JPH0386022A - Higher harmonic compensator - Google Patents

Higher harmonic compensator

Info

Publication number
JPH0386022A
JPH0386022A JP1224184A JP22418489A JPH0386022A JP H0386022 A JPH0386022 A JP H0386022A JP 1224184 A JP1224184 A JP 1224184A JP 22418489 A JP22418489 A JP 22418489A JP H0386022 A JPH0386022 A JP H0386022A
Authority
JP
Japan
Prior art keywords
current
lower arms
phase
additional arm
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1224184A
Other languages
Japanese (ja)
Other versions
JP2676937B2 (en
Inventor
Kazunari Komatsugi
小松木 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1224184A priority Critical patent/JP2676937B2/en
Publication of JPH0386022A publication Critical patent/JPH0386022A/en
Application granted granted Critical
Publication of JP2676937B2 publication Critical patent/JP2676937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To improve followability of current by performing firing/extinguishing control of the upper and lower arms at an additional arm section based on detection of maximum or minimum difference between a set value and an actual value of compensating current in each phase. CONSTITUTION:Difference between a set value and an actual value of compensating current in each phase is provided from each adder 6a-6c to each detecting circuit 7a, 7b for detecting positive and negative maximum and minimum values. When the detected value exceeds over a reference level, comparators 7c, 7d output 'H' level signals and producing a firing pulse for the upper and lower arms AU, AD at an additional arm section 1c. Furthermore, an adder 7e compares the maximum absolute difference at positive side with the minimum absolute difference at negative side and determines which of the upper and lower arms AU, AD should be fired in relation to the output signal from a comparator 7f. By such arrangement, the degradation of current followability due to the influence of other phase current can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、整流器等の電力変換装置が発生する高調波電
流や無効電力等を補償し抑制するための電力変換器から
構成される、いわゆる電力用アクティブフィルタの如き
高調波補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a so-called power converter, which is comprised of a power converter for compensating and suppressing harmonic current, reactive power, etc. generated by a power conversion device such as a rectifier. The present invention relates to harmonic compensation devices such as power active filters.

(従来の技術) 従来のこの種の高調波補償装置としては、3群の上下ア
ームによる全6アームからなる三相電圧形インバータや
、2群の上下アームからなる単相インバータを3組用い
たものが知られている。これらの高調波補償装置は、何
れもインバータ各相の出力電流(補償電流)を個々に制
御して電力系統に対し高調波電流等を補償するように構
成されている。
(Prior art) Conventional harmonic compensators of this type use a three-phase voltage source inverter consisting of a total of six arms with three groups of upper and lower arms, and three sets of single-phase inverters consisting of two groups of upper and lower arms. something is known. All of these harmonic compensators are configured to individually control output currents (compensation currents) of each phase of the inverter to compensate for harmonic currents and the like in the power system.

(発明が解決しようとする課題) 上述した従来の高調波補償装置のうち、3群の上下アー
ムからなる三相電圧形インバータを用いた高調波補償装
置では、インバータの各相出力電流の制御が他相の出力
電流制御とは主回路の構成上、無関係でなく、各相出力
電流が電源側の電圧位相や各アームの導通状態で決まっ
てしまう、このため、電源の1サイクルの間で補償電流
設定値と実際値との偏差が大きくなってしまい、補償効
果が著しく低下する場合がある。
(Problems to be Solved by the Invention) Among the conventional harmonic compensators described above, in the harmonic compensator using a three-phase voltage source inverter consisting of three groups of upper and lower arms, it is difficult to control the output current of each phase of the inverter. The output current control of other phases is not unrelated due to the configuration of the main circuit, and the output current of each phase is determined by the voltage phase of the power supply side and the conduction state of each arm. Therefore, it is compensated during one cycle of the power supply. The deviation between the current setting value and the actual value may become large, and the compensation effect may be significantly reduced.

また、単相インバータを3組用いた高調波補償装置では
上述の問題はなくなるが、主回路の構成上、上下アーム
数が全体で12アームとなって三相電圧形インバータの
アーム数の2倍必要となり、装置の大型化を招くという
問題がある。
In addition, the above-mentioned problem is eliminated with a harmonic compensator using three sets of single-phase inverters, but due to the configuration of the main circuit, the number of upper and lower arms is 12 in total, which is twice the number of arms of a three-phase voltage source inverter. This poses a problem of increasing the size of the device.

本発明は上記問題点を解決するために提案されたもので
、その目的とするところは三相電圧形インバータからな
る高調波補償装置において、インバータ出力電流を制御
する際に他相の影響で電流追従性が悪化するのを防止し
て補償性能を高め、しかも若干のアーム数の増加と簡単
な制御回路の付加のみにより構成可能として装置の大型
化を防ぐことができる高調波補償装置を提供することに
ある。
The present invention was proposed in order to solve the above-mentioned problems, and its purpose is to provide a harmonic compensation device consisting of a three-phase voltage source inverter. To provide a harmonic compensator which prevents deterioration of followability, improves compensation performance, and can be configured by only slightly increasing the number of arms and adding a simple control circuit, thereby preventing the device from increasing in size. There is a particular thing.

(課題を解決するための手段) 上記目的を遠戚するため、本発明は、三相電圧形インバ
ータの各相出力電流を生じさせる3群の上下アームから
なる主アーム部とは別に、1組の上下アームからなる付
加アーム部を前記インバータの直流回路の正負極間に追
加し、前記付加アーム部を構成する上下アームの接続点
を適宜なりアクタンス成分を持つ交流リアクトルを介し
て前記インバータの出力側トランスの人巻線の中性点に
接続したものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a three-phase voltage source inverter with one set of upper and lower arms separate from the main arm section that generates each phase output current of the three-phase voltage source inverter. An additional arm section consisting of upper and lower arms is added between the positive and negative poles of the DC circuit of the inverter, and the connection point of the upper and lower arms constituting the additional arm section is connected to the output of the inverter via an AC reactor having an appropriate actance component. It is connected to the neutral point of the human winding of the side transformer.

また、この高調波補償装置において、前記主アーム部に
ついては各相補償電流設定値と実際値との偏差と、所定
の基準レベルとの比較結果に基づき点消弧する通常の補
償制御が行なわれ、前記付加アーム部については、前記
偏差が最大または最小となった場合にこの偏差と所定の
基準レベルとの比較結果に基づいて点消弧制御を行なう
ものである。
In addition, in this harmonic compensator, the main arm part is subjected to normal compensation control to turn on and off based on the deviation between the compensation current setting value of each phase and the actual value and the comparison result with a predetermined reference level. Regarding the additional arm section, when the deviation becomes maximum or minimum, the turning-off control is performed based on a comparison result between this deviation and a predetermined reference level.

(作用) 本発明によれば、三相電圧形インバータの主回路に追加
した付加アーム部の点消弧制御により、従来からある主
アーム部の点消弧制御とは無関係に各上下アーム電流を
補正制御することが可能となり、所望のインバータ出力
電流を得て高調波を補償することができる。
(Function) According to the present invention, by point-extinguishing control of the additional arm added to the main circuit of a three-phase voltage source inverter, each upper and lower arm current can be controlled independently of the conventional point-extinguishing control of the main arm. It becomes possible to perform correction control, obtain a desired inverter output current, and compensate for harmonics.

(実施例) 以下、図に沿って本発明の一実施例を説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

まず、第1図はこの実施例にかかる高調波補償装置の主
回路構成を示したものであり、図において、1は三相電
圧形インバータである。このインバータ1は、通常の3
群の上下アームによる6アームからなる主アーム部1a
と、直流定電圧源としてのコンデンサ1bの端子P、N
間に接続された上下アームからなる付加アーム部1cと
を備えている。
First, FIG. 1 shows the main circuit configuration of a harmonic compensator according to this embodiment, and in the figure, 1 is a three-phase voltage source inverter. This inverter 1 is a normal 3
Main arm part 1a consisting of 6 arms consisting of upper and lower arms of the group
and terminals P and N of capacitor 1b as a DC constant voltage source.
It has an additional arm part 1c consisting of an upper and lower arm connected between them.

ここで、主アーム部1a及び付加アーム部1cの各アー
ムは、トランジスタと逆並列接続された還流ダイオード
とからそれぞれ構成されている。
Here, each of the main arm section 1a and the additional arm section 1c is composed of a transistor and a freewheeling diode connected in antiparallel.

以下では、便宜的に主アーム部1aの各アームをU、V
、W、X、Y、Z、付加アーム部1cの各アームをAU
、ADとして表すこととする。
Below, for convenience, each arm of the main arm portion 1a will be referred to as U, V.
, W, X, Y, Z, each arm of the additional arm part 1c is AU
, AD.

また、主アーム部1aの交流側端子は交流リアクトル2
を介してインバータ出カドランス3の人巻線3aにそれ
ぞれ接続され、付加アーム部1cの交流側端子は交流リ
アクトル4を介して前記人巻線3aの中性点に接続され
ている。更に、トランス3のΔ巻線3bの各接続点は電
力系統の各相に接続されていると共に、各相の補償電流
の実際値icR,ics、 icyを検出する電流検出
器5a。
In addition, the AC side terminal of the main arm portion 1a is connected to the AC reactor 2.
The AC side terminal of the additional arm portion 1c is connected to the neutral point of the human winding 3a via the AC reactor 4. Further, each connection point of the Δ winding 3b of the transformer 3 is connected to each phase of the power system, and a current detector 5a detects the actual values icR, ics, and icy of the compensation current of each phase.

5b、5cからなる電流検出部5が設けられている。A current detection section 5 consisting of 5b and 5c is provided.

次に、第2図は三相電圧形インバータ1の制御回路を示
している。この制御回路は1通常の高調波電流補償制御
回路6と、前記付加アーム部1cの動作を制御するため
の付加アーム部制御回路7とから構成されている。
Next, FIG. 2 shows a control circuit for the three-phase voltage source inverter 1. As shown in FIG. This control circuit is composed of a normal harmonic current compensation control circuit 6 and an additional arm control circuit 7 for controlling the operation of the additional arm 1c.

ここで、高調波電流補償制御回路6は、補償電流の実際
値icR,ics、 icyとその設定値ic++”。
Here, the harmonic current compensation control circuit 6 calculates the actual values icR, ics, icy of the compensation current and the set value ic++''.

i as”、 i aT”とが図示の極性で六方される
加算器6a〜6cと、これらの加算器6a〜6cの出力
を所定の基準レベルと比較するヒステリシスコンパレー
タの如きコンパレータ6d〜6fと、これらのコンパレ
ータ6d〜6fの出力に応じて主アーム部1aの各組上
下アームU−W、X−Zの点弧駆動回路に対する信号を
出力するパルス整形分配回路6g〜61とから構成され
ている。
adders 6a to 6c in which "i as" and "i aT" are hexagonally arranged in polarity as shown; comparators 6d to 6f such as hysteresis comparators that compare the outputs of these adders 6a to 6c with a predetermined reference level; It is composed of pulse shaping distribution circuits 6g to 61 which output signals to the firing drive circuits of each set of upper and lower arms U-W and X-Z of the main arm portion 1a according to the outputs of these comparators 6d to 6f. .

一方、付加アーム部制御回路1cは、加算s6a〜6c
の出力が加えられる各3個のダイオードからなる最大値
検出器7a及び最小値検出器7bと、これら各検出器7
a、7bの出力をそれぞれ所定の基準レベルと比較する
コンパレータ7c。
On the other hand, the additional arm control circuit 1c performs additions s6a to 6c.
A maximum value detector 7a and a minimum value detector 7b each consisting of three diodes to which the output of
Comparator 7c compares the outputs of a and 7b with respective predetermined reference levels.

7dと、前記各検出器7a、7bの出力が図示の極性で
加えられる加算器7eと、この加算器7eの出力を所定
の基準レベルと比較するコンパレータ7fと、コンパレ
ータ7c、7fの出力が加えられるアンド回路7gと、
否定回路7hを介したコンパレータ7fの出力及びコン
パレータ7dの出力が加えられるアンド回路71と、ア
ンド回路7g、7iの出力が加えられて付加アーム部1
cの上下アームAU、ADの点弧駆動回路に対する信号
を出力するパルス整形分配回路7jとから構成されてい
る。ここで、パルス整形分配回路7jは上下アームの短
絡防止期間等を考慮したパルス整形を行なうものである
7d, an adder 7e to which the outputs of the detectors 7a and 7b are added with the polarities shown, a comparator 7f that compares the output of the adder 7e with a predetermined reference level, and the outputs of the comparators 7c and 7f are added. AND circuit 7g,
An AND circuit 71 to which the output of the comparator 7f and the output of the comparator 7d are added via the negative circuit 7h, and an additional arm section 1 to which the outputs of the AND circuits 7g and 7i are added.
The pulse shaping distribution circuit 7j outputs a signal to the upper and lower arms AU c and the ignition drive circuit AD. Here, the pulse shaping/distributing circuit 7j performs pulse shaping in consideration of the short-circuit prevention period between the upper and lower arms.

なお、付加アーム部制御回路7内のコンパレータ7c、
7dの基準レベルは、高調波電流補償制御回路6内のコ
ンパレータ6d〜6fの基準レベルよりも大きな値に設
定されている。
Note that the comparator 7c in the additional arm control circuit 7,
The reference level 7d is set to a value larger than the reference levels of the comparators 6d to 6f in the harmonic current compensation control circuit 6.

以下、この実施例の動作を説明すると、本実施例では、
通常の高調波電流補償制御回路6により主アーム部1a
の動作を制御して高調波電流を補償するのに加え、第2
図に示したように加算器6a〜6cから出力される各相
補償電流設定値と実際値との偏差を入力信号とする付加
アーム部制御回路7により付加アーム部1cを制御する
ことによって高調波電流を補償する。
The operation of this embodiment will be explained below.
The main arm portion 1a is controlled by a normal harmonic current compensation control circuit 6.
In addition to controlling the operation of the
As shown in the figure, by controlling the additional arm part 1c by the additional arm part control circuit 7 which uses the deviation between the compensation current setting value of each phase and the actual value outputted from the adders 6a to 6c as an input signal, harmonics can be generated. Compensate the current.

上述の偏差は、前記各検出回路7a、7bに入力されて
正負ごとに最大値あるいは最小値が検出され、これらが
ある基準レベル以上になるとコンパレータ7c、7dが
“H”レベルの信号を出力して付加アーム部1cの上下
アームAU、ADに対する点弧パルスを生成させる。更
に、加算器7eでは、正側偏差の最大値と負側偏差の最
小値との絶対値の比較を行い、コンパレータ7fと相ま
って付加アーム部1cの上アームAUか下アームADの
どちらを点弧するかを決定している。そして、コンパレ
ータ7fの出力信号をアンド回路7gと、否定回路7h
を介してアンド回路71の各一方の入力端子に与え、上
下アーム点弧パルスを発生させるためのインターロック
信号として機能させている。
The above-mentioned deviation is input to each of the detection circuits 7a and 7b, and the maximum value or minimum value is detected for each positive and negative value, and when these exceed a certain reference level, the comparators 7c and 7d output an "H" level signal. ignition pulses are generated for the upper and lower arms AU and AD of the additional arm section 1c. Furthermore, the adder 7e compares the absolute values of the maximum value of the positive side deviation and the minimum value of the negative side deviation, and in combination with the comparator 7f, either the upper arm AU or the lower arm AD of the additional arm section 1c is activated. I am deciding whether to do so. Then, the output signal of the comparator 7f is sent to an AND circuit 7g and a NOT circuit 7h.
The signal is applied to one input terminal of the AND circuit 71 via the input terminal 71, and functions as an interlock signal for generating upper and lower arm firing pulses.

これにより、コンパレータ7c、7dによって上下アー
ムAU、ADの点弧パルスが同時に点弧状態になったと
しても、コンパレータ7fの出力信号によりどちらか一
方のアームだけに点弧パルスが与えられることになり、
上下アームが同時に点弧して直流短絡状態となるのを防
止することができる。
As a result, even if the comparators 7c and 7d cause the firing pulses of the upper and lower arms AU and AD to be fired at the same time, the firing pulse will be given to only one arm by the output signal of the comparator 7f. ,
It is possible to prevent the upper and lower arms from firing at the same time and causing a DC short circuit.

以上のようにこの実施例は、高調波電流補償制御回路6
による主アーム部1aに対する通常の補償制御に加えて
、付加アーム部制御回路7によりインバータ1の各相補
償電流設定値と実際値との偏差の最大値または最小値を
検出して付加アーム部1cの上下アームAU、ADの点
消弧制御を行なうものである。このため、三相6アーム
からなる主アーム部1aの点消弧状態で決まる主回路条
件に対して、主アーム部1aの各相とは無関係に付加ア
ーム部1Cの点消弧状態による主回路条件が加わること
になり、主アーム部1aのみからなる三相電圧形インバ
ータによる補償制御に比べて各組錘の独立した補償電流
の制御が可能となり、他相電流の影響で電流の追従性が
悪化するのを防ぐことができる。
As described above, in this embodiment, the harmonic current compensation control circuit 6
In addition to normal compensation control for the main arm section 1a, the additional arm section control circuit 7 detects the maximum or minimum value of the deviation between the compensation current setting value of each phase of the inverter 1 and the actual value, and controls the additional arm section 1c. It controls the turning on and off of the upper and lower arms AU and AD. Therefore, for the main circuit condition determined by the point-off state of the main arm portion 1a consisting of three phases and six arms, the main circuit is determined by the point-off state of the additional arm portion 1C, regardless of each phase of the main arm portion 1a. Compared to compensation control using a three-phase voltage source inverter consisting of only the main arm portion 1a, this additional condition makes it possible to control the compensation current independently for each set of weights, and the current followability is improved due to the influence of other phase currents. You can prevent it from getting worse.

(発明の効果) 以上のように本発明によれば、三相電圧形インバータの
主回路に付加アーム部を追加し、その上下アームの点消
弧制御を各相補償電流設定値と実際値との偏差の最大値
または最小値を検出して行うように構成したため、三相
6アームの点消弧状態で決まる主回路条件に、各相とは
無関係な主回路条件が新たに加わることになり、インバ
ータの各組錘に独立した補償電流の制御を行うことによ
って電流波形の追従性を向上させ、高調波補償性能を高
めることができる。
(Effects of the Invention) As described above, according to the present invention, an additional arm section is added to the main circuit of a three-phase voltage source inverter, and the turning-on/off control of the upper and lower arms is performed based on the compensation current setting value of each phase and the actual value. Since the configuration is configured to detect the maximum or minimum value of the deviation of By controlling the compensation current independently for each set of weights of the inverter, it is possible to improve the followability of the current waveform and improve the harmonic compensation performance.

また、回路構成上も付加アーム部とその制御回路とを追
加するだけでよいから、単相インバータを3組用いる場
合に比べて装置の小形化が可能である等の効果を有する
Further, in terms of the circuit configuration, since it is only necessary to add the additional arm section and its control circuit, there are advantages such as the ability to downsize the device compared to the case where three sets of single-phase inverters are used.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は本発明の一実施例を示す三相電圧形インバータ
の主回路構成図、第2図はその制御回路を示す回路図で
ある。 1・・・三相電圧形インバータ la・・・主アーム部  1b・・・コンデンサ1c・
・・付加アーム部 2,4・・・交流リアクトル3・・
・インバータ出カドランス 3a・・・人巻線    3b・・・Δ巻線5・・・電
流検出部 5a、5b、5c・・・電流検出器6・・・
高調波電流補償制御回路 7・・・付加アーム部制御回路 6a〜6c、7e・・・加算器 6d〜6f、7c、7d、7f−コンパレータ6g〜6
i、7j・・・パルス整形分配回路7a・・・最大値検
出回路 7b・・・最小値検出回路
1 is a main circuit configuration diagram of a three-phase voltage source inverter showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing its control circuit. 1... Three-phase voltage type inverter la... Main arm part 1b... Capacitor 1c.
...Additional arm part 2, 4...AC reactor 3...
- Inverter output transformer 3a... human winding 3b... Δ winding 5... current detection section 5a, 5b, 5c... current detector 6...
Harmonic current compensation control circuit 7...Additional arm control circuits 6a to 6c, 7e...Adders 6d to 6f, 7c, 7d, 7f - Comparators 6g to 6
i, 7j...Pulse shaping distribution circuit 7a...Maximum value detection circuit 7b...Minimum value detection circuit

Claims (2)

【特許請求の範囲】[Claims] (1)3群の上下アームからなる主アーム部を主回路に
備えた三相電圧形インバータにより構成される高調波補
償装置において、 前記主回路の直流端子間に上下アームからなる付加アー
ム部を接続し、この付加アーム部を構成する前記上下ア
ーム相互の接続点を、電力系統に接続されたトランスの
人巻線の中性点に交流リアクトルを介して接続したこと
を特徴とする高調波補償装置。
(1) In a harmonic compensator constituted by a three-phase voltage source inverter whose main circuit includes a main arm section consisting of three groups of upper and lower arms, an additional arm section consisting of the upper and lower arms is provided between the DC terminals of the main circuit. and the mutual connection point of the upper and lower arms constituting the additional arm portion is connected to the neutral point of the human winding of a transformer connected to the power system via an AC reactor. Device.
(2)各相補償電流設定値と実際値との偏差と、所定の
基準レベルとの比較結果に基づき主アーム部のスイッチ
ング素子を点消弧制御すると共に、前記偏差が最大また
は最小となった場合に、この偏差と所定の基準レベルと
の比較結果に基づいて付加アーム部のスイッチング素子
を点消弧制御するようにした請求項(1)記載の高調波
補償装置。
(2) Based on the comparison result between the deviation between each phase compensation current set value and the actual value and a predetermined reference level, the switching element in the main arm is controlled to turn on and off, and the deviation is maximized or minimized. 2. The harmonic compensator according to claim 1, wherein the switching element of the additional arm is controlled to turn on and off based on a comparison result between this deviation and a predetermined reference level.
JP1224184A 1989-08-30 1989-08-30 Harmonic compensator Expired - Fee Related JP2676937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224184A JP2676937B2 (en) 1989-08-30 1989-08-30 Harmonic compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224184A JP2676937B2 (en) 1989-08-30 1989-08-30 Harmonic compensator

Publications (2)

Publication Number Publication Date
JPH0386022A true JPH0386022A (en) 1991-04-11
JP2676937B2 JP2676937B2 (en) 1997-11-17

Family

ID=16809842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224184A Expired - Fee Related JP2676937B2 (en) 1989-08-30 1989-08-30 Harmonic compensator

Country Status (1)

Country Link
JP (1) JP2676937B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012576A1 (en) * 1991-12-16 1993-06-24 Regents Of The University Of Minnesota Conversion of three-phase line voltages
WO1994018683A1 (en) * 1993-02-12 1994-08-18 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US5499178A (en) * 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
JP2009171807A (en) * 2008-01-21 2009-07-30 Tokyo Denki Univ Three-phase voltage type inverter system
US8264102B2 (en) 2006-11-21 2012-09-11 Siemens Aktiengesellschaft Device for flexible power transmission and deicing of a high-voltage power line by means of direct current

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223325A (en) * 1985-07-18 1987-01-31 日新電機株式会社 Active filter
JPS6355783U (en) * 1986-09-24 1988-04-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223325A (en) * 1985-07-18 1987-01-31 日新電機株式会社 Active filter
JPS6355783U (en) * 1986-09-24 1988-04-14

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012576A1 (en) * 1991-12-16 1993-06-24 Regents Of The University Of Minnesota Conversion of three-phase line voltages
US5345375A (en) * 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
US5499178A (en) * 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
WO1994018683A1 (en) * 1993-02-12 1994-08-18 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US8264102B2 (en) 2006-11-21 2012-09-11 Siemens Aktiengesellschaft Device for flexible power transmission and deicing of a high-voltage power line by means of direct current
DE102006055575B4 (en) * 2006-11-21 2016-12-08 Siemens Aktiengesellschaft Device for flexible energy transmission and for deicing a high voltage line by means of direct current
JP2009171807A (en) * 2008-01-21 2009-07-30 Tokyo Denki Univ Three-phase voltage type inverter system

Also Published As

Publication number Publication date
JP2676937B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
KR910009763B1 (en) Parallel operating system of a.c converter
JP5269102B2 (en) Power converter
US5212630A (en) Parallel inverter system
KR950013870B1 (en) Control device of neutral point clamped power inverter apparatus
JPH0965658A (en) Power converter
CA1073529A (en) Current fed inverter with commutation independent of load inductance
KR100663719B1 (en) Power inverter
JP2543877B2 (en) Power converter
JPH0386022A (en) Higher harmonic compensator
JPH07163153A (en) Control method for single-phase three-wire inverter
JP5490263B2 (en) Power converter
JPH0655032B2 (en) Current type converter protection device
Rojas et al. Simple structure and control method for a neutral-point-clamped PWM inverter
JP5302905B2 (en) Power converter
US6903911B2 (en) Protective circuit for a network-controlled thyristor bridge
JPH05344736A (en) Power regenerative control device
JPH04117137A (en) Parallel multiplex inverter
JPH1118433A (en) Pulse width modulating power converter
JP2760582B2 (en) Constant voltage and constant frequency power supply
JPH1189237A (en) Control of inverter and inverter equipment
SU1107235A1 (en) Three-phase adjustable a.c. voltage-to-d.c. voltage converter
JP2641852B2 (en) Frequency converter
JP3251805B2 (en) NPC inverter device and control method thereof
JPH08275551A (en) Dead time compensation method for inverter
JP2645157B2 (en) Control method of cyclo converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees