KR101363297B1 - Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same - Google Patents

Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same Download PDF

Info

Publication number
KR101363297B1
KR101363297B1 KR1020120151726A KR20120151726A KR101363297B1 KR 101363297 B1 KR101363297 B1 KR 101363297B1 KR 1020120151726 A KR1020120151726 A KR 1020120151726A KR 20120151726 A KR20120151726 A KR 20120151726A KR 101363297 B1 KR101363297 B1 KR 101363297B1
Authority
KR
South Korea
Prior art keywords
graphite oxide
enzyme
cobalt hydroxide
electrode
chitosan
Prior art date
Application number
KR1020120151726A
Other languages
Korean (ko)
Inventor
김승욱
이희욱
박철환
송윤석
유하영
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020120151726A priority Critical patent/KR101363297B1/en
Application granted granted Critical
Publication of KR101363297B1 publication Critical patent/KR101363297B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention provides: an electrode for an enzymatic fuel cell which includes an electrode member, a graphite oxide/cobalt hydroxide/chitosan-enzyme composite deposited on the surface of the electrode member, and an enzyme for an oxidation reaction or an enzyme for a reduction reaction fixated on the surface of the graphite oxide/cobalt hydroxide/chitosan-enzyme composite; a manufacturing method of the same; and the enzymatic fuel cell comprising the same.

Description

산화그라파이트/수산화코발트/키토산-효소 합성물이 전기 증착된 효소연료전지용 전극, 그의 제조방법, 및 그를 포함하는 효소연료전지{Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same}Electrode for enzymatic fuel cell in which a graphite oxide / cobalt hydroxide / chitosan-enzyme composite is electrodeposited, a method for manufacturing the same, and an enzymatic fuel cell comprising the same on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same}

본 발명은 산화그라파이트/수산화코발트/키토산-효소 합성물이 전기 증착된 효소연료전지용 전극, 그의 제조방법, 및 그를 포함하는 효소연료전지의 제조방법에 관한 것이다.The present invention relates to an electrode for an enzyme fuel cell in which a graphite oxide / cobalt hydroxide / chitosan-enzyme composite is electrodeposited, a method for producing the same, and a method for producing an enzyme fuel cell including the same.

효소연료전지(enzymatic fuel cell)는 최근 많은 연구자들의 관심을 받고 있다. 효소연료전지는 효소를 촉매로 사용하며, 상온, 상압, 자연 발생적 pH 등의 조건 하에서 작동이 가능하도록 인체에 무해한 물질을 이용하여 제조되며, 그 크기가 작다는 점에서 의학, 바이오연료센서(biosensor), 소형 전자제품의 배터리 등 실생활에서 많은 응용이 가능하다. Enzymatic fuel cells have attracted much attention recently. Enzyme fuel cells use enzymes as catalysts and are manufactured using materials that are harmless to the human body so that they can operate under conditions such as room temperature, atmospheric pressure, and naturally occurring pH. ), Many applications in real life such as battery of small electronic products.

이러한 효소연료전지에 있어서 효소의 안정도와 활성도를 높이고, 최적화된 전자전달 환경을 형성하는 것은 무엇보다도 중요하다. 따라서, 전자 전달체에 대한 다양한 연구가 진행하고 있다.In such an enzyme fuel cell, it is important to increase the stability and activity of the enzyme and to create an optimized electron transfer environment. Therefore, various studies on the electron transporter are in progress.

그러나, 효소연료전지는 효소의 안정성과 관련하여 짧은 존속기간, 낮은 전류밀도, 낮은 출력밀도 등의 문제가 야기되기 때문에 이러한 문제를 해결하기 위한 지속적인 연구가 요구되고 있다.However, enzyme fuel cells have problems such as short duration, low current density and low power density related to the stability of enzymes. Therefore, continuous research to solve these problems is required.

대한민국 공개특허 제10-2012-0113085호Republic of Korea Patent Publication No. 10-2012-0113085 일본 특개 제2012-178335호Japanese Patent Laid-Open No. 2012-178335

본 발명은 상술한 종래기술의 문제를 해소하기 위하여 안출된 것으로서, 전자전달체로서의 역할 및 효소의 고정 역할을 수행하는 산화그라파이트/수산화코발트/키토산 합성물(graphite oxide/cobalt hydroxide/chitosan composite)을 전극 기재의 표면에 균일하게 증착시키고, 그 위에 산화반응용 효소 또는 환원반응용 효소를 고정화함으로써, 균일성과 안정성이 높고, 효소의 활성도가 향상된 효소연료전지용 전극, 그의 제조방법 및 그를 전극으로서 포함하는 효소연료전지를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art, the electrode substrate is a graphite oxide / cobalt hydroxide / chitosan composite (graphite oxide / cobalt hydroxide / chitosan composite) that serves as an electron carrier and a fixed role of the enzyme The electrode for enzyme fuel cell having high uniformity and stability and improved enzyme activity, its preparation method and enzyme fuel comprising the same as electrode by uniform deposition on the surface of the polymer and immobilizing the enzyme for oxidation reaction or reduction reaction thereon It is an object to provide a battery.

본 발명은, According to the present invention,

전극 기재;Electrode substrates;

상기 전극 기재 표면에 증착된 산화그라파이트/수산화코발트/키토산 합성물; 및Graphite oxide / cobalt hydroxide / chitosan composites deposited on the surface of the electrode substrate; And

상기 산화그라파이트/수산화코발트/키토산 합성물의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 효소연료전지(EFC)용 전극을 제공한다.An electrode for an enzymatic fuel cell (EFC) comprising an enzyme for oxidation reaction or an enzyme for reduction reaction immobilized on a surface of the graphite oxide / cobalt hydroxide / chitosan composite is provided.

본 발명은 또한,The present invention also relates to

(a) 산화그라파이트/수산화코발트/키토산 합성물을 전극 기재에 증착하는 단계; 및(a) depositing a graphite oxide / cobalt hydroxide / chitosan composite on the electrode substrate; And

(b) 전극 기재에 증착된 산화그라파이트/수산화코발트/키토산 합성물의 표면에 산화반응용 효소 또는 환원반응용 효소를 고정화하는 단계를 포함하는 효소연료전지(EFC)용 전극의 제조방법을 제공한다.(b) providing a method for manufacturing an electrode for an enzymatic fuel cell (EFC) comprising the step of immobilizing an enzyme for oxidation reaction or an enzyme for reduction reaction on the surface of a graphite oxide / cobalt hydroxide / chitosan composite deposited on an electrode substrate.

본 발명은 또한, The present invention also relates to

상기 효소연료전지(EFC)용 전극을 포함하여 구성되는 것을 특징으로 하는 효소연료전지를 제공한다.It provides an enzyme fuel cell, characterized in that comprising an electrode for the enzyme fuel cell (EFC).

본 발명의 효소연료전지용 전극은 전자전달체로서의 역할 및 효소의 고정 역할을 수행하는 산화그라파이트/수산화코발트/키토산 합성물(graphite oxide/cobalt hydroxide/chitosan composite)을 전극 기재의 표면에 균일하게 증착시키고, 그 위에 산화반응용 효소 또는 환원반응용 효소를 고정화함으로써, 균일성과 안정성이 높고, 효소의 활성도가 향상된 효소연료전지용 전극을 제공한다. The electrode for an enzyme fuel cell of the present invention uniformly deposits a graphite oxide / cobalt hydroxide / chitosan composite (graphite oxide / cobalt hydroxide / chitosan composite) which serves as an electron carrier and a fixing enzyme, By immobilizing the enzyme for the oxidation reaction or the enzyme for the reduction reaction in the above, there is provided an electrode for an enzyme fuel cell with high uniformity and stability and improved enzyme activity.

또한, 상기 효소연료전지용 전극을 포함하는 본 발명의 효소연료전지는 높은 출력밀도와 전류밀도를 제공한다.In addition, the enzyme fuel cell of the present invention comprising the electrode for the enzyme fuel cell provides a high power density and current density.

도 1은 산화그라파이트/수산화코발트 합성물의 제조과정을 모식적으로 도시한 것이며,
도 2는 산화그라파이트/수산화코발트/키토산 합성물을 전극 기재에 증착시키는 과정을 모식적으로 도시한 것이며,
도 3은 전극 기재의 표면에 증착된 산화그라파이트/수산화코발트/키토산 합성물의 표면에 산화반응용 효소 또는 환원반응용 효소를 고정화하는 과정을 모식적으로 도시한 것이며,
도 4는 산화그라파이트/수산화코발트 합성물의 패턴을 XPS(X-ray photoelectron spectroscope)를 이용하여 측정한 결과를 나타낸 그래프이며[(a): 산화그라파이트(graphite)의 패턴, (b): 산화그라파이트/수산화코발트 합성물의 패턴],
도 5는 산화그라파이트/수산화코발트 합성물의 표면을 FT-IR (Fourier Transform Infrared Spectroscopy)로 분석하여 나타낸 그래프이며[(a): 산화그라파이트, (b): 산화그라파이트/수산화코발트],
도 6은 산화그라파이트/수산화코발트 합성물을 TEM(transmission electron microscopy)으로 촬영하여 나타낸 이미지이며[(a): 산화그라파이트, (b)산화그라파이트/수산화코발트 합성물],
도 7 중 (a)는 Au 전극 표면을 SEM(Scanning electron microscopy)으로 촬영하여 나타낸 이미지이며, (b)는 상기 Au 전극의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 전극을 SEM으로 촬영하여 나타낸 이미지이며, (c)는 Au의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 코팅되고 그 위에 산화효소로서 글루코즈 옥시데이즈(glucose oxidase)가 고정화된 전극을 SEM으로 촬영하여 나타낸 이미지이며,
도 8은 Raman spectroscopy로 Raman을 측정하여 나타낸 그래프이며[(a): 산화그라파이트/수산화코발트/키토산 합성물, (B) 산화그라파이트/수산화코발트/키토산-효소 합성물],
도 9는 Au 전극, Au 표면에 산화그라파이트/키토산 합성물이 증착된 전극, Au 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 전극, 및 Au 표면에 산화그라파이트/수산화코발트/키토산-효소 합성물이 증착된 전극의 순환전압전류를 비교하여 나타낸 그래프이며,
도 10은 실시예 3에서 제작된 산화그라파이트/수산화코발트/키토산-효소 합성물이 증착된 전극에 대하여 전압을 측정한 결과를 나타낸 그래프이며,
도 11은 실시예 4에서 제작된 효소연료전지의 전류밀도(current density)와 출력밀도(power density)를 측정하여 나타낸 그래프이다.
1 is a diagram schematically illustrating a manufacturing process of a graphite oxide / cobalt hydroxide composite,
FIG. 2 schematically illustrates a process of depositing a graphite oxide / cobalt hydroxide / chitosan composite on an electrode substrate,
FIG. 3 schematically illustrates a process of immobilizing an enzyme for oxidation reaction or an enzyme for reduction reaction on the surface of graphite oxide / cobalt hydroxide / chitosan composite deposited on the surface of an electrode substrate,
Figure 4 is a graph showing the results of measuring the pattern of graphite oxide / cobalt hydroxide composites using an X-ray photoelectron spectroscope (XPS) ((a): the pattern of graphite oxide, (b): graphite oxide / Pattern of cobalt hydroxide composites],
Figure 5 is a graph showing the analysis of the surface of the graphite oxide / cobalt hydroxide composite by Fourier Transform Infrared Spectroscopy (FT-IR) ((a): graphite oxide, (b): graphite oxide / cobalt hydroxide),
FIG. 6 is an image showing a graphite oxide / cobalt hydroxide composite by TEM (transmission electron microscopy). [(A): Graphite oxide, (b) graphite oxide / cobalt hydroxide composite]
In Figure 7 (a) is a scanning electron microscopy (SEM) image of the surface of the Au electrode, and (b) is a SEM photographed electrode on which the graphite oxide / cobalt hydroxide / chitosan composite is deposited on the surface of the Au electrode (C) is an SEM image of an electrode coated with a graphite oxide / cobalt hydroxide / chitosan compound on the surface of Au and having glucose oxidase immobilized thereon as an oxidase.
8 is a graph showing Raman by Raman spectroscopy [(a): Graphite oxide / cobalt hydroxide / chitosan compound, (B) graphite oxide / cobalt hydroxide / chitosan-enzyme compound],
9 shows an Au electrode, an electrode on which a graphite oxide / chitosan composite is deposited on an Au surface, an electrode on which a graphite oxide / cobalt hydroxide / chitosan composite is deposited on an Au surface, and a graphite oxide / cobalt hydroxide / chitosan-enzyme composite on an Au surface It is a graph comparing the circulating voltage current of the deposited electrode,
10 is a graph showing the results of measuring the voltage of the electrode on which the graphite oxide / cobalt hydroxide / chitosan-enzyme composite prepared in Example 3 is deposited;
FIG. 11 is a graph illustrating measurement of current density and power density of the enzyme fuel cell manufactured in Example 4. FIG.

본 발명은, According to the present invention,

전극 기재;Electrode substrates;

상기 전극 기재 표면에 증착된 산화그라파이트/수산화코발트/키토산 합성물; 및Graphite oxide / cobalt hydroxide / chitosan composites deposited on the surface of the electrode substrate; And

상기 산화그라파이트/수산화코발트/키토산 합성물의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 효소연료전지(EFC)용 전극에 관한 것이다.The present invention relates to an electrode for an enzymatic fuel cell (EFC) comprising an enzyme for oxidation reaction or an enzyme for reduction reaction immobilized on a surface of the graphite oxide / cobalt hydroxide / chitosan composite.

상기 전극 기재로는 금, 은, 백금, 구리, 알루미늄, 탄소나노튜브, 그라핀 등 다양한 금속 소재 및 탄소 소재가 사용될 수 있다.
As the electrode substrate, various metal materials and carbon materials such as gold, silver, platinum, copper, aluminum, carbon nanotubes, and graphene may be used.

그라펜(graphene)은 높은 표면적과 화학적 안정성, 전기전도성 및 열전도성이 매우 높기 때문에, 전기에너지의 전환/저장 시스템을 위한 탄소 물질로 많이 이용되고 있다. 이들 중에서 본 발명에서 사용하고 있는 산화그라파이트(graphite oxide)는 그라펜에서 파생된 다양한 표면 특성과 층 구조에 의한 특징을 갖는다. 특히 넓은 표면적을 가지고 있으며, 탄소 나노층에 형성 되어 있는 다양한 치환기에 의하여 금속 수산화물과 같은 활성 물질의 핵으로도 사용이 가능하므로 지지체로 많이 사용되고 있다. Graphene is widely used as a carbon material for the conversion / storage system of electrical energy because of its high surface area, chemical stability, electrical conductivity, and thermal conductivity. Among them, graphite oxide used in the present invention has various surface properties and layer structure derived from graphene. In particular, it has a large surface area, and can be used as a nucleus of an active material such as a metal hydroxide by various substituents formed in the carbon nanolayer, and thus it is widely used as a support.

수산화코발트(cobalt hydroxide)는 전기화학적 산화환원 활성물질이며, 큰 층상 구조로 이루어져 있기 때문에 알카리 베터리, 연료전지, 2차전지, 슈퍼캐패시터의 소재로 많이 활용되고 있다.  Cobalt hydroxide is an electrochemical redox active material, and because of its large layered structure, it is widely used as a material for alkaline batteries, fuel cells, secondary batteries, and supercapacitors.

본 발명에서 사용되는 산화그라파이트/수산화코발트 합성물은 산화그라파이트와 수산화코발트가 결합되어 전기화학적인 특성을 증가시키는 효과를 제공한다. The graphite oxide / cobalt hydroxide composite used in the present invention is combined with graphite oxide and cobalt hydroxide to provide an effect of increasing the electrochemical properties.

또한, 상기 산화그라파이트/수산화코발트 합성물에 키토산을 적용하여 이를 전극 기재에 전기증착시키고, 여기에 효소를 고정화시켜 효소연료전지용 전극으로 사용할 경우, 효소의 안정성과 활성도가 증가되므로, 효소연료전지의 출력밀도와 전류밀도를 향상시킨다.
In addition, when chitosan is applied to the graphite oxide / cobalt hydroxide composite, the electrode is electro-deposited to the electrode substrate, and the enzyme is immobilized thereon to be used as an electrode for an enzyme fuel cell, so that the stability and activity of the enzyme are increased. Improve the density and current density.

본 발명은 또한,The present invention also relates to

(a) 산화그라파이트/수산화코발트/키토산 합성물을 전극 기재에 증착하는 단계; 및(a) depositing a graphite oxide / cobalt hydroxide / chitosan composite on the electrode substrate; And

(b) 전극 기재에 증착된 산화그라파이트/수산화코발트/키토산 합성물의 표면에 산화반응용 효소 또는 환원반응용 효소를 고정화하는 단계를 포함하는 효소연료전지(EFC)용 전극의 제조방법에 관한 것이다.(b) a method of manufacturing an electrode for an enzymatic fuel cell (EFC) comprising the step of immobilizing an enzyme for oxidation reaction or an enzyme for reduction reaction on the surface of a graphite oxide / cobalt hydroxide / chitosan composite deposited on an electrode substrate.

상기 (a)단계에서 상기 산화그라파이트/수산화코발트/키토산 합성물의 증착은 예컨대, 산화그라파이트/수산화코발트/키토산 합성물이 용해되어 있는 용액에 전극 기재를 담그고 상기 전극 기재가 (-) 전하를 띠도록 전기를 인가하여 상기 전극 기재의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착되게 하는 과정으로 수행될 수 있다. In the step (a), the deposition of the graphite oxide / cobalt hydroxide / chitosan composite is performed by dipping the electrode substrate in a solution in which the graphite oxide / cobalt hydroxide / chitosan composite is dissolved and causing the electrode substrate to have a negative charge. It can be carried out by applying a process to deposit a graphite oxide / cobalt hydroxide / chitosan composite on the surface of the electrode substrate.

상기 (a)단계에서 산화반응용 효소 또는 환원반응용 효소의 고정화는 예컨대, 산화반응용 효소 또는 환원반응용 효소와 산화그라파이트/수산화코발트/키토산 합성물의 가교화합물을 사용하여 수행될 수 있다. In the step (a), the immobilization of the oxidizing enzyme or the reducing enzyme may be performed using, for example, a crosslinking compound of the oxidizing enzyme or the reducing enzyme and the graphite oxide / cobalt hydroxide / chitosan composite.

상기에서 가교화합물로는 EDC 및 NHS를 들 수 있다.Examples of the crosslinking compound include EDC and NHS.

보다 구체적으로 설명하면, 산화반응용 효소 또는 환원반응용 효소와 가교화합물인 EDC 및 NHS를 혼합한 용액을 제조하고, 여기에 상기 산화그라파이트/수산화코발트/키토산 합성물이 표면에 증착된 전극 기재를 담가서 산화반응용 효소 또는 환원반응용 효소가 산화그라파이트/수산화코발트/키토산 합성물의 표면에 EDC 및 NHS를 매개하여 고정화 되게 하는 방식으로 수행될 수 있다.In more detail, a solution is prepared by mixing an enzyme for oxidation reaction or an enzyme for reduction reaction with EDC and NHS as a crosslinking compound, and immersing an electrode substrate having the graphite oxide / cobalt hydroxide / chitosan compound deposited on the surface thereof. The oxidation enzyme or the reduction enzyme may be carried out in such a manner as to immobilize EDC and NHS on the surface of the graphite oxide / cobalt hydroxide / chitosan composite.

상기에서 EDC 및 NHS는 공유결합에 의해 산화반응용 효소 또는 환원반응용 효소와 산화그라파이트/수산화코발트/키토산 합성물을 결합시킨다.In the above, EDC and NHS are covalently bonded to the oxidizing enzyme or the reducing enzyme and the graphite oxide / cobalt hydroxide / chitosan composite.

상기에서 산화반응용 효소 또는 환원반응용 효소를 산화그라파이트/수산화코발트/키토산 합성물의 표면에 고정시키는 방법은 상기 공유결합에 의한 방법 외에 이 분야에서 공지된 방법들이 제한 없이 사용될 수 있다. The method of immobilizing the oxidation enzyme or the reduction enzyme on the surface of the graphite oxide / cobalt hydroxide / chitosan composite may be used without limitation by methods known in the art in addition to the method by the covalent bond.

상기 (a)단계에서 산화그라파이트/수산화코발트/키토산 합성물이 용해되어 있는 용액은 산화그라파이트/수산화코발트 합성물을 키토산 용액에 혼합하여 반응시킴으로써 제조될 수 있다. The solution in which the graphite oxide / cobalt hydroxide / chitosan composite is dissolved in step (a) may be prepared by mixing and reacting the graphite oxide / cobalt hydroxide composite to the chitosan solution.

상기와 같은 방법에 의해 키토산은 산화그라파이트/수산화코발트 합성물 표면에 균일하게 고정되며, 높은 안정성을 갖는다.By the above method, chitosan is uniformly fixed on the surface of the graphite oxide / cobalt hydroxide composite and has high stability.

상기 키토산 용액은 용매로서 아세트산(acetic acid)을 사용하여 제조될 수 있다. The chitosan solution can be prepared using acetic acid as a solvent.

상기 산화그라파이트/수산화코발트 합성물은, 전자전달체(mediator)의 역할을 수행하는 것으로서, 산화그라파이트를 분산시킨 용액에 CoClH2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 제조될 수 있다. The graphite oxide / cobalt hydroxide composite, which serves as a mediator, is reacted by adding CoCl 2 H 2 O to a solution in which graphite oxide is dispersed, and then adding NH 4 OH to the reaction solution. Can be prepared.

상기 (a) 단계에서 전극 기재로는 금, 은, 백금, 구리, 알루미늄, 탄소나노튜브, 그라핀 등 다양한 금속 소재 및 탄소 소재가 사용될 수 있다. In the step (a), various metal materials and carbon materials, such as gold, silver, platinum, copper, aluminum, carbon nanotubes, and graphene, may be used as the electrode substrate.

상기 (b) 단계에서 산화반응용 효소 및 환원반응용 효소로는 이 분야에서 공지된 것들이 사용될 수 있다. 예컨대, 포도당을 기질로 사용하는 경우, 산화반응용 효소로는 글루코스 옥시다아제(glucose oxidase), 글루코스 디하이드로저네이즈(glucose dehydrogenase), 셀룰로오스 디하이드로저네이즈(cellobiose dehydrogenase), 디하이드로저네이즈(dehydrogenase) 등이 사용될 수 있으며, 환원반응용 효소로는 라케이즈(laccase), 홀스래디쉬 퍼옥시다아제(horseradish peroxidas), 빌리루빈 옥시다아제(bilirubin oxidase) 등이 사용될 수 있다.
As the enzyme for oxidation reaction and the enzyme for reduction reaction in step (b), those known in the art may be used. For example, when glucose is used as a substrate, enzymes for oxidation reaction include glucose oxidase, glucose dehydrogenase, cellobiose dehydrogenase, and dehydrogenase. And the like, and a reduction enzyme may include laccase, horseradish peroxidase, bilirubin oxidase, and the like.

본 발명은 또한, 상기 효소연료전지(EFC)용 전극을 포함하여 구성되는 것을 특징으로 하는 효소연료전지에 관한 것이다. The present invention also relates to an enzyme fuel cell comprising the electrode for enzyme fuel cell (EFC).

상기 효소연료전지에 있어서, 효소연료전지(EFC)용 전극을 제외한 다른 구성요소로는 이 분야에서 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 이들을 통상적인 방법에 의해 조합하여 본 발명의 효소연료전지를 제조할 수 있다. In the enzyme fuel cell, other components except for the electrode for the enzyme fuel cell (EFC) can be used without limitation those conventionally used in this field, combining them by a conventional method the enzyme fuel cell of the present invention Can be prepared.

본 발명의 효소연료전지는 산화그라파이트/수산화코발트/키토산 합성물을 이용하여 산화반응용 효소 또는 환원반응용 효소를 고정화하므로 높은 출력밀도와 전류밀도를 제공할 수 있다.
Enzyme fuel cell of the present invention by using the graphite oxide / cobalt hydroxide / chitosan compound to fix the enzyme for the oxidation reaction or the reduction reaction can provide a high power density and current density.

이하, 본 발명을 실시예를 이용하여 더욱 상세하게 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것으로서 본 발명은 하기 실시예에 의해 한정되지 않으며, 다양하게 수정 및 변경될 수 있다. 본 발명의 범위는 후술하는 특허청구범위의 기술적 사상에 의해 정해질 것이다.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are provided to illustrate the present invention, and the present invention is not limited to the following examples and may be variously modified and changed. The scope of the invention will be defined by the technical spirit of the claims below.

실시예Example 1:  One: 산화그라파이트Oxidized graphite /수산화코발트 합성물 합성/ Cobalt Hydroxide Composite Synthesis

그라파이트(graphite)를 산화시키기 위하여 가장 잘 알려진 Brodie 방법을 사용하였다. 그라파이트 4g을 NaClO3 34g에 섞은 후 HNO3 100ml를 넣고 24시간 동안 교반시켰다. 그 다음 세척을 위하여 3차 증류수 2000ml를 넣고 교반시킨 후, 원심분리기를 이용하여 산화그라파이트를 110℃에서 건조시켰다. The best known Brodie method was used to oxidize graphite. 4 g graphite, NaClO 3 After mixing in 34g HNO 3 100 ml was added and stirred for 24 hours. Then, 2000 ml of tertiary distilled water was added for washing, followed by stirring, and the graphite oxide was dried at 110 ° C. using a centrifuge.

도 1에 도시된 바와 같이, 상온에서 산화그라파이트/ 수산화코발트 합성물을 합성하기 위하여 산화그라파이트(graphite oxide) 0.1g을 3차 증류수 10ml에 넣고 1시간 동안 분산시켰다. 그 다음 CoClH2O (2M)을 3차 증류수 10ml에 녹였다. 이 두 용액을 혼합하여 24시간 동안 교반하면서 산화그라파이트에 코발트 이온이 흡착되게 하였다. 24시간 후 NH4OH를 pH 9.0이 될 때까지 넣어 준 후 24시간 동안 다시 교반하여 산화그라파이트에 흡착된 코발트 이온들이 수산화코발트가 되게 하였다. 이렇게 형성된 산화그라파이트/수산화코발트 합성물을 3차 증류수로 세척한 후 60℃ 진공 오븐에서 2시간 동안 건조시켰다.
As shown in Figure 1, 0.1g of graphite oxide (graphite oxide) was added to 10ml of tertiary distilled water to synthesize a graphite oxide / cobalt hydroxide composite at room temperature and dispersed for 1 hour. CoCl 2 H 2 O (2M) was then dissolved in 10 ml of tertiary distilled water. The two solutions were mixed and allowed to adsorb cobalt ions onto the graphite oxide with stirring for 24 hours. After 24 hours, NH 4 OH was added to pH 9.0, followed by stirring for 24 hours, so that the cobalt ions adsorbed on the graphite oxide became cobalt hydroxide. The graphite oxide / cobalt hydroxide composite thus formed was washed with tertiary distilled water and then dried in a 60 ° C. vacuum oven for 2 hours.

실시예Example 2:  2: AuAu 전극에 대한  For electrodes 산화그라파이트Oxidized graphite /수산화코발트/키토산 합성물 증착/ Cobalt Hydroxide / Chitosan Composite Deposition

키토산 0.1g을 25×TAE(Tris-acetate-EDTA) buffer 100ml와 3% 아세트산(acetic acid)이 혼합된 용액에 녹인 후 나일론 필터로 걸렀다. 그 다음 도 2에 도시된 바와 같이, 산화그라파이트/수산화코발트 합성물 3g과 키토산 용액 0.1 중량%(혼합물 총 중량 대비)를 혼합하여 산화그라파이트/수산화코발트 합성물에 키토산 용액이 코팅되게 하였다. 상기 혼합 용액에, 도 2에 도시된 바와 같이, 전원공급장치(power supply)의 Au 양극과 Au 음극을 담그고 50V를 인가하여 2분 동안 산화그라파이트/수산화코발트/키토산 합성물을 Au 전극에 증착시켰다. 산화그라파이트/수산화코발트/키토산 합성물은 용해된 키토산이 (+)전하를 띄므로 전기적으로 음극인 Au 극에 증착된다.
0.1 g of chitosan was dissolved in a solution containing 100 ml of 25 × TAE (Tris-acetate-EDTA) buffer and 3% acetic acid and filtered through a nylon filter. Then, as shown in FIG. 2, 3 g of the graphite oxide / cobalt hydroxide compound and 0.1 wt% of the chitosan solution (relative to the total weight of the mixture) were mixed so that the chitosan solution was coated on the graphite oxide / cobalt hydroxide compound. In the mixed solution, as shown in FIG. 2, the Au anode and the Au cathode of the power supply were immersed and 50V was applied to deposit a graphite oxide / cobalt hydroxide / chitosan compound on the Au electrode for 2 minutes. Graphite oxide / cobalt hydroxide / chitosan compounds are deposited on the Au cathode, which is electrically negative, because dissolved chitosan carries a positive charge.

실시예Example 3: 전자전달체인  3: electronic delivery chain 산화그라파이트Oxidized graphite /수산화코발트/키토산 합성물 상에 산화반응용 효소 또는 환원반응용 효소의 고정화Immobilization of Oxidation or Reduction Enzymes on Cobalt Hydroxide / chitosan Composites

도 3에 도시된 바와 같은 산화 또는 환원 반응용 효소가 고정화된 양극(anode) 또는 음극(cathode)을 제조하기 위하여, 0.1M 인산버퍼(phosphate buffer, pH 7.0)에 산화반응용 효소인 포도당 산화반응용 효소(glucose oxidase) 또는 환원반응용 효소인 라케이즈(laccase) 0.1mg/ml, 0.5mg/ml, 1mg/ml, 2mg/ml, 3mg/ml 및 4mg/ml를 각각 혼합 하였고, 0.12M EDC와 0.14M NHS를 같이 혼합한 후, 상기 혼합 용액에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 Au 전극을 8시간 동안 4℃ 상에서 담가두었다. 이 때 EDC/NHS 반응에 의해서 효소가 산화그라파이트/수산화코발트/키토산 합성물 상에 고정화된다. 이러한 반응은 효소에 있는 카르복실 그룹과 키토산의 아민 그룹의 공유결합에 의해 일어난다. 이렇게 고정화가 진행 된 후 0.1M 인산버퍼와 3차 증류수로 세척하였다.
In order to prepare an anode or a cathode to which an enzyme for oxidation or reduction reaction is immobilized as shown in FIG. 3, glucose oxidation, an enzyme for oxidation reaction, in 0.1M phosphate buffer (pH 7.0) 0.1 mg / ml, 0.5mg / ml, 1mg / ml, 2mg / ml, 3mg / ml and 4mg / ml, respectively, were mixed with glucose oxidase or reduction enzyme laccase, and 0.12M EDC After mixing 0.14M NHS together, the Au electrode on which the graphite oxide / cobalt hydroxide / chitosan composite was deposited was immersed at 4 ° C. for 8 hours. At this time, the enzyme is immobilized on the graphite oxide / cobalt hydroxide / chitosan compound by the EDC / NHS reaction. This reaction takes place by the covalent linkage of the carboxyl group in the enzyme with the amine group of chitosan. After the immobilization proceeded, it was washed with 0.1M phosphate buffer and tertiary distilled water.

실시예Example 4: 산화반응용 효소가 고정화된 전극과 환원반응용 효소가 고정화된 전극을 이용한  4: using an electrode to which an enzyme for oxidation reaction is immobilized and an electrode to which an enzyme for reduction reaction is immobilized 효소적Enzymatic 연료전지의 구성 및 전압(V)-전류(I) 및 출력밀도( Construction of Fuel Cell, Voltage (V) -Current (I) and Power Density ( PowerPower densitydensity )의 측정)

도 3에 도시된 바와 같이, 상기 실시예 3에서 제조된 산화그라파이트/수산화코발트/키토산 합성물 상에 포도당 산화효소가 고정화된 전극을 양극(anode)으로 사용하고, 산화그라파이트/수산화코발트/키토산 합성물 상에 라케이즈 환원효소가 고정화된 전극을 음극(cathode)으로 사용하여 서로 연결시키고, 그의 연료가 되는 0.05M 인산버퍼(pH 7.0)에 0.1M 포도당(glucose)을 포함하는 전해질(electrolyte)을 사용하여 이온막이 없는 기본적인 효소연료전지를 제작하였다. As shown in Figure 3, using the electrode on which the glucose oxidase immobilized on the graphite oxide / cobalt hydroxide / chitosan composite prepared in Example 3 as an anode, the graphite oxide / cobalt hydroxide / chitosan composite phase Electrodes with immobilized ERase reductase were connected to each other using a cathode, and an electrolyte containing 0.1 M glucose in a 0.05 M phosphate buffer (pH 7.0) serving as a fuel was used. A basic enzyme fuel cell without ion membrane was produced.

그리고 이 효소연료전지를 potentiostat/galvanostat (WPG100, WonATech 주식회사, 한국)에 연결하고 WPG 프로그램(WPG100, WonATech 주식회사, 한국)으로 25℃에서 전압(V)-전류(I) 및 출력밀도(Power density)를 측정하였다. The enzyme fuel cell was connected to potentiostat / galvanostat (WPG100, WonATech, Korea) and WPG program (WPG100, WonATech, Korea) at 25 ° C for voltage (V) -current (I) and power density. Was measured.

상기 실험결과, 산화그라파이트/수산화코발트/키토산 합성물을 사용하는 경우, 최대 517 μW/cm2(1114.65 μA/cm2, 0.46V)의 출력 밀도가 얻어지는 것을 확인하였다.
As a result of the experiment, when using the graphite oxide / cobalt hydroxide / chitosan composite, it was confirmed that an output density of up to 517 μW / cm 2 (1114.65 μA / cm 2, 0.46V) is obtained.

시험예Test Example 1:  One: XPSXPS 패턴 측정  Pattern measurement

실시예 1의 산화그라파이트/수산화코발트 합성물의 패턴을 XPS(X-ray photoelectron spectroscope)를 이용하여 측정하고 도 4에 나타내었다.The pattern of the graphite oxide / cobalt hydroxide composite of Example 1 was measured using an X-ray photoelectron spectroscope (XPS) and is shown in FIG. 4.

도 4의 (a)는 산화그라파이트(graphite)의 패턴을 나타내며, XPS 범위의 결합에너지는 C1s와 O1s만 표시되고 다른 금속계 무기물은 존재 하지 않는 것이 확인 되었다.Figure 4 (a) shows a pattern of graphite oxide (graphite), the binding energy of the XPS range was confirmed that only C1s and O1s are displayed, no other metal-based inorganic material.

도 4의 (b)는 산화그라파이트/수산화코발트 합성물의 패턴을 나타내며, XPS 범위의 결합에너지는 Co2P인 780.9 eV와 796.5 eV만 존재하는 것이 확인되었다. Figure 4 (b) shows a pattern of graphite oxide / cobalt hydroxide composite, it was confirmed that only the binding energy in the XPS range of 780.9 eV and 796.5 eV Co2P.

상기 시험을 통하여 산화그라파이트/수산화코발트 합성물이 존재 하는 것을 알 수 있었다.
Through the test it was found that the graphite oxide / cobalt hydroxide composites are present.

시험예Test Example 2:  2: FTFT -- IRIR 표면 측정 Surface measurement

실시예 1의 산화그라파이트/수산화코발트 합성물의 표면을 FT-IR (Fourier Transform Infrared Spectroscopy)로 분석하여 도면 5에 나타내었다. The surface of the graphite oxide / cobalt hydroxide composite of Example 1 was shown in FIG. 5 by analyzing Fourier Transform Infrared Spectroscopy (FT-IR).

도 5의 결과로부터 (a)산화그라파이트와 (b)산화그라파이트/수산화코발트에 나타나는 wavenumber가 다른 것을 확인 할 수 있다. 이를 통하여 산화그라파이트 표면에 수산화코발트가 흡착되어 있음을 알 수 있었다.
It can be seen from the results of FIG. 5 that the wavenumbers shown in (a) graphite oxide and (b) graphite oxide / cobalt hydroxide are different. Through this, it was found that cobalt hydroxide was adsorbed on the graphite oxide surface.

시험예Test Example 3:  3: TEMTEM 이미지 측정 Image measurement

실시예 1의 산화그라파이트/수산화코발트 합성물을 TEM (transmission electron microscopy)으로 촬영하여 도면 6에 나타내었다. The graphite oxide / cobalt hydroxide composite of Example 1 was photographed by transmission electron microscopy (TEM) and shown in FIG. 6.

도면 6에 나타낸 바와 같이, (a)산화그라파이트와 (b)산화그라파이트/수산화코발트 합성물은 이미지가 상이하며, (b)산화그라파이트/수산화코발트 합성물은 산화그라파이트 위에 막대 모양의 입자(수산화코발트)가 흡착되어 있는 것을 확인할 수 있었다.
As shown in FIG. 6, (a) graphite oxide and (b) graphite oxide / cobalt hydroxide composites are different images, and (b) graphite oxide / cobalt hydroxide composites have rod-shaped particles (cobalt hydroxide) on graphite oxide. It was confirmed that it was adsorbed.

시험예Test Example 4:  4: SEMSEM 이미지 측정 Image measurement

Au 전극의 표면, 상기 Au 전극의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 전극(실시예 2), 및 Au의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착되고 그 위에 산화효소로서 글루코즈 옥시데이즈(glucose oxidase)가 고정화된 전극(실시예 3)을 SEM(Scanning electron microscopy)으로 촬영하여 도 7에 나타내었다. A surface of an Au electrode, an electrode on which a graphite oxide / cobalt hydroxide / chitosan composite was deposited on the surface of the Au electrode (Example 2), and a graphite oxide / cobalt hydroxide / chitosan composite on the surface of Au were deposited thereon as an oxidase. The electrode (Example 3) to which glucose oxidase was immobilized was photographed by scanning electron microscopy (SEM) and shown in FIG. 7.

도 7의 (a)는 Au 전극 표면을 나타낸다. Au 전극 표면은 약간 거칠기도 하지만 대체적으로 매끄럽고 편평한 것을 알 수 있었다. Fig. 7A shows the Au electrode surface. The Au electrode surface was slightly rough but generally smooth and flat.

도 7의 (b)는 상기 Au 전극의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 전극을 나타낸다. 전기 증착법에 의해 상기 Au 전극 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착됨으로써 넓은 표면적과 울퉁불둥한 표면이 형성된 것을 알 수 있다. FIG. 7B illustrates an electrode on which a graphite oxide / cobalt hydroxide / chitosan compound is deposited on the surface of the Au electrode. It can be seen that the graphite oxide / cobalt hydroxide / chitosan composite is deposited on the surface of the Au electrode by the electro deposition method, thereby forming a large surface area and a bumpy surface.

도 7의 (c)는 Au의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 코팅되고 그 위에 산화효소로서 글루코즈 옥시데이즈(glucose oxidase)가 고정화된 전극을 나타낸다. 상기 도 7의 (c) 이미지로부터 산화효소를 고정화함으로써 상기 도 7의 (b)의 울퉁불퉁한 표면의 빈 공간이 줄어든 것을 확인할 수 있었다.
FIG. 7C shows an electrode coated with a graphite oxide / cobalt hydroxide / chitosan compound on the surface of Au and having glucose oxidase immobilized thereon as an oxidase. By fixing the oxidase from the image (c) of FIG. 7, it was confirmed that the empty space on the rugged surface of FIG. 7 (b) was reduced.

시험예Test Example 5:  5: RamanRaman 측정 Measure

산화그라파이트/수산화코발트/키토산 합성물(실시예 2)과 산화그라파이트/수산화코발트/키토산-효소 합성물(실시예 3)의 전기 증착과 효소의 고정화를 비교 확인 하기 위하여 Raman spectroscopy로 Raman을 측정하여 도 8에 나타내었다.Raman was measured by Raman spectroscopy to compare the electrodeposition of the graphite oxide / cobalt hydroxide / chitosan composite (Example 2) and the graphite oxide / cobalt hydroxide / chitosan-enzyme composite (Example 3) and the immobilization of the enzyme. Shown in

도 8 (a)는 산화그라파이트/수산화코발트/키토산 합성물을 측정한 결과를 나타낸다. 여기서 산화그라파이트의 Raman band 1354.5-1601.6 cm-1 및 수산화코발트의 Raman band 520cm-1가 함께 측정되었다.Figure 8 (a) shows the results of measuring the graphite oxide / cobalt hydroxide / chitosan composite. Here, the Raman band 1354.5-1601.6 cm -1 of graphite oxide and the Raman band 520cm -1 of cobalt hydroxide were measured together.

도 8 (b)는 산화그라파이트/수산화코발트/키토산-효소 합성물을 측정한 결과를 나타낸다. 여기서 Raman band는 1347.8 ~ 1581.6 cm-1에서만 측정되었다.Figure 8 (b) shows the result of measuring the graphite oxide / cobalt hydroxide / chitosan-enzyme complex. The Raman band was measured only at 1347.8 ~ 1581.6 cm -1 .

상기의 결과로부터 전기 증착을 통해 산화그라파이트/수산화코발트/키토산 합성물의 표면에 효소가 고정화된 것을 확인할 수 있었다.
From the above results, it was confirmed that the enzymes were immobilized on the surface of the graphite oxide / cobalt hydroxide / chitosan composite through the evaporation.

시험예Test Example 6: 순환전류전압( 6: cyclic current voltage CVCV cyclecycle ) 측정) Measure

도 9는 Au 전극, Au 표면에 산화그라파이트/키토산 합성물이 증착된 전극, Au 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착된 전극, 그리고 Au 표면에 산화그라파이트/수산화코발트/키토산-효소 합성물이 증착된 전극의 경우, 이들이 순환전압전류 값에 미치는 영향을 비교하여 나타낸 그래프이다. 9 shows an Au electrode, an electrode on which a graphite oxide / chitosan composite is deposited on an Au surface, an electrode on which a graphite oxide / cobalt hydroxide / chitosan composite is deposited on an Au surface, and a graphite oxide / cobalt hydroxide / chitosan-enzyme composite on an Au surface In the case of deposited electrodes, it is a graph comparing the effect of these on the cyclic voltammogram values.

도 9로부터 확인되는 바와 같이, 산화그라파이트/수산화코발트/키토산-효소 전극은 산화환원 면적(redox area)이 다른 전극들보다 큰 것으로 확인되었으며, 전자전달 능력도 다른 전극들에 비하여 우수함을 확인할 수 있었다.
As confirmed from FIG. 9, the graphite oxide / cobalt hydroxide / chitosan-enzyme electrode was found to have a redox area larger than that of other electrodes, and the electron transport ability was also superior to other electrodes. .

시험예Test Example 7: 고정화된 효소의 농도에 따른 음극 또는 양극의 전압( 7: Voltage of cathode or anode according to the concentration of immobilized enzyme ( voltagevoltage ) 측정) Measure

실시예 3에서 제작된 전극에 대하여 전압을 측정하고, 그 결과를 도 10에 나타내었다. The voltage was measured with respect to the electrode produced in Example 3, and the result is shown in FIG.

도 10에 나타난 바와 같이, 포도당 산화효소의 농도가 1mg/ml일 때 그 최대 전압이 0.61V까지 증가 되는 것이 확인되었고, 라케이즈의 농도가 0.5mg/ml일 때 그 최대 전압이 0.59V까지 증가되는 것이 확인되었다.
As shown in FIG. 10, it was confirmed that the maximum voltage was increased to 0.61 V when the concentration of glucose oxidase was 1 mg / ml, and the maximum voltage was increased to 0.59 V when the concentration of laccase was 0.5 mg / ml. It was confirmed.

시험예Test Example 8: 본 발명의 전극(음극과 양극)을 사용한 효소연료전지의 전류밀도( 8: Current Density of Enzyme Fuel Cell Using Electrode (cathode and Anode) of the Invention currentcurrent densitydensity )와 출력밀도() And power density ( powerpower densitydensity ) 측정) Measure

실시예 4에서와 같이 음극과 양극을 함께 이용하였을 때 효소연료전지의 전류밀도(current density)와 출력밀도(power density)를 측정하고 도 11에 나타내었다. When the negative electrode and the positive electrode were used together as in Example 4, the current density and power density of the enzyme fuel cell were measured and shown in FIG. 11.

도 11로부터 산화그라파이트/수산화코발트/키토산 합성물을 이용했을 때, 최대 517 μW/cm2(1114.65 μA/cm2, 0.46V)의 출력 밀도가 생산되는 것을 확인하였다.
When using the graphite oxide / cobalt hydroxide / chitosan composite from Figure 11, it was confirmed that the output density of up to 517 μW / cm 2 (1114.65 μA / cm 2, 0.46V) is produced.

Claims (10)

전극 기재;
상기 전극 기재 표면에 증착된 산화그라파이트/수산화코발트/키토산 합성물; 및
상기 산화그라파이트/수산화코발트/키토산 합성물의 표면에 고정화된 산화반응용 효소 또는 환원반응용 효소를 포함하는 효소연료전지(EFC)용 전극.
An electrode substrate;
Graphite oxide / cobalt hydroxide / chitosan composites deposited on the surface of the electrode substrate; And
An electrode for an enzymatic fuel cell (EFC) comprising an enzyme for oxidation reaction or an enzyme for reduction reaction immobilized on the surface of the graphite oxide / cobalt hydroxide / chitosan composite.
청구항 1에 있어서,
상기 전극 기재는 금, 은, 백금, 구리, 알루미늄, 탄소나노튜브 및 그라핀으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 효소연료전지(EFC)용 전극.
The method according to claim 1,
The electrode substrate is an electrode for enzyme fuel cell (EFC), characterized in that selected from the group consisting of gold, silver, platinum, copper, aluminum, carbon nanotubes and graphene.
(a) 산화그라파이트/수산화코발트/키토산 합성물을 전극 기재에 증착하는 단계; 및
(b) 전극 기재에 증착된 산화그라파이트/수산화코발트/키토산 합성물의 표면에 산화반응용 효소 또는 환원반응용 효소를 고정화하는 단계를 포함하는 효소연료전지(EFC)용 전극의 제조방법.
(a) depositing a graphite oxide / cobalt hydroxide / chitosan composite on the electrode substrate; And
(B) a method for producing an electrode for an enzyme fuel cell (EFC) comprising the step of immobilizing the oxidation reaction enzyme or the reduction reaction enzyme on the surface of the graphite oxide / cobalt hydroxide / chitosan composite deposited on the electrode substrate.
청구항 3에 있어서,
상기 (a)단계에서 산화그라파이트/수산화코발트/키토산 합성물의 증착은 산화그라파이트/수산화코발트/키토산 합성물이 용해되어 있는 용액에 전극 기재를 담그고 상기 전극 기재가 (-) 전하를 띠도록 전기를 인가하여 상기 전극 기재의 표면에 산화그라파이트/수산화코발트/키토산 합성물이 증착되게 하여 수행되는 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method according to claim 3,
In the step (a), the deposition of the graphite oxide / cobalt hydroxide / chitosan composite is performed by dipping the electrode substrate in a solution in which the graphite oxide / cobalt hydroxide / chitosan composite is dissolved, and applying electricity so that the electrode substrate has a negative charge. Method for producing an electrode for enzyme fuel cell (EFC), characterized in that the graphite oxide / cobalt hydroxide / chitosan composite is deposited on the surface of the electrode substrate.
청구항 3에 있어서,
상기 (a)단계에서 산화반응용 효소 또는 환원반응용 효소의 고정화는 산화반응용 효소 또는 환원반응용 효소와 산화그라파이트/수산화코발트/키토산 합성물의 가교화합물을 사용하여 수행되는 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method according to claim 3,
In the step (a), the immobilization of the oxidizing enzyme or the reducing enzyme is carried out using an enzyme or a reducing enzyme and a crosslinking compound of a graphite oxide / cobalt hydroxide / chitosan compound. Method of manufacturing an electrode for a battery (EFC).
청구항 5에 있어서,
상기 가교화합물은 EDC 및 NHS인 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method according to claim 5,
The crosslinking compound is a method for producing an electrode for enzyme fuel cell (EFC), characterized in that EDC and NHS.
청구항 4에 있어서,
상기 산화그라파이트/수산화코발트/키토산 합성물이 용해되어 있는 용액은 산화그라파이트/수산화코발트 합성물을 키토산 용액에 혼합하여 반응시킴으로써 제조되는 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method of claim 4,
The solution in which the graphite oxide / cobalt hydroxide / chitosan composite is dissolved is prepared by mixing and reacting the graphite oxide / cobalt hydroxide composite in a chitosan solution.
청구항 7에 있어서,
상기 키토산 용액은 용매로서 아세트산(acetic acid)을 포함하는 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method of claim 7,
The chitosan solution is a method for producing an electrode for enzyme fuel cell (EFC), characterized in that it contains acetic acid (acetic acid) as a solvent.
청구항 7에 있어서,
상기 산화그라파이트/수산화코발트 합성물은 산화그라파이트를 분산시킨 용액에 CoClH2O를 넣어 반응시킨 후, 상기 반응용액에 NH4OH를 넣어 반응시켜서 제조되는 것을 특징으로 하는 효소연료전지(EFC)용 전극의 제조방법.
The method of claim 7,
The graphite oxide / cobalt hydroxide composite is prepared by reacting CoCl 2 · H 2 O with a graphite oxide dispersion, and then adding NH 4 OH to the reaction solution to react the enzyme fuel cell (EFC). Method for producing an electrode for use.
청구항 1의 효소연료전지(EFC)용 전극을 포함하여 구성되는 것을 특징으로 하는 효소연료전지.Enzyme fuel cell comprising an electrode for enzyme fuel cell (EFC) of claim 1.
KR1020120151726A 2012-12-24 2012-12-24 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same KR101363297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120151726A KR101363297B1 (en) 2012-12-24 2012-12-24 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120151726A KR101363297B1 (en) 2012-12-24 2012-12-24 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same

Publications (1)

Publication Number Publication Date
KR101363297B1 true KR101363297B1 (en) 2014-02-19

Family

ID=50271041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120151726A KR101363297B1 (en) 2012-12-24 2012-12-24 Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same

Country Status (1)

Country Link
KR (1) KR101363297B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107758651A (en) * 2017-10-13 2018-03-06 南京旭羽睿材料科技有限公司 A kind of silver-plated processing technology of graphene
KR20190132134A (en) * 2018-05-18 2019-11-27 고려대학교 산학협력단 Method for preparing electron transfer material using biochar produced from microalgae sludge
CN111799479A (en) * 2020-07-20 2020-10-20 中国海洋大学 Chitosan-transition metal ion composite modified cathode material and preparation method and application thereof
CN113713785A (en) * 2021-09-17 2021-11-30 云南大学 Polydopamine-coated chitosan-cobalt hydroxide gel ball and preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.Wang, et al., A novel hydrazine electrochemical sensor based on the high specific surface area graphene, Microchim Acta (2010) 169:1-6 (2010.2.20) *
X-C.Dong, et al., 3D Graphene-Cobalt Oxide electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, American Chemical Society 6(4) 2012, 3206-3213 (2012.3.21) *
Y.Liu, et al., Biocompatible Graphene Oxide-Based Glucose Biosensors, Langmuir 2010, 26(9), 6158-6160 (2010.3.29) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107758651A (en) * 2017-10-13 2018-03-06 南京旭羽睿材料科技有限公司 A kind of silver-plated processing technology of graphene
KR20190132134A (en) * 2018-05-18 2019-11-27 고려대학교 산학협력단 Method for preparing electron transfer material using biochar produced from microalgae sludge
KR102579378B1 (en) * 2018-05-18 2023-09-14 고려대학교 산학협력단 Method for preparing electron transfer material using biochar produced from microalgae sludge
CN111799479A (en) * 2020-07-20 2020-10-20 中国海洋大学 Chitosan-transition metal ion composite modified cathode material and preparation method and application thereof
CN113713785A (en) * 2021-09-17 2021-11-30 云南大学 Polydopamine-coated chitosan-cobalt hydroxide gel ball and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Xiao et al. An overview of dealloyed nanoporous gold in bioelectrochemistry
Mazurenko et al. How the intricate interactions between carbon nanotubes and two bilirubin oxidases control direct and mediated O2 reduction
Narváez Villarrubia et al. Methylene green electrodeposited on SWNTs-based “bucky” papers for NADH and l-malate oxidation
Christwardana et al. A correlation of results measured by cyclic voltammogram and impedance spectroscopy in glucose oxidase based biocatalysts
Di Bari et al. Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction
Zhang et al. Layer-by-layer assembly for immobilizing enzymes in enzymatic biofuel cells
Jung et al. ZnO nanowire-based glucose biosensors with different coupling agents
Gao et al. Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells
Zhang et al. 3D nitrogen-doped graphite foam@ Prussian blue: an electrochemical sensing platform for highly sensitive determination of H 2 O 2 and glucose
Nasri et al. A glucose biosensor based on direct electron transfer of glucose oxidase immobilized onto glassy carbon electrode modified with nitrophenyl diazonium salt
Zhao et al. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells
KR101363297B1 (en) Electrodes for enzymatic fuel cells which a graphite oxide/cobalt hydroxide/chitosan-enzyme composite is electrodeposited on the electrode, methods for manufacturing the same, and enzymatic fuel cells comprising the same
Bao et al. Electrochemical reduction-assisted in situ fabrication of a graphene/Au nanoparticles@ polyoxometalate nanohybrid film: high-performance electrochemical detection for uric acid
Fenga et al. Multiwalled carbon nanotubes to improve ethanol/air biofuel cells
Haque et al. Preparation and characterization of a bioanode (GC/MnO2/PSS/Gph/Frt/GOx) for biofuel cell application
Elrouby Electrochemical applications of carbon nanotube
Xu et al. Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells
Korani et al. Nickel-phendione complex covalently attached onto carbon nanotube/cross linked glucose dehydrogenase as bioanode for glucose/oxygen compartment-less biofuel cell
Korani et al. High performance glucose/O2 compartment-less biofuel cell using DNA/CNTs as platform for immobilizing bilirubin oxidase as novel biocathode and integrated NH2-CNTs/dendrimer/glucose dehydrogenase/nile blue as bioanode
ul Haque et al. Polythiophene-titanium oxide (PTH-TiO2) nanocomposite: As an electron transfer enhancer for biofuel cell anode construction
Kondaveeti et al. Investigating the role of metals loaded on nitrogen-doped carbon-nanotube electrodes in electroenzymatic alcohol dehydrogenation
Sheng et al. Graphitic nanocages prepared with optimized nitrogen-doped structures by pyrolyzing selective precursors towards highly efficient oxygen reduction
KR102579378B1 (en) Method for preparing electron transfer material using biochar produced from microalgae sludge
Karajić et al. Enzymatic glucose-oxygen biofuel cells for highly efficient interfacial corrosion protection
Moumene et al. Electrochemical functionalization as a promising avenue for glucose oxidase immobilization at carbon nanotubes: enhanced direct electron transfer process

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 6