、1:1~1:15、1:1~1:10又は1:1~1:5であればよい。 In the case of a copolymer, the mixing ratio of each monomer constituting it is not particularly limited. For example, in the case of an aniline / aminophenol copolymer, the ratio of aminophenol: aniline is 1: 1 to 1:30, 1: 1 to 1:25, 1: 1 to 1:20, 1: 1 to 1:15, The ratio may be from 1: 1 to 1:10 or from 1: 1 to 1: 5. In the case of an aniline / diaminophenol copolymer, the ratio of dianiphenol to aniline is 1: 1 to 1:30, 1: 1 to 1:25, 1: 1 to 1:20, 1: 1 to 1:15, It may be 1: 1 to 1:10 or 1: 1 to 1: 5.
 さらに、本発明の電極を構成する導電性ポリマーは、通常、単一高分子種から構成されるが、複数の異なる導電性ポリマーの混合物(コンポジット)で構成されていてもよい。具体的には、例えば、ポリアニリンとポリピロールのような単一モノマーからなる導電性ポリマーの混合物、又はポリアニリンのような単一モノマーからなる導電性ポリマーとアニリン/アミノフェノールコポリマーのようなコポリマーとの混合物が挙げられる。 Furthermore, although the conductive polymer constituting the electrode of the present invention is usually composed of a single polymer species, it may be composed of a mixture (composite) of a plurality of different conductive polymers. Specifically, for example, a mixture of a conductive polymer composed of a single monomer such as polyaniline and polypyrrole, or a mixture of a conductive polymer composed of a single monomer such as polyaniline and a copolymer such as an aniline / aminophenol copolymer. Is mentioned.
 本発明における導電性ポリマーは、上述の電極基盤の表面の全部又は一部に形成されたナノワイヤ構造を有することを特徴とする。 The conductive polymer in the present invention is characterized by having a nanowire structure formed on all or a part of the surface of the electrode substrate.
 「ナノワイヤ(nanowire)」とは、金属、半導体、ポリマー等の様々な物質によって構成される人工的な線状ナノ構造体である。前記いずれの物質からなるナノワイヤ構造も本発明の微生物燃料電池用電極に使用できるが、本明細書においては、例示的に導電性ポリマーからなるナノワイヤを使用した場合を以下で示す。 “Nanowire” is an artificial linear nanostructure composed of various materials such as metals, semiconductors, and polymers. A nanowire structure made of any of the above materials can be used for the electrode for a microbial fuel cell of the present invention. In this specification, a case where a nanowire made of a conductive polymer is used as an example is shown below.
 「ナノワイヤ構造」とは、ナノワイヤを構成単位とする構造をいう。本明細書のナノワイヤ構造は、同一面上に広がる複数の独立したナノワイヤから構成される2次元ナノワイヤ構造及び/又はナノワイヤネットワークをその構造の一形態として包含する。本明細書において「ナノワイヤネットワーク」とは、同一面上及び/又は異なる面上において隣接する個々のナノワイヤが、接触並びに/あるいは縦方向及び/又は径方向に成長することによって互いに融合して形成される3次元網目状構造をいう。例えば、図2及び図3b及び図3dに示す構造が該当する。ナノワイヤネットワークは、通常、微生物は侵入できないが、酸化還元メディエータ化合物等の電子伝達性介在物質であれば侵入できる約10nm~約1μm程の無数の細孔を有している。このようなナノワイヤ構造を電極基盤表面に形成させることによって本発明の電極の表面積を劇的に増大させることが可能となる。 “Nanowire structure” refers to a structure having nanowires as a structural unit. The nanowire structure of the present specification includes a two-dimensional nanowire structure and / or a nanowire network composed of a plurality of independent nanowires extending on the same plane as one form of the structure. As used herein, a “nanowire network” is formed by fusing together individual nanowires that are adjacent to each other on the same plane and / or different planes by growing in contact and / or longitudinal and / or radial directions. A three-dimensional network structure. For example, the structure shown in FIGS. 2, 3b, and 3d is applicable. The nanowire network normally has innumerable pores of about 10 nm to about 1 μm that can be invaded by an electron-transmitting mediator such as a redox mediator compound, although microorganisms cannot invade. By forming such a nanowire structure on the electrode substrate surface, the surface area of the electrode of the present invention can be dramatically increased.
 本発明の導電性ポリマーのナノワイヤ構造は、当該分野で公知の方法によって作製することができる(例えば、Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41:7053-7057、及び Debiemme-Chouvy C., 2009, Electrochem. Commun., 11を参照されたい)。ナノワイヤ構造は、一般的には、導電性ポリマーの構成物質であるモノマーを所定の濃度で含む溶液中に前記電極基盤を浸漬した後、電流を印加して電極基盤上に電着させることにより作製できる。具体的作製方法については、後述する「1-3.微生物燃料電池用電極の作製」の項で説明をする。 The nanowire structure of the conductive polymer of the present invention can be prepared by a method known in the art (for example, Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S ., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41: 7053-7057, and Debiemme-Chouvy C., 2009, Electrochem. Commun., 11 Wanna) A nanowire structure is generally prepared by immersing the electrode substrate in a solution containing a monomer that is a constituent of a conductive polymer at a predetermined concentration, and then applying an electric current to deposit the electrode substrate on the electrode substrate. it can. A specific production method will be described in the section “1-3. Production of electrode for microbial fuel cell” described later.
 1-1-3.微生物燃料電池用電極
 本発明の微生物燃料電池用電極の形状は、電極としての機能を果たすことができる形状であれば、特に限定はしない。本電極を使用する微生物燃料電池の形状等に応じて適宜定めればよい。例えば、平板状、略平板状、柱状、略柱状、球状、略球状、又はそれらの組み合わせが挙げられる。このような電極形状は、電極基盤自体が、電極形状を保持できる剛性を有する場合には、電極基盤を前記所望の形状に構成することで決定できる。また、電極基盤自体に電極形状を保持するだけの剛性がない場合には、支持体を所望の形状に構成することで決定できる。
1-1-3. Microbial Fuel Cell Electrode The shape of the microbial fuel cell electrode of the present invention is not particularly limited as long as it can function as an electrode. What is necessary is just to determine suitably according to the shape etc. of the microbial fuel cell which uses this electrode. For example, a flat plate shape, a substantially flat plate shape, a column shape, a substantially columnar shape, a spherical shape, a substantially spherical shape, or a combination thereof can be given. Such an electrode shape can be determined by configuring the electrode substrate in the desired shape when the electrode substrate itself has rigidity capable of holding the electrode shape. If the electrode substrate itself does not have sufficient rigidity to hold the electrode shape, it can be determined by configuring the support in a desired shape.
 一の実施形態で、本発明の電極は、繊維構造集合体又は多孔質構造体である。電極を繊維構造集合体又は多孔質構造体とすることにより電極表面に多数の凹凸が形成されるため、平板電極のような表面が平面状の電極と比べて電極表面積が増大する。その結果、電子供与微生物又は電子伝達性介在物質との接触機会が増大し、それらから電極への電子伝達率が向上するため、電子供与微生物から発生した電子を電極により効率よく伝達することができる。本明細書で「繊維構造集合体」とは、細い線状の電極単位(例えば、図3dで示すような構造を有する電極)が複数集合し、全体として本発明の微生物燃料電池用電極を構成するもの(例えば、図3bで示すような構造を有する電極)をいう。繊維構造集合体の例としては、ナノワイヤ構造を有する導電性ポリマーをその全部又は一部表面に形成した、カーボンファイバ集合体(例えば、カーボンフェルト、カーボンウール)若しくは金属ファイバ集合体(例えば、金属ウール)、あるいはナノワイヤ構造を有する導電性ポリマーをその全部又は一部表面に形成させた電極基盤を担持する、グラスファイバ集合体(例えば、グラスウール)、セルロースファイバ集合体(例えば、ペーパー)、繊維状タンパク質集合体(例えば、シルクフェルト)若しくはプラスチックファイバ集合体等が挙げられる。多孔質構造体の例としては、ナノワイヤ構造を有する導電性ポリマーをその全部又は一部表面に形成した多孔質体カーボン若しくは多孔質金属、あるいはナノワイヤ構造を有する導電性ポリマーをその全部又は一部表面に形成させた電極基盤を担持する、多孔質セラミック、多孔質プラスチック、植物片(例えば、木材)、動物片(例えば、骨、貝殻、スポンジ)等が挙げられる。 In one embodiment, the electrode of the present invention is a fiber structure aggregate or a porous structure. By forming the electrode as a fiber structure aggregate or a porous structure, a large number of irregularities are formed on the surface of the electrode, so that the surface area of the electrode increases as compared to a flat electrode such as a flat electrode. As a result, the chances of contact with the electron-donating microorganism or the electron-transmitting mediator increase, and the electron transfer rate from these to the electrode is improved, so that electrons generated from the electron-donating microorganism can be efficiently transmitted to the electrode. . In the present specification, the “fiber structure assembly” means that a plurality of thin linear electrode units (for example, electrodes having a structure as shown in FIG. 3d) are assembled to constitute the microbial fuel cell electrode of the present invention as a whole. (For example, an electrode having a structure as shown in FIG. 3b). Examples of the fiber structure aggregate include a carbon fiber aggregate (for example, carbon felt, carbon wool) or a metal fiber aggregate (for example, metal wool) in which a conductive polymer having a nanowire structure is formed entirely or partially on the surface thereof. ), Or a glass fiber aggregate (for example, glass wool), a cellulose fiber aggregate (for example, paper), or a fibrous protein carrying an electrode substrate on which a conductive polymer having a nanowire structure is formed on the entire surface or a part thereof Examples include aggregates (for example, silk felt) or plastic fiber aggregates. Examples of the porous structure include a porous carbon or porous metal in which a conductive polymer having a nanowire structure is formed on the whole or a part of the surface, or a conductive polymer having a nanowire structure on the whole or a part of the surface. Examples thereof include porous ceramics, porous plastics, plant pieces (for example, wood), animal pieces (for example, bones, shells, sponges) and the like that support the electrode substrate formed in the above.
 一の実施形態において、繊維構造集合体又は多孔質構造を有する電極は、使用する電子供与微生物よりも大きい間隙又は細孔を一以上含む。電子供与微生物が電極の間隙又は細孔内に侵入することにより、滑面状の電極と比較して電子供与微生物又は電子伝達性介在物質と電極との接触機会が増大する結果、それらから電極への電子伝達率を向上できる他、電子供与微生物を間隙又は細孔内で定着・増殖させることが可能となるからである。一般に、微生物燃料電池用電極で使用される電子供与微生物の大きさは、球菌であれば直径約0.5~2μm、またシェワネラ属のような桿菌であれば短径約0.2~1μm及び長径約1~8μmである。したがって、前記間隙又は細孔の大きさは、これらの微生物が容易に侵入可能な大きさ、例えば、間隙であれば、長さ及び幅が6μm~20μm、好ましくは8μm~18μmあればよく、細孔であれば、直径が6μm~20μm、好ましくは8μm~18μmあればよい。ただし、電子供与微生物が侵入可能であればよいことから、前記大きさ以上の間隙又は細孔を一以上有していても構わない。 In one embodiment, the electrode having a fibrous structure aggregate or porous structure includes one or more gaps or pores larger than the electron-donating microorganism used. As the electron-donating microorganisms enter the gaps or pores of the electrodes, the chances of contact between the electrodes and the electron-donating microorganisms or electron-transmitting mediators are increased compared to the smooth electrode. This is because the electron transfer rate can be improved and the electron-donating microorganism can be fixed and propagated in the gaps or pores. In general, the size of the electron-donating microorganism used in the electrode for the microbial fuel cell is about 0.5 to 2 μm in diameter for cocci, and about 0.2 to 1 μm in short diameter and about 1 to 2 in long diameter in the case of Neisseria gonorrhoeae. 8 μm. Accordingly, the size of the gaps or pores may be such that these microorganisms can easily enter, for example, the gap may have a length and width of 6 μm to 20 μm, preferably 8 μm to 18 μm. In the case of holes, the diameter may be 6 μm to 20 μm, preferably 8 μm to 18 μm. However, since it is sufficient that the electron-donating microorganism can enter, one or more gaps or pores larger than the above-described size may be provided.
 また、一の実施形態において、本発明の微生物燃料電池用電極は、前記間隙又は細孔内に電子供与微生物を含むことができる。前述のように、微生物燃料電池は、電子供与微生物を生体触媒に、そして有機性廃水等のバイオマスを燃料として発電を行う。したがって、本発明の微生物燃料電池用電極は、前記バイオマス中に浸漬して使用されるが、このようなバイオマス中には、通常、電子供与微生物以外の種々雑多な微生物が混在している。電子供与微生物以外の微生物、すなわち電極との間で電子伝達に寄与しない微生物が、前記間隙又は細孔に侵入し、その場を占有した場合、電子供与微生物と電極との接触率が減少し、結果的に本発明の電極の発電効率を低減させる可能性がある。そこで、本発明の電極の間隙又は細孔内に予め電子供与微生物を包含させ、占有させておく。所定の電子供与微生物と電極との間で電子伝達をさせたい場合や電子供与微生物以外の微生物が多数存在するバイオマスを燃料として使用する場合に、この構成が便利である。ここで使用する電子供与微生物は、単一種に限られず、共存可能であり、かつ各微生物と電極との電子伝達を互いに抑制しない微生物どうしの場合であれば、複数種であってもよい。電極の間隙又は細孔内に予め電子供与微生物を包含させる方法は、特に限定しないが、通常は微生物として電子供与微生物のみを含む培養液等の溶液中に、本発明の電極を所定の期間、例えば、30分~3日、1時間~1日、6時間~12時間、浸漬させておけばよい。このような電極は、乾燥等を防ぐため使用時まで保水若しくは保湿しておくか、嫌気性電子供与微生物の場合であれば密封しておくことが好ましい。 In one embodiment, the electrode for a microbial fuel cell of the present invention may contain an electron donating microorganism in the gap or pore. As described above, a microbial fuel cell generates power using an electron-donating microorganism as a biocatalyst and biomass such as organic wastewater as fuel. Therefore, the microbial fuel cell electrode of the present invention is used by immersing it in the biomass. Usually, various kinds of microorganisms other than electron-donating microorganisms are mixed in such biomass. When a microorganism other than the electron-donating microorganism, that is, a microorganism that does not contribute to electron transfer with the electrode enters the gap or pore and occupies the site, the contact rate between the electron-donating microorganism and the electrode decreases, As a result, the power generation efficiency of the electrode of the present invention may be reduced. Therefore, the electron-donating microorganism is previously included and occupied in the gaps or pores of the electrode of the present invention. This configuration is convenient when it is desired to transfer electrons between a predetermined electron-donating microorganism and an electrode, or when biomass containing many microorganisms other than the electron-donating microorganism is used as a fuel. The electron-donating microorganisms used here are not limited to a single species, and may be a plurality of species as long as they can coexist and do not inhibit the electron transfer between each microorganism and the electrode. The method for including the electron donating microorganism in advance in the gaps or pores of the electrode is not particularly limited. Usually, the electrode of the present invention is placed in a solution such as a culture solution containing only the electron donating microorganism as a microorganism for a predetermined period of time. For example, it may be immersed for 30 minutes to 3 days, 1 hour to 1 day, 6 hours to 12 hours. Such electrodes are preferably kept water or moisturized until use in order to prevent drying or the like, or sealed in the case of anaerobic electron donating microorganisms.
 一の実施形態において、前記電子供与微生物を含む本発明の電極が、さらに微生物よりも小さい孔を有する筐体によって覆われていてもよい。これにより、本電極の使用時に電子供与微生物以外の微生物がバイオマスから前記間隙又は細孔内に侵入することを完全排除できるほか、電子供与微生物が拡散しないように電極内又は電極周辺に封じ込めることができるため、より効率的に電流を発生させることができる。「微生物よりも」とは、バイオマス中に通常存在する微生物よりもという意味であって、電子供与微生物は言うまでもなく、他の微生物をも包含する。本明細書において「微生物よりも小さい孔」とは、微生物は通過できないが、電子供与微生物の燃料となり得る有機物及びその分解産物並びに電子メディエータ及び伝導性微粒子等の電子伝達担体は通過できる大きさの孔をいう。具体的には、例えば、0.45μm以下、好ましくは0.2μm以下である。筐体は、本発明の電極とバイオマス中の微生物とを隔離することができれば、必ずしも剛性を有する必要はない。筐体の材質は、耐水性で上記サイズの孔を有するものであれば、特に限定はしない。例えば、市販の濾過滅菌フィルタで使用されるセルロースアセテート、親水性ポリフッ化ビニリデン、親水性ポリエーテルスルフォン等を利用することができる。このような構成の微生物燃料電池用電極は、様々な微生物の存在するバイオマス等を燃料に用いて特定の電子供与微生物のみで発電させたい場合には、特に有効である。 In one embodiment, the electrode of the present invention containing the electron-donating microorganism may be covered with a housing having pores smaller than those of the microorganism. As a result, it is possible to completely eliminate the entry of microorganisms other than electron donating microorganisms from biomass into the gaps or pores during use of the present electrode, and it can be contained in or around the electrode so that the electron donating microorganisms do not diffuse. Therefore, the current can be generated more efficiently. “Beyond microorganisms” means that it is more than microorganisms normally present in biomass, and includes other microorganisms as well as electron-donating microorganisms. In the present specification, the term “pore smaller than the microorganism” means that the microorganism cannot pass through, but the organic substance that can be used as a fuel for the electron-donating microorganism and its degradation product, and the electron transfer carrier such as the electron mediator and conductive fine particles can pass through. A hole. Specifically, for example, it is 0.45 μm or less, preferably 0.2 μm or less. The casing does not necessarily have rigidity as long as the electrode of the present invention and the microorganisms in the biomass can be isolated. The material of the housing is not particularly limited as long as it is water-resistant and has a hole of the above size. For example, cellulose acetate, hydrophilic polyvinylidene fluoride, hydrophilic polyether sulfone and the like used in commercially available filter sterilization filters can be used. The electrode for a microbial fuel cell having such a configuration is particularly effective when it is desired to generate electricity using only a specific electron-donating microorganism by using biomass or the like in which various microorganisms exist as fuel.
 本発明の微生物燃料電池用電極における導電体ポリマーは、前記電極基盤の表面の全部又は一部を被覆するように形成され、かつそれがナノワイヤ構造を有する。この構造により、従来の微生物燃料電池で公知であった(準)滑面状のポリアニリン薄層皮膜を有する電極(例えば、特開2007-324005を参照)と比較して、その表面積を劇的に増大させることが可能となる。一般に電極性能は、その表面積に依存する。それ故、本発明の電極は、従来の微生物燃料電池用電極と比べて飛躍的な出力値を得ることができる。 The conductive polymer in the electrode for a microbial fuel cell of the present invention is formed so as to cover all or a part of the surface of the electrode substrate, and has a nanowire structure. This structure dramatically reduces the surface area compared to an electrode having a (quasi-) smooth polyaniline thin layer coating (for example, see JP-A-2007-324005), which is known in conventional microbial fuel cells. It can be increased. In general, electrode performance depends on its surface area. Therefore, the electrode of the present invention can obtain a dramatic output value as compared with the conventional microbial fuel cell electrode.
 ナノワイヤ構造は電極表面を劇的に増大させるが、当該構造によって形成される間隙及び/又は細孔には、通常、電子供与微生物が侵入できない。しかし、後述する本発明の微生物燃料電池用電極においては、前述の電子伝達性介在物質がこの間隙及び/又は細孔に入り込み、ナノワイヤ構造による増大した表面積を有効に活用していると考えられる。それ故、電子供与微生物が侵入できなくとも、本発明の電極で電子を効率よく回収することができる。 Although the nanowire structure dramatically increases the electrode surface, electron donating microorganisms cannot normally enter the gaps and / or pores formed by the structure. However, in the electrode for a microbial fuel cell of the present invention, which will be described later, it is considered that the above-described electron-transmitting intervening material enters this gap and / or pore and effectively utilizes the increased surface area due to the nanowire structure. Therefore, even if the electron donating microorganisms cannot enter, the electrode of the present invention can efficiently collect electrons.
 さらに、本発明では電極を繊維構造集合体又は多孔質構造体とすることにより、電極表面積をより一層増大させている。 Furthermore, in the present invention, the electrode surface area is further increased by using the electrode as a fiber structure aggregate or a porous structure.
 1-2.微生物燃料電池用電極のその他の用途
 他の実施形態で、本発明の微生物燃料電池用電極は、微生物燃料電池以外の用途にも使用することができる。
1-2. Other Applications of Microbial Fuel Cell Electrodes In other embodiments, the microbial fuel cell electrodes of the present invention can be used for applications other than microbial fuel cells.
 本発明の微生物燃料電池用電極は、ナノワイヤ構造によって従来の電極と比較してその表面積を劇的に増大させることによって電子伝導性微生物との直接的な又は間接的な電子伝達効率を高め、その結果、発生電位を飛躍的に増強することを特徴とする。 The electrode for a microbial fuel cell of the present invention increases the direct or indirect electron transfer efficiency with an electron conductive microorganism by dramatically increasing its surface area compared to a conventional electrode by a nanowire structure. As a result, the generated potential is remarkably increased.
 したがって、本発明の電極は、当該原理を応用できる他の分野の電極においても同様の利用が可能となる。例えば、微生物太陽電池用電極、微生物電気分解セル(microbial electrolysis cell)、及びバイオセンサー等が挙げられる。 Therefore, the electrode of the present invention can be used in the same manner for electrodes in other fields to which the principle can be applied. Examples include microbial solar cell electrodes, microbial electrolysis cells, and biosensors.
 微生物太陽電池とは、前述の特開2007-324005号公報に記載されているように、シアノバクテリア等の光合成細菌を用いて、当該細菌が光合成を行った際に発生する電子を電極に伝達することにより発電させる電池であり、微生物太陽電池用電極は、その電極として使用される。 The microbial solar cell uses a photosynthetic bacterium such as cyanobacteria and transmits electrons generated when the bacterium performs photosynthesis to an electrode, as described in the aforementioned Japanese Patent Application Laid-Open No. 2007-32405. Thus, the microbial solar cell electrode is used as the electrode.
 微生物電気分解セルとは、微生物燃料電池と同様の構成を有し、有機物から微生物が発生させた電流を使い、低い電位の電極でプロトンから水素を発生させる装置である。ここでいうバイオセンサーとは、微生物燃料電池と同様の構成を有する微生物を用いた検出装置をいう。例えば、BODセンサーが挙げられる。 A microbial electrolysis cell is a device that has the same configuration as a microbial fuel cell and generates hydrogen from protons at a low potential electrode using a current generated by microorganisms from organic matter. The biosensor here refers to a detection device using microorganisms having the same configuration as that of a microbial fuel cell. An example is a BOD sensor.
 1-3.微生物燃料電池用電極の作製
 本発明の微生物燃料電池用電極は、導電性の基盤上に導電性ポリマーのナノワイヤ構造を形成する当該分野で公知の全ての方法を用いて作製することができる。例えば、ナノワイヤ構造の形成方法については、Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41:7053-7057、及び Debiemme-Chouvy C., 2009, Electrochem. Commun., 11に記載の方法に準じて作製することができる。以下、本発明の微生物燃料電池用電極の具体的な作製方法について、一例を挙げて説明をする。
1-3. Production of Microbial Fuel Cell Electrode The microbial fuel cell electrode of the present invention can be produced using any method known in the art for forming a conductive polymer nanowire structure on a conductive substrate. For example, Zhang H., et al., 2008, Mocromol. Rapid Commun., 29: 68-73; Cheng S., 2006, Electrochem. Commun., 8: 489-494; Zang J., et al, 2008, Macromolecules, 41: 7053-7057, and Debiemme-Chouvy C., 2009, Electrochem. Commun., 11. Hereinafter, a specific method for producing the electrode for a microbial fuel cell of the present invention will be described with an example.
 (1)電極基盤の調製
 電極基盤は、それ自体が支持体となる剛性を有する場合、必要に応じた大きさ及び/又は形状に調製する。例えば、カーボンフェルトを電極基盤として使用する場合には、市販の適当な厚さのカーボンフェルトを微生物燃料電池の形状に合わせる等して、所望の大きさ及び形状に切断すればよい。また、電極基盤を他の支持体上に形成させる場合には、例えば、グラスファイバのような適当な支持体を必要に応じた大きさ及び/又は形状に調製した後、その支持体上に電極基盤となるカーボン又は金属等を当該分野で公知の技術、例えば、塗布、蒸着等によって形成させてもよい。あるいは、そのような構成を有する市販の電極基盤を利用することもできる。例えば、ガラス板上に担持されたITO等が挙げられる。
(1) Preparation of electrode substrate When the electrode substrate itself has rigidity to be a support, it is prepared in a size and / or shape as required. For example, when carbon felt is used as an electrode substrate, a commercially available carbon felt having a suitable thickness may be cut into a desired size and shape by matching the shape of the microbial fuel cell. When the electrode substrate is formed on another support, for example, an appropriate support such as a glass fiber is prepared in a size and / or shape as required, and then the electrode is formed on the support. The base carbon or metal may be formed by a technique known in the art, for example, coating, vapor deposition, or the like. Alternatively, a commercially available electrode substrate having such a configuration can be used. Examples thereof include ITO supported on a glass plate.
 また、特に、カーボンなど疎水性の繊維構造集合体又は多孔質構造体を電極基盤に使用する場合には、適当な条件下で親水化処理しておくことが好ましい。「モノマー溶液」とは、電極基盤上に形成される導電性ポリマーのモノマー、例えば、アニリンモノマー、ピロールモノマー及びチオフェンモノマー等又はそれらの混合物を包含する電解溶液をいう。また、「モノマー溶液の溶媒」とは、前記モノマーを溶解可能な溶媒をいう。例えば、硫酸(H2SO4)、リン酸(H3PO4)、過塩素酸(HClO4)、等が挙げられる。本溶媒の濃度は、モノマー溶液における溶媒と同じ又は実質的に同じ濃度であればよい。浸漬する時間は、電極基盤の大きさ、形状等によって変化し得るが、通常は、1時間~2日、好ましくは3時間~1日、でよい。処理後は、純水等で十分に洗浄しておくことが好ましい。 In particular, when a hydrophobic fiber structure aggregate such as carbon or a porous structure is used for the electrode substrate, it is preferable to perform a hydrophilic treatment under appropriate conditions. “Monomer solution” refers to an electrolytic solution containing a monomer of a conductive polymer formed on an electrode substrate, such as an aniline monomer, a pyrrole monomer, a thiophene monomer, or the like, or a mixture thereof. The “monomer solution solvent” refers to a solvent capable of dissolving the monomer. Examples thereof include sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), perchloric acid (HClO 4 ), and the like. The concentration of the solvent may be the same or substantially the same as the solvent in the monomer solution. The immersion time may vary depending on the size, shape, etc. of the electrode substrate, but it is usually 1 hour to 2 days, preferably 3 hours to 1 day. After the treatment, it is preferable to sufficiently wash with pure water or the like.
 (2)ナノワイヤ構造を有する導電性ポリマーの形成
 ナノワイヤ構造を有する導電性ポリマーは、通常、室温において電解還元法によって形成することができる。すなわち、電極基盤を作用電極として、通電用の電極である対極と共に電解槽内に浸漬し、適当な電解電圧を電極に印加することによって電極基盤表面上に電着させることで形成できる。本方法において、モノマーがナノワイヤ構造を有する導電性ポリマーを形成するか否かは、モノマー濃度、電極基盤に印加する電流又は電位スキャン速度及び電流若しくは電位スキャン回数等により定まる。以下、順を追って、本発明のナノワイヤ構造を有する導電性ポリマーの形成方法を具体的に説明するが、この方法に限定されるものではない。
(2) Formation of conductive polymer having nanowire structure The conductive polymer having a nanowire structure can be usually formed by electrolytic reduction at room temperature. That is, it can be formed by using the electrode substrate as a working electrode and immersing it in an electrolytic cell together with a counter electrode, which is an energizing electrode, and applying an appropriate electrolysis voltage to the electrode to cause electrodeposition on the electrode substrate surface. In this method, whether or not the monomer forms a conductive polymer having a nanowire structure is determined by the monomer concentration, the current or potential scan speed applied to the electrode substrate, the number of current or potential scans, and the like. Hereinafter, the method for forming a conductive polymer having a nanowire structure of the present invention will be specifically described in order, but the present invention is not limited to this method.
 まず、チタンワイヤのような導線の一端を前記(1)で調製した電極基盤の一端に接続し、これを作用電極とする。導線の他端は、電源装置に接続する。電源装置は、電極基盤に印加する電流又は電位スキャン速度及び電流若しくは電位スキャン回数を制御するため、作用電極に印加される電位又は電流を一定にできるものが好ましい。例えば、ポテンショスタット又はガルバノスタットが挙げられる。本例では、電源装置としてポテンショスタットに接続した場合を説明する。 First, one end of a conducting wire such as a titanium wire is connected to one end of the electrode substrate prepared in the above (1), and this is used as a working electrode. The other end of the conducting wire is connected to the power supply device. The power supply device is preferably one that can make the potential or current applied to the working electrode constant in order to control the current or potential scan speed and the current or potential scan frequency applied to the electrode substrate. For example, a potentiostat or a galvanostat is mentioned. In this example, a case where a power supply device is connected to a potentiostat will be described.
 前記作用電極と、前記ポテンショスタットに接続した対極(例えば、白金又は白金黒)及び参照電極(例えば、飽和KCl溶液に浸漬された銀塩化銀電極(Ag/AgCl))を電気化学セルとしてモノマー溶液に浸漬する。参照電極とは、作用電極の電位を測定、又は制御するために必要な電極である。 A monomer solution using the working electrode, a counter electrode (for example, platinum or platinum black) connected to the potentiostat, and a reference electrode (for example, a silver-silver chloride electrode (Ag / AgCl) immersed in a saturated KCl solution) as an electrochemical cell Immerse in. The reference electrode is an electrode necessary for measuring or controlling the potential of the working electrode.
 モノマー溶液中のモノマー濃度は、使用するモノマー及び/又は電極基盤上に形成させる所望のナノワイヤ構造等によって異なるが、一般的に0.02mol/L~0.8mol/L、好ましくは0.03mol/L~0.7mol/L、より好ましくは0.04mol/L~0.6mol/L、さらに好ましくは0.05mol/L~0.5mol/Lである。濃度が0.02mol/Lよりも低い場合、電極基盤上には滑面状又は準滑面状の導電性ポリマーの薄層しか形成されない可能性が高く、逆に濃度が0.8mol/Lを超える場合、ナノワイヤは急激な成長により肥厚化し、所望するナノワイヤ構造、特にナノワイヤネットワークを形成させることが困難となる可能性が高いため好ましくない。 The monomer concentration in the monomer solution varies depending on the monomer used and / or the desired nanowire structure to be formed on the electrode substrate, but is generally 0.02 mol / L to 0.8 mol / L, preferably 0.03 mol / L to 0.7. mol / L, more preferably 0.04 mol / L to 0.6 mol / L, still more preferably 0.05 mol / L to 0.5 mol / L. When the concentration is lower than 0.02 mol / L, there is a high possibility that only a thin layer of conductive polymer with a smooth or semi-smooth shape will be formed on the electrode substrate, and conversely when the concentration exceeds 0.8 mol / L. Nanowires are not preferred because they are likely to become thick due to rapid growth, making it difficult to form a desired nanowire structure, particularly a nanowire network.
 次に、作用極電位が参照電極に対して-0.1V~2.0V、好ましくは-0.3V~1.6V、より好ましくは-0.5V~1.3Vの範囲内となるように設定し、作用電極のスキャン速度を、10mV/秒~100mV/秒の範囲で、かつスキャン回数を往復5~20回で印加する。スキャン速度とは、電位の変化させる速度を意味する。一般に、異なる設定電位で同様のナノワイヤ構造を有する導電性ポリマーを形成させる場合には、設定電位が低い側のスキャン速度を遅く、かつスキャン回数を多く、逆に設定電位が高い側のスキャン速度を早く、かつスキャン回数を少なくすればよい。同一スキャン速度であれば、スキャン回数が多いものほどナノワイヤの成長が早くなるため短時間でナノワイヤ構造を形成することができる。また、異なるモノマー濃度において、同様のナノワイヤ構造を有する導電性ポリマーを形成させる場合には、モノマー濃度が高いほど、スキャン速度は遅く、かつスキャン回数は少なくて済む。したがって、モノマー濃度、スキャン速度及びスキャン回数の組み合わせについては、前記各数値範囲内において所望のナノワイヤ構造ができる条件を勘案して適宜定めればよい。 Next, the working electrode potential is set within the range of −0.1 V to 2.0 V, preferably −0.3 V to 1.6 V, more preferably −0.5 V to 1.3 V with respect to the reference electrode. The scanning speed is in the range of 10 mV / sec to 100 mV / sec, and the number of scans is applied 5 to 20 round trips. The scanning speed means a speed at which the potential is changed. In general, when forming a conductive polymer having the same nanowire structure at different set potentials, the scan speed on the side where the set potential is low is slow, the number of scans is large, and the scan speed on the side where the set potential is high is reversed. What is necessary is just to reduce the number of scans quickly. If the scanning speed is the same, the larger the number of scans, the faster the growth of nanowires, so that a nanowire structure can be formed in a short time. Further, when forming conductive polymers having the same nanowire structure at different monomer concentrations, the higher the monomer concentration, the slower the scan speed and the fewer the number of scans. Therefore, the combination of the monomer concentration, the scan speed, and the number of scans may be appropriately determined in consideration of the conditions for forming a desired nanowire structure within each numerical range.
 (3)洗浄及び乾燥
 作用電極である電極基盤表面上に導電性ポリマーを形成させた後は、それをポテンショスタットから外して、蒸留水、イオン交換水又は超純水等で数回、例えば、3回以上洗浄し、モノマー溶液を完全に除去する。これによって、本発明の微生物燃料電池用電極が得られる。
(3) Cleaning and drying After forming the conductive polymer on the electrode substrate surface, which is the working electrode, remove it from the potentiostat and several times with distilled water, ion-exchanged water or ultrapure water, for example, Wash three or more times to completely remove the monomer solution. Thus, the microbial fuel cell electrode of the present invention is obtained.
 2.微生物燃料電池
 2-1.微生物燃料電池の構成
 本発明の一の態様は、前記本発明のいずれか一の微生物燃料電池用電極を用いた微生物燃料電池である。具体例として、図8に示す本発明の微生物燃料電池の概念図を用いて説明する。本発明の微生物燃料電池は、通常、一対の電極(81及び82)、隔膜(83)及び電解質溶液(84及び85)を収容した電解槽(80)、並びに前記一対の電極と電気的に接続された外部回路(例えば、データロガー)(86)を備える。以下で、前記構成について説明をするが、本発明の微生物燃料電池の構成は、前記構成を有するものに限られず、本発明の微生物燃料電池用電極を使用可能な公知のあらゆる微生物燃料電池を含むものとする。
2. 2. Microbial fuel cell 2-1. Configuration of Microbial Fuel Cell One aspect of the present invention is a microbial fuel cell using the electrode for a microbial fuel cell according to any one of the present invention. As a specific example, a conceptual diagram of the microbial fuel cell of the present invention shown in FIG. 8 will be used. The microbial fuel cell of the present invention is usually electrically connected to a pair of electrodes (81 and 82), an electrolytic cell (80) containing a diaphragm (83) and an electrolyte solution (84 and 85), and the pair of electrodes. Connected external circuit (eg, data logger) (86). Hereinafter, the configuration will be described. However, the configuration of the microbial fuel cell of the present invention is not limited to the above configuration, and includes any known microbial fuel cell that can use the electrode for the microbial fuel cell of the present invention. Shall be.
 2-1-1.電極
 本発明の微生物燃料電池は、一対の電極として、アノード(燃料極)(81)及びカソード(空気極)(82)を備える。
2-1-1. Electrode The microbial fuel cell of the present invention includes an anode (fuel electrode) (81) and a cathode (air electrode) (82) as a pair of electrodes.
 アノードには前記本発明の微生物燃料電池用電極を使用する。アノードは、その少なくとも一面が、後述するアノード槽の電解質溶液と直接接している必要がある。通常、アノードは、電解槽の電解質溶液中に浸漬して使用される。 The electrode for a microbial fuel cell of the present invention is used for the anode. At least one surface of the anode needs to be in direct contact with an electrolyte solution in an anode tank described later. Usually, the anode is used by being immersed in an electrolyte solution of an electrolytic cell.
 カソードは、特に限定しない。例えば、炭素や金属のような導電体を含むものであればよい。また、カソードは、大気開放されたエア・カソード(空気正極)とすることもできる。この場合、カソードは、気体(特に酸素)透過性を有するものが好ましい。例えば、カーボンペーパーやカーボンクロス、白金粒子を担持した4-ポリテトラフルオロエチレン(PTFE)等が挙げられる。エア・カソードを使用する場合、必ずしも電解槽中の電解質溶液と直接接触させておく必要はない。 The cathode is not particularly limited. For example, any material including a conductor such as carbon or metal may be used. The cathode may be an air cathode (air positive electrode) that is open to the atmosphere. In this case, the cathode preferably has gas (especially oxygen) permeability. Examples thereof include carbon paper, carbon cloth, and 4-polytetrafluoroethylene (PTFE) carrying platinum particles. When using an air cathode, it is not necessarily in direct contact with the electrolyte solution in the electrolytic cell.
 2-1-2.隔膜
 隔膜(83)は、電解槽内で前記一対の電極を分離するように構成されている。隔膜の材質は、カチオンを選択的に透過できるものであれば、特に限定はしない。例えば、プロトン(H+)交換膜(PEM)が挙げられる。プロトン交換膜は、プロトン伝導性のイオン交換高分子電解質であって、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、又は有機/無機複合化合物が挙げられる。前記パーフルオロスルホン酸系のフッ素イオン交換樹脂は、例えば、スルホ基(-SO3H)及び/又はカルボキシル基(-COOH)を有するパーフルオロビニルエーテルを基礎とする重合単位、並びにテトラフルオロエチレンを基礎とする重合単位を含む共重合体を含む。具体的な例としては、ナフィオン(登録商標:デュポン社)が挙げられる。また、前記有機/無機複合化合物は、炭化水素系高分子(例えば、ポリビニルアルコールを主体とする)と無機化合物(例えば、タングステン酸)が複合化した化合物からなる物質である。これらは、公知の膜であり、ナフィオンのように、多くが市販されていることから、それらを利用することも可能である。
2-1-2. Diaphragm The diaphragm (83) is configured to separate the pair of electrodes in the electrolytic cell. The material of the diaphragm is not particularly limited as long as it can selectively permeate cations. An example is a proton (H + ) exchange membrane (PEM). The proton exchange membrane is a proton-conducting ion exchange polymer electrolyte, and examples thereof include perfluorosulfonic acid-based fluorine ion exchange resins or organic / inorganic composite compounds. The perfluorosulfonic acid-based fluorine ion exchange resin is, for example, a polymer unit based on perfluorovinyl ether having a sulfo group (—SO 3 H) and / or a carboxyl group (—COOH), and tetrafluoroethylene. And a copolymer containing polymer units. A specific example is Nafion (registered trademark: DuPont). The organic / inorganic composite compound is a substance composed of a compound in which a hydrocarbon polymer (for example, mainly polyvinyl alcohol) and an inorganic compound (for example, tungstic acid) are combined. These are known membranes, and since many are commercially available like Nafion, they can also be used.
 また、カソードを大気開放する場合、カソード(エア・カソード)と隔膜とを結合して一体化させることもできる。このような一体型カソード/隔膜は、単槽型微生物燃料電池で使用することができる。 Also, when the cathode is opened to the atmosphere, the cathode (air cathode) and the diaphragm can be combined and integrated. Such an integrated cathode / diaphragm can be used in a single tank microbial fuel cell.
 なお、本発明の微生物燃料電池においては、隔膜(83)は、必須の構成要件ではない。しかし、電極の寿命等、電池の実用性を考慮した場合、隔膜はあることが望ましい。 In the microbial fuel cell of the present invention, the diaphragm (83) is not an essential component. However, considering the practicality of the battery, such as the life of the electrode, it is desirable to have a diaphragm.
 2-1-3.電解質溶液
 電解質溶液(84)は、電解質を包含する溶液である。本発明の微生物燃料電池で使用する電解質は、水中で電離可能な物質であれば特に限定はしない。また、単一種に限られず、複数の電解質の混合物を用いることもできる。電解質の具体例としては、K2HPO4/KH2PO4、NaCO3/NaHCO3、などが挙げられる。
2-1-3. Electrolyte Solution The electrolyte solution (84) is a solution containing an electrolyte. The electrolyte used in the microbial fuel cell of the present invention is not particularly limited as long as it is a substance that can be ionized in water. Moreover, it is not restricted to a single kind, The mixture of a some electrolyte can also be used. Specific examples of the electrolyte include K 2 HPO 4 / KH 2 PO 4 , NaCO 3 / NaHCO 3, and the like.
 2-1-4.電解槽
 電解槽は、本発明の微生物燃料電池の本体部を構成する。電解槽は、隔膜によってアノード槽とカソード槽に分離された二槽型、及びエア・カソードと隔膜が一体化し、アノード槽のみからなる等の構成を有する単槽型が知られているが、本発明の微生物燃料電池では、いずれの型も使用することができる。
2-1-4. Electrolytic cell The electrolytic cell constitutes the main body of the microbial fuel cell of the present invention. As the electrolytic cell, there are known a two-cell type separated into an anode cell and a cathode cell by a diaphragm, and a single cell type having a configuration in which an air cathode and a diaphragm are integrated and only an anode cell is formed. Any type of microbial fuel cell of the invention can be used.
 二槽型の場合、アノード槽ではアノードの、またカソード槽ではカソードの、全部又は一部がそれぞれ前記電解質溶液と直接接するように配置される。 In the case of the two-tank type, the anode tank is arranged in the anode tank, and the cathode tank in the cathode tank is arranged in such a manner that all or a part thereof is in direct contact with the electrolyte solution.
 燃料槽であるアノード槽には、前記電解質溶液に加えて、電子供与微生物、及びその燃料及び電子供与体、並びに必要に応じて電子メディエータ及び導電性微粒子等の電子伝達性介在物質を包含する。 The anode tank, which is a fuel tank, contains, in addition to the electrolyte solution, an electron-donating microorganism, its fuel and electron donor, and, if necessary, electron mediators such as an electron mediator and conductive fine particles.
 アノード槽において用いる電子供与微生物は、単一種、又は複数種のいずれであってもよい。複数種の電子供与微生物からなる混合系は、有機排水や汚泥等を燃料として使用する場合、外部から電子供与微生物を加えなくとも、それらに元来生息する電子供与微生物をそのまま利用することができる利点で優れている。例えば、シュードモナス・エアルギノーザやジオバクターは、土壌、淡水、海水等の自然環境の至るところに生息しているため、通常、汚泥等を燃料とすれば、外部から添加することなく利用できる。また、前述のようにシュードモナス・エアルギノーザは酸化還元メディエータ化合物を生産できるため本発明の電子供与微生物としては非常に有用である。 The electron-donating microorganism used in the anode tank may be either a single species or a plurality of species. When using organic wastewater or sludge as a fuel, mixed systems consisting of multiple types of electron-donating microorganisms can use the electron-donating microorganisms that originally live in them without adding electron-donating microorganisms from the outside. Excellent in advantages. For example, Pseudomonas aeruginosa and Geobacter inhabit every part of the natural environment such as soil, fresh water, and seawater. Therefore, if sludge is used as fuel, it can be used without being added from the outside. Further, as described above, Pseudomonas aeruginosa is very useful as the electron-donating microorganism of the present invention because it can produce a redox mediator compound.
 一方、空気層であるカソード槽は、酸素を含む空気を供給し得るように構成されている。 On the other hand, the cathode tank which is an air layer is configured to be able to supply air containing oxygen.
 燃料は、電子供与微生物の維持及び/又は増殖に必要な栄養基質である。栄養基質は、その微生物が代謝可能な物質であれば、特に限定されるものではない。例えば、メタノールやエタノールのようなアルコール類、又は、グルコース等の単糖類、デンプン、アミロース、アミロペクチン、グリコーゲン、セルロース、マルトース、スクロースや、ラクトース等の多糖類等の有用資源、並びに農産業廃棄物、有機排液、し尿、汚泥、食物残渣等の未利用資源、すなわち有機性廃棄物を用いることができる。また、燃料は、電子供与微生物の電子供与体となり得る物質(例えば、乳酸)を含み得る。燃料は、アノード槽における電子供与微生物の維持及び増殖のため、及び/又は電子供与体の供給のため、必要に応じて追加することができる。 Fuel is a nutrient substrate necessary for maintenance and / or growth of electron donating microorganisms. The nutrient substrate is not particularly limited as long as the microorganism can be metabolized by the microorganism. For example, alcohols such as methanol and ethanol, monosaccharides such as glucose, starch, amylose, amylopectin, glycogen, cellulose, maltose, sucrose, useful resources such as polysaccharides such as lactose, and agricultural industrial waste, Unused resources such as organic drainage, human waste, sludge, and food residues, that is, organic waste can be used. The fuel may also contain a substance that can be an electron donor of an electron donating microorganism (for example, lactic acid). Fuel can be added as needed for the maintenance and growth of electron donating microorganisms in the anode cell and / or for the supply of electron donors.
 電子伝達性介在物質は必要に応じて電解槽に添加すればよい。包含される電子供与微生物の少なくとも1種が酸化還元メディエータ化合物を生産・放出可能であれば、電子伝達性介在物質は、必ずしも添加せずともよい。逆に、包含される電子供与微生物がいずれも酸化還元メディエータ化合物を生産・放出できない種である場合には、電子伝達性介在物質の添加は必須となる。 The electron-transmitting intervening material may be added to the electrolytic cell as necessary. As long as at least one of the included electron donating microorganisms can produce / release the redox mediator compound, the electron-transmitting mediator does not necessarily have to be added. On the other hand, when any of the included electron donating microorganisms is a species that cannot produce / release the redox mediator compound, it is essential to add an electron transferable mediator.
<実施例1:微生物燃料電池用電極の作製>
 本実施例では、本発明の電極基盤及びその表面の全部又は一部に形成されたナノワイヤ構造を有する導電性ポリマー(ナノワイヤ導電性ポリマー)からなる微生物燃料電池用電極(以下、「(電極基盤の種類)/(導電性ポリマーの種類)ナノワイヤ電極」のように表す)であるITO/導電性ポリマーナノワイヤ電極(A)及びカーボン/導電性ポリマーナノワイヤ電極(B)、並びにそれらの対照用電極(C)の作製について述べる。
<Example 1: Production of electrode for microbial fuel cell>
In this example, the electrode for a microbial fuel cell (hereinafter referred to as “(electrode substrate) of the electrode substrate of the present invention and a conductive polymer (nanowire conductive polymer) having a nanowire structure formed on all or part of its surface”). ITO / conductive polymer nanowire electrode (A) and carbon / conductive polymer nanowire electrode (B) as well as their control electrodes (C) ) Will be described.
A:ITO/導電性ポリマーナノワイヤ電極の作製
 電極基盤であるITOの表面に形成されるナノワイヤ導電性ポリマーが、ポリアニリン又はポリアニリンコポリマーで構成されるITO/導電性ポリマーナノワイヤ電極を作製した。
A: Production of ITO / conductive polymer nanowire electrode An ITO / conductive polymer nanowire electrode in which the nanowire conductive polymer formed on the surface of ITO, which is the electrode substrate, is composed of polyaniline or a polyaniline copolymer was produced.
 (1)ITOの調製
 ガラススライド上に担持されたITO(倉本製作所)を9cm2に切断した。
(1) Preparation of ITO ITO (Kuramoto Seisakusho) supported on a glass slide was cut into 9 cm 2 .
 (2)ナノワイヤ構造を有するポリアニリン(ナノワイヤポリアニリン)の形成
 電解液としてのモノマー溶液は、0.2Mのアニリンモノマー(和光純薬)を含む1M硫酸溶液とした。
(2) Formation of polyaniline having nanowire structure (nanowire polyaniline) The monomer solution as the electrolytic solution was a 1M sulfuric acid solution containing 0.2M aniline monomer (Wako Pure Chemical Industries).
 導線であるチタンワイヤの一端を(1)で調製したITOの一端に接続して、これを作用電極とし、導線の他端をポテンショスタット(HZ-5000、北斗電工)に接続した。さらに参照電極(飽和KCl溶液に浸漬したAg/AgCl電極)及び対極(白金)を前記ポテンショスタットに接続した。これらの電極を前記モノマー溶液に浸漬した。続いて、作用電極の電位を参照電極に対して-0.3V~1.3V間に設定し、50mV/秒の電極スキャン速度で、往復10回スキャンして、前記電極基盤であるITO表面上に、ナノワイヤポリアニリンを電着形成させた。 One end of a titanium wire as a lead wire was connected to one end of ITO prepared in (1), which was used as a working electrode, and the other end of the lead wire was connected to a potentiostat (HZ-5000, Hokuto Denko). Furthermore, a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) were connected to the potentiostat. These electrodes were immersed in the monomer solution. Subsequently, the potential of the working electrode is set between −0.3 V and 1.3 V with respect to the reference electrode, and is scanned 10 times back and forth at an electrode scan speed of 50 mV / sec. Nanowire polyaniline was electrodeposited.
 図2a及びbは、本方法により調製された平板ITO電極基盤表面上のポリアニリンのナノワイヤ構造(この図ではポリアニリンネットワークを形成)(a)とその拡大図(b)を示している。ポリアニリンのナノワイヤが隣接する他のポリアニリンのナノワイヤと融合し、無数の細孔を有する3次元の網目状構造(ネットワーク)を形成していることがわかる。 FIGS. 2a and 2b show a polyaniline nanowire structure (in this figure, forming a polyaniline network) (a) and an enlarged view (b) thereof on the surface of a plate ITO electrode substrate prepared by this method. It can be seen that the polyaniline nanowires are fused with other adjacent polyaniline nanowires to form a three-dimensional network structure (network) having numerous pores.
 作用電極をポテンショスタットから外し、蒸留水で3回洗浄した後、乾燥させ、これを本発明のITO/ナノワイヤポリアニリンからなる微生物燃料電池用電極(ITO/ポリアニリンナノワイヤ電極)とした。 The working electrode was removed from the potentiostat, washed three times with distilled water, and then dried to obtain an electrode for a microbial fuel cell (ITO / polyaniline nanowire electrode) comprising ITO / nanowire polyaniline of the present invention.
(3)ナノワイヤ構造を有する、アニリンと他のモノマーのコポリマー(ナノワイヤポリアニリンコポリマー)の形成
 本実施例では、アニリンと他のモノマーのコポリマー(ポリアニリンコポリマー)として、アニリン/アミノフェノールコポリマー(以下PAAPとする)及びアニリン/ジアミノフェノールコポリマー(以下PADAPとする)をそれぞれ滑面ITO上に形成させた。
(3) Formation of a copolymer of aniline and another monomer having a nanowire structure (nanowire polyaniline copolymer) In this example, an aniline / aminophenol copolymer (hereinafter referred to as PAAP) is used as a copolymer of aniline and another monomer (polyaniline copolymer). ) And aniline / diaminophenol copolymer (hereinafter referred to as PADAP) were formed on the smooth surface ITO.
 電解液としてのモノマー溶液には、PAAP用として、0.2M アニリンモノマー(和光純薬)及び0.01M オルトアミノフェノール(和光純薬)を、また、PADAP用として、0.2M アニリンモノマー(和光純薬)及び0.01M 2,4-ジアミノフェノール(和光純薬)を、それぞれ包含する1M硫酸溶液を使用した。 In the monomer solution as the electrolyte, 0.2M aniline monomer (Wako Pure Chemical) and 0.01M orthoaminophenol (Wako Pure Chemical) are used for PAAP, and 0.2M aniline monomer (Wako Pure Chemical) is used for PADAP. And 1M sulfuric acid solution containing 0.01M 2,4-diaminophenol (Wako Pure Chemical Industries, Ltd.), respectively.
 前記(2)と同様に、導線であるチタンワイヤの一端を(1)で調製したITOの一端に接続して、これを作用電極とし、導線の他端をポテンショスタット(HZ-5000、北斗電工)に接続した。ITO作用電極の活性化領域は、3.14cm2である。さらに参照電極(飽和KCl溶液に浸漬したAg/AgCl電極)及び対極(白金)を前記ポテンショスタットに接続した。これらの電極を前記モノマー溶液に浸漬した。続いて、作用電極の電位を参照電極に対して-0.4V~1.1V間に設定し、50mV/秒の電極スキャン速度で、往復10回スキャンして、前記電極基盤であるITO表面上に、ナノワイヤポリアニリンコポリマーを電着形成させた。 As in (2) above, one end of a titanium wire, which is a conductor, is connected to one end of ITO prepared in (1), which is used as a working electrode, and the other end of the conductor is a potentiostat (HZ-5000, Hokuto Denko). ). The active area of the ITO working electrode is 3.14 cm 2 . Furthermore, a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) were connected to the potentiostat. These electrodes were immersed in the monomer solution. Subsequently, the potential of the working electrode is set between −0.4 V to 1.1 V with respect to the reference electrode, and is scanned 10 times back and forth at an electrode scan speed of 50 mV / sec. Nanowire polyaniline copolymer was electrodeposited.
 図2c~fは、本方法により調製された平板ITO電極基盤表面上におけるポリアニリンコポリマーのナノワイヤ構造を示している。c及びdは、PAAPを、またe及びfは、PADAPを示し、d及びfは、それぞれc及びeの拡大図である。これらの図で示したPAAP及びPADAPのナノワイヤ構造は、隣接するナノワイヤどうしが融合し、無数の細孔を有する3次元の網目状構造(ネットワーク)を形成していることがわかる。 Figures 2c-f show the nanowire structure of the polyaniline copolymer on the surface of the planar ITO electrode substrate prepared by this method. c and d indicate PAAP, e and f indicate PADAP, and d and f are enlarged views of c and e, respectively. It can be seen that the nanowire structures of PAAP and PADAP shown in these figures are formed by fusing adjacent nanowires to form a three-dimensional network structure (network) having innumerable pores.
 ナノワイヤポリアニリンコポリマーの電着形成後、作用電極をポテンショスタットから外し、蒸留水で3回洗浄した後、乾燥させ、これを本発明のITO/ナノワイヤポリアニリンコポリマーからなる微生物燃料電池用電極(ITO/PAAPナノワイヤ電極又はITO/PADAPナノワイヤ電極)とした。 After the electrodeposition of the nanowire polyaniline copolymer, the working electrode is removed from the potentiostat, washed with distilled water three times, and then dried. Nanowire electrode or ITO / PADAP nanowire electrode).
B:カーボン/導電性ポリマーナノワイヤ電極の作製
 電極基盤にカーボンフェルト又はカーボンプレート(CP: Carbon Plate)を用い、その表面に形成されるナノワイヤ導電性ポリマーが、ナノワイヤポリアニリン、又はナノワイヤポリアニリンコポリマーからなるカーボン/導電性ポリマーナノワイヤ電極をそれぞれ作製した。
B: Fabrication of carbon / conductive polymer nanowire electrode Carbon felt or carbon plate (CP: Carbon Plate) is used as the electrode base, and the nanowire conductive polymer formed on the surface is carbon made of nanowire polyaniline or nanowire polyaniline copolymer. / Conductive polymer nanowire electrodes were prepared.
 (1)カーボンフェルトの調製
 カーボンフェルト(綜合カーボン社製、厚さ3mm)を1cm2に切断した後、それをモノマー溶液の溶媒である1M硫酸中に室温で1日浸漬した。その後、硫酸を除去するため蒸留水で超音波洗浄を1日行った。
(1) Preparation of carbon felt Carbon felt (manufactured by Sogo Carbon Co., Ltd., thickness: 3 mm) was cut into 1 cm 2 , and then immersed in 1M sulfuric acid as a solvent for the monomer solution at room temperature for 1 day. Thereafter, ultrasonic cleaning with distilled water was performed for 1 day to remove sulfuric acid.
 (2)カーボンプレート(以下「CP」とする)の調製
 カーボンプレートを9cm2に切断した後、1M硫酸中に室温で1日浸漬した。その後、硫酸を除去するため蒸留水で超音波洗浄を1日行った。
(2) Preparation of carbon plate (hereinafter referred to as “CP”) The carbon plate was cut into 9 cm 2 and then immersed in 1M sulfuric acid at room temperature for 1 day. Thereafter, ultrasonic cleaning with distilled water was performed for 1 day to remove sulfuric acid.
 (3)カーボンフェルト又はCP上におけるナノワイヤ構造を有するポリアニリン(ナノワイヤポリアニリン)の形成
 電解液としてのモノマー溶液は、0.2Mアニリンモノマー(和光純薬)を包含する1M硫酸溶液とした。
(3) Formation of polyaniline having nanowire structure on carbon felt or CP (nanowire polyaniline) The monomer solution as the electrolytic solution was a 1M sulfuric acid solution containing 0.2M aniline monomer (Wako Pure Chemical Industries).
 導線であるチタンワイヤの一端を(1)で調製したカーボンフェルト又はCPの一端に接続し、これを作用電極とし、導線の他端をポテンショスタット(HZ-5000、北斗電工)に接続した。さらに参照電極(飽和KCl溶液に浸漬されたAg/AgCl電極)及び対極(白金)の一端を前記ポテンショスタットに接続した。これらの電極を前記モノマー溶液に浸漬し、続いて、作用電極の電位をカーボンフェルトの場合は、参照電極に対して-0.5V~1.3V間に、またCPの場合は、参照電極に対して-0.4V~1.3V間に、それぞれ設定した後、50mV/秒の電極スキャン速度で、カーボンフェルトの場合は、往復10回、またCPの場合は、往復15~20回のスキャン回数によって前記電極基盤であるカーボンフェルト又はCP表面上に、ナノワイヤポリアニリンを電着形成させた。図3に本方法によって調製されたカーボンフェルト電極基盤(図3a、c)表面のポリアニリンナノワイヤ構造(図3b)とその拡大図(図3d)を示す。同一の及び/又は異なるカーボンファイバ表面に形成された隣接するナノワイヤどうしが融合し、繊維状集合体のカーボンフェルトとともに複雑な3次元ナノワイヤ構造(ナノワイヤネットワーク)を形成していることがわかる。 One end of a titanium wire as a conducting wire was connected to one end of the carbon felt or CP prepared in (1), which was used as a working electrode, and the other end of the conducting wire was connected to a potentiostat (HZ-5000, Hokuto Denko). Further, one end of a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) was connected to the potentiostat. These electrodes are immersed in the monomer solution, and then the potential of the working electrode is -0.5V to 1.3V with respect to the reference electrode in the case of carbon felt, and with respect to the reference electrode in the case of CP. After each setting between -0.4V and 1.3V, the electrode scan speed is 50mV / sec. The electrodes are scanned 10 times in the case of carbon felt and 15-20 times in the case of CP. Nanowire polyaniline was electrodeposited on the carbon felt or CP surface as a base. FIG. 3 shows a polyaniline nanowire structure (FIG. 3b) on the surface of a carbon felt electrode substrate (FIGS. 3a and c) prepared by this method and an enlarged view (FIG. 3d). It can be seen that adjacent nanowires formed on the same and / or different carbon fiber surfaces are fused to form a complex three-dimensional nanowire structure (nanowire network) together with the carbon felt of the fibrous assembly.
 ナノワイヤポリアニリンを電着形成した後の作用電極をポテンショスタットから外し、蒸留水で3回洗浄した後、乾燥させた。これを本発明のカーボンフェルト/ナノワイヤポリアニリンからなる微生物燃料電池用電極(カーボンフェルト/ポリアニリンナノワイヤ電極)とした。 The working electrode after the electrodeposition of nanowire polyaniline was removed from the potentiostat, washed 3 times with distilled water, and dried. This was used as a microbial fuel cell electrode (carbon felt / polyaniline nanowire electrode) comprising the carbon felt / nanowire polyaniline of the present invention.
 (4)CP上におけるナノワイヤ構造を有する、アニリンと他のモノマーのコポリマー(ナノワイヤポリアニリンコポリマー)の形成
 本実施例では、ポリアニリンコポリマーとして、PAAP及びPADAPをそれぞれCP上に形成させた。
(4) Formation of copolymer of aniline and other monomer (nanowire polyaniline copolymer) having nanowire structure on CP In this example, PAAP and PADAP were each formed on CP as a polyaniline copolymer.
 電解液としてのモノマー溶液には、PAAP用として、0.2M アニリンモノマー(和光純薬)及び0.01M オルトアミノフェノール(和光純薬)を、また、PADAP用として、0.2M アニリンモノマー(和光純薬)及び0.01M 2,4-ジアミノフェノール(和光純薬)を、それぞれ包含する1M硫酸溶液を使用した。 In the monomer solution as the electrolyte, 0.2M aniline monomer (Wako Pure Chemical) and 0.01M orthoaminophenol (Wako Pure Chemical) are used for PAAP, and 0.2M aniline monomer (Wako Pure Chemical) is used for PADAP. And 1M sulfuric acid solution containing 0.01M 2,4-diaminophenol (Wako Pure Chemical Industries, Ltd.), respectively.
 導線であるチタンワイヤの一端を(2)で調製したCPの一端に接続し、これを作用電極とし、導線の他端をポテンショスタット(HZ-5000、北斗電工)に接続した。CP作用電極の活性化領域は、3.14cm2である。さらに参照電極(飽和KCl溶液に浸漬されたAg/AgCl電極)及び対極(白金)の一端を前記ポテンショスタットに接続した。これらの電極を前記モノマー溶液に浸漬し、続いて、作用電極の電位を参照電極に対して-0.4V~1.3V間に設定した後、50mV/秒の電極スキャン速度で、往復15~20回のスキャン回数によって前記電極基盤であるCP表面上に、ナノワイヤポリアニリンコポリマーを電着形成させた。 One end of a titanium wire as a conducting wire was connected to one end of the CP prepared in (2), which was used as a working electrode, and the other end of the conducting wire was connected to a potentiostat (HZ-5000, Hokuto Denko). The active area of the CP working electrode is 3.14 cm 2 . Further, one end of a reference electrode (Ag / AgCl electrode immersed in a saturated KCl solution) and a counter electrode (platinum) was connected to the potentiostat. These electrodes are immersed in the monomer solution, and then the potential of the working electrode is set between −0.4 V and 1.3 V with respect to the reference electrode, and then 15 to 20 reciprocations at an electrode scanning speed of 50 mV / sec. The nanowire polyaniline copolymer was electrodeposited on the CP surface as the electrode substrate according to the number of scans.
 ナノワイヤポリアニリンコポリマーを電着形成した後の作用電極をポテンショスタットから外し、蒸留水で3回洗浄した後、乾燥させた。これを本発明のCP/ナノワイヤポリアニリンコポリマーからなる微生物燃料電池用電極(CP/PAAPナノワイヤ電極又はCP/PADAPナノワイヤ電極)とした。 The working electrode after electrodeposition of the nanowire polyaniline copolymer was removed from the potentiostat, washed three times with distilled water, and then dried. This was used as a microbial fuel cell electrode (CP / PAAP nanowire electrode or CP / PADAP nanowire electrode) comprising the CP / nanowire polyaniline copolymer of the present invention.
C:滑面薄層電極(滑面電極)の作製
C-1:ITO/ポリアニリン滑面電極の作製
 前記A(1)及び(2)の調製方法に準じた。ただし、A(2)の工程におけるアニリンモノマーの濃度を1/10、すなわち、0.02Mとした。
C: Preparation of smooth surface thin layer electrode (smooth surface electrode) C-1: Preparation of ITO / polyaniline smooth surface electrode According to the preparation method of A (1) and (2). However, the concentration of the aniline monomer in the step A (2) was set to 1/10, that is, 0.02M.
C-2:ITO/PAAP滑面電極の作製
 前記A(1)及び(3)の調製方法に準じた。ただし、A(3)の工程におけるアニリンモノマー及びオルトアミノフェノールの濃度をそれぞれ1/10、すなわち、それぞれ0.02M及び0.001Mとした。また、電極スキャン回数を5回とした。
C-2: Preparation of ITO / PAAP smooth electrode It was according to the preparation method of A (1) and (3). However, the concentrations of aniline monomer and orthoaminophenol in the step A (3) were 1/10, that is, 0.02M and 0.001M, respectively. The number of electrode scans was set to 5.
C-3:ITO/PADAP滑面電極の作製
 前記A(1)及び(3)の調製方法に準じた。ただし、A(3)の工程におけるアニリンモノマー及び2,4-ジアミノフェノールの濃度をそれぞれ1/10、すなわち、それぞれ0.02M及び0.001Mとした。また、電極スキャン回数を5回とした。
C-3: Preparation of ITO / PADAP smooth electrode According to the preparation methods of A (1) and (3). However, the concentrations of the aniline monomer and 2,4-diaminophenol in step A (3) were 1/10, that is, 0.02M and 0.001M, respectively. The number of electrode scans was set to 5.
 C-4:カーボンフェルト/ポリアニリン滑面電極の作製
 前記B(1)及び(3)の調製方法に準じた。ただし、B(3)の工程におけるアニリンモノマーの濃度を1/10、すなわち、0.02Mとした。
C-4: Preparation of carbon felt / polyaniline smooth electrode According to the preparation method of B (1) and (3). However, the concentration of the aniline monomer in the step B (3) was 1/10, that is, 0.02M.
D:対照用電極の作製
D-1:ITO電極の作製
 前記A(1)の調製方法に準じた。
D: Preparation of control electrode D-1: Preparation of ITO electrode According to the preparation method of A (1).
D-2:カーボンフェルト電極の作製
 前記B(1)の調製方法に準じた。
D-2: Production of carbon felt electrode The same method as in B (1) was used.
D-3:CP電極の作製
 前記B(2)の調製方法に準じた。
D-3: Production of CP electrode The preparation method of B (2) was followed.
<実施例2:本発明の微生物燃料電池用電極における発電能の検証>
 本発明の微生物燃料電池用電極における発電能を、ポテンショスタットシステムを用いた電気化学セルで検証した。
<Example 2: Verification of power generation capability in electrode for microbial fuel cell of the present invention>
The power generation capability of the microbial fuel cell electrode of the present invention was verified by an electrochemical cell using a potentiostat system.
 1.電極
 アノードとしての作用電極は、以下の組合せで用いた。
1. Electrode The working electrode as the anode was used in the following combinations.
(1)実施例1において作製したITO/ポリアニリンナノワイヤ電極及びITO/ポリアニリン滑面電極、並びにガラス板上に担持されたITOのみからなる電極(ITO電極)をそれぞれ用いた。以下、この電極の組合せで、発電能の検証を行なった実験を「実験A」とする。 (1) The ITO / polyaniline nanowire electrode and the ITO / polyaniline smooth surface electrode produced in Example 1 and the electrode (ITO electrode) made of only ITO supported on the glass plate were used. Hereinafter, an experiment in which the power generation performance is verified with this combination of electrodes is referred to as “experiment A”.
(2)実施例1において作製したCP/PAAPナノワイヤ電極、CP/PADAPナノワイヤ電極、CP/ポリアニリンナノワイヤ電極、及びCPのみからなる電極(CP電極)をそれぞれ用いた。以下、この電極の組合せで、発電能の検証を行なった実験を「実験B」とする。 (2) The CP / PAAP nanowire electrode, the CP / PADAP nanowire electrode, the CP / polyaniline nanowire electrode, and the electrode composed only of CP (CP electrode) prepared in Example 1 were used. Hereinafter, an experiment in which the power generation performance is verified with this combination of electrodes is referred to as “experiment B”.
(3)実施例1において作製したITO/PAAP滑面電極、ITO/PADAP滑面電極、ITO/ポリアニリン滑面電極、及びITO電極をそれぞれ用いた。以下、この電極の組合せで、発電能の検証を行なった実験を「実験C」とする。 (3) The ITO / PAAP smooth electrode, ITO / PADAP smooth electrode, ITO / polyaniline smooth electrode, and ITO electrode prepared in Example 1 were used. Hereinafter, an experiment in which the power generation performance is verified with this combination of electrodes is referred to as “experiment C”.
 各電極サイズは同一である。また、白金極及びAg/AgCl(飽和KCl)極をそれぞれ、対極及び参照電極とした。 ¡Each electrode size is the same. A platinum electrode and an Ag / AgCl (saturated KCl) electrode were used as a counter electrode and a reference electrode, respectively.
 2.電子供与微生物
 実験A~Cのいずれにおいても、電子供与微生物として、シェワネラ・ロイヒカ(Shewanella loihica)PV-4株(American type culture collection: ATCC No.BAA-1088;2008年版)を用いた。
2. Electron-donating microorganism In any of Experiments A to C, Shewanella loihica PV-4 strain (American type culture collection: ATCC No. BAA-1088; 2008 edition) was used as the electron-donating microorganism.
 予めS. loihica PV-4を10mlの20g/L Marine Broth 2216培地(MB培地:和光純薬)に植菌し、30℃にて1日間、好気的に培養した。続いて、MB培地をDM培地(Difined Media)と交換し、さらに30℃で2日間、好気的に培養したものを前培養液として用いた。DM培地の組成は、2.5g/LのNaHCO3、0.08g/LのCaCl2・2H2O、1.0g/LのNH4Cl、0.2g/LのMgCl2・6H2O、10g/LのNaCl、7.2g/LのHEPESである。また、S. loihica PV-4への電子供与体として10mM乳酸ナトリウム(和光純薬)を、また本培養時にはS. loihica PV-4の成育に必要な微量養分を供給するため0.5g/Lのイースト・エクストラクト(和光純薬)を加えた。以下、乳酸ナトリウムの含有DM培地をDM-L培地と記す。 S. loihica PV-4 was inoculated in advance into 10 ml of 20 g / L Marine Broth 2216 medium (MB medium: Wako Pure Chemical Industries) and cultured aerobically at 30 ° C. for 1 day. Subsequently, MB medium was replaced with DM medium (Difined Media), and aerobically cultured at 30 ° C. for 2 days was used as a preculture solution. The composition of the DM medium is 2.5 g / L NaHCO 3 , 0.08 g / L CaCl 2 · 2H 2 O, 1.0 g / L NH 4 Cl, 0.2 g / L MgCl 2 · 6H 2 O, 10 g / L NaCl, 7.2 g / L HEPES. In addition, 10 mM sodium lactate (Wako Pure Chemical Industries) is used as an electron donor to S. loihica PV-4, and 0.5 g / L is supplied to supply micronutrients necessary for the growth of S. loihica PV-4 during main culture. Yeast Extract (Wako Pure Chemical Industries) was added. Hereinafter, the DM medium containing sodium lactate is referred to as DM-L medium.
 3.電解槽の調製
 図4に、本実施例で使用したポテンショスタットシステムを示す。アノードである作用電極(41)を電解槽(40)の底部に敷き、DM-L培地5mlを槽内に入れ、純窒素で10分間パージした。対極(42)及び参照電極(43)を槽内に入れた後、ポテンショスタット(HSV-100、北斗電工)(45)を用いて、参照電極(Ag/AgCl電極)に対して0.2Vの定電圧を印加した電解槽内に1mlの前記前培養液をOD600=約1.0となるように添加した。
3. Preparation of Electrolyzer FIG. 4 shows a potentiostat system used in this example. A working electrode (41) as an anode was laid on the bottom of the electrolytic cell (40), 5 ml of DM-L medium was placed in the cell, and purged with pure nitrogen for 10 minutes. After placing the counter electrode (42) and the reference electrode (43) in the tank, using a potentiostat (HSV-100, Hokuto Denko) (45), a constant voltage of 0.2 V is applied to the reference electrode (Ag / AgCl electrode). 1 ml of the preculture solution was added to the electrolytic cell to which voltage was applied so that OD 600 = about 1.0.
 (結果)
 実験Aの結果を図5に、実験Bの結果を図6に、そして実験Cの結果を図7に、示す。これらの図は、各アノードを用いた時のS. loihica PV-4から得た発生電流を示している。以下、実験A~Cのそれぞれの結果について説明をする。
(result)
FIG. 5 shows the results of Experiment A, FIG. 6 shows the results of Experiment B, and FIG. 7 shows the results of Experiment C. These figures show the generated current obtained from S. loihica PV-4 when each anode was used. Hereinafter, the results of Experiments A to C will be described.
 実験A:まず、アノードとしてITO電極を用いた場合、電流はS. loihica PV-4を投入後に直ちに増加を開始し、その後、約1μA/cm2の一定値に留まった(a)。この結果は、S. loihica PV-4が乳酸を酸化して、発生した電子を直接的にアノードに伝達したことを反映している。 Experiment A: First, when an ITO electrode was used as the anode, the current started to increase immediately after the introduction of S. loihica PV-4, and then remained at a constant value of about 1 μA / cm 2 (a). This result reflects that S. loihica PV-4 oxidized lactic acid and transferred the generated electrons directly to the anode.
 続いて、ITO/ポリアニリン滑面電極を用いた場合には、約2~3μA/cm2の一定値が得られた(b)。これは、ITOをポリアニリンの平滑膜で被覆することによってS. loihica PV-4とITO電極との親和性が高まり、S. loihica PV-4から電極への電荷移動の効率が向上したことを示している。 Subsequently, when an ITO / polyaniline smooth electrode was used, a constant value of about 2 to 3 μA / cm 2 was obtained (b). This shows that the affinity between S. loihica PV-4 and the ITO electrode was increased by coating ITO with a smooth film of polyaniline, and the efficiency of charge transfer from S. loihica PV-4 to the electrode was improved. ing.
 一方、本発明の微生物燃料電池用電極であるITO/ポリアニリンナノワイヤ電極を用いた場合には、S. loihica PV-4を投入(図5の「PV-4添加」における矢印で示す)して約半日後に、45μA/cm2にも達する非常に大きな電流が得られた(c)。その後、電流は乳酸の枯渇と共に下降したが、電解槽中の上澄み1mlを除去した後、50mM乳酸を含むDM-L培地を1ml添加(図5の「DM-L培地の添加」における3箇所の矢印で示す)することで、直ちに回復し、再び高い値に達した。本電極による電流は、S. loihica PV-4の投入2日後に最大値100μA/cm2に達した。これは、ITO電極の100倍、ITO/ポリアニリン滑面電極の30~50倍に及ぶ。 On the other hand, when the ITO / polyaniline nanowire electrode, which is an electrode for a microbial fuel cell of the present invention, is used, S. loihica PV-4 is introduced (indicated by the arrow in “PV-4 addition” in FIG. 5). After half a day, a very large current reaching 45 μA / cm 2 was obtained (c). Thereafter, the current decreased with the depletion of lactic acid, but after removing 1 ml of the supernatant in the electrolytic cell, 1 ml of DM-L medium containing 50 mM lactic acid was added (see “Addition of DM-L medium” in FIG. 5). It recovered immediately and reached a high value again. The current by this electrode reached a maximum value of 100 μA / cm 2 two days after the introduction of S. loihica PV-4. This is 100 times that of the ITO electrode and 30-50 times that of the ITO / polyaniline smooth surface electrode.
 以上の結果から、本発明の微生物燃料電池用電極は、電子供与微生物との高親和性及びそれによる電子回収効率の高さから、従来の生物燃料電池用電極と比較すると微生物燃料電池用電極として非常に優れた発電能を有することが明らかとなった。 From the above results, the microbial fuel cell electrode of the present invention is a microbial fuel cell electrode compared to conventional biofuel cell electrodes because of its high affinity with electron-donating microorganisms and high electron recovery efficiency. It became clear that it has very good power generation capacity.
 実験B:まず、アノードとしてCP電極を用いた場合、電流はS. loihica PV-4を添加(図6の「PV-4添加」における矢印で示す)後に直ちに増加を開始し、その後、約20μA/cm2の一定値に留まった(a)。この結果は、実験AのITO電極と同様にS. loihica PV-4が乳酸を酸化して、発生した電子を直接的にアノードに伝達したことを反映している。 Experiment B: First, when a CP electrode was used as the anode, the current started to increase immediately after addition of S. loihica PV-4 (indicated by the arrow in “PV-4 addition” in FIG. 6), and then about 20 μA It remained at a constant value of / cm 2 (a). This result reflects that S. loihica PV-4 oxidizes lactic acid and transfers the generated electrons directly to the anode, similar to the ITO electrode of Experiment A.
 一方、本発明の微生物燃料電池用電極であるCP/ポリアニリンナノワイヤ電極、CP/PAAPナノワイヤ電極又はCP/PADAPナノワイヤ電極では、S. loihica PV-4を投入した後に急激な電流の増加が見られる点、その後、乳酸の枯渇と共に電流が下降する点、DM-L培地を追加的に添加(図6の「DM-L培地の添加」範囲内で、それぞれ3箇所の矢印で示す)することで直ちに回復し、再び高い電流が得られる点等、全体的な発電能のパターンは、実験AのITO/ポリアニリンナノワイヤ電極と類似する結果が得られた。ただし、CP/ポリアニリンナノワイヤ電極では、S. loihica PV-4を投入した約半日後には200μA/cm2に達する程の電流が得られ(図6b)、実験AのITO/ポリアニリンナノワイヤ電極よりも発電効率が高いことが判明した。またコポリマーを用いたCP/PAAPナノワイヤ電極(図6c)とCP/PADAPナノワイヤ電極(図6d)では、DM-L培地の追加による回復後、CP/PAAPナノワイヤ電極では、CP/ポリアニリンナノワイヤ電極の約1.3~2倍、CP/PADAPナノワイヤ電極では、CP/ポリアニリンナノワイヤ電極の約2~3倍の高い電流が得られた。これは、CP電極の約30倍(CP/PAAPナノワイヤ電極)又は約40倍(CP/PADAPナノワイヤ電極)に及ぶ。 On the other hand, in the CP / polyaniline nanowire electrode, CP / PAAP nanowire electrode, or CP / PADAP nanowire electrode that are the electrodes for the microbial fuel cell of the present invention, a rapid increase in current is observed after the introduction of S. loihica PV-4 Then, the point at which the current decreases with the depletion of lactic acid, DM-L medium was additionally added (indicated by three arrows each within the “DM-L medium addition” range of FIG. 6). The overall power generation pattern, such as recovery and high current, was obtained, which was similar to the ITO / polyaniline nanowire electrode in Experiment A. However, with the CP / polyaniline nanowire electrode, a current of about 200 μA / cm 2 was obtained about half a day after the introduction of S. loihica PV-4 (FIG. 6 b), generating more power than the ITO / polyaniline nanowire electrode in Experiment A It turns out that the efficiency is high. Also, CP / PAAP nanowire electrode using copolymer (Fig. 6c) and CP / PADAP nanowire electrode (Fig. 6d), after recovery by addition of DM-L medium, CP / PAAP nanowire electrode is about the same as CP / polyaniline nanowire electrode. With 1.3 to 2 times the CP / PADAP nanowire electrode, a current about 2 to 3 times higher than that of the CP / polyaniline nanowire electrode was obtained. This ranges from about 30 times the CP electrode (CP / PAAP nanowire electrode) or about 40 times (CP / PADAP nanowire electrode).
 以上のように、単分子化合物(アニリン)の重合体であるポリアニリンのナノワイヤ電極よりもコポリマーであるPAAPやPADAPのナノワイヤ電極の方が、発電効率が高かった。この理由の一つとして、表1に示すように基盤表面上に形成されるそれぞれの導電性ポリマーの比表面積、すなわち、電極重量あたりの表面積の相違が挙げられる。
Figure JPOXMLDOC01-appb-T000001
As described above, PAAP and PADAP nanowire electrodes, which are copolymers, have higher power generation efficiency than polyaniline nanowire electrodes, which are polymers of monomolecular compounds (aniline). One reason for this is the difference in specific surface area of each conductive polymer formed on the substrate surface as shown in Table 1, that is, the difference in surface area per electrode weight.
Figure JPOXMLDOC01-appb-T000001
 ITO基板上に形成される導電性ポリマーナノワイヤの比表面積は、単一モノマーの重合体であるポリアニリン(PANI)よりもコポリマーであるPAAP及びPADAPの方がそれぞれ2.5及び3.8倍大きく、その大きさに比例して発生する電流密度も高かった。したがって、本発明の微生物燃料電池用電極を構成する導電性ポリマーは、基盤表面上にナノワイヤ構造が形成されたとき、比表面積がより大きい性質を有する素材が好ましいことが明らかとなった。 The specific surface area of the conductive polymer nanowires formed on the ITO substrate is 2.5 and 3.8 times greater for the copolymers PAAP and PADAP, respectively, than the single monomer polymer polyaniline (PANI), The current density generated in proportion to the magnitude was also high. Therefore, it has been clarified that the conductive polymer constituting the microbial fuel cell electrode of the present invention is preferably a material having a property of having a larger specific surface area when a nanowire structure is formed on the substrate surface.
 以上の結果から、本発明の微生物燃料電池用電極は、ITO又はCP基盤が異なる場合であっても同様の発電能が得られること、ポリアニリンを使用した場合よりもポリアニリンコポリマー(例えば、本実施例では、PAAP又はPADAP)を使用した方がより比表面積が大きく、より優れた発電能を有することが明らかとなった。 From the above results, the electrode for the microbial fuel cell of the present invention can obtain the same power generation ability even when the ITO or CP base is different, and a polyaniline copolymer (for example, this example) than when polyaniline is used. Thus, it has been clarified that the use of PAAP or PADAP has a larger specific surface area and better power generation capability.
 実験C:アノードとして、前記各電極を用いたときの、S. loihica PV-4(OD600=1.0)を添加(0.0時間)後に発生した電流の推移を示す。いずれの電極を用いた場合も、発電効率は、6μA/cm2にも満たず、実験A及びBで用いた導電性ポリマーナノワイヤ構造を有する電極と比較して著しく低かった(図7)。すなわち、これは、電極基盤表面を同じ導電性ポリマーで被覆する場合であっても、従来の滑面電極よりも本発明のナノワイヤ電極の方が出力電流密度が高いことを示している。 Experiment C: The transition of current generated after addition (0.0 hour) of S. loihica PV-4 (OD 600 = 1.0) when each electrode is used as an anode is shown. When any electrode was used, the power generation efficiency was less than 6 μA / cm 2, which was significantly lower than the electrode having the conductive polymer nanowire structure used in Experiments A and B (FIG. 7). That is, this shows that the output current density of the nanowire electrode of the present invention is higher than that of the conventional smooth surface electrode even when the electrode substrate surface is coated with the same conductive polymer.
 一方、ITO電極(a)と比較すると、滑面であってもその表面に導電性ポリマーを有する電極(b~d)の方が3~5倍出力電流密度が高いことが明らかとなった。さらに、導電性ポリマーでもITO/PADAP滑面電極(d)の方が、ITO/ポリアニリン滑面電極(b)よりも出力電流密度で約1.5倍高かった。図6において、CP/PADAPナノワイヤ電極(d)の出力電流密度がCP/ポリアニリンナノワイヤ電極(b)のそれと比較して高かったが、これは、前述のようにPADAPナノワイヤの比表面積がポリアニリンナノワイヤのそれと比較して高いことのみならず、導電性ポリマーの素材としての性質も単分子化合物の重合体であるポリアニリンよりもコポリマーであるPADAPの方がより発電効率の高い微生物燃料電池用電極であることを示している。 On the other hand, when compared with the ITO electrode (a), it was revealed that the electrodes (b to d) having a conductive polymer on the surface had a 3 to 5 times higher output current density than the ITO electrode (a). Furthermore, even with the conductive polymer, the ITO / PADAP smooth electrode (d) was about 1.5 times higher in output current density than the ITO / polyaniline smooth electrode (b). In FIG. 6, the output current density of the CP / PADAP nanowire electrode (d) was higher than that of the CP / polyaniline nanowire electrode (b). This is because the specific surface area of the PADAP nanowire is that of the polyaniline nanowire as described above. Compared to that, PADAP, which is a copolymer rather than polyaniline, which is a polymer of monomolecular compounds, is a microbial fuel cell electrode with higher power generation efficiency, as well as higher properties as a conductive polymer material. Is shown.
<実施例3:繊維構造集合体で構成される本発明の微生物燃料電池用電極における発電能の検証>
 繊維構造集合体で構成される本発明の微生物燃料電池用電極における発電能を、電子メディエータ及び導電性微粒子を含まない微生物燃料電池を用いて検証した。
<Example 3: Verification of power generation capability in an electrode for a microbial fuel cell of the present invention composed of a fiber structure assembly>
The power generation capability of the electrode for a microbial fuel cell of the present invention composed of a fiber structure aggregate was verified using a microbial fuel cell not containing an electron mediator and conductive fine particles.
 1.電極
 アノードは、実施例1において作製したカーボンフェルト/ポリアニリンナノワイヤ電極及びカーボンフェルト/ポリアニリン薄層電極、並びにカーボンフェルトのみからなる電極(カーボンフェルト電極)をそれぞれ用いた。各電極サイズは同一である。
1. Electrode As the anode, the carbon felt / polyaniline nanowire electrode and the carbon felt / polyaniline thin layer electrode prepared in Example 1 and an electrode composed of only carbon felt (carbon felt electrode) were used. Each electrode size is the same.
 カソードは、エア・カソードを用いた。エア・カソードは、8mg/cm2の白金粒子を担持した4-ポリテトラフルオロエチレン(PTFE)から成る(シグマ社)。 An air cathode was used as the cathode. The air cathode consists of 4-polytetrafluoroethylene (PTFE) carrying 8 mg / cm 2 platinum particles (Sigma).
 2.電子供与微生物の調製
 電子供与微生物は、日本の釜石市にて採取した水田の土に包含された微生物を用いた。
2. Preparation of electron-donating microorganism As the electron-donating microorganism, a microorganism included in paddy soil collected in Kamaishi, Japan was used.
 水田土壌微生物は、以下の手順で培養した。培養には12mlのPS培地(NH4CL 10mM,KH2PO4 1mM,MgCl2 0.5mM,CaCl2 0.5mM,NaHCO3 5mM, HEPES 10mM, Yeast extract 0.5g/L)を使用した。培養時には電子供与体として、酢酸ナトリウム(10mM)を添加した。また、微生物に必要な微量な燃料を供給するためYeast exatractを0.5g/L加えた。微生物源として、20mg(湿重量)の水田土壌を上記PS培地に添加した。培養は、30℃で行い、電流密度の低下時(酢酸欠乏時)には再度、酢酸ナトリウム(10mM)を添加した。 The paddy soil microorganisms were cultured according to the following procedure. For the cultivation, 12 ml of PS medium (NH 4 CL 10 mM, KH 2 PO 4 1 mM, MgCl 2 0.5 mM, CaCl 2 0.5 mM, NaHCO 3 5 mM, HEPES 10 mM, Yeast extract 0.5 g / L) was used. During the culture, sodium acetate (10 mM) was added as an electron donor. In addition, 0.5 g / L of Yeast exatract was added to supply a small amount of fuel necessary for microorganisms. As a microorganism source, 20 mg (wet weight) of paddy field soil was added to the PS medium. The culture was performed at 30 ° C., and sodium acetate (10 mM) was added again when the current density decreased (when acetic acid was deficient).
 3.電解槽の調製
 本実施例で使用した電極槽は、図8に示す本発明の微生物燃料電池において隔膜(83)のない単槽型電解槽からなる。また、槽内には、電子供与微生物及び栄養基質が添加された電解質溶液が収容されている。具体的には、15mlの容量を有する電解槽に、電解質溶液として、200mMのK2HPO4/KH2PO4(pH6.8)を含む12mlのバッファ溶液を入れ、また、栄養基質として、スターチ:ペプトン:フィッシュミールを3:1:1(289g COD/L、COD=化学的酸素要求量)で混合した培地を一日に0.12mLで添加した。続いて、前記培養液を加える前に培地を5分間窒素でパージした。0.2mlの土壌懸濁液を電解槽に加え、30℃で嫌気的に培養した。その後、デンプン、ペプトン、魚類抽出物を含む混合基質(300g COD/L)を電解槽に1日あたり0.12ml添加した。
3. Preparation of electrolytic cell The electrode cell used in this example is a single cell type electrolytic cell having no diaphragm (83) in the microbial fuel cell of the present invention shown in FIG. In addition, an electrolytic solution to which an electron donating microorganism and a nutrient substrate are added is accommodated in the tank. Specifically, 12 ml of buffer solution containing 200 mM K 2 HPO 4 / KH 2 PO 4 (pH 6.8) is placed as an electrolyte solution in an electrolytic cell having a capacity of 15 ml, and starch is used as a nutrient substrate. : Peptone: Fish meal mixed with 3: 1: 1 (289 g COD / L, COD = chemical oxygen demand) was added at 0.12 mL per day. Subsequently, the medium was purged with nitrogen for 5 minutes before adding the culture medium. 0.2 ml of soil suspension was added to the electrolytic cell and cultured anaerobically at 30 ° C. Thereafter, a mixed substrate (300 g COD / L) containing starch, peptone and fish extract was added to the electrolyzer at 0.12 ml per day.
 電気生産は、外部抵抗の両端の電圧をデータロガー(グラフテック社製)で測定することによりモニタリングした。また、適時、ポテンショスタット(HA-1510、北斗電工)を用いて、分極曲線を作成した。 Electrical production was monitored by measuring the voltage across the external resistance with a data logger (Graphtech). In addition, a polarization curve was created using a potentiostat (HA-1510, Hokuto Denko) at appropriate times.
(結果)
 図9及び10に結果を示す。図9及び10は、各アノードを用いた時の微生物燃料電池の分極曲線及び出力をそれぞれ示している。アノードにカーボンフェルト電極を用いた場合、107μA/cm2の短絡電流密度及び24μW/cm2の出力密度がそれぞれ得られた(図9a及び10a)。また、アノードにカーボンフェルト/ポリアニリン薄層電極を用いた場合、270μA/cm2の短絡電流密度及び70μW/cm2の出力密度がそれぞれ得られた(図9b及び10b)。すなわち、カーボンフェルト表面を滑面状のポリアニリンで被覆することによって出力が3倍以上上昇した。これは、実施例2と同様に、ポリアニリンによって電子供与微生物との親和性が増大したものと考えられる。一方、本発明の微生物燃料電池用電極であるカーボンフェルト/ポリアニリンナノワイヤ電極を用いた場合には、2.5mA/cm2の短絡電流密度及び230μW/cm2の出力密度がそれぞれ得られた(図9c及び10c)。すなわち、本発明のカーボンフェルト/ポリアニリンナノワイヤ電極によれば、電流及び出力が従来の構成を有する電極のそれよりも1ケタ増強されることが明らかとなった。
(result)
The results are shown in FIGS. 9 and 10 show the polarization curve and output of the microbial fuel cell when each anode is used, respectively. When using the carbon felt electrodes in the anode, the power density of the short-circuit current density and 24μW / cm 2 of 107μA / cm 2, were obtained (Fig. 9a and 10a). In the case of using the carbon felt / polyaniline thin layer electrode on the anode, the power density of the short-circuit current density and 70μW / cm 2 of 270μA / cm 2, were obtained (Figure 9b and 10b). That is, the output increased by a factor of 3 or more by coating the carbon felt surface with a smooth polyaniline. As in Example 2, it is considered that the affinity with the electron donating microorganism was increased by polyaniline. On the other hand, when a carbon felt / polyaniline nanowires electrodes is an electrode for a microbial fuel cell of the present invention, the power density of the short-circuit current density and 230μW / cm 2 of 2.5 mA / cm 2, were obtained (Fig. 9c And 10c). That is, according to the carbon felt / polyaniline nanowire electrode of the present invention, it has been clarified that the current and output are increased by one digit compared with those of the electrode having the conventional configuration.
 実施例2及び3の結果から、ITO及びカーボンフェルト上に形成されたポリアニリンによる3次元ナノワイヤネットワークは、微生物燃料電池において極めて有効な電子回収体となることが判明した。 From the results of Examples 2 and 3, it was found that the three-dimensional nanowire network made of polyaniline formed on ITO and carbon felt becomes an extremely effective electron recovery body in a microbial fuel cell.
 本実施例の微生物燃料電池は、実用化段階で使用される微生物燃料電池により近い系で構成されている。例えば、使用した電子供与微生物は、水田の土に包含されていたものであって、同定はされていない。またその土は、本発明の電子供与微生物となり得ない他の多くの微生物も包含している。すなわち、本系は、電子供与微生物を外部から必ずしも添加せずとも、実際の微生物燃料電池において燃料として使用される汚泥や有機排液等をそのまま用いることで、それらに普遍的に存在する電子供与微生物によって、本発明の微生物燃料電池が本発明の効果を十分に奏し得ることを示している。 The microbial fuel cell of this example is composed of a system closer to the microbial fuel cell used in the practical application stage. For example, the electron-donating microorganism used was included in paddy soil and has not been identified. The soil also includes many other microorganisms that cannot be the electron-donating microorganism of the present invention. In other words, this system does not necessarily add electron-donating microorganisms from the outside, but by using sludge or organic effluents that are used as fuel in actual microbial fuel cells as they are, electron donation that exists universally to them is used. It has been shown that the microorganism fuel cell of the present invention can sufficiently achieve the effects of the present invention by microorganisms.
<実施例4:各微生物燃料電池用電極のサイクリックボルタモグラム>
 実施例3における各アノードを用いた微生物燃料電池においてサイクリックボルタモグラムを測定し、微生物混合存在下における電子伝達特性を調べた。サイクリックボルタモグラムとは、電気化学セルにおいて、参照極に対して作用極の電位を連続的に変化させてその際に流れる電流を測定するものである。その際の+と‐のピークの中点から、この反応系の酸化還元電位が求められる。
<Example 4: Cyclic voltammogram of each microbial fuel cell electrode>
The cyclic voltammogram was measured in the microbial fuel cell using each anode in Example 3, and the electron transfer characteristics in the presence of the microbial mixture were examined. The cyclic voltammogram is a measurement of the current flowing in the electrochemical cell by continuously changing the potential of the working electrode with respect to the reference electrode. The redox potential of this reaction system is obtained from the midpoint of the + and-peaks at that time.
 (結果)
 図11に結果を示す。(a)はアノードにカーボンフェルト電極を用いた場合、(b)はカーボンフェルト/ポリアニリン薄層電極を用いた場合、(c)は本発明のカーボンフェルト/ポリアニリンナノワイヤ電極を用いた場合をそれぞれ示している。本実施例では、同じ微生物を使っていることから、電極にかかわらず、酸化還元電位は、ほぼ同じで、流れる電流のみに変化がみられた。いずれも一対の明瞭なレドックス波(酸化還元波)が得られた。各電極のアノード又はカソードのピーク電流密度は、それぞれ(a)で0.8及び0.6mA/cm2、(b)で2.7及び2.8mA/cm2、そして(c)で35及び32mA/cm2であった。すなわち、本発明の微生物燃料電池用電極の電流密度は、導電性カーボンファイバのみの電極のそれと比較して、約40倍の増加が見られた。一般に、特定の反応における電極の電荷密度は、電極表面積とその特性に関連することが知られている。本結果を勘案すると、本発明の微生物燃料電池用電極は、ポリアニリンのナノワイヤ構造により電極表面積が著しく増大したことで、電子回収効率が増強され飛躍的に高い電流密度が得られたものと考えられる。
(result)
The results are shown in FIG. (A) shows a case where a carbon felt electrode is used for the anode, (b) shows a case where a carbon felt / polyaniline thin layer electrode is used, and (c) shows a case where the carbon felt / polyaniline nanowire electrode of the present invention is used. ing. In this example, since the same microorganism was used, the redox potential was almost the same regardless of the electrode, and only the flowing current was changed. In both cases, a pair of clear redox waves (redox waves) was obtained. The anode or cathode of the peak current density of each electrode, respectively (a) at 0.8 and 0.6 mA / cm 2, 35 and 32 mA / cm 2 met with (b) at 2.7 and 2.8 mA / cm 2 and, (c) It was. That is, the current density of the microbial fuel cell electrode of the present invention was increased by about 40 times compared to that of the electrode made of only the conductive carbon fiber. In general, it is known that the charge density of an electrode in a particular reaction is related to the electrode surface area and its properties. Considering this result, it is considered that the electrode for microbial fuel cell of the present invention has a significantly increased electrode surface area due to the nanowire structure of polyaniline, so that the electron recovery efficiency is enhanced and a remarkably high current density is obtained. .
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。 All publications, patents and patent applications cited in this specification shall be incorporated into the present specification as they are.

Claims (13)

  1.  電極基盤及びその表面の全部又は一部に形成されたナノワイヤ構造を有する導電性ポリマーからなる微生物燃料電池用電極。 An electrode for a microbial fuel cell comprising a conductive polymer having a nanowire structure formed on all or part of the electrode substrate and its surface.
  2.  ナノワイヤ構造がナノワイヤネットワークを含む、請求項1に記載の電極。 The electrode of claim 1, wherein the nanowire structure comprises a nanowire network.
  3.  電極基盤が金属又はカーボンを含む、請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, wherein the electrode substrate contains metal or carbon.
  4.  電極が繊維構造集合体又は多孔質構造体である、請求項1~3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the electrode is a fiber structure aggregate or a porous structure.
  5.  電極が電子供与微生物の細胞サイズよりも大きい間隙及び/又は細孔を含む、請求項1~4のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the electrode comprises gaps and / or pores larger than the cell size of the electron-donating microorganism.
  6.  間隙の長さ及び/又は幅、及び細孔の直径が6μm~20μmである、請求項5に記載の電極。 6. The electrode according to claim 5, wherein the length and / or width of the gap and the diameter of the pores are 6 μm to 20 μm.
  7.  前記間隙又は細孔内に電子供与微生物を含む、請求項5又は6に記載の電極。 The electrode according to claim 5 or 6, comprising an electron donating microorganism in the gap or pore.
  8.  導電性ポリマーがアニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体、又はそれらの組み合わせからなる重合体、あるいは前記重合体の混合物である、請求項1~7のいずれか一項に記載の電極。 The conductive polymer is a polymer composed of aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a derivative thereof, or a combination thereof, or a mixture of the polymers. The electrode according to any one of 1 to 7.
  9.  導電性ポリマーがポリアニリン、アニリン/アミノフェノールコポリマー又はアニリン/ジアミノフェノールコポリマーである、請求項8に記載の電極。 The electrode according to claim 8, wherein the conductive polymer is polyaniline, aniline / aminophenol copolymer or aniline / diaminophenol copolymer.
  10.  請求項1~9のいずれか1項に記載の電極を用いた微生物燃料電池。 A microbial fuel cell using the electrode according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の電極からなるアノード及び/又はカソード、
     電解質溶液、及び
     それらを収容する電解槽
    を含んでなる、微生物燃料電池であって、
     前記電解槽において、槽内の前記電解質溶液が、単一又は複数の種からなる電子供与微生物及び当該微生物の代謝に必要な栄養基質をさらに含む
    前記微生物燃料電池。
    An anode and / or a cathode comprising the electrode according to any one of claims 1 to 9,
    A microbial fuel cell comprising an electrolyte solution and an electrolytic cell containing them,
    In the electrolytic cell, the microbial fuel cell, wherein the electrolyte solution in the electrolytic cell further includes an electron donating microorganism composed of a single species or a plurality of species and a nutrient substrate necessary for metabolism of the microorganism.
  12.  カソードがガス透過性を有するエア・カソードで、かつ電解槽がアノード槽のみで構成される単槽構造を有する、請求項11に記載の微生物燃料電池。 The microbial fuel cell according to claim 11, wherein the microbial fuel cell has a single cell structure in which the cathode is an air cathode having gas permeability and the electrolytic cell is composed only of an anode cell.
  13.  アノード又はカソードが設置される槽内に酸化還元メディエータ化合物、電子メディエータ及び/又は導電性微粒子をさらに含む、請求項11又は12に記載の微生物燃料電池。 The microbial fuel cell according to claim 11 or 12, further comprising a redox mediator compound, an electron mediator and / or conductive fine particles in a tank in which the anode or the cathode is installed.
PCT/JP2010/064764 2009-08-31 2010-08-31 Electrode for microbial fuel cell, and microbial fuel cell using same WO2011025021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528902A JPWO2011025021A1 (en) 2009-08-31 2010-08-31 Microbial fuel cell electrode and microbial fuel cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009200422 2009-08-31
JP2009-200422 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011025021A1 true WO2011025021A1 (en) 2011-03-03

Family

ID=43628110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064764 WO2011025021A1 (en) 2009-08-31 2010-08-31 Electrode for microbial fuel cell, and microbial fuel cell using same

Country Status (2)

Country Link
JP (1) JPWO2011025021A1 (en)
WO (1) WO2011025021A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258393A (en) * 2010-06-09 2011-12-22 Sony Corp Fuel cell
CN102324526A (en) * 2011-08-25 2012-01-18 哈尔滨佳泰达科技有限公司 Microbiological fuel cell composite material anode and its manufacturing method
WO2012066806A1 (en) * 2010-11-18 2012-05-24 独立行政法人科学技術振興機構 Electrode for microbial fuel cells and microbial fuel cell using same
JP2014060976A (en) * 2012-09-21 2014-04-10 Central Research Institute Of Electric Power Industry Method for controlling metabolism of hydrogen bacterium
JP2017157517A (en) * 2016-03-04 2017-09-07 国立研究開発法人農業・食品産業技術総合研究機構 Bioelectrochemistry system, and electrode for bioelectrochemistry system
WO2017168778A1 (en) * 2016-03-29 2017-10-05 シャープ株式会社 Microbial fuel cell and microbial fuel cell system
CN111682229A (en) * 2020-06-24 2020-09-18 中国海洋大学 Humic acid-Fe composite modified anode, preparation method and application thereof, and seabed microbial fuel cell
WO2022024123A1 (en) * 2020-07-28 2022-02-03 Ariel Scientific Innovations Ltd. Small bio-reactor platform (sbp) technology as microbial electrochemical systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321445B2 (en) * 2019-03-22 2023-08-07 国立研究開発法人物質・材料研究機構 Microorganism culture method, microorganism culture device, and carbon dioxide reduction device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315792A1 (en) * 2003-04-07 2004-11-04 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Microbial fuel cell for converting nutrients with biocatalysts into energy has anode and cathode areas with conductive agents with an ion conductive membrane ion between
JP2006085911A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Biological fuel cell
JP2006190502A (en) * 2004-12-28 2006-07-20 Tokyo Univ Of Agriculture & Technology Electrode for biofuel cell and biofuel cell
JP2007324005A (en) * 2006-06-01 2007-12-13 Yuji Furukawa Biofuel cell and electrode for biofuel cell
WO2008058165A2 (en) * 2006-11-06 2008-05-15 Akermin, Inc. Bioanode and biocathode stack assemblies
JP2009093861A (en) * 2007-10-05 2009-04-30 Kajima Corp Microbial fuel cell and diaphragm cassette for the microbial fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315792A1 (en) * 2003-04-07 2004-11-04 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Microbial fuel cell for converting nutrients with biocatalysts into energy has anode and cathode areas with conductive agents with an ion conductive membrane ion between
JP2006085911A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Biological fuel cell
JP2006190502A (en) * 2004-12-28 2006-07-20 Tokyo Univ Of Agriculture & Technology Electrode for biofuel cell and biofuel cell
JP2007324005A (en) * 2006-06-01 2007-12-13 Yuji Furukawa Biofuel cell and electrode for biofuel cell
WO2008058165A2 (en) * 2006-11-06 2008-05-15 Akermin, Inc. Bioanode and biocathode stack assemblies
JP2009093861A (en) * 2007-10-05 2009-04-30 Kajima Corp Microbial fuel cell and diaphragm cassette for the microbial fuel cell

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H.H. ZHOU ET AL: "Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 34, 2004, pages 455 - 459, XP001581000, DOI: doi:10.1023/B:JACH.0000016635.35555.04 *
K. SCOTT ET AL.: "APPLICATION OF MODIFIED CARBON ANODES IN MICROBIAL FUEL CELLS", TRANS ICHEME, PART B, PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, vol. 85, no. B5, 2007, pages 481 - 488, XP022618645, DOI: doi:10.1205/psep07018 *
UWE SCHRODER ET AL.: "A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitud", ANGEW. CHEM. INT. ED., vol. 42, 2003, pages 2880 - 2883, XP002360454, DOI: doi:10.1002/anie.200350918 *
YAN QIAO ET AL.: "Carbon nanotube/polyaniline composite as anode material for microbial fuel cells", JOURNAL OF POWER SOURCES, vol. 170, 2007, pages 79 - 84, XP022098157, DOI: doi:10.1016/j.jpowsour.2007.03.048 *
YUJI FURUKAWA ET AL: "Design principle and prototyping of a direct photosynthetic/metabolic biofuel cell (DPMFC)", J. MICROMECH. MICROENG., vol. 16, 2006, pages S220 - S225, XP020105142, DOI: doi:10.1088/0960-1317/16/9/S08 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258393A (en) * 2010-06-09 2011-12-22 Sony Corp Fuel cell
WO2012066806A1 (en) * 2010-11-18 2012-05-24 独立行政法人科学技術振興機構 Electrode for microbial fuel cells and microbial fuel cell using same
JP5494996B2 (en) * 2010-11-18 2014-05-21 独立行政法人科学技術振興機構 Microbial fuel cell electrode and microbial fuel cell using the same
CN102324526A (en) * 2011-08-25 2012-01-18 哈尔滨佳泰达科技有限公司 Microbiological fuel cell composite material anode and its manufacturing method
CN102324526B (en) * 2011-08-25 2014-07-30 哈尔滨佳泰达科技有限公司 Microbiological fuel cell composite material anode and its manufacturing method
JP2014060976A (en) * 2012-09-21 2014-04-10 Central Research Institute Of Electric Power Industry Method for controlling metabolism of hydrogen bacterium
JP2017157517A (en) * 2016-03-04 2017-09-07 国立研究開発法人農業・食品産業技術総合研究機構 Bioelectrochemistry system, and electrode for bioelectrochemistry system
WO2017168778A1 (en) * 2016-03-29 2017-10-05 シャープ株式会社 Microbial fuel cell and microbial fuel cell system
JP2017183011A (en) * 2016-03-29 2017-10-05 シャープ株式会社 Microbial fuel cell, and microbial fuel cell system
CN111682229A (en) * 2020-06-24 2020-09-18 中国海洋大学 Humic acid-Fe composite modified anode, preparation method and application thereof, and seabed microbial fuel cell
CN111682229B (en) * 2020-06-24 2022-07-15 中国海洋大学 Humic acid-Fe composite modified anode, preparation method and application thereof, and seabed microbial fuel cell
WO2022024123A1 (en) * 2020-07-28 2022-02-03 Ariel Scientific Innovations Ltd. Small bio-reactor platform (sbp) technology as microbial electrochemical systems

Also Published As

Publication number Publication date
JPWO2011025021A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
Slate et al. Microbial fuel cells: An overview of current technology
JP5494996B2 (en) Microbial fuel cell electrode and microbial fuel cell using the same
WO2011025021A1 (en) Electrode for microbial fuel cell, and microbial fuel cell using same
Zhao et al. Nanostructured material-based biofuel cells: recent advances and future prospects
Hindatu et al. Mini-review: Anode modification for improved performance of microbial fuel cell
Tharali et al. Microbial fuel cells in bioelectricity production
Rahimnejad et al. Microbial fuel cell as new technology for bioelectricity generation: A review
Dutta et al. A review on aromatic conducting polymers-based catalyst supporting matrices for application in microbial fuel cells
Sharif et al. Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials
US8048547B2 (en) Biological fuel cells with nanoporous membranes
Tawalbeh et al. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications
Savla et al. Utilization of nanomaterials as anode modifiers for improving microbial fuel cells performance
JP2018142541A (en) Electrochemical device and manufacturing method thereof
Senthilkumar et al. Titania/reduced graphene oxide composite nanofibers for the direct extraction of photosynthetic electrons from microalgae for biophotovoltaic cell applications
Zhu et al. Recent advances on the development of functional materials in microbial fuel cells: from fundamentals to challenges and outlooks
Choudhury et al. Effect of electrode surface properties on enhanced electron transfer activity in microbial fuel cells
Ramachandran et al. Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview
Mardiana et al. Applicability of alginate film entrapped yeast for microbial fuel cell
Jabeen et al. Microbial fuel cells and their applications for cost effective water pollution remediation
Al-Badani et al. A mini review of the effect of modified carbon paper, carbon felt, and carbon cloth electrodes on the performance of microbial fuel cell
Mishra et al. Poly (3, 4‐ethylenedioxythiophene)‐Modified Graphite Felt and Carbon Cloth Anodes for Use in Microbial Fuel Cells
Sonawane et al. A review of microbial fuel cell and its diversification in the development of green energy technology
Khater et al. Activated sludge-based microbial fuel cell for bio-electricity generation
Rezaei et al. Performance evaluation of novel ml-scale microbial fuel cells using different polymeric hollow-fiber membranes
Bagchi et al. Microbial fuel cells: A sustainable technology for pollutant removal and power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812067

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011528902

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812067

Country of ref document: EP

Kind code of ref document: A1