JPS58179180A - Power regenerative controller - Google Patents

Power regenerative controller

Info

Publication number
JPS58179180A
JPS58179180A JP57061298A JP6129882A JPS58179180A JP S58179180 A JPS58179180 A JP S58179180A JP 57061298 A JP57061298 A JP 57061298A JP 6129882 A JP6129882 A JP 6129882A JP S58179180 A JPS58179180 A JP S58179180A
Authority
JP
Japan
Prior art keywords
current
transistor
bridge
phase
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57061298A
Other languages
Japanese (ja)
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57061298A priority Critical patent/JPS58179180A/en
Publication of JPS58179180A publication Critical patent/JPS58179180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To perform the regenerative control of a power factor 1 by recovering a DC power source to an AC power source via a bridge circuit having an electric valve and a diode. CONSTITUTION:An arm which is composed of a diode connected in anti-parallel to an electric valve through a reactor 8 from an AC power source 1 is connected to an AC terminal of a transistor bridge 9 connected in 3-phase bridge manner. A smoothing capacitor 5 is connected to the DC side of the bridge 9, a current detector 10 is connected between the capacitor 5 and the DC side of the bridge 9 for detecting the regenerative current to the power source 1. The electric valve of the bridge 9 is controlled by chopper at a control angle alpha=180 deg. (beta=0 deg.) by detecting the phase from the power source 1.

Description

【発明の詳細な説明】 〔発明の分野〕 この発明はぼi電源から交流電源への磁力回生制#装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a device for controlling magnetic regeneration from a power source to an alternating current power source.

〔発明の背景技術〕[Background technology of the invention]

lI流I!#からチョッパ回路によシ直光′鑞圧を両部
性に変換してtI流電動機を運転したり、直流電圧を交
流電圧に変換するインバータ回路により変流電動機を運
転するシステムが広く利用されている。ところ違これら
のシステムで運転している′電fIhIFIAを減速さ
せるべく制御すると、回生のエネルギが直流−啄に帰還
する丸め直流電圧が上昇し、この回生電力全更に交流電
源に回生ずる必要が生ずる。
lI style I! Systems are widely used in which a chopper circuit converts direct light to bipartite solder pressure to operate a tI current motor, and an inverter circuit converts DC voltage to AC voltage to operate a current transformer motor. ing. In some cases, if the electric power IhFIA operating in these systems is controlled to slow down, the rounding DC voltage at which the regenerated energy is returned to the DC voltage increases, and all of this regenerated power must be further regenerated into the AC power supply. .

従来1支術の一例を第1図に示す。第1図において交#
、域源lよりサイリスタブリッジ2によって町f[i’
it圧を作り、リアクトル4、コンデンサ5によって平
滑化した直流電源を得ている。この直流電源からチョッ
パ回路6(この例ではトランジスタブリッジ)により3
相父随に変換し交流電励機7を駆動する構成となってい
る。このような構成において、交流電動機7に供給する
交流の周波数を減じることにより交流電動機を減速する
と、交流TIL動機1の回転エネルギは直流電源に回生
され、コンデンサ5の電圧を上昇させる。この電圧上昇
を検出し、サイリスタブリッジ2をしゃ断しサイリスタ
ブリッジ3をオンすることにより回生電流を変流tt源
lに回生じコンデンサ5の電圧を下げるようにしている
An example of conventional 1-branch surgery is shown in Fig. 1. In Figure 1,
, town f[i'
It creates a DC power supply smoothed by a reactor 4 and a capacitor 5. From this DC power supply, a chopper circuit 6 (transistor bridge in this example)
The configuration is such that the AC electric exciter 7 is driven by converting the AC power into parallel outputs. In such a configuration, when the AC motor is decelerated by reducing the frequency of the AC supplied to the AC motor 7, the rotational energy of the AC TIL motor 1 is regenerated into the DC power supply, increasing the voltage of the capacitor 5. This voltage rise is detected, and the thyristor bridge 2 is cut off and the thyristor bridge 3 is turned on, thereby generating a regenerative current to the current transformer tt source 1 and lowering the voltage of the capacitor 5.

このような回生方式はサイリスタレオナードの基本的な
方式であり、広く使用されている周知技術である。
This regeneration method is a basic method of thyristor Leonard, and is a well-known technology that is widely used.

しかしこの方式の場合、サイリスタブリッジの位相制御
による電圧制御を行なう丸め、交流電源1から流れ込む
電流と回生される電流共に力率が悪く、最適設計を行っ
ても力率0.7〜0.8程度が限度となる欠点がある。
However, in the case of this method, the power factor is poor for both the current flowing from the AC power supply 1 and the regenerated current, which performs voltage control by phase control of the thyristor bridge, and even with an optimal design, the power factor is 0.7 to 0.8. There is a drawback that the degree is the limit.

今後の省エネ時代には電源側力率が1に近い事が重要で
あると考えらn1父流電源から流入、流出する電流共に
力率が1に近い交流−直流変換装置の制御が望まれ、特
に′電力回生時に高力率となる電力回生制御が望まれて
いる。
In the future energy saving era, it is considered important that the power factor on the power source side is close to 1, so it is desirable to control an AC-DC converter in which the power factor is close to 1 for both the inflow and outflow of current from the n1 father current power source. In particular, power regeneration control that provides a high power factor during power regeneration is desired.

〔発明の目的〕[Purpose of the invention]

本発明はI:、記した点に1みてなされたもので力4A
1の回生制@1金天現し得る装置itを提供しようとす
るものである。
The present invention has been made in consideration of the points noted above and has a force of 4A.
This is an attempt to provide a device IT that can perform a regeneration system @ 1 time.

〔発明の概要〕[Summary of the invention]

この目的のために、不発明においては′電気弁とダイオ
ードを逆並列に接続したアームを説数個組合せたブリッ
ジ回路により直流電源から交流−源に回生ずるように構
成し、そして交流電源から位相を検出することにより該
電気弁をほぼ制御角α=180°(β=09)でチョッ
パ制御する。
For this purpose, in the invention, a bridge circuit is constructed in which several arms each having an electric valve and a diode connected in antiparallel are used to regenerate from a DC power supply to an AC source, and a phase By detecting this, the electric valve is chopper-controlled at approximately a control angle α=180° (β=09).

〔発明の実施列〕[Implementation sequence of the invention]

以下第2図を参照して本発明の一実施例を説明する。図
中第1図と同一のものには同一の番号を付しである。
An embodiment of the present invention will be described below with reference to FIG. Components in the figure that are the same as those in FIG. 1 are given the same numbers.

交流電源1からリアクトル8(こ扛は交流電源1のイン
ダクタンスを利用しても艮い)を通して電気弁(この実
施列においてはトランジスタ、以下トランジスタと称す
る。)と逆並ダtlK接続したダイオードから成るアー
ムを3相ブリツジ接続したトランジスタブリッジ9の交
流端子に接続する。
It consists of an electric valve (in this implementation series, a transistor, hereinafter referred to as a transistor) and a diode connected in reverse parallel to the reactor 8 (this can also be done by using the inductance of the AC power source 1) from the AC power source 1. The arm is connected to an AC terminal of a transistor bridge 9 connected in a three-phase bridge.

トランジスタブリッジ9の[15![には平滑コンデン
サ5が接続さ扛、コンデンサ5とトランジスタブリッジ
9の直流側の一端子間には電流検出6t。
[15! of transistor bridge 9! A smoothing capacitor 5 is connected to the terminal, and a current detection terminal 6t is connected between the capacitor 5 and one terminal on the DC side of the transistor bridge 9.

を接続して′51:流成源1への回生電流を検出する。'51: Detect the regenerative current to the flow source 1.

前記直流側のコンデンサ延圧を電圧検出器11により検
出し、基準電圧12 (一定置又はOT変−圧でも良い
)と比較し増幅躇13によシ該1iifL測シ圧が設定
値以上になると回生電流基準IRを出力し、−流検出器
lOによシ検出した回生電iId とを比較し、入力出
力特性にヒステリシスを持つ壇・−614によりチョッ
パ信号VQHを出力する。このチョッパ信号VOHは力
41の回生1流が流れるようアンド回路30〜35によ
り各トランジスタにチョッパ信号f、配分し、駆動回路
40〜45によりトランジスタブリッジ9の各トランジ
スタ9U、9 V、9W。
The capacitor rolling pressure on the DC side is detected by the voltage detector 11, and compared with the reference voltage 12 (fixed voltage or OT transformer may be used). It outputs the regenerative current reference IR, compares it with the regenerative current iId detected by the -current detector 1O, and outputs the chopper signal VQH by means of the -614 stage, which has hysteresis in its input/output characteristics. This chopper signal VOH is distributed to each transistor by AND circuits 30 to 35 so that the regenerative first flow of force 41 flows, and the drive circuits 40 to 45 distribute the chopper signal f to each transistor 9U, 9V, and 9W of transistor bridge 9.

9X、(IY、9Zi駆動する。9X, (IY, 9Zi drive.

トランジスタ全駆動する位相を検出するためのダイオー
ドブリッジ21の直i側に抵抗22を接続し、交流側に
は変光側電流位相を検出するためのフォトカプラ20U
、20に、20’、20Y、201,20zの発光ダイ
オード部を経由して交流4源1に接続する。フォトカプ
ラのトランジスタ側は補助′−源23を電源とし、抵抗
ム、25.26.27.28.29全負荷としてフォト
カプラ20U、 20X、 20V、20Y、 20W
、20Zの出力を接続し、夫々位相出力f’U、Px、
pv、py、FW、pzを得る。
A resistor 22 is connected to the direct i side of the diode bridge 21 for detecting the phase when all transistors are driven, and a photocoupler 20U is connected to the alternating current side for detecting the variable current phase.
, 20, 20', 20Y, 201, and 20z are connected to four AC sources 1 via light emitting diode sections. The transistor side of the photocoupler uses the auxiliary source 23 as a power source, and the photocoupler 20U, 20X, 20V, 20Y, 20W as a resistor, 25.26.27.28.29 full load.
, 20Z are connected, and the phase outputs f'U, Px,
Obtain pv, py, FW, pz.

回生成流制御用出力VOHと上記位相出力の論理イ責を
アンド回1@30.31.32.33.34.35によ
りとり、駆動回路40〜45によシトランジスタブリッ
ジ9のトランジスタを夫々駆動する。
The logic difference between the regeneration flow control output VOH and the above phase output is taken by the AND circuit 1@30.31.32.33.34.35, and the transistors of the transistor bridge 9 are driven by the drive circuits 40 to 45, respectively. do.

なお、′峨m、咲出itOの出カニdを整流器15によ
り回生電流の極性のみレベル検出器16により過電流を
検出し、沫待回路17により沫持しアンド回路30〜3
5の条件として入力し、過也流発生時はアンド条件を不
成立にしてすべてのトランジスタ全オフし、回生時の故
障をしや析する動作を行わせる。
Note that the rectifier 15 detects only the polarity of the regenerative current, the overcurrent is detected by the level detector 16, and the output d of ``Am'' and the Sakuide itO is maintained by the AND circuits 30 to 3.
5 is input as the condition, and when an excessive current occurs, the AND condition is not satisfied, all transistors are turned off, and an operation is performed to analyze the failure during regeneration.

次に動作を第3図とsg4図を参照しつつ説明する。Next, the operation will be explained with reference to FIG. 3 and sg4.

まず力率1の回生電流を流すためのトランジスタブリッ
ジ9のトランジスタのオン区間を決定する位相検出回路
について第3図により説明する。
First, a phase detection circuit that determines the ON period of the transistor of the transistor bridge 9 for flowing a regenerative current with a power factor of 1 will be explained with reference to FIG.

ダイオードブリッジ21の入力電流iR,is。Input current iR,is of diode bridge 21.

ITと交流電源の線間電圧e1、相電圧epを第3図に
示す、この関係はダイオードブリッジは位相制御が不可
能な九め、入力室fiiR,is、ITは力率1の1を
流となる。このため第2図においてこの入力電流iR,
i51、i Tlフォトカプラ20U、 20 K、 
207.20Y、 20 f、 20Zの発光部に流し
、フォトカプラの受光側トランジスタの出力電光として
絶縁して位相電圧P’U、PX、 P7゜px、pw、
pzを得ている。この位相電圧はいうまでもなく力率1
のコンバータ通電の位相関係にあり、これと180度の
位相でトランジスタブリッジ9をa!することにより力
率1の回生電流を流すことができる。即ちIRが流れ込
んでいる位相期間(&〜b間)にトランジスタアーム9
Vをオンして、1Rと逆位相の電流を流すことにより回
生を行うものである。力41の回生匍」御を実用化する
ためには、上記pHの位相でトランジスタアームをチョ
ッパ制御しなから電流1直を市U御することと、82図
においてコンデンサ5の電圧V6が開光1を源lの起電
圧よシ高いことが必要である。
Figure 3 shows the line voltage e1 and phase voltage ep of the IT and AC power supplies. becomes. Therefore, in Fig. 2, this input current iR,
i51, i Tl photocoupler 20U, 20K,
207.20Y, 20f, 20Z, and is insulated as the output lightning of the photocoupler's light-receiving transistor, and the phase voltages P'U, PX, P7゜px, pw,
I'm getting pz. Needless to say, this phase voltage has a power factor of 1
There is a phase relationship of converter energization, and the transistor bridge 9 is connected to a! with a phase of 180 degrees from this. By doing so, a regenerative current with a power factor of 1 can be caused to flow. In other words, during the phase period (between & and b) in which IR is flowing, the transistor arm 9
Regeneration is performed by turning on V and flowing a current with the opposite phase to 1R. In order to put into practical use the regenerative control of the power 41, it is necessary to chopper control the transistor arm at the above pH phase and then control the current 1st shift, and in Fig. 82, the voltage V6 of the capacitor 5 should be It is necessary that the electromotive force of the source l be higher than that of the source l.

上記チョッパIが1#による回生′電流の・t+lJ仰
の様子を第4図により説明する。
The manner in which the regenerative current increases by .t+lJ when the chopper I is 1# will be explained with reference to FIG.

いま交流電源lの3相全改逆起亀圧’OjDMF  よ
りコンデンサ5の電圧V(1が図に示すように高くなっ
たことを第2図で説明したように増1隅413により比
較増幅し、回生電流基準IRとして出力すると、チョッ
パ信号VOHは11″を出力し、アンド回路30〜35
によシカ率1の回生になるようトランジスタアームtP
]i!!定してトランジスタアームをスイッチする。即
ち時刻む、ではトランジスタアーム91Jと9zをオン
する。そうすると回生電流I(lが増加し、工R=工d
 となり、チョッパ(#号VcHは″0”となり、トラ
ンジスタアーム9U。
Now, the voltage V (1) of the capacitor 5 has become higher than the three-phase fully reverse electromotive force 'OjDMF of the AC power supply l as shown in the figure. , when the regenerative current reference IR is output, the chopper signal VOH outputs 11'', and the AND circuits 30 to 35
Transistor arm tP to achieve regeneration with a good deer rate of 1
] i! ! and switch the transistor arm. That is, at time, transistor arms 91J and 9z are turned on. Then, the regenerative current I (l increases, and the work R = work d
Therefore, the chopper (# VcH becomes "0" and the transistor arm 9U.

9zはオフして工dが減少する。図に示すΔIdは壇1
11g114のヒステリシス巾で回生”電流はIRとΔ
I(lの巾の中に入るようチョッパ制御を行う。
9z is turned off and the process d decreases. ΔId shown in the figure is platform 1
With a hysteresis width of 11g114, the regenerative current is IR and Δ
Chopper control is performed to fit within the width of I(l).

このようなチョッパ動作を繰返しながら回生電流を制御
する。この動作をトランジスタアーム9U、9V、9W
、9Zについてのオンオフ信号を夫#D9U、D9 V
、D9W、D9Zに示す、この時のR相間流嵯源への回
生電流を工r、U相の相電圧ept第4図に示す。図か
られかるように力率1の位相の回生電流を流すことが可
能である。
The regenerative current is controlled by repeating such a chopper operation. This operation is performed using transistor arm 9U, 9V, 9W.
, the on/off signal for 9Z #D9U, D9V
, D9W, and D9Z, the regenerative currents flowing to the R-phase current source at this time are shown in Fig. 4. As shown in the figure, it is possible to flow a regenerative current with a phase of power factor 1.

なお、第2図の力率lの位相検出回路の他の爽施例管第
5図に示す。リアクトル80R,80B、 80T1コ
ンデンサ81R,81S、 81 Tは高周波のフィル
タで波形歪が大きくなつ九場合使用し、位相検出用7t
トカプラ20U、207.201%20X、、20M。
5 shows another example of the phase detection circuit for the power factor l shown in FIG. 2. Reactors 80R, 80B, 80T1 Capacitors 81R, 81S, 81T are high frequency filters that are used when waveform distortion becomes large, and 7T for phase detection.
Tocapura 20U, 207.201% 20X, 20M.

20W、20zはダイオードブリッジ21のダイオード
アームへ夫々直夕0に接続しであるが動作は全く同様で
るる、ま九これらに便用したフォトカプラは絶縁形の電
流検出で代用できる。
20W and 20z are connected directly to the diode arm of the diode bridge 21, but the operation is exactly the same.The photo coupler used for these can be replaced by an insulated current detection device.

更に第6図では交流電$1よシ変圧凝82により絶縁し
て、ダイオード83U、837,83Wにより3相半彼
整流回路金構成し、抵抗85を負荷として流れ、b’t
it抵抗84U、 84V、 84Wによシ検出し増幅
1FJ86U、 86 ’i、 86Wにより位相電圧
PTJJPV。
Furthermore, in Fig. 6, the AC current is insulated by a transformer condenser 82, a three-phase half-height rectifier circuit is constructed by diodes 83U, 837, and 83W, and flows through a resistor 85 as a load.
It is detected by the resistors 84U, 84V, 84W and amplified by the phase voltage PTJJPV by 1FJ86U, 86'i, 86W.

PvI′fr:検出する。なお増幅器86Uはトランジ
スタ89と抵抗88と補助g源81により構成した例を
示す。
PvI'fr: Detect. Note that an example is shown in which the amplifier 86U is configured by a transistor 89, a resistor 88, and an auxiliary g source 81.

また第6図に示す構成は第1図に示す様に変形すること
も可能でるる、第1図において83U、83V、83W
、83に、83Y、83Zはダイオード、85a。
The configuration shown in Figure 6 can also be modified as shown in Figure 1. In Figure 1, 83U, 83V, 83W
, 83, 83Y, 83Z are diodes, 85a.

85bは負荷抵抗、84U、84V、84Wは電流検出
用抵抗であり、この抵抗に流れる直流f、増幅器86U
85b is a load resistor, 84U, 84V, 84W is a current detection resistor, the direct current f flowing through this resistor, the amplifier 86U
.

867、86 W、 86 X、 86 Y、 86 
Zで増幅して位相磁圧j’Tl、 E’!、 91. 
PX、 )Y、 PZf夫々出力する。87a、8γb
は増1@器の44I171亀源でおる。
867, 86 W, 86 X, 86 Y, 86
Amplify with Z to obtain phase magnetic pressure j'Tl, E'! , 91.
PX, )Y, and PZf are output respectively. 87a, 8γb
I am 44I171 Kamegen of Masu 1 @ vessel.

更に第8図に示すものは第7図の変形例でろ軒ダイオー
ド83U、  837.83W、 83X、 83Y、
 83Zに流nる電流全フォトカプラ20U、20v、
20W。
Furthermore, what is shown in FIG. 8 is a modification of the one shown in FIG.
Current flowing through 83Z Full photocoupler 20U, 20V,
20W.

20Z、、20Y、20Zの発光ダイオード部に接続し
て検出するもので動作は全く同様である。
20Z, , 20Y, and 20Z are connected to the light emitting diode sections for detection, and the operation is exactly the same.

更に第2図に示す’IE4検出4510は第9図に示す
ように変流器50a、50bにより間流側1流全検出し
、整流器51により整流した出方を直流フィードバック
Iとして圃用することも可能でろる。
Furthermore, the 'IE4 detection 4510 shown in FIG. 2 detects all of the current on the intercurrent side using current transformers 50a and 50b as shown in FIG. 9, and uses the output rectified by the rectifier 51 as DC feedback I. It's also possible.

また第2図の変形例を第9図に示す、第9図において他
の部分は第2図と全く同一であるため省略しである。チ
ョッパ信号70H;iフリップフロップ53によりカウ
ントダウンし、−万電流基準IRが入力されたこと全ロ
ジックレベル変換器52により検出し、この752と該
tl’OHとを切換回路54.55によりフリップ70
ツブ出力53により切換て、出力V54、V55’?:
夫々出力し、第2図と同様なアンド回路30〜35によ
り力率lの位相に分配することにより、同様に通電する
トランジスタブリッジ9のアームを交互にオフすること
により、スイッチング周波数を約iとし、スイッチング
損失を減少する。これと同時に還流モードを構成してI
Ka変化率を下げてm:源へのノイズを低減する。これ
は第1θ図において後述する。
Further, a modification of FIG. 2 is shown in FIG. 9. In FIG. 9, other parts are completely the same as those in FIG. 2, and therefore are omitted. Chopper signal 70H: Counted down by i flip-flop 53, detects that -10,000 current reference IR has been inputted by all logic level converter 52, and converts this 752 and the tl'OH to flip 70 by switching circuits 54 and 55.
Switched by knob output 53, output V54, V55'? :
The switching frequency is set to about i by alternately turning off the arms of the transistor bridge 9, which are also energized, by outputting the respective outputs and distributing them into phases with a power factor l using AND circuits 30 to 35 similar to those shown in FIG. , reducing switching losses. At the same time, configure the reflux mode and
Decrease the rate of change of Ka to reduce m: noise to the source. This will be explained later in FIG. 1θ.

なお′電流工をレベル検出器16により検出し、アンド
回路56によりVB2とのアンドをとることにより回生
中の過醒流を検出して、保持回路17によシ保持した出
力により、トランジスタブリッジ9をすべてオフする0
回虫中のみを検出する理出は第2図に示すコンデンサ5
のため順変換電流は間流′#iL源lの・准変等により
大きな′電流が流nることがあり、この電流は無制御で
るるため回生時の1歯電流のみ検出してトランジスタブ
リッジ9を保護する。
Note that the current flow is detected by the level detector 16, and by ANDing with VB2 by the AND circuit 56, an excessive current during regeneration is detected, and by the output held by the holding circuit 17, the transistor bridge 9 0 to turn off all
The reason for detecting only roundworms is the capacitor 5 shown in Figure 2.
Therefore, a large current may flow in the forward conversion current due to intercurrent or quasi-variation of the source, etc., and since this current is uncontrolled, only the single-tooth current during regeneration is detected and the transistor bridge is Protect 9.

第1O図に第9図の各構成の出力電圧を示す0図中15
3等の′1号nは第9図の輛戎の符号に対応させである
Figure 10 shows the output voltage of each configuration in Figure 9.
The ``1'' n of the 3rd grade corresponds to the sign of the yoke in FIG.

を流基準IRが入力されtことを検出し、v52が@1
″となり、チョッパ洒号VOHをフリップフロップ53
に入力して出力V53tflf11の1の周波数となり
、切換回路54.55によりVB2と70Hを切換えて
出力V 54、V 55の様に交互にオンオフする出力
を得て、Fランジスタアーム駆動信号V36、VB2、
V32、VB2の様な出力金得てトランジスタブリッジ
9をオンオフする。
Detects that the standard IR is input, and v52 is @1
'', and the chopper issue VOH is flip-flop 53
The frequency of output V53tflf11 becomes 1, and the switching circuit 54.55 switches between VB2 and 70H to obtain outputs that alternately turn on and off like outputs V54 and V55, and F transistor arm drive signals V36 and VB2. ,
The transistor bridge 9 is turned on and off by obtaining output signals such as V32 and VB2.

たとえば時刻1.〜仁、の、司はトランジスタ9Yを7
32により、9 W f V 35i/ζよりオンし、
t。
For example, time 1. ~ Jin, Tsukasa, transistor 9Y 7
32, turns on from 9 W f V 35i/ζ,
t.

〜し、の間はトランジスタ9Yはオフ、9Wはオンのま
ま、時刻む、〜tsr!lは再びトランシタ9Yがオン
し、9Wt/iオンのまま、時刻1.〜む。
The transistor 9Y remains off and the transistor 9W remains on during the period of ~tsr! At time 1, the transistor 9Y turns on again, and 9Wt/i remains on. ~nothing.

間はトランジスタ9Yはオンのままで9Wがオフとなる
。回生電流を増加するには2組のトランジスタをオンす
ることによプ達成し、一方のトランジスタがオフの場合
は還流モードとなる。即ち第2図において、たとえば9
Yと9Wがオンすると回生電流はIdの矢印の方向にト
ランジスタ9W→リアクトル8→交流電源1→トランジ
スタ9Yの回路で流れ、トランジスタ9Yのみをオフす
るとこの電流は9vのダイオードを通電、トランジスタ
9Wi通って還流するモードとなシ9Yと9W″ft同
時にオフする場合よりtfL変化軍が低下してサージ電
圧が減少する。更にトランジスタを交互にオンオフする
のでスイッチング周波数がほぼ1 1となりスイッチング損失がほぼiとなる。
During this period, transistor 9Y remains on and transistor 9W turns off. Increasing the regenerative current is achieved by turning on two sets of transistors, and when one transistor is off, the system is in freewheeling mode. That is, in FIG. 2, for example, 9
When Y and 9W are turned on, the regenerative current flows in the direction of the arrow Id through the circuit of transistor 9W → reactor 8 → AC power supply 1 → transistor 9Y, and when only transistor 9Y is turned off, this current flows through the 9V diode and through transistor 9Wi. In this mode, the tfL variation force is lower than when 9Y and 9W"ft are turned off at the same time, and the surge voltage is reduced.Furthermore, since the transistors are turned on and off alternately, the switching frequency is approximately 11, and the switching loss is approximately i. becomes.

更にま次第2図のチョッパ制御方式は第11図に示すよ
うな三角波波との比較による周知のpwM制mを応用す
ることも可能で6〕、第2図において変更すべき点のみ
第11図に示した。また第12図はその動作説明図でる
る。
Furthermore, it is also possible to apply the well-known pwM control m by comparison with a triangular wave as shown in FIG. 11 to the chopper control method shown in FIG. It was shown to. FIG. 12 is an explanatory diagram of the operation.

電流基準1’Rと回生電流Idを比較し九増幅器60に
より増幅し、この出カフ60と変調用三角波発生器62
の出力とを比較器61により比較し、この出力とトラン
ジスタブリッジ9の駆動信号を得るため位相電圧PTI
、PV% FWとのアンドをとり、トランジスタアーム
9U、9V、9Wf駆動する。
The current reference 1'R and the regenerative current Id are compared and amplified by an amplifier 60, and the output cuff 60 and the modulating triangular wave generator 62
A comparator 61 compares the output of
, PV% FW, and transistor arms 9U, 9V, and 9Wf are driven.

−万ti基準信号IRをレベル検出器52によシ検出し
、VB2トして位相′電圧PX、PY、j’Zとアンド
回路によりトランジスタ駆id信号9X%9Y、9zを
得る。このように同時に通電するトランジスタブリッジ
9の直方のアームは回生中はオンのままで他方のトラン
ジスタアームのみチョッパ制御することで同様な制御が
可能でるる。tit2組のトランジスタを同時にオンオ
フするか、交互にオンオフするか、−万のトランジスタ
のみオンオフするかはどの方式にも応用可能である。
- The reference signal IR is detected by the level detector 52, and the phase voltages PX, PY, j'Z and the AND circuit are used to obtain the transistor drive ID signals 9X%9Y, 9z. In this way, similar control is possible by leaving the rectangular arms of the transistor bridge 9, which are energized at the same time, on during regeneration and performing chopper control on only the other transistor arm. Any method can be applied to turn on and off two sets of transistors at the same time, turn them on and off alternately, or turn on and off only 1,000 transistors.

〔発明の効果〕〔Effect of the invention〕

以上説明し九ように本発明によれば力率lの回生成力を
電源に回生することがOJ dQとなる。iた力率1の
位相検出をダイオードブリッジに流れる逓流立相により
行う、l!施悪態様よれば電源の周数数、成形歪、相回
転の影響をうけることなく力率1の回生位相を検出する
ことが可能となる。更に回生のトランジスタアームを交
互にオンオフする実施態様の場合、トランジスタのスイ
ッチング損失を減少させ変換効率を向上させ、しかも回
生時以外は全トラシジスタをオフさせておくことにより
更に効率を同上させておくことができる。
As explained above, according to the present invention, regenerating regenerative power with a power factor of 1 to the power source provides OJ dQ. Phase detection at a power factor of 1 is performed by the rising phase of the current flowing through the diode bridge, l! According to this embodiment, it is possible to detect the regenerative phase with a power factor of 1 without being affected by the number of cycles of the power supply, molding distortion, or phase rotation. Furthermore, in the case of an embodiment in which the regeneration transistor arm is turned on and off alternately, the switching loss of the transistor is reduced and the conversion efficiency is improved, and the efficiency is further increased by keeping all transistors off except during regeneration. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を示す回路図、第2図は本発明の一実
施例を示す回路図、第3図と第4図はその動作説明図、
第5図、第6図、第1図、第8図、第9図、第11図は
本発明の他の実施例を示す回路図、第10図と第12図
は動作説明図である。 1・・・交流電源、2.3・・・サイリスタブリッジ、
4・・・リアクトル、5・・・コンデンサ、6・・・チ
ョッパ回路、1・・・交流電動機、8・・・リアクトル
、9・・・トランジスタブリッジ、10・・・電流構出
器1.n・・・電圧検出a、13.14・・・増幅器、
20・・・フォトカプラ、3o131.32.33.3
4.35・・・アンド回路、40.41.42.43.
44.45・・・駆動回路、21・・・ダイオードブリ
ッジ、52・・・Vベル検出器、53・・・フリップフ
ロップ、54.55・・・切換スイッチ、60・・・増
幅器、61・・・比較器、62・・・3角反発生器、8
2・・・トランス。 出願八代」人 猪 股  清 躬 3 時 RS   RT   ST   SRTRTSも 4 
図 d eCEMF  /−\−メー\/−\−一一、7−57
−−、も 5 図 1 馬6 (至) b 7 図 58 閉 氾9 図 第1O図 TZ   T’t   Tt)
FIG. 1 is a circuit diagram showing the prior art, FIG. 2 is a circuit diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are diagrams explaining its operation.
FIG. 5, FIG. 6, FIG. 1, FIG. 8, FIG. 9, and FIG. 11 are circuit diagrams showing other embodiments of the present invention, and FIG. 10 and FIG. 12 are operation explanatory diagrams. 1... AC power supply, 2.3... Thyristor bridge,
4...Reactor, 5...Capacitor, 6...Chopper circuit, 1...AC motor, 8...Reactor, 9...Transistor bridge, 10...Current structure device1. n...Voltage detection a, 13.14...Amplifier,
20...Photocoupler, 3o131.32.33.3
4.35...AND circuit, 40.41.42.43.
44.45... Drive circuit, 21... Diode bridge, 52... V bell detector, 53... Flip-flop, 54.55... Changeover switch, 60... Amplifier, 61...・Comparator, 62...Triangle anti-generator, 8
2...Trance. Application Yashiro” person Inomata Kiyomi 3 o’clock RS RT ST SRTRTS also 4
Figure d eCEMF /-\-Me\/-\-11, 7-57
--, also 5 Figure 1 Horse 6 (To) b 7 Figure 58 Closed flood 9 Figure 1O TZ T't Tt)

Claims (1)

【特許請求の範囲】 1、直流電源から父鑞岨源に回生する電気弁と夕゛イオ
ードを逆並列に接続したアームを複数個組合せたブリッ
ジ回路と、該交流m源から位相を検出することにより該
電気弁を1ぼ制御角α=180° (β=Ot+)でチ
ョツ15制御する装置を有することを特徴とする電力回
生制御装置。 Zダイオードブリッジの入力xiを検出すること5(よ
りβ二09の位相を検出する装置を備えた特許請求の範
囲第1項に記載の電力回生制御装置。 3、チョッパ、ItO御する装置が直流電源電圧と基薯
、電圧を比較増・娼して電流基準とし直流直諒測又は交
鬼畦源側から検出した回生′電流とを比較して電気弁を
91M制御する特許請求の範囲第1項に記載の一力回生
制−装置。
[Scope of Claims] 1. A bridge circuit that combines a plurality of arms in which electric valves and diodes are connected in antiparallel to regenerate from a DC power supply to a direct current source, and detecting the phase from the AC m source. A power regeneration control device comprising: a device for controlling the electric valve at a control angle α=180° (β=Ot+). The power regeneration control device according to claim 1, comprising a device for detecting the input xi of the Z diode bridge (5) and detecting the phase of β209. 3. The chopper and the ItO control device are DC Claim 1: The electric valve is controlled by 91M by comparing the power supply voltage and the reference voltage, increasing and decreasing the voltage, and using it as a current reference, and comparing it with the regenerative current detected from the direct current measurement or the alternator ridge source side. The single-force regeneration system described in Section 1.
JP57061298A 1982-04-13 1982-04-13 Power regenerative controller Pending JPS58179180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061298A JPS58179180A (en) 1982-04-13 1982-04-13 Power regenerative controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061298A JPS58179180A (en) 1982-04-13 1982-04-13 Power regenerative controller

Publications (1)

Publication Number Publication Date
JPS58179180A true JPS58179180A (en) 1983-10-20

Family

ID=13167141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061298A Pending JPS58179180A (en) 1982-04-13 1982-04-13 Power regenerative controller

Country Status (1)

Country Link
JP (1) JPS58179180A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609384A (en) * 1983-06-28 1985-01-18 Yaskawa Electric Mfg Co Ltd Power regeneration control circuit of inverter
JPS60226778A (en) * 1984-04-25 1985-11-12 Hitachi Ltd Controller of regenerative converter
EP0176766A2 (en) * 1984-08-31 1986-04-09 Imec Corporation A power converter for a motor control system
JPS61161972A (en) * 1984-12-31 1986-07-22 Sanken Electric Co Ltd Ac converter
DE19509827A1 (en) * 1994-08-24 1996-02-29 Mitsubishi Electric Corp Inverter device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158625A (en) * 1974-11-19 1976-05-22 Mitsubishi Electric Corp
JPS5594583A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Frequency converter and its controlling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158625A (en) * 1974-11-19 1976-05-22 Mitsubishi Electric Corp
JPS5594583A (en) * 1979-01-10 1980-07-18 Hitachi Ltd Frequency converter and its controlling method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609384A (en) * 1983-06-28 1985-01-18 Yaskawa Electric Mfg Co Ltd Power regeneration control circuit of inverter
JPS60226778A (en) * 1984-04-25 1985-11-12 Hitachi Ltd Controller of regenerative converter
EP0176766A2 (en) * 1984-08-31 1986-04-09 Imec Corporation A power converter for a motor control system
US4620272A (en) * 1984-08-31 1986-10-28 Imec Corporation Line-regenerative motor controller with current limiter
EP0176766A3 (en) * 1984-08-31 1987-10-14 Imec Corporation A power converter for a motor control system
JPS61161972A (en) * 1984-12-31 1986-07-22 Sanken Electric Co Ltd Ac converter
DE19509827A1 (en) * 1994-08-24 1996-02-29 Mitsubishi Electric Corp Inverter device
US5631813A (en) * 1994-08-24 1997-05-20 Mitsubishi Denki Kabushiki Kaisha Regenerative AC/DC/AC power converter for a plurality of motors
CN1042080C (en) * 1994-08-24 1999-02-10 三菱电机株式会社 Inverter apparatus

Similar Documents

Publication Publication Date Title
US4354223A (en) Step-up/step down chopper
EP2827490A1 (en) System and method for unified common mode voltage injection
JP2000324852A (en) Current type inverter for photovoltaic power generation
JPS61112583A (en) Power converter
CN107517019B (en) Multilevel inverter hybrid modulation strategy
JP6666058B2 (en) Grid-connected inverter device and operation method thereof
TW200924366A (en) Matrix converter
JP5768934B2 (en) Power converter
JP4209196B2 (en) Power converter
EP4071999A1 (en) Regenerative medium voltage drive (cascaded h bridge) with reduced number of sensors
JP5362657B2 (en) Power converter
JP2005295640A (en) Method and device for controlling pwm cycloconverter
JPS58179180A (en) Power regenerative controller
JP4487155B2 (en) Protection device for PWM cycloconverter
JPS58215977A (en) Power regeneration controller
KR100685444B1 (en) Parallel control system of single-phase inverter
JP2005192346A (en) Matrix converter
JPH0746847A (en) Three-phase rectifier
KR102448805B1 (en) Power conversion device
JP2580108B2 (en) Power converter
JP3801834B2 (en) Control method of direct frequency conversion circuit
JPH0433574A (en) Inverter
JPH0746846A (en) Three-phase rectifier
JPS63314176A (en) Variable voltage/variable frequency power apparatus
JP2632587B2 (en) Power supply