JPH03142512A - Power generation system - Google Patents

Power generation system

Info

Publication number
JPH03142512A
JPH03142512A JP1281253A JP28125389A JPH03142512A JP H03142512 A JPH03142512 A JP H03142512A JP 1281253 A JP1281253 A JP 1281253A JP 28125389 A JP28125389 A JP 28125389A JP H03142512 A JPH03142512 A JP H03142512A
Authority
JP
Japan
Prior art keywords
load
mode
switch
power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1281253A
Other languages
Japanese (ja)
Other versions
JP2623867B2 (en
Inventor
Atsushi Takeda
淳 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1281253A priority Critical patent/JP2623867B2/en
Publication of JPH03142512A publication Critical patent/JPH03142512A/en
Application granted granted Critical
Publication of JP2623867B2 publication Critical patent/JP2623867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To switch the load mode and to attain the no-break supply of power to a single load in a power plant by switching the target value for the output capacity control via an AC/DC converter to the value of the single load in the plant from the command value and separating an AC system when the output capacity is equal to its target value. CONSTITUTION:A load mode switch command signal 14 is sent to an AC/DC converter 2 to switch a system linking mode to an intra-plant single load mode. Thus the output capacity given from the converter 2 and excluding the auxiliary equipment motive power load 8 is obtained from PT 12 and CT 17. Then the electric power of an intra-plant single load 6 obtained from the PT 12 and CT 18 is defined as the new target value in place of the hitherto target value obtained from an output capacity command signal 15 for output capacity control. Thus this control is carried on based on the new target value. When the output capacity given from the converter 2 is coincident with the electric power of the load 6 serving as the target value, the converter 2 opens a load mode switching breaker 16 and controls the output voltage to a fixed level via the intra-plant single load mode. Thus the no-break supply of power is secured to the load 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池等による発電システムに係り、特に
その負荷モードの切換方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power generation system using a fuel cell or the like, and particularly relates to a load mode switching method thereof.

〔従来の技術〕[Conventional technology]

第2図は例えば富士時報Vo1.61 No、2 P、
I28(昭和63年2月発行)に開示されたこの種従来
の燃料電池発電システムを簡略化して示すブロック回路
図である。図において、(1)は直流発電装置である燃
料電池、(′2:Jは燃料電池(1)で発生した直流電
力の出力を交流電力の出力に変換する直交変換装置で、
同時に負荷モードの切換制御も行う。(3)は直交変換
装置(2)の出力電圧を交流系統(4)の電圧にまで昇
圧する昇圧トランス、(匂は昇圧トランス(3)と交流
系統(4)との間に接続された系統連系用の同期遮断器
、(6)は燃料電池発電システムの発電所内の建屋、設
備等で必要となる所内単独負荷で、開■1器(7)を介
して同期遮Fli器(5)の昇圧トランス+31 ff
!!1に接続されている。(8)は燃料電池発電システ
ムの燃f[電池(1)等の補機動力負荷で、31X断器
(9)を介して同期遮断器(5)の交流系統A)側に接
続されている。
Figure 2 shows, for example, Fuji Jiho Vo1.61 No. 2 P.
128 (published in February 1988) is a block circuit diagram showing a simplified conventional fuel cell power generation system of this type. In the figure, (1) is a fuel cell that is a DC power generation device, ('2: J is an orthogonal conversion device that converts the output of DC power generated by the fuel cell (1) into output of AC power,
At the same time, load mode switching control is also performed. (3) is a step-up transformer that boosts the output voltage of the orthogonal converter (2) to the voltage of the AC system (4). The synchronous circuit breaker (6) for interconnection is a single load within the plant that is required in the building, equipment, etc. in the power plant of the fuel cell power generation system, and is connected to the synchronous circuit breaker (5) via the open circuit (7). step-up transformer +31 ff
! ! Connected to 1. (8) is the auxiliary power load such as the fuel f[battery (1)] of the fuel cell power generation system, and is connected to the AC system A) side of the synchronous breaker (5) via the 31X disconnector (9). .

00)および(11)は直交変換装置(2)の出力tカ
を検出するためのそれぞれCTおよびPT、(12)は
系統併入時、交流系統(4)の電圧を検出するためのP
T、(13)は直交変換装置(2)へ操作指令を出す操
作盤である。
00) and (11) are CT and PT, respectively, for detecting the output t of the orthogonal transformer (2), and (12) is P for detecting the voltage of the AC system (4) when connected to the system.
T, (13) is an operation panel for issuing operation commands to the orthogonal transformation device (2).

次に動作、特に負荷モードの切換動作を中心に説明する
。先ず、燃料電池発電システムを起動して系統連系モー
ドに入る場合の動作について説明する。この場合、同期
遮断器(5)は開の状態で遮断器(9)を投入し、交流
系統(4)から補機動力負荷(8)へ給電する。これに
よって、燃料電池発電システムの各装置の補機類は稼働
態勢となる。ここで、操作盤(13)から直交変換装置
(21に対し、系統連系モードへの負荷モード切換指令
信号(14)を送出すると、燃料電池(1)の出力電圧
が上昇を開始し、PT(11)とPT(12)との出力
電圧が同一で同期がとれた時点で同期遮断器(句を投入
する。これによって、燃料電池発電システムは系統連系
モードの運転に入り、直交変換装置(21は操作盤(1
3)からの出力容量指令信号(15)によりその指令値
を目標値として出力容量を制御する出力容量制御を行う
Next, the operation, especially the load mode switching operation, will be explained. First, the operation when starting up the fuel cell power generation system and entering grid connection mode will be described. In this case, the synchronous circuit breaker (5) is in an open state and the circuit breaker (9) is closed to supply power from the AC system (4) to the auxiliary power load (8). As a result, the auxiliary equipment of each device of the fuel cell power generation system becomes operational. Here, when the operation panel (13) sends the load mode switching command signal (14) to the grid connection mode to the orthogonal conversion device (21), the output voltage of the fuel cell (1) starts to rise, and the PT When the output voltages of (11) and PT (12) are the same and synchronized, the synchronous circuit breaker is turned on. As a result, the fuel cell power generation system enters grid-connected mode operation, and the orthogonal converter (21 is the control panel (1
Output capacity control is performed by using the output capacity command signal (15) from 3) to control the output capacity using the command value as a target value.

なお、所内単独負荷(6)は同期遮断器(51が投入さ
れた後、開閉器(7)が投入されて運転可能となる。
In addition, after the synchronous circuit breaker (51) is turned on, the switch (7) is turned on and the in-house independent load (6) becomes operational.

即ち、系統連系モードにおいては、直交変換装置(2)
は出力容量制御で動作しており、変動負荷である所内単
独負荷(6)に一定の電圧を補償する能力がなく、交流
系統(4)からの受電が可能となった状態で初めて運転
可能の態勢になる訳である。
That is, in the grid connection mode, the orthogonal transformation device (2)
operates under output capacity control, and does not have the ability to compensate for a constant voltage for the variable load (6) within the station, and can only operate when it is possible to receive power from the AC system (4). It becomes a posture.

次いで、系統連系モードから所内単独負荷モードに移行
する場合には、操作盤(13)からの負荷モード切換指
令信号(14)に基づき、先ず燃料電池(1)を停止さ
せて直交変換装置(2)の出力電流を零にするとともに
、同期遮断器(51および開閉器(7)を開放して交流
系統(4)を開離すると同時に所内単独負荷(6)も−
旦停止させる。
Next, when shifting from the grid-connected mode to the in-house independent load mode, first the fuel cell (1) is stopped and the orthogonal conversion device ( 2), the synchronous circuit breaker (51) and switch (7) are opened to disconnect the AC system (4), and at the same time, the isolated load (6) in the station is also
Stop it once.

その後、燃料電池(1)および直交変換装置(21を再
び起動させ、P T (11)の出力電圧が定格値にな
った時点で開閉器(7)を投入することにより、所内単
独負荷(6)への給電を行う所内単独負荷モードの運転
に入る。この所内単独負荷モードにおいては、直交変換
装置(21はその出力電圧を所定の設定値である定格電
圧に保つ出力電圧一定制御で動作するので、所内単独負
荷(6)はその負荷変動にかがわらず、一定の電圧で給
電されることになる。
Thereafter, the fuel cell (1) and the orthogonal converter (21) are restarted, and the switch (7) is turned on when the output voltage of P ).In this in-station single load mode, the orthogonal converter (21) operates under constant output voltage control to maintain its output voltage at the rated voltage, which is a predetermined setting value. Therefore, the in-house independent load (6) is supplied with power at a constant voltage regardless of load fluctuations.

なお、補機動力負荷(8)については、この所内単独負
荷モードにおいても交流系統(4)がら給電される。
Note that power is supplied to the auxiliary power load (8) from the AC system (4) even in this in-house single load mode.

次に、所内単独負荷モードがら系統連系モードに復帰す
る際には、P T (11)とP T (12)との出
力電圧から同期投入の条件を確認した後、同期遮断器(
5)を投入して系統連系モードに移行する。これに伴っ
て、直交変換装置(2)は出力電圧一定制御から再び出
力容量制御にその制御方式を変更する。
Next, when returning to the grid connection mode from the station single load mode, after checking the synchronization conditions from the output voltages of P T (11) and P T (12), the synchronous breaker (
5) and shift to grid connection mode. Along with this, the orthogonal conversion device (2) changes its control method from constant output voltage control to output capacity control again.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃料電池発電システムは以上のように構成されて
いるので、特に系統連系モードから所内単独負荷モード
への切換時に燃料電池(1)や直交変換装置(2)を停
止させる必要があり、また所内単独負荷(6)も−旦給
電が停止されるので、モードの切換に長時間がかかると
ともに燃料の消費量も増大し、また所内単独負荷(6)
として常時稼働が必要な負荷を選定することができない
という問題点があった。
Since the conventional fuel cell power generation system is configured as described above, it is necessary to stop the fuel cell (1) and the orthogonal converter (2) especially when switching from the grid connection mode to the in-house single load mode. In addition, since the power supply to the individual station load (6) is stopped, it takes a long time to switch the mode and the amount of fuel consumed increases.
However, there was a problem in that it was not possible to select a load that required continuous operation.

また、補機動力負荷(8)は所内単独負荷モードにおい
ても交流系統(4)から給電を受けているので、この間
に交流系統(4)が停電になると燃料電池発電システム
も停止せざるをえず、真の独立した単独電源とは言えな
いという問題点があった。
In addition, since the auxiliary power load (8) receives power from the AC system (4) even in the station single load mode, if the AC system (4) experiences a power outage during this period, the fuel cell power generation system will also have to stop. First, there was the problem that it could not be said to be a truly independent power source.

この発明は以上のような問題点を解消するためになされ
たもので、出力停止をすることなく負荷モードの切換が
可能であり、所内単独負荷への無停電給電も可能となる
発電システムを得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a power generation system that is capable of switching load modes without stopping output and that also enables uninterrupted power supply to a single load within a station. The purpose is to

また、所内単独負荷モード運転中に交流系統の停電が発
生しても所内単独負荷への給電を続行することができる
発電システムを得ることを目的とする。
Another object of the present invention is to obtain a power generation system that can continue supplying power to a single station load even if a power outage occurs in the AC system during operation in the station single load mode.

〔課題を解決するための手段および作用〕この発明に係
る発電システムは、系統連系モードから所内単独負荷モ
ードへ移行する際、直交変換装置による出力容量制御の
目標値をそれまでの指令値から所内単独負荷の負荷量に
置換え、これが一致した時点で交流系統を開離するよう
にしたものである。
[Means and effects for solving the problem] The power generation system according to the present invention changes the target value of the output capacity control by the orthogonal conversion device from the previous command value when transitioning from the grid-connected mode to the station isolated load mode. The load amount is replaced with the load amount of the individual load within the station, and the AC system is disconnected when the amount matches.

この場合、出力容量制御の目標値が、所内単独負荷の負
荷量に一致すると、発電システムがら交流系統への出力
は零となっているので、交流系統を開離しても負荷変動
はなく、所内単独負荷モードへの安定した移行が可能と
なる。
In this case, when the target value of output capacity control matches the load amount of the station's single load, the output from the power generation system to the AC system is zero, so even if the AC system is disconnected, there will be no load fluctuation, and the station's Stable transition to single load mode is possible.

更に、直交変換装置に一端が接続された第1の開閉器と
この第1の開閉器の他端と交流系統との間に接続された
第2の開閉器とを備え、上記両開閉器を相互に接続する
部分に補機動力負荷と所内単独負荷とを接続し、上記第
1の開閉器を開、上記第2の開閉器を閉としてシステム
を起動するようにしたものでは、所内単独負荷モードで
は上記第■の開閉器を閉、第2の開閉器を開とするので
、補機動力負荷は発電システム自体がら給電され交流系
統と関係なく運転が継続される。
Furthermore, it includes a first switch whose one end is connected to the orthogonal conversion device, and a second switch which is connected between the other end of the first switch and the AC system, and both of the switches are connected to each other. In the case where the auxiliary power load and the station independent load are connected to the mutually connected parts, and the system is started by opening the first switch and closing the second switch, the station independent load In the mode, the first switch is closed and the second switch is opened, so that the auxiliary power load is supplied with power from the power generation system itself, and operation continues regardless of the AC system.

〔実 施 例〕〔Example〕

第1図はこの発明の一実施例による燃料電池発電システ
ムを示すブロック回路図である。図において、(1)な
いしく15)は従来のものと同一または相当部分であり
説明を省略する。但し、第1の開閉器としての同期遮断
器(51に加え、この同期遮断器(51と交流系統(4
)との間に第2の開閉器としての負荷モード切換用遮断
器(16)を設け、両道断器(51(16)で開閉装置
を構成している。そして、所内単独負荷(6)と補機動
力負荷(8)とは同期遮断器(51と負荷モード切換用
遮断器(16)とを相互に接続する部分に接続されてい
る。また、(17丁は所内単独負荷(6)と補機動力負
荷(8)とへの分岐点の間に挿入されたCT、(18)
は所内単独負荷(6)への電流を検出するCT、(I9
)は交流系統(4)の電圧を検出するPTである。
FIG. 1 is a block circuit diagram showing a fuel cell power generation system according to an embodiment of the present invention. In the figure, (1) to 15) are the same or equivalent parts as in the conventional one, and their explanation will be omitted. However, in addition to the synchronous breaker (51) as the first switch, this synchronous breaker (51 and the AC system (4
) is installed between the load mode switching circuit breaker (16) as a second switch, and the double-way circuit breaker (51 (16) constitutes a switching device. The auxiliary power load (8) is connected to the part that interconnects the synchronous circuit breaker (51) and the load mode switching circuit breaker (16). CT (18) inserted between the branch point to the auxiliary power load (8)
is a CT that detects the current to the in-house independent load (6), (I9
) is a PT that detects the voltage of the AC system (4).

次に動作について説明する。燃料電池発電システムを起
動して系統連系モードに入る場合、先ず、負荷モード切
換用遮断器(16)を投入して交流系統(7りから所内
単独負荷(6)および補機動力負荷(8)に給電する。
Next, the operation will be explained. When starting up the fuel cell power generation system and entering the grid connection mode, first turn on the load mode switching circuit breaker (16) and switch from the AC system (7) to the station independent load (6) and the auxiliary power load (8). ).

これによって燃料電池発電システムの各装置は稼働状態
となり、後は、従来と同様にして、P T (11)と
P T (+ 2)との出力電圧がら同期投入の条件を
確認し、条件が満足された時点で同期遮断器(131を
投入して系統連系モードの運転に入る。
As a result, each device in the fuel cell power generation system becomes operational. After that, the conditions for synchronization are confirmed from the output voltages of P T (11) and P T (+2) in the same way as before, and the conditions are met. When the condition is satisfied, the synchronous circuit breaker (131) is turned on and operation begins in grid connection mode.

次いで、系統連系モードがら所内単独負荷モードへの負
荷モード切換指令信号(14)を直交変換装置(2へ送
出すると、補機動力負荷(8)を差し引いた直交変換装
置(21からの出力容量をP T (12)とCT(1
7)とから求め、出力容量制御におけるそれまでの出力
容量指令信号(15)による目標値に替ってPT (1
2)とCT (+ 8>とから求める所内単独負荷(6
)の負荷電力を新たな目標値として出力容量制御を続行
する。やがて、上記した直交変換装置(2)がらの出力
容量が目標値である所内単独負荷(6)の負荷電力に一
致すると、直交変換装置(2)は負荷モード切換用遮断
器(16)に指令を出してこれを開放操作させ、所内単
独負荷モードによる出カ電圧一定制御に移行する。
Next, when the load mode switching command signal (14) from the grid connection mode to the in-house independent load mode is sent to the orthogonal conversion device (2), the output capacity from the orthogonal conversion device (21) minus the auxiliary power load (8) is P T (12) and CT (1
7), and in place of the target value based on the output capacity command signal (15) in output capacity control,
2) and CT (+8>)
) continues output capacity control using the load power as the new target value. Eventually, when the output capacity of the above-mentioned orthogonal converter (2) matches the target value of the load power of the individual load (6) in the station, the orthogonal converter (2) issues a command to the load mode switching circuit breaker (16). This is then opened to switch to constant output voltage control using in-house single load mode.

即ち、燃料電池発電システムの出力を停止することなく
系統連系モードから所内単独負荷モードへ移行するので
、燃料電池(1)の停止に伴う燃料消費量の増大や所内
単独負荷(6)への給電停止が回避され、かつモード切
換時間も大幅に短縮される。
In other words, the transition from the grid-connected mode to the in-house independent load mode occurs without stopping the output of the fuel cell power generation system, so there is no increase in fuel consumption due to the stoppage of the fuel cell (1), or an increase in the in-house independent load (6). Power supply stoppage is avoided and mode switching time is also significantly shortened.

また、所内単独負荷モード運転時、補機動力負荷(8)
は直交変換装置(2)がら給電を受けるので、この間、
交流系統(4)が停電になっても燃料電池発電システム
は支障なく運転を継較することができ、所内単独負荷(
6)の常時稼働が遠戚される。
In addition, when operating in the station single load mode, the auxiliary power load (8)
receives power from the orthogonal transformer (2), so during this time,
Even in the event of a power outage in the AC system (4), the fuel cell power generation system can continue operating without any problems, and the isolated load within the station (
6) constant operation is a distant relative.

次に、所内単独負荷モードから系統連系モードに復帰す
る場合は、従来と同様にP T (12)とPT(1つ
)との出力電圧から同期投入の条件を確認した後、負荷
モード切換用遮断器(16)を投入して系統連系モード
に移行する。これに伴って、直交変換装置(■は出力電
圧一定制御から再び出力容量制御にその制御方式を変更
する。
Next, when returning from in-house isolated load mode to grid-connected mode, check the synchronization conditions from the output voltage of PT (12) and PT (1) as before, and then switch the load mode. The circuit breaker (16) is turned on to shift to grid connection mode. Along with this, the control method of the orthogonal conversion device (■) is changed from constant output voltage control to output capacity control again.

なお、上記実施例では直流発電装置が燃料電池の場合に
ついて説明したが、太陽電池等直流出力を発生する他の
種類のものであってもよい。
In the above embodiments, the DC power generation device is a fuel cell, but it may be a solar cell or other type of device that generates DC output.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明では、系統連系モードにおける
出力容量制御の目標値をその指令値から所内単独負荷の
負荷量に置換え、これが一致した時点で交流系統を開離
して所内単独負荷モードに移行するようにしたので、発
電システムの出力を停止することなく系統連系モードか
ら所内単独負荷モードへの移行が可能となり、この結果
、モード切換時間が大幅に短縮されるとともに所内単独
負荷の常時稼働が可能となる。
As described above, in this invention, the target value for output capacity control in the grid connection mode is replaced with the load amount of the individual station load from the command value, and when the values match, the AC system is disconnected and the output capacity control is switched to the individual station load mode. As a result, it is possible to shift from grid-connected mode to on-site isolated load mode without stopping the output of the power generation system.As a result, the mode switching time is significantly shortened, and the on-site isolated load mode can be switched at all times. Operation becomes possible.

更に、所定の第1および第2の開閉器を設け、両開閉器
の接続点に補機動力負荷と所内単独負荷とを接続して所
定のシーケンスでシステムを起動させるようにしたもの
では、所内単独負荷モード運転時、補機動力負荷は直交
変換装置から給電を受けるので、交流系統が停電になっ
ても発電システムは支障なく運転を継続することができ
、交流系統に依存しない独立した眼独電源として機能す
る。
Furthermore, in a system in which a predetermined first and second switch is provided, and the auxiliary power load and the station independent load are connected to the connection point of both switches to start the system in a predetermined sequence, When operating in single load mode, the auxiliary power load receives power from the orthogonal converter, so even if the AC system is out of power, the power generation system can continue operating without any problems, providing independent power that does not depend on the AC system. Functions as a power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池発電システ
ムを示すブロック回路図、第2図は従来のものを示すブ
ロック回路図である。 図において、(1)は直流発電装置としての燃料電池、
(2)は直交変換装置、(4)は交流系統、(51は第
1の開閉器としての同期遮断器、(6)は所内単独負荷
、(8)は補機動力負荷、(16)は第2の開閉器とし
ての負荷モード切換用遮@器である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block circuit diagram showing a fuel cell power generation system according to an embodiment of the present invention, and FIG. 2 is a block circuit diagram showing a conventional system. In the figure, (1) is a fuel cell as a DC power generation device;
(2) is an orthogonal conversion device, (4) is an AC system, (51 is a synchronous circuit breaker as the first switch, (6) is an independent station load, (8) is an auxiliary power load, (16) is This is a load mode switching circuit breaker as a second switch. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)直流発電装置と、この直流発電装置の出力を交流
出力に変換する直交変換装置と、この直交変換装置と発
電所の所内単独負荷および交流系統との間の接続の開閉
を行う開閉装置とを備え、系統連系モードでは上記所内
単独負荷と交流系統とを直交変換装置に接続して上記直
交変換装置の出力容量をその指令値を目標値として制御
する出力容量制御を行い、所内単独負荷モードでは上記
交流系統を開離し上記所内単独負荷を直交変換装置に接
続して上記直交変換装置の出力電圧を所定の設定値に保
つ出力電圧一定制御を行うようにしたものにおいて、 上記出力容量制御の目標値を上記指令値から上記所内単
独負荷の負荷量に置換え、これが一致した時点で上記交
流系統を開離することにより、上記系統連系モードから
所内単独負荷モードへ連続的に移行させるようにしたこ
とを特徴とする発電システム。
(1) A DC power generation device, an orthogonal conversion device that converts the output of this DC power generation device into AC output, and a switchgear that opens and closes the connection between this orthogonal conversion device and the individual load in the power plant and the AC system. In the grid-connected mode, the above-mentioned in-house isolated load and the AC system are connected to an orthogonal converter, and the output capacity of the orthogonal converter is controlled using its command value as a target value. In the load mode, the above-mentioned AC system is disconnected, the above-mentioned in-house independent load is connected to the orthogonal conversion device, and output voltage constant control is performed to maintain the output voltage of the above-mentioned orthogonal conversion device at a predetermined set value. By replacing the control target value from the command value with the load amount of the station single load and disconnecting the AC system when the values match, the system continuously transitions from the grid connection mode to the station single load mode. A power generation system characterized by:
(2)開閉装置を、直交変換装置に一端が接続された第
1の開閉器とこの第1の開閉器の他端と交流系統との間
に接続された第2の開閉器とで構成し、上記両開閉器を
相互に接続する部分に補機動力負荷と所内単独負荷とを
接続し、上記第1の開閉器を開、上記第2の開閉器を閉
としてシステムを起動するようにしたことを特徴とする
請求項1記載の発電システム。
(2) The switchgear is composed of a first switch whose one end is connected to the orthogonal converter, and a second switch which is connected between the other end of the first switch and the AC system. , an auxiliary power load and an in-house independent load are connected to the part where both of the switches are connected to each other, and the first switch is opened and the second switch is closed to start the system. The power generation system according to claim 1, characterized in that:
JP1281253A 1989-10-27 1989-10-27 Power generation system control method Expired - Lifetime JP2623867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281253A JP2623867B2 (en) 1989-10-27 1989-10-27 Power generation system control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281253A JP2623867B2 (en) 1989-10-27 1989-10-27 Power generation system control method

Publications (2)

Publication Number Publication Date
JPH03142512A true JPH03142512A (en) 1991-06-18
JP2623867B2 JP2623867B2 (en) 1997-06-25

Family

ID=17636495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281253A Expired - Lifetime JP2623867B2 (en) 1989-10-27 1989-10-27 Power generation system control method

Country Status (1)

Country Link
JP (1) JP2623867B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336894A (en) * 1994-06-02 1995-12-22 Sanyo Electric Co Ltd Uniterruptible power supply
JPH09149659A (en) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd Photovoltaic power generator
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2004524792A (en) * 2001-03-15 2004-08-12 ユーティーシー フューエル セルズ,エルエルシー Control of multiple fuel cell power plants at a site providing distributed resources within the utility grid
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
JP2006101634A (en) * 2004-09-29 2006-04-13 Tokyo Electric Power Co Inc:The Distributed power supply device
JP2011139594A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd System interconnection system
JPWO2017199645A1 (en) * 2016-05-18 2018-09-27 株式会社村田製作所 Power supply device, power supply method, and power storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173636A (en) * 1984-12-18 1986-08-05 三菱電機株式会社 Power source unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173636A (en) * 1984-12-18 1986-08-05 三菱電機株式会社 Power source unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336894A (en) * 1994-06-02 1995-12-22 Sanyo Electric Co Ltd Uniterruptible power supply
JPH09149659A (en) * 1995-11-27 1997-06-06 Sanyo Electric Co Ltd Photovoltaic power generator
JP2002027670A (en) * 2000-07-10 2002-01-25 Mitsubishi Electric Corp Non-break self-standing shift type power generation system
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
JP2004524792A (en) * 2001-03-15 2004-08-12 ユーティーシー フューエル セルズ,エルエルシー Control of multiple fuel cell power plants at a site providing distributed resources within the utility grid
JP2006101634A (en) * 2004-09-29 2006-04-13 Tokyo Electric Power Co Inc:The Distributed power supply device
JP2011139594A (en) * 2009-12-28 2011-07-14 Fuji Electric Co Ltd System interconnection system
JPWO2017199645A1 (en) * 2016-05-18 2018-09-27 株式会社村田製作所 Power supply device, power supply method, and power storage device
US10749374B2 (en) 2016-05-18 2020-08-18 Murata Manufacturing Co., Ltd. Electric power supply device, method for supplying electric power, and power storage device

Also Published As

Publication number Publication date
JP2623867B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US5977659A (en) Inverter apparatus and solar power generation apparatus
US6849967B2 (en) Automatic transfer switch for microturbine and method of operation
JPS61173636A (en) Power source unit
KR101539394B1 (en) Control System for Alternating Current Common Bus Type Hybrid Power System and Method thereof
JPH1189096A (en) Operation control method of distributed power supply equipment
JPH1023671A (en) Power conditioner and dispersed power supplying system
JP3622343B2 (en) Inverter
EP1465318A2 (en) Uninterruptible power supply system
JP2001008383A (en) Photovoltaic power generating set
CA1144233A (en) Storage battery-type emergency power source
JPH03142512A (en) Power generation system
CN114597937A (en) External mobile synchronous power-off grid-connected platform based on low-voltage power supply and method thereof
CN112701731A (en) Energy storage microgrid grid-connection and off-grid seamless switching device, method and system
JP3415429B2 (en) Inverter device
JP2002027670A (en) Non-break self-standing shift type power generation system
US6727603B1 (en) Automatic mode transitions for microturbine generating systems
JP2002171671A (en) Non-interruptible self-changeover power generator system
JP3633123B2 (en) Distributed power system
JP2904023B2 (en) Inverter for distributed power supply
US11539215B2 (en) Voltage control inverter, power source apparatus, and control method
JP7265701B2 (en) power system
CN217848967U (en) Diesel generating set integrated with multifunctional interface
US20230108060A1 (en) System and method for providing uninterruptible power supply using one or more energy sources
US20240162742A1 (en) System and Method for Transitioning to Backup Power Pooling
JP2002135982A (en) Uninterruptible power supply switchable to independent operation