JPH1189096A - Operation control method of distributed power supply equipment - Google Patents

Operation control method of distributed power supply equipment

Info

Publication number
JPH1189096A
JPH1189096A JP9254297A JP25429797A JPH1189096A JP H1189096 A JPH1189096 A JP H1189096A JP 9254297 A JP9254297 A JP 9254297A JP 25429797 A JP25429797 A JP 25429797A JP H1189096 A JPH1189096 A JP H1189096A
Authority
JP
Japan
Prior art keywords
voltage
output
inverter
distributed power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9254297A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
満 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9254297A priority Critical patent/JPH1189096A/en
Publication of JPH1189096A publication Critical patent/JPH1189096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a parallel synchronous operations of respective distributed power supply devices, when the respective distributed power supply devices are paralleled off from a power system into self-contained operations, while synchronism is not obtained by exchanging information on output powers, output currents, etc., between the distributed power supply devices. SOLUTION: When a plurality of distributed power supply devices (solar generators 1) which are paralleled off from a power system 5 are put into self-contained operations, an inverter 3 of one of the respective distributed power supply devices is used as a reference inverter. The reference inverter is operated by a voltage control operation to form an AC voltage source. After the reference inverter generates a voltage, the inverters 3 of the remaining distributed power supply devices are operated by current control operation synchronously with the output voltage of the reference inverter. Through the current control operation, AC-current sources synchronous with the AC voltage source are respectively formed, and the parallel synchronous operations of the respective distributed power supply devices are realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統から解列
された複数の分散型電源を運転する際の運転制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for operating a plurality of distributed power supplies disconnected from an electric power system.

【0002】[0002]

【従来の技術】従来、分散型電源として、屋根等に設け
た太陽電池の直流電力をインバータにより交流電力に変
換して構内設備の負荷に供給する太陽光発電装置があ
る。
2. Description of the Related Art Conventionally, as a distributed power source, there is a photovoltaic power generation device that converts DC power of a solar cell provided on a roof or the like into AC power by an inverter and supplies the AC power to a load of premises equipment.

【0003】この太陽光発電装置は、系統電源正常時
(常時)は電力系統に連系運転され、災害等で系統電源
が停電して電力系統から解列されると、手動又は自動で
自立運転に切換えられ、主に防災用負荷や避難所の負荷
等のいわゆる重要負荷に給電する。
[0003] When the system power supply is normal (always), the solar power generation system is operated in an interconnected manner with the electric power system. And supplies power mainly to so-called important loads such as loads for disaster prevention and loads at shelters.

【0004】ところで、太陽光発電装置等の複数の分散
型電源により分散型電源設備を構築して並列運転する場
合、前記の自立運転の際には、例えば各太陽光発電装置
間の出力電圧の不平衡等を防止して負荷容量を大きく
し、防災用負荷や避難所の負荷等に十分な電力を供給す
るため、各発電装置のインバータの出力電圧の位相,大
きさ(振幅)等を合わせる必要がある。
[0004] When a plurality of distributed power sources such as photovoltaic power generators are used to construct a distributed power supply system and operate in parallel, in the case of the self-sustaining operation, for example, the output voltage between the photovoltaic power generators is reduced. In order to prevent unbalance and increase the load capacity, and to supply sufficient power to disaster prevention loads and shelter loads, adjust the phase and magnitude (amplitude) of the output voltage of the inverter of each power generator. There is a need.

【0005】そして、連系運転の際は系統電源の電圧
(系統電圧)に同期して各太陽光発電装置のインバータ
が電流制御運転され、系統電圧を共通の同期情報とし
て、各太陽光発電装置のインバータの出力電圧の位相,
大きさが一致し、各太陽光発電装置が並列同期運転され
る。しかし、自立運転の際は、各太陽光発電装置間の共
通の同期情報が存在しなくなる。
[0005] During the interconnection operation, the inverters of the respective photovoltaic power generators are controlled by current control in synchronization with the voltage of the system power supply (system voltage). Phase of the inverter output voltage,
The sizes match, and each solar power generation device is operated in parallel and synchronously. However, during the self-sustaining operation, there is no common synchronization information between the respective photovoltaic power generators.

【0006】そして、自立運転の際に各太陽光発電装置
のインバータの出力電圧の位相,大きさ等を合わせるた
め、従来、つぎの各運転制御方法が提案されている。
[0006] In order to match the phase and magnitude of the output voltage of the inverter of each photovoltaic power generator during self-sustained operation, the following operation control methods have been conventionally proposed.

【0007】(A)マスター・スレーブ制御 これは各太陽光発電装置のいずれか1つのインバータを
マスターインバータとし、残りの各太陽光発電装置のイ
ンバータをそれぞれスレーブインバータとし、マスター
インバータから各スレーブインバータに位相同期信号、
振幅信号等の出力に関連した情報を伝送し、この情報を
同期運転の共通の情報として各太陽光発電装置のインバ
ータを並列同期運転し、それらの出力電圧の位相,大き
さを合わせる制御方法である。
(A) Master-slave control In this method, one of the inverters of each photovoltaic power generation device is used as a master inverter, and the inverters of the remaining photovoltaic power generation devices are used as slave inverters. Phase synchronization signal,
Information related to the output such as amplitude signal is transmitted, and this information is used as common information of the synchronous operation. The inverters of the respective photovoltaic power generators are operated in parallel and synchronously, and the control method for adjusting the phase and magnitude of their output voltages is performed. is there.

【0008】(B)負荷分担制御 これは無停電電源装置(UPS)の並列運転に採用され
ている制御方法であり、つぎの(a),(b)又は
(c)の制御を行う方法である。
(B) Load sharing control This is a control method adopted for parallel operation of uninterruptible power supply (UPS), and is a method for controlling the following (a), (b) or (c). is there.

【0009】(a)太陽光発電装置をn台とした場合
に、各太陽光発電装置のインバータに負荷が消費する有
効電力,無効電力を1/nずつ均等に分担させる。
(A) When the number of the solar power generation devices is n, the active power and the reactive power consumed by the load are equally distributed to the inverters of the respective solar power generation devices by 1 / n.

【0010】(b)各太陽光発電装置のインバータ間で
潮流する有効電力及び無効電力が0になるように、各太
陽光発電装置のインバータを運転する。
(B) The inverters of the respective photovoltaic power generators are operated such that the active power and the reactive power flowing between the respective photovoltaic power generators become zero.

【0011】(c)各太陽光発電装置のインバータの出
力電流を検出し、この出力電流のインバータ間の不平衡
が0になるように、各太陽光発電装置のインバータを運
転する。
(C) The output current of the inverter of each photovoltaic power generator is detected, and the inverter of each photovoltaic power generator is operated so that the imbalance of the output current between the inverters becomes zero.

【0012】[0012]

【発明が解決しようとする課題】前記従来のマスター・
スレーブ制御,負荷分担制御のいずれの運転制御方法を
採用した場合にあっても、各太陽光発電装置は、電力系
統から解列されて自立運転される際に、装置間で出力電
力,出力電流等の出力に関連した情報をやりとりし、こ
のやりとりにしたがって自装置のインバータの運転を制
御する必要があり、太陽光発電装置以外の分散型電源の
場合も同様である。
SUMMARY OF THE INVENTION The conventional master
Regardless of the operation control method of either the slave control or the load sharing control, when each of the photovoltaic power generation devices is disconnected from the power system and operates independently, the output power and the output current between the devices are controlled. It is necessary to exchange information related to the output such as the above, and to control the operation of the inverter of the own device in accordance with the exchange, and the same applies to a distributed power supply other than the solar power generation device.

【0013】したがって、従来のこの種分散型電源設備
の運転制御方法の場合、各分散型電源間で出力電力や出
力電流等の出力に関連した情報をやりとりするための通
信線の敷設等が必要になり、設備コストが高くつく等の
問題点がある。
Therefore, in the case of the conventional operation control method of this type of distributed power supply equipment, it is necessary to lay communication lines for exchanging information related to output such as output power and output current between the distributed power supplies. And there are problems such as high equipment costs.

【0014】また、各分散型電源のインバータの製作メ
ーカが異なるような場合は、分散型電源間の制御シーケ
ンス等の相違により、実際には適切な並列同期運転を行
うことが困難である。
Further, when the manufacturers of the inverters of the respective distributed power supplies are different, it is difficult to actually perform an appropriate parallel synchronous operation due to a difference in the control sequence between the distributed power supplies.

【0015】本発明は、各分散型電源が電力系統から解
列されて自立運転される際に、各分散型電源間で出力に
関連した情報をやりとりして同期をとることなく、並列
同期運転できるようにすることを課題とする。
According to the present invention, when each of the distributed power sources is disconnected from the power system and is operated independently, information related to the output is exchanged between the distributed power sources and the parallel synchronous operation is not performed. The task is to be able to do so.

【0016】[0016]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の分散型電源設備の運転制御方法において
は、電力系統から解列された複数の分散型電源を自立運
転する際に、各分散型電源のいずれか1つのインバータ
を基準のインバータとし、基準のインバータを電圧制御
運転して交流電圧源を形成し、基準のインバータの出力
電圧が発生した後、残りの分散型電源のインバータを基
準のインバータの出力電圧に同期してそれぞれ電流制御
運転し、電流制御運転により交流電圧源に同期した交流
電流源をそれぞれ形成して各分散型電源を並列同期運転
する。
In order to solve the above-mentioned problems, in the operation control method of the distributed power supply equipment according to the present invention, a plurality of distributed power supplies disconnected from the power system are operated independently. One of the inverters in each of the distributed power supplies is used as a reference inverter, and the reference inverter is operated under voltage control to form an AC voltage source. After the output voltage of the reference inverter is generated, the remaining distributed power supplies are used. Current control operation is performed on each of the inverters in synchronization with the output voltage of the reference inverter. The current control operation forms an AC current source synchronized with the AC voltage source, and the distributed power supplies are operated in parallel and synchronously.

【0017】したがって、各分散型電源が電力系統から
解列されて自立運転される際、まず、基準のインバータ
が電圧制御運転されて交流電圧源を形成する。
Therefore, when each of the distributed power sources is disconnected from the power system and is operated independently, first, the reference inverter is voltage-controlled to form an AC voltage source.

【0018】また、基準のインバータから遅れて残りの
分散電源のインバータがそれぞれ電流制御運転され、交
流電流源を形成する。
Further, the inverters of the remaining distributed power supplies are each operated under current control with a delay from the reference inverter, thereby forming an AC current source.

【0019】このとき、負荷給電の電圧は基準のインバ
ータの電圧で決まり、残りの分散電源のインバータの出
力電流は基準のインバータの出力電圧と同相になる。
At this time, the voltage of the load power supply is determined by the reference inverter voltage, and the output currents of the remaining distributed power supply inverters have the same phase as the reference inverter output voltage.

【0020】そのため、前記残りの分散電源のインバー
タの出力が基準のインバータの出力に同期し、各分散型
電源が出力に関連した情報のやりとり等を行うことな
く、個別の運転制御で並列同期運転される。
Therefore, the output of the inverter of the remaining distributed power supply is synchronized with the output of the reference inverter, and each distributed power supply does not exchange information related to the output, etc. Is done.

【0021】[0021]

【発明の実施の形態】本発明の実施の1形態につき、図
1ないし図5を参照して説明する。図1は分散型電源設
備の全体構成を示し、分散型電源としての#1,#2,
…,#nの各太陽光発電装置1は、それぞれ太陽電池
2,インバータ3及び蓄電池等の直流電力貯蓄媒体4を
備えた並列電源装置からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the entire configuration of the distributed power supply equipment, and the distributed power supplies # 1, # 2,
Each of the photovoltaic power generation devices 1 of..., #N includes a parallel power supply device provided with a DC power storage medium 4 such as a solar cell 2, an inverter 3 and a storage battery.

【0022】そして、PVパネル等の各太陽電池2は住
宅や工場の屋根又は高速道路の側壁等に分散設置され、
各太陽光発電装置1間は場合によっては数百メートルも
離れていることがある。
Each solar cell 2 such as a PV panel is distributed and installed on a roof of a house or a factory or on a side wall of a highway,
Each photovoltaic power generator 1 may be separated by several hundred meters depending on the case.

【0023】つぎに、インバータ3は図2に示すように
電力用スイッチング半導体等からなるスイッチング回路
部3a,マイクロコンピュータ等からなる制御回路部3
b及び計器用の変流器3c,変圧器3dを有し、変流器
3cはインバータ3の交流の出力電流Im(m=1,
2,…,n)を計測して電流計測出力imを制御回路部
3bに供給し、変圧器3dは負荷電圧Voutに等しい
それぞれの交流の出力電圧Vmを計測し、電圧計測出力
vm(=vout)を制御回路部3bに供給する。
Next, as shown in FIG. 2, the inverter 3 includes a switching circuit section 3a composed of a power switching semiconductor and the like, and a control circuit section 3 composed of a microcomputer and the like.
b and an instrument current transformer 3c and a transformer 3d, and the current transformer 3c has an AC output current Im (m = 1,
, N) and supplies a current measurement output im to the control circuit unit 3b. The transformer 3d measures each AC output voltage Vm equal to the load voltage Vout, and outputs a voltage measurement output vm (= vout). ) Is supplied to the control circuit unit 3b.

【0024】この制御回路部3bは、計測出力im,v
m及び図示省略された各種の接点信号等に基づき、スイ
ッチング回路部3bを運転モードにしたがって駆動す
る。
The control circuit 3b outputs the measurement outputs im, v
The switching circuit 3b is driven in accordance with the operation mode based on m and various contact signals not shown.

【0025】そして、電力系統5の系統電源6が構内負
荷等の図1の負荷7に給電される系統正常時は、主に太
陽電池2が電力を発生する日中に、各太陽光発電装置1
のインバータ3が連系運転モードの制御により電力系統
5に連系運転されて並列運転され、各太陽光発電装置1
の太陽電池2の直流電力がインバータ3により交流電力
に変換される負荷7に並列給電される。
When the system power supply 6 of the power system 5 supplies power to the load 7 shown in FIG. 1 such as an in-house load, the system is operated normally during the day when the solar cell 2 generates power. 1
Are connected to the power system 5 under the control of the interconnection operation mode and are operated in parallel, and
The DC power of the solar cell 2 is supplied in parallel to a load 7 which is converted into AC power by the inverter 3.

【0026】このとき、各太陽光発電装置1のインバー
タ3は、いずれも電流制御運転されてそれぞれの出力電
流Imが系統電源6の電圧と同相になり、系統電源6に
同期して運転される。
At this time, the inverters 3 of the respective photovoltaic power generators 1 are all subjected to current control operation so that the respective output currents Im have the same phase as the voltage of the system power supply 6, and are operated in synchronization with the system power supply 6. .

【0027】つぎに、災害等の発生により系統電源6が
停電すると、各太陽光発電装置1はいわゆる単独運転に
よる感電等を防止するため、電力系統5から解列され
る。
Next, when the system power supply 6 is cut off due to a disaster or the like, each of the photovoltaic power generators 1 is disconnected from the power system 5 in order to prevent an electric shock due to so-called isolated operation.

【0028】図1の破線は電力系統5が停電状態である
ことを示し、図中の×印は解列点を示す。
A broken line in FIG. 1 indicates that the power system 5 is in a power outage state, and a cross in the figure indicates a disconnection point.

【0029】そして、手動操作又はシーケンス制御等の
自動操作により、各太陽光発電装置1のインバータ3に
自立運転モードが指令されると、各太陽光発電装置1の
インバータ3はつぎに説明するように動作する。
Then, when the self-sustaining operation mode is commanded to the inverters 3 of the respective photovoltaic power generators 1 by manual operation or automatic operation such as sequence control, the inverters 3 of the respective photovoltaic power generators 1 are operated as described below. Operate.

【0030】このとき、夜間であっても負荷7への給電
が行えるように、各太陽光発電装置1はスイッチ8がオ
ンし、インバータ3に太陽電池2及び直流電力貯蓄媒体
4から直流電力が並列給電される。
At this time, the switch 8 of each photovoltaic power generator 1 is turned on so that DC power can be supplied to the inverter 3 from the solar cell 2 and the DC power storage medium 4 so that power can be supplied to the load 7 even at night. Power is supplied in parallel.

【0031】そして、#1の太陽光発電装置1のインバ
ータ3が基準のインバータに設定されている場合、ま
ず、#1の太陽光発電装置1のインバータ(以下#1の
インバータという)3のみが電圧制御運転を開始する。
When the inverter 3 of the # 1 photovoltaic power generator 1 is set as the reference inverter, first, only the inverter 3 of the # 1 photovoltaic power generator 1 (hereinafter referred to as # 1 inverter) is used. Start voltage control operation.

【0032】このとき、#1のインバータ3の制御回路
部3bは電圧型インバータ制御のプログラムにしたがっ
て、図3の電圧制御機能が動作する。
At this time, the control circuit section 3b of the inverter 3 of # 1 operates the voltage control function of FIG. 3 according to the voltage-type inverter control program.

【0033】そして、出力電流検出手段9は電流計測出
力i1 に基づき、#1のインバータ3の出力電流I1が
例えば定格の50〜90%(実効値)の設定値Iαに上
昇するまでローレベル(L)の電圧上昇指令を形成して
出力する。
[0033] Then, the output current detecting means 9 on the basis of the current measurement output i 1, # 1 of the output current I1, for example, 50-90% of the rated inverter 3 low until rises to the set value Iα of rms A voltage increase command (L) is formed and output.

【0034】また、図示省略されたデジタル又はアナロ
グの基準周波数形成手段は例えば1周期の波形データの
読出しのくり返し又は発振器の自走発振により、系統電
源6が60Hzのときは2π・60,50Hzのときは
2π・50の基準角周波数ω0 (=2π・f,fは周波
数)の信号を常時形成する。
The digital or analog reference frequency forming means (not shown) may be configured to repeat the reading of one cycle of waveform data or the free-running oscillation of the oscillator, so that when the system power supply 6 is 60 Hz, 2π · 60, 50 Hz is used. In this case, a signal having a reference angular frequency ω 0 of 2π · 50 (= 2π · f, where f is a frequency) is always formed.

【0035】そして、#1のインバータ3の出力電圧V
1を定格電圧Vcを上限とする基準角周波数ω0 の電圧
にして負荷電圧Voutを定めるため、運転基準信号作
成手段10は、基準角周波数ω0 の信号に基づき、振幅
|v|の正弦波形の電圧制御基準信号|v|sin(ω
0 ・t)を形成し、その振幅|v|を電圧上昇指令が入
力される間にソフトスタート特性で0から増大する。
Then, the output voltage V of the inverter 3 of # 1
Since 1 in the voltage of the reference angular frequency omega 0 of up to rated voltage Vc determine the load voltage Vout, the operation reference signal generating means 10, based on the reference angular frequency omega 0 of the signal amplitude | v | sinusoidal waveform Voltage control reference signal | v | sin (ω
0 · t) is formed, the amplitude | increases from 0 at the soft start characteristic during voltage increase command a is input | v.

【0036】さらに、減算器11により作成手段9の電
圧制御基準信号と,現在の負荷電圧Voutの検出出力
である電圧計測出力v1 との誤差を演算し、この誤差の
信号をフィードバック制御の信号処理手段12に供給す
る。
Further, the subtracter 11 calculates an error between the voltage control reference signal of the generating means 9 and the voltage measurement output v 1 which is the detection output of the current load voltage Vout, and converts the error signal into a feedback control signal. It is supplied to the processing means 12.

【0037】そして、信号処理手段12は前記誤差の信
号にP(比例)−I(積分)制御等の一般的なフィード
バック制御の信号処理を施して電圧制御のインバータ駆
動信号を形成し、この駆動信号を制御回路部3bからス
イッチング回路部3aに供給してこの回路部3aをスイ
ッチング駆動する。
The signal processing means 12 performs signal processing of general feedback control such as P (proportional) -I (integral) control on the error signal to form a voltage-controlled inverter drive signal. A signal is supplied from the control circuit unit 3b to the switching circuit unit 3a to switch the circuit unit 3a.

【0038】このスイッチング駆動により、#1のイン
バータ3は自装置の電圧制御基準信号に基づく自己同期
制御により、電圧制御運転されて角周波数ω0 の交流電
圧源を形成し、この交流電圧源はソフトスタート特性で
電圧が定格電圧Vcを上限として0から上昇する。
By this switching drive, the inverter 3 of # 1 is operated under voltage control by self-synchronous control based on its own voltage control reference signal to form an AC voltage source having an angular frequency ω 0. In the soft start characteristic, the voltage increases from 0 with the upper limit of the rated voltage Vc.

【0039】一方、#1のインバータ3の出力電圧V1
の上昇にしたがって負荷電圧Voutが例えば定格の3
/4の所定値に上昇すると、残りの#2,…,#nの各
太陽光発電装置1のインバータ(以下#2〜#nのイン
バータという)3がそれぞれ電流制御運転を開始する。
On the other hand, the output voltage V1 of the inverter 3 of # 1
The load voltage Vout becomes, for example, 3
/ 4, the remaining inverters 3 (hereinafter referred to as # 2 to #n inverters) 3 of the respective photovoltaic power generators 1 start current control operation.

【0040】すなわち、#2〜#nのインバータ3の制
御回路部3bは、自立運転モードが指令されると、それ
ぞれの電流型インバータ制御のプログラムにしたがっ
て、図4の電流制御機能が動作する。
That is, when the self-sustaining operation mode is commanded, the control circuit sections 3b of the inverters # 2 to #n operate the current control functions of FIG. 4 according to the respective current type inverter control programs.

【0041】そして、出力電圧検出手段13は電圧計測
出力v2 ,…,vnに基づき、#1のインバータ3の出
力により負荷電圧Voutが例えば定格電圧Vcの3/
4の所定値Vαまで上昇すると、ローレベルの電流増加
指令を形成して出力する。
Then, the output voltage detecting means 13 outputs a load voltage Vout of, for example, 3/3 of the rated voltage Vc based on the voltage measurement outputs v 2 ,.
4, a low-level current increase command is generated and output.

【0042】また、図示省略されたデジタル又はアナロ
グの周波数検出手段は、電圧計測出力v2 ,…,vnの
デジタル波形分析,電圧計測出力v2 ,…,vnに基づ
くPLL同期発振等により、#1のインバータ3の出力
に基づく負荷電圧Voutの角周波数ω0 をデジタル的
又はアナログ的に検出する。
Further, the frequency detecting means for digital or analog, which is not shown, the voltage measurement output v 2, ..., the digital waveform analysis vn, the voltage measurement output v 2, ..., a PLL synchronization oscillation or the like based on vn, # The angular frequency ω 0 of the load voltage Vout based on the output of the first inverter 3 is digitally or analogously detected.

【0043】そして、作成手段10と同様の運転基準信
号作成手段14は、#2〜#nのインバータ3の出力電
流I2〜Inを#1のインバータ3の出力電圧V1と同
相にするため、角周波数ω0 に基づき、電圧制御基準信
号に同期した振幅|i|の正弦波形の電流制御信号|i
|sin(ω0 ・t)を形成するとともに、例えば前記
設定値Iαを上限として出力電流I2〜Inを大きくす
るように、振幅|i|をソフトスタート特性で0から徐
々に増大する。
Then, the operation reference signal creating means 14 similar to the creating means 10 makes the output currents I2 to In of the inverters # 2 to #n have the same phase as the output voltage V1 of the inverter 3 of # 1. Based on the frequency ω 0 , a sinusoidal current control signal | i of amplitude | i | synchronized with the voltage control reference signal
In addition to forming | sin (ω 0 · t), the amplitude | i | is gradually increased from 0 by the soft start characteristic so that the output currents I2 to In are increased with the set value Iα as an upper limit, for example.

【0044】さらに、減算器15は電流制御基準信号
と,電流計測出力i2 ,…,inとの誤差を演算し、こ
の誤差の信号を出力する。
Further, the subtracter 15 calculates an error between the current control reference signal and the current measurement outputs i 2 ,..., In, and outputs a signal of this error.

【0045】そして、減算器15の出力端子に運転オン
・オフ用のアナログスイッチ16が直列接続され、この
スイッチ16は起動判定回路17の判定出力の2値変化
により、例えば負荷電圧Voutが所定値Vαに上昇し
たときにオンする。
An analog switch 16 for operating on / off operation is connected in series to the output terminal of the subtracter 15, and this switch 16 changes, for example, the load voltage Vout to a predetermined value by a binary change of the judgment output of the start-up judgment circuit 17. Turns on when the voltage rises to Vα.

【0046】このアナログスイッチ16のオンにより、
減算器15の誤差の信号が信号処理手段12と同様のフ
ィードバック制御の信号処理手段18に供給され、この
処理手段18は前記の誤差の信号にフィードバック制御
の信号処理を施し、電流制御のインバータ駆動信号を形
成する。
When the analog switch 16 is turned on,
The error signal of the subtractor 15 is supplied to a signal processing means 18 for feedback control similar to that of the signal processing means 12, and this processing means 18 performs signal processing for feedback control on the error signal and drives the inverter for current control. Form a signal.

【0047】このインバータ駆動信号が制御回路部3b
からスイッチング回路部3aに供給され、この回路部3
aがスイッチング駆動される。
The inverter drive signal is supplied to the control circuit 3b.
Is supplied to the switching circuit unit 3a from the
a is switched.

【0048】このスイッチング駆動により、#2〜#n
のインバータ3はそれぞれ#1のインバータ3の出力電
圧に同期して電流制御運転され、角周波数ω0 の交流電
流源を形成する。
By this switching drive, # 2 to #n
Of each of the inverters 3 is operated in a current control in synchronization with the output voltage of the inverter 3 of # 1 to form an AC current source having an angular frequency ω 0 .

【0049】そして、#1のインバータ3は出力電圧V
1の上昇にともなって出力電流I1が所定値Iαをこえ
ると、出力電流検出手段8の出力がハイレベル(H)の
電圧下降指令に反転し、この指令により運転基準信号作
成手段10が電圧制御基準信号の振幅|v|を低減し、
出力電圧V1を引下げて定格電圧Vcに維持する。
The # 3 inverter 3 outputs the output voltage V
When the output current I1 exceeds a predetermined value Iα in accordance with the rise of 1, the output of the output current detection means 8 is inverted to a high level (H) voltage drop command, and the operation reference signal creation means 10 responds to this command by the voltage control command. Reducing the amplitude | v | of the reference signal;
The output voltage V1 is reduced and maintained at the rated voltage Vc.

【0050】また、#2〜#nのインバータ3は負荷電
圧Voutが定格電圧Vcに達すると、出力電圧検出手
段13の出力がハイレベルの電流減少指令に反転し、こ
の指令により運転基準信号作成手段14が電流制御基準
信号の振幅|i|を低減して出力電流I2〜Inを減少
する。
When the load voltage Vout reaches the rated voltage Vc, the inverters # 2 to #n invert the output of the output voltage detecting means 13 to a high-level current decrease command, and generate an operation reference signal by this command. Means 14 reduces the amplitude | i | of the current control reference signal to reduce the output currents I2 to In.

【0051】したがって、#1のインバータ3は電圧制
御運転により、出力電圧V1が定格電圧Vcにフィード
バック制御され、残りの#2〜#nのインバータ3は電
流制御運転により、出力電流I2〜Inが出力電圧V1
に同相かつ設定値Iα以下になるようにフィードバック
制御される。
Therefore, the output voltage V1 of the # 1 inverter 3 is feedback-controlled to the rated voltage Vc by the voltage control operation, and the output currents I2 to In of the remaining # 2 to #n inverters are controlled by the current control operation. Output voltage V1
The feedback control is performed so that the phase is equal to or less than the set value Iα.

【0052】これらのフィードバック制御により、各太
陽光発電装置1は、装置間で出力電力や出力電流等の出
力に関連した情報をやりとりすることなく、並列同期運
転されて負荷7に給電する。
By these feedback controls, each photovoltaic power generator 1 is operated in parallel and synchronously to feed the load 7 without exchanging information related to output such as output power and output current between the apparatuses.

【0053】このとき、#1の太陽光発電装置1の出力
電力を図1に示すP1+jQ1(P1は有効電力,Q1
は無効電力)とすると、残りの#2〜#nの太陽光発電
装置1の出力電力は、出力電流I2〜Inが出力電圧V
2〜Vn(=Vout)に同期して同相になるため、そ
れぞれ同図の有効電力P2,…,Pnになる。
At this time, the output power of the photovoltaic power generator 1 of # 1 is represented by P1 + jQ1 (P1 is active power, Q1
Is the reactive power), the output power of the remaining # 2 to #n solar power generation devices 1 is the output voltage I2
2 to Vn (= Vout) and become in-phase, so that the active power becomes P2,..., Pn in FIG.

【0054】また、負荷電流IL (=I1 +I2 +…+
In)が通流する負荷7の消費電力を図1のPL +jQ
L (PL は有効電力,QL は無効電力)とすると、有効
電力PL は各太陽光発電装置1の有効電力P1 ,P2
…,Pnでまかなわれ、無効電力QL は#1の太陽光発
電装置1の無効電力Q1でまかなわれる。
The load current I L (= I 1 + I 2 +... +
In), the power consumption of the load 7 flowing through is represented by P L + jQ in FIG.
L (P L is the effective power, Q L is the reactive power) When active power P L is the effective power P 1, P 2 of each photovoltaic power generator 1,
..., it is financed by Pn, the reactive power Q L is covered by the reactive power Q1 of solar power generation apparatus 1 of # 1.

【0055】つぎに、負荷7が力率1の場合の各太陽光
発電装置1の出力の運転開始後の具体的な変化の1例に
つき、図5を参照して説明する。同図において、,
,…は運転開始(スタート)の時系列をt0 とした場
合のt0 〜t1 ,t1 〜t2 ,…,t10〜t11の時系列
の各運転期間(区間)を示す。
Next, an example of a specific change in the output of each photovoltaic power generator 1 after the start of operation when the load 7 has a power factor of 1 will be described with reference to FIG. In the figure,
, ... it is t 0 ~t 1, t 1 ~t 2 when the time series of the start operation (start) and a t 0, ..., showing each operation period of the time series of t 10 ~t 11 (section).

【0056】まず、スタート直後の運転期間には、#
1のインバータ3のみが電圧制御運転され、その出力電
圧V1(=Vout)が徐々に上昇してその出力電流I
1も増加する。
First, during the operation period immediately after the start,
Only the inverter 3 performs voltage control operation, and its output voltage V1 (= Vout) gradually increases to increase its output current I
It also increases by one.

【0057】そして、t1 に出力電圧V1が設定値Vα
に上昇すると、#2〜#nのインバータ3の電流制御運
転が開始され、運転期間には、#1のインバータ3の
出力電圧V1がさらに上昇するとともに、#2〜#nの
インバータ3の出力電流I2〜Inが0から徐々に増加
する。
[0057] Then, the output voltage V1 to t 1 is set value Vα
, The current control operation of the inverters # 2 to #n is started. During the operation period, the output voltage V1 of the inverter 3 of # 1 further increases and the output of the inverters 3 of # 2 to #n is increased. The currents I2 to In gradually increase from 0.

【0058】つぎに、t2 に出力電圧V1が定格電圧V
cに上昇する運転期間には、#1のインバータ3は定
格電圧Vαを維持するように運転され、#2〜#nのイ
ンバータ3は負荷電圧Voutが変化しないため、出力
電流I2〜Inが変化せず、そのままに保たれる。
Next, at t 2 , the output voltage V 1 becomes the rated voltage V
During the operation period in which the output current I2 -In changes, the inverter 3 of # 1 is operated to maintain the rated voltage Vα, and the inverters 3 of # 2 to #n do not change in the load voltage Vout. Not to be kept.

【0059】つぎに、運転期間に負荷7の容量が増大
すると、負荷電圧Voutは瞬時低下するが、この電圧
低下により#2〜#nのインバータ3の出力電流I2〜
Inが直ちに増加し、出力電流I2〜Inが設定値Iα
まで増大して負荷電圧Voutの低下が防止される。
Next, when the capacity of the load 7 increases during the operation period, the load voltage Vout decreases instantaneously, but this voltage decrease causes the output current I2 of the inverter 3 of # 2 to #n to decrease.
In immediately increases, and the output currents I2 to In reach the set value Iα.
To prevent the load voltage Vout from decreasing.

【0060】そして、負荷7の容量がさらに増加する
と、設定値Iαに達した出力電流I2〜Inはこれ以上
増えないが、負荷電圧Voutの低下に基づき、#1の
インバータ3が負荷電圧Voutを上昇するように出力
電流I1を増大し、運転期間には出力電流I1 が増大
して負荷電流IL の不足が補われる。
When the capacity of the load 7 further increases, the output currents I2 to In that have reached the set value Iα do not increase any more. However, based on the decrease in the load voltage Vout, the # 3 inverter 3 reduces the load voltage Vout. increasing the output current I1 to rise, the operating period is compensated shortage of the load current I L output current I 1 is increased.

【0061】さらに、運転期間には負荷7の容量が一
定に保たれ、各インバータ3はその直前の出力状態に保
たれる。
Further, during the operation period, the capacity of the load 7 is kept constant, and each inverter 3 is kept in the output state immediately before.

【0062】つぎに、運転期間になると、負荷7の容
量が減少して負荷電流IL が減少し、この減少に連動し
て#1のインバータ3の出力電流I1が減少する。
Next, at the operation period, the load current I L capacity of the load 7 is reduced is decreased, the output current I1 of # 1 of the inverter 3 in conjunction with this reduction is reduced.

【0063】さらに、負荷7の容量が一定に保たれる運
転期間には、各インバータ3は運転期間と同様、出
力変化なく安定に運転される。
Further, during the operation period in which the capacity of the load 7 is kept constant, each inverter 3 is operated stably without a change in output, as in the operation period.

【0064】つぎに、負荷7の容量が徐々に減少変化す
る運転期間以降は、#1のインバータ3の出力電流I
1 がさらに減少変化する。
Next, after the operation period when the capacity of the load 7 gradually decreases and changes, the output current I
1 further decreases and changes.

【0065】そして、出力電流I1が0に低下した後、
負荷7の容量がさらに減少すると、#2〜#nのインバ
ータ3の出力電流I2〜Inが減少する。
Then, after the output current I1 drops to 0,
When the capacity of the load 7 further decreases, the output currents I2 to In of the inverters 3 of # 2 to #n decrease.

【0066】また、無負荷状態になると、出力電流I1
〜Inはいずれも0になり、このとき、出力電圧V1に
基づき、負荷電圧Voutは定格電圧Vcに保たれる。
When no load occurs, the output current I1
To In become zero, and at this time, the load voltage Vout is maintained at the rated voltage Vc based on the output voltage V1.

【0067】そして、自立運転の際に、#1の太陽光発
電装置1のインバータ3のみが先に電圧制御運転され、
その出力電圧に同期して#2〜#nの太陽光発電装置1
のインバータが電流制御運転されるため、各太陽光発電
装置1は出力電力や出力電流等の出力に関連した情報を
やりとりすることなく、しかも、そのための専用のセン
サ等を設けることもなく、並列同期運転される。
Then, during the self-sustaining operation, only the inverter 3 of the photovoltaic power generator 1 of # 1 is operated by voltage control first,
# 2 to #n photovoltaic power generators 1 in synchronization with the output voltage
Are operated in current control, each of the photovoltaic power generators 1 does not exchange information related to output such as output power and output current, and furthermore, does not provide a dedicated sensor or the like for the same, so that Operated synchronously.

【0068】この場合、各太陽光発電装置1のインバー
タ3がそれぞれ個別に運転されるため、例えば各太陽光
発電装置1の製造メーカが異なってそれぞれのインバー
タ3の制御シーケンス等が相違していても、この相違に
よらず、#2〜#nの太陽光発電装置1のインバータ3
の出力電流が#1の太陽光発電装置1のインバータの出
力電圧に同期し、各太陽光発電装置1が並列同期運転さ
れる。
In this case, since the inverters 3 of the respective photovoltaic power generators 1 are individually operated, for example, the manufacturers of the respective photovoltaic power generators 1 are different, and the control sequences of the respective inverters 3 are different. Irrespective of this difference, the inverters 3 of the photovoltaic power generators # 2 to #n
Is synchronized with the output voltage of the inverter of the # 1 photovoltaic power generator 1, and each photovoltaic power generator 1 is operated in parallel and synchronously.

【0069】そして、電力系統から解列されて自立運転
される複数の分散型電源が太陽光発電装置以外の場合に
も、本発明を同様に適用することができる。その際、種
々のタイプの分散型電源が混在した構成であってもよい
のは勿論である。
The present invention can be similarly applied to a case where a plurality of distributed power sources which are disconnected from the power system and operated independently are other than the photovoltaic power generator. In this case, it is needless to say that a configuration in which various types of distributed power sources are mixed may be employed.

【0070】つぎに、#2〜#nのインバータ3の運転
開始の設定電圧Vαやそれらの出力電流I1〜Inの上
限を定める設定値Iα等は、負荷7の容量等に応じて適
当に設定してよいのは勿論である。また、基準のインバ
ータは#1〜#nのインバータ3のいずれであってもよ
い。
Next, the set voltage Vα for starting the operation of the inverters # 2 to #n and the set value Iα for defining the upper limit of the output currents I1 to In are appropriately set according to the capacity of the load 7. Of course, you can. The reference inverter may be any of inverters # 1 to #n.

【0071】[0071]

【発明の効果】本発明は、以下に記載する効果を奏す
る。各分散型電源(各太陽光発電装置1)が電力系統5
から解列されて自立運転される際、基準のインバータ
(例えば#1の太陽光発電装置1のインバータ)3が電
圧制御運転されて交流電圧源を形成し、基準のインバー
タから遅れて残りの分散電源のインバータ(例えば#2
〜#nの太陽光発電装置1のインバータ)3がそれぞれ
電流制御運転されて交流電流源を形成する。
The present invention has the following effects. Each distributed power source (each photovoltaic power generation device 1) has a power system 5
When the self-sustaining operation is performed after being disconnected from the inverter, the reference inverter (for example, the inverter of the # 1 photovoltaic power generator 1) 3 is voltage-controlled to form an AC voltage source, and the remaining dispersion is delayed from the reference inverter. Power supply inverter (eg # 2
To #n of the photovoltaic power generators 1 are respectively subjected to current control operation to form an AC current source.

【0072】このとき、負荷給電の電圧が基準のインバ
ータの電圧で決まり、残りの分散電源のインバータの出
力電流が基準のインバータの出力電圧と同相になるた
め、これらのインバータの出力が基準のインバータの出
力に同期し、分散型電源間で出力に関連した情報のやり
とり等を行うことなく、各分散型電源を並列同期運転す
ることができ、分散型電源間に通信線を敷設したりする
ことなく、安価な構成で複数の分散型電源の自立運転の
際の並列同期運転を実現することができる。
At this time, the voltage of the load power supply is determined by the voltage of the reference inverter, and the output currents of the remaining distributed power supply inverters have the same phase as the output voltage of the reference inverter. The distributed power sources can be operated in parallel and synchronously without the need to exchange information related to the output between the distributed power sources in synchronization with the output of the distributed power sources, and communication lines can be laid between the distributed power sources. In addition, it is possible to realize a parallel synchronous operation at the time of self-sustaining operation of a plurality of distributed power sources with an inexpensive configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の単線系統図である。FIG. 1 is a single-wire system diagram of one embodiment of the present invention.

【図2】図1の各インバータの構成を説明する回路ブロ
ック図である。
FIG. 2 is a circuit block diagram illustrating a configuration of each inverter of FIG.

【図3】図2の一部の電圧制御運転時の機能ブロック図
である。
FIG. 3 is a functional block diagram of a part of FIG. 2 during a voltage control operation.

【図4】図2の一部の電流制御運転時の機能ブロック図
である。
FIG. 4 is a functional block diagram of a part of FIG. 2 at the time of current control operation.

【図5】図1の各部の電圧,電流の変化の1例を示す波
形図である。
FIG. 5 is a waveform chart showing an example of a change in voltage and current of each unit in FIG.

【符号の説明】[Explanation of symbols]

1 分散型電源である太陽光発電装置 3 インバータ 5 電力系統 1 Photovoltaic power generation device as a distributed power source 3 Inverter 5 Power system

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02M 7/48 H01L 31/04 K ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H02M 7/48 H01L 31/04 K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力系統から解列された複数の分散型電
源を自立運転する際に、 各分散型電源のいずれか1つのインバータを基準のイン
バータとし、 前記基準のインバータを電圧制御運転して交流電圧源を
形成し、 前記基準のインバータの出力電圧が発生した後、残りの
分散型電源のインバータを前記基準のインバータの出力
電圧に同期してそれぞれ電流制御運転し、 前記電流制御運転により前記交流電圧源に同期した交流
電流源をそれぞれ形成して各分散型電源を並列同期運転
することを特徴とする分散型電源設備の運転制御方法。
When a plurality of distributed power supplies disconnected from a power system are operated independently, one of the distributed power supplies is used as a reference inverter, and the reference inverter is operated under voltage control. An AC voltage source is formed, and after the output voltage of the reference inverter is generated, the remaining distributed power supply inverters are respectively subjected to current control operation in synchronization with the output voltage of the reference inverter. An operation control method for a distributed power supply facility, wherein an AC current source synchronized with an AC voltage source is formed and each distributed power supply is operated in parallel and synchronously.
JP9254297A 1997-09-02 1997-09-02 Operation control method of distributed power supply equipment Pending JPH1189096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9254297A JPH1189096A (en) 1997-09-02 1997-09-02 Operation control method of distributed power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9254297A JPH1189096A (en) 1997-09-02 1997-09-02 Operation control method of distributed power supply equipment

Publications (1)

Publication Number Publication Date
JPH1189096A true JPH1189096A (en) 1999-03-30

Family

ID=17263029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9254297A Pending JPH1189096A (en) 1997-09-02 1997-09-02 Operation control method of distributed power supply equipment

Country Status (1)

Country Link
JP (1) JPH1189096A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169559A (en) * 1999-12-02 2001-06-22 Tokyo Denki Univ Sine wave inverter
JP2007287567A (en) * 2006-04-19 2007-11-01 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2007295718A (en) * 2006-04-25 2007-11-08 Sharp Corp Power supply system
JP2008125290A (en) * 2006-11-14 2008-05-29 Central Res Inst Of Electric Power Ind Isolated operation method and system of low voltage system
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
JP2009290939A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Generator system and method of controlling generator system
JP2009291054A (en) * 2008-05-30 2009-12-10 Fuji Electric Systems Co Ltd Method of controlling power generator system, and power generator system
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
US8310094B2 (en) 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
WO2013073126A1 (en) * 2011-11-15 2013-05-23 京セラ株式会社 Power conditioner, power conditioner system, and method for controlling power conditioner system
JP2013121205A (en) * 2011-12-06 2013-06-17 Shimizu Corp Self-sustained operation system and method of distributed power supply
JP2014042418A (en) * 2012-08-23 2014-03-06 Nittetsu Elex Co Ltd Emergency power supply method
JP2014050292A (en) * 2012-09-04 2014-03-17 Toshiba Syst Technol Corp Distributed power supply system, and autonomous operation control device
WO2014144354A3 (en) * 2013-03-15 2014-11-06 Christopher Estes Integrated solar panel
JP2015119581A (en) * 2013-12-19 2015-06-25 京セラ株式会社 Power control system and power control method
JP2015171284A (en) * 2014-03-10 2015-09-28 パナソニック株式会社 Air conditioner system
US9444397B2 (en) 2012-10-26 2016-09-13 Sunculture Solar, Inc. Integrated solar panel
JP2017055508A (en) * 2015-09-08 2017-03-16 日立マクセル株式会社 Interconnection device
US9620993B2 (en) 2012-10-26 2017-04-11 Solpad, Inc. Auto-synchronous isolated inlet power converter
JP2017099111A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and operating method
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
CN107078503A (en) * 2014-04-29 2017-08-18 索派德公司 Automatic synchronization isolates entrance power converter
JP2017184582A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Power storage system and operation method
JP2018026890A (en) * 2016-08-08 2018-02-15 サンケン電気株式会社 Electrical power system
US9948139B2 (en) 2012-10-26 2018-04-17 Solpad, Inc. Solar power generation, distribution, and communication system
JP2020068544A (en) * 2018-10-22 2020-04-30 株式会社日立パワーソリューションズ Power supply/demand system
CN111106624A (en) * 2019-12-31 2020-05-05 郑州众智科技股份有限公司 Method for parallel connection of generator set and inverter

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169559A (en) * 1999-12-02 2001-06-22 Tokyo Denki Univ Sine wave inverter
US8310094B2 (en) 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
JP2007287567A (en) * 2006-04-19 2007-11-01 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2007295718A (en) * 2006-04-25 2007-11-08 Sharp Corp Power supply system
JP2008125290A (en) * 2006-11-14 2008-05-29 Central Res Inst Of Electric Power Ind Isolated operation method and system of low voltage system
JP2009081942A (en) * 2007-09-26 2009-04-16 Yanmar Co Ltd Distributed power system
JP2009290939A (en) * 2008-05-27 2009-12-10 Fuji Electric Systems Co Ltd Generator system and method of controlling generator system
JP2009291054A (en) * 2008-05-30 2009-12-10 Fuji Electric Systems Co Ltd Method of controlling power generator system, and power generator system
JP2010117744A (en) * 2008-11-11 2010-05-27 Sharp Corp Solar photovoltaic power generator and solar photovoltaic power generation system
EP2782204A4 (en) * 2011-11-15 2015-06-24 Kyocera Corp Power conditioner, power conditioner system, and method for controlling power conditioner system
US9893531B2 (en) 2011-11-15 2018-02-13 Kyocera Corporation Power supply apparatus, power supply system, and method for controlling power supply system
US20140327315A1 (en) * 2011-11-15 2014-11-06 Kyocera Corporation Power supply apparatus, power supply system, and method for controlling power supply system
JPWO2013073126A1 (en) * 2011-11-15 2015-04-02 京セラ株式会社 Power conditioner, power conditioner system, and control method for power conditioner system
WO2013073126A1 (en) * 2011-11-15 2013-05-23 京セラ株式会社 Power conditioner, power conditioner system, and method for controlling power conditioner system
JP2013121205A (en) * 2011-12-06 2013-06-17 Shimizu Corp Self-sustained operation system and method of distributed power supply
JP2014042418A (en) * 2012-08-23 2014-03-06 Nittetsu Elex Co Ltd Emergency power supply method
JP2014050292A (en) * 2012-09-04 2014-03-17 Toshiba Syst Technol Corp Distributed power supply system, and autonomous operation control device
US9444397B2 (en) 2012-10-26 2016-09-13 Sunculture Solar, Inc. Integrated solar panel
US9620993B2 (en) 2012-10-26 2017-04-11 Solpad, Inc. Auto-synchronous isolated inlet power converter
US9948139B2 (en) 2012-10-26 2018-04-17 Solpad, Inc. Solar power generation, distribution, and communication system
WO2014144354A3 (en) * 2013-03-15 2014-11-06 Christopher Estes Integrated solar panel
JP2015119581A (en) * 2013-12-19 2015-06-25 京セラ株式会社 Power control system and power control method
JP2015171284A (en) * 2014-03-10 2015-09-28 パナソニック株式会社 Air conditioner system
CN107078503A (en) * 2014-04-29 2017-08-18 索派德公司 Automatic synchronization isolates entrance power converter
JP2017055508A (en) * 2015-09-08 2017-03-16 日立マクセル株式会社 Interconnection device
JP2017099110A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and driving method
JP2017099111A (en) * 2015-11-20 2017-06-01 パナソニックIpマネジメント株式会社 Power storage system, control device and operating method
JP2017184582A (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Power storage system and operation method
JP2018026890A (en) * 2016-08-08 2018-02-15 サンケン電気株式会社 Electrical power system
JP2020068544A (en) * 2018-10-22 2020-04-30 株式会社日立パワーソリューションズ Power supply/demand system
CN111106624A (en) * 2019-12-31 2020-05-05 郑州众智科技股份有限公司 Method for parallel connection of generator set and inverter
CN111106624B (en) * 2019-12-31 2024-02-13 郑州众智科技股份有限公司 Method for connecting generator set and inverter power supply in parallel

Similar Documents

Publication Publication Date Title
JPH1189096A (en) Operation control method of distributed power supply equipment
US7072195B2 (en) Modular AC voltage supply and algorithm for controlling the same
CA2658087C (en) Step wave power converter
Verma et al. Decentralized Master-Slave operation of microgrid using current controlled distributed generation sources
JPS61173636A (en) Power source unit
CN109643897B (en) Power system and method for starting multiple power converters in grid forming mode
KR101646170B1 (en) Power System Control Method for Operation With Grid-Connection and Isolation
Thale et al. A smart control strategy for the black start of a microgrid based on PV and other auxiliary sources under islanded condition
JPH11289668A (en) Apparatus and method for controlling reactive power
JP3028205B2 (en) Distributed power system and power conditioner
JP2001197751A (en) Power supply using natural energy
JP2000305633A (en) Operating method for power supply system having plural inverters
Tuladhar Power management of an off-grid PV inverter system with generators and battery banks
JP4101201B2 (en) Operation method of distributed power supply
JP7481886B2 (en) Power Conversion Equipment
Salem et al. Transition from grid-connected to islanded drooped microgrid based on islanding detection scheme
JP7385382B2 (en) Power generation system, power conditioner and its reverse power flow prevention method
JP2000083330A (en) Distributed power supply installation
JP7373194B2 (en) power supply system
JPH03142512A (en) Power generation system
JPH08182343A (en) Photovoltaic power generation system
JPH11262275A (en) Inverter device
JP2732667B2 (en) Battery power storage system
US11539215B2 (en) Voltage control inverter, power source apparatus, and control method
JP2904023B2 (en) Inverter for distributed power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Effective date: 20040405

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Effective date: 20040518

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees