JPH0270267A - Parallel resonance converter - Google Patents

Parallel resonance converter

Info

Publication number
JPH0270267A
JPH0270267A JP22196288A JP22196288A JPH0270267A JP H0270267 A JPH0270267 A JP H0270267A JP 22196288 A JP22196288 A JP 22196288A JP 22196288 A JP22196288 A JP 22196288A JP H0270267 A JPH0270267 A JP H0270267A
Authority
JP
Japan
Prior art keywords
capacitor
frequency
switching elements
load
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22196288A
Other languages
Japanese (ja)
Other versions
JPH0648904B2 (en
Inventor
Akinobu Nara
奈良 彰信
Kiyomi Watanabe
清美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP63221962A priority Critical patent/JPH0648904B2/en
Publication of JPH0270267A publication Critical patent/JPH0270267A/en
Publication of JPH0648904B2 publication Critical patent/JPH0648904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make an overcurrent-preventing circuit unnecessary by connecting a reactor and a capacitor resonating at a frequency fr between AC terminals of a bridge circuit formed by switching elements and by setting said frequency fr as fr>=2fs (fs is the switching drive frequency of said switching elements). CONSTITUTION:A bridge is formed by self-extinction of arc-type switching elements S1-S4 antiparallel-connecting diodes, and a capacitor C1 and a reactor L1 resonating at a frequency fr are connected between AC terminals X, Y. The exciting inductor LS and bridge rectifier circuit B of an output transformer are connected with the terminal of said capacitor C1, and a load RL and a filter capacitor C2 is connected between output terminals thereof. A resonance frequency fr is set as fr>=2fs relative to a frequency fs, at which switching elements S1-S4 are switching-driven. In this manner, no recovery mode exists even at the time of no load and overcurrent preventing parts of said switching elements are omitted. Therefore, the subject apparatus is suitable for apparatus undergoing a frequent no-load running such as travelling-wave tube and capacitor charger.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はトランジスタ、 FET、GTO,及びIGB
T等の自己消弧形スイッチ素子を用い負荷と共振用コン
デンサが並列接続された並列形共振コンバータに関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to transistors, FETs, GTOs, and IGBs.
The present invention relates to a parallel resonant converter in which a load and a resonant capacitor are connected in parallel using a self-extinguishing switching element such as a T-type switch.

〔従来の技術および発明が解決すべき問題点〕従来、ト
ランリスタ、 FET、GTO及びIGBT等の自己消
弧形スイッチ素子を用いた共振形コンバータはサイリス
タのように転流失敗がないこと、スイッチ素子を流れる
電流が正弦半波でスイッチ損失がなく、かつ低ノイズで
ある等の利点で様々な分野に利用されている。
[Problems to be solved by the prior art and the invention] Conventionally, resonant converters using self-extinguishing switching elements such as transristors, FETs, GTOs, and IGBTs have been designed to avoid commutation failures like thyristors, and to avoid switching elements. The current flowing through the switch is a half-sine wave, there is no switch loss, and the noise is low, so it is used in a variety of fields.

しかしながらこのような共振形コンバータでは。However, with such a resonant converter.

電源変動、負荷変動があっても、動作モードを常に共振
モードに保つため1回路の電流、電圧及びその位相等を
検出し、動作周波数を制御するのが常である。従って、
 lllS回路が複雑になり、出力電圧を下限まで制御
する場合には、動作周波数が可聴領域に及ぶこともある
。そのため逆並列ダイオードを有した自己消弧形スイッ
チ素子によりブリッジ回路を構成し、そのブリッジ回路
の交流端子間に共振用コンデンサと共振用インダクタン
スの直列回路を接続するとともにその共振用コンデンサ
の両端から整流手段を介して直流出方を取り出すように
した共振形コンバータにおいて、スイッチ素子のパルス
幅制御により出方を制御する方法が提案されている。
In order to always maintain the operating mode in the resonance mode even if there are power supply fluctuations or load fluctuations, the current, voltage, phase, etc. of one circuit are usually detected and the operating frequency is controlled. Therefore,
When the IllS circuit becomes complex and the output voltage is controlled to the lower limit, the operating frequency may reach the audible range. Therefore, a bridge circuit is constructed using self-extinguishing switching elements having anti-parallel diodes, and a series circuit of a resonance capacitor and a resonance inductance is connected between the AC terminals of the bridge circuit, and rectification is carried out from both ends of the resonance capacitor. In a resonant converter in which the direct current is extracted through means, a method has been proposed in which the output is controlled by controlling the pulse width of a switching element.

第1図は並列形共振コンバータ回路の接続図である。図
においてEは直流電源、 Sl〜s4は電源Eにまたが
ってブリッジ接続されたスイッチ素子。
FIG. 1 is a connection diagram of a parallel resonant converter circuit. In the figure, E is a DC power supply, and Sl to s4 are switch elements bridge-connected across the power supply E.

CIは共振用コンデンサ、 Llは共振用インダクタン
ス、 LSは図示されていないが出カドランスの励磁イ
ンダクタンスであり、共振用コンデンサc1に並列接続
される。Bはブリッジ整流回路、 C2はフィルタコン
デンサ、 RLは負荷である。
CI is a resonant capacitor, Ll is a resonant inductance, and LS is an excitation inductance of the output transformer (not shown), which is connected in parallel to the resonant capacitor c1. B is a bridge rectifier circuit, C2 is a filter capacitor, and RL is a load.

このような回路において、従来はスイッチ素子31〜S
4の駆動周波数「Sを共振用インダクタンスとコンデン
サとの共振周波数frに対し。
In such a circuit, conventionally the switch elements 31 to S
4 drive frequency ``S is the resonant frequency fr of the resonant inductance and capacitor.

fs#fr〜0.6frに置くのが普通であった。It was common to set it at fs#fr to 0.6fr.

そしてスイッチ素子31〜S4を第2図(1)〜(2)
に示すように周期をほぼ一定値Tとしてパルス幅T/2
で180度ずれて交互にオンさせ、ブリ、ジの交流出力
点X、Y間に第2図(3)のような方形交流電圧Vxy
を加える。このような状態で、負荷状態を変化させると
インバータの動作モードが大きく変化し、5l−34に
流れる順電流および逆電流が変化する。Ll、CIの値
を適当に選定することによって。
Then, switch elements 31 to S4 are shown in FIG. 2 (1) to (2).
As shown in , the pulse width is T/2 with the period being approximately constant T.
A square AC voltage Vxy as shown in Fig. 2 (3) is applied between the AC output points X and Y of BRI and J.
Add. In such a state, if the load state is changed, the operation mode of the inverter changes significantly, and the forward current and reverse current flowing through 5l-34 change. By appropriately selecting the values of Ll and CI.

5l−54に流れる電流を定格運転状態において第2図
(4)〜(5)に示すように電圧Vxyと同相でピーク
値1pのほぼ山形(スイッチ素子31〜S4が閉じる時
、?li流がほぼ0から立ち上がりスイッチ素子Sl〜
S4が開く時電流はぼ0になる特性)の順電流とし、か
つCIの電圧νcLすなわち等測的な出力電圧vOを第
2図(6)に示すようにEより高い値に上昇させること
ができる。尚、フィルタC2が充分に大きい場合、 C
Iの両端から見たブリッジBとC2,RLは電圧Voで
両極性の電池とみなすことができ CIの電圧はVoで
クランプされる。このようにLl、CIを選定すること
により1重負荷状態ではIsl、rs3を例示すれば、
第2図(7)のようにVxyに対し遅れ電流となり、出
力短絡では(8)のようにVxyと90度遅れた正負の
三角波となる。第2図(7) (8)において、負方向
の電流は各スイッチ素子の逆電丸すなわち電源に帰還す
る電流を示し、負荷が重いほど帰還電流が増加し、短絡
状態では、順電流と帰還電流のピーク[spがほぼ等し
くなって、電源からLl、CIの共振回路に供給された
電力が全て電源に帰還される。
When the current flowing through 5l-54 is in the rated operating state, it is in phase with the voltage Vxy and has a peak value of 1p, as shown in FIG. Switch element Sl~ rises from almost 0
The forward current has a characteristic that when S4 is open, the current is almost 0), and the voltage νcL of CI, that is, the isometric output voltage vO, can be increased to a value higher than E as shown in FIG. 2 (6). can. In addition, if filter C2 is large enough, C
Bridges B, C2, and RL seen from both ends of I can be regarded as a bipolar battery with voltage Vo, and the voltage of CI is clamped at Vo. By selecting Ll and CI in this way, in a single load state, Isl and rs3 are given as an example.
As shown in FIG. 2 (7), the current lags behind Vxy, and when the output is short-circuited, it becomes a positive and negative triangular wave that lags Vxy by 90 degrees as shown in (8). In Figure 2 (7) and (8), the negative direction current indicates the reverse current of each switch element, that is, the current that returns to the power supply.The heavier the load, the more the feedback current increases, and in a short-circuit state, the forward current The current peaks [sp become approximately equal, and all the power supplied from the power supply to the resonant circuits of Ll and CI is fed back to the power supply.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら5 このようにfs’;fr〜0.6fr
に選定した従来の方式では、@負荷時に一方の並列ダイ
オードがオンしている最中に他方のスイッチ素子がオン
して、並列ダイオードが逆方向回復するまでリカバリ電
流が流れ、スイッチ素子には過大電流が流れ、ストレス
が加わる。第2図+91.Qlの破線の波形は軽負荷時
のスイッチ素子の電流を示し、波形の前のひげ状の電流
がリカバリ電流である。
However, 5 thus fs'; fr ~ 0.6fr
In the conventional method selected for @load, while one parallel diode is on, the other switch element turns on, and a recovery current flows until the parallel diode recovers in the reverse direction, causing an excessive load on the switch element. Current flows and stress is added. Figure 2 +91. The broken line waveform of Ql indicates the current of the switching element at light load, and the whisker-shaped current in front of the waveform is the recovery current.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では1以上のべた問題点を解決するため逆並列ダ
イオードを有した自己消弧形スイッチ素子によりブリフ
ジ回路を構成し、そのブリッジ回路の交流端子間に共振
用コンデンサと共振用インダクタンスの直列回路を接続
するとともにその共振用コンデンサの両端から整流手段
を介して直流出力を取り出すようにした並列形共振コン
バータにおいて。
In the present invention, in order to solve one or more of the above problems, a bridge circuit is constructed using a self-extinguishing switch element having an anti-parallel diode, and a series circuit of a resonance capacitor and a resonance inductance is connected between the AC terminals of the bridge circuit. In a parallel type resonant converter, the DC output is taken out from both ends of the resonant capacitor via rectifying means.

共振用コンデンサとインダクタンスの共振周波数frを
前記自己消弧形スイッチ素子の開閉駆動周波@fsに対
してfr≧2 rsとなるよう選定したことを特徴とす
る並列形共振コンバータを提案するものである。
The present invention proposes a parallel type resonant converter characterized in that the resonant frequency fr of the resonant capacitor and the inductance is selected so that fr≧2rs with respect to the switching drive frequency @fs of the self-extinguishing switching element. .

〔実施例〕〔Example〕

第1図は並列形共振コンバータ回路の接続図である0図
においてEは直流電源、 51〜S4は電MEにまたが
ってブリッジ接続されたスイッチ素子。
FIG. 1 is a connection diagram of a parallel resonant converter circuit. In FIG. 0, E is a DC power supply, and 51 to S4 are switch elements bridge-connected across the electric ME.

C1は共振用コンデンサ、 Llは共振用インダクタン
ス、 LSは図示されていないが出カドランスの励磁イ
ンダクタンスであり、共振用コンデンサC1に並列接続
される。Bはブリッジ整流回路、 C2はフィルタコン
デンサ、 RLは負荷である。
C1 is a resonant capacitor, Ll is a resonant inductance, and LS is an excitation inductance of the output transformer (not shown), which is connected in parallel to the resonant capacitor C1. B is a bridge rectifier circuit, C2 is a filter capacitor, and RL is a load.

本発明においては、第2図+41.0mの実線で示すよ
うにコンバータの動作周波数を無負荷時の固有周波数の
半分以下にすればよい。そのためには]/2 tt 、
rLIC1=fr≧2fsを満足するLl、CIを選ぶ
In the present invention, the operating frequency of the converter may be set to less than half of the natural frequency under no load, as shown by the solid line at +41.0 m in FIG. For that purpose]/2 tt,
Select Ll and CI that satisfy rLIC1=fr≧2fs.

この時の共振インダクタンスL1として例えばLL#0
.11 E2T/Poとすれば。
As the resonant inductance L1 at this time, for example, LL#0
.. 11 If E2T/Po.

電流波形は第2図+41. (51に示すようにほぼ正
弦波形となり、また等価出力電圧は1.4E −1,5
Eとなる。
The current waveform is shown in Figure 2 +41. (As shown in 51, the waveform is almost sinusoidal, and the equivalent output voltage is 1.4E −1,5
It becomes E.

そして、C1はこのLlに対応して上記関係式によって
定める。このように決定された定数では無負荷時におい
ても、リカバリーモードは存在しない。
Then, C1 is determined by the above relational expression corresponding to this Ll. With the constants determined in this way, there is no recovery mode even when there is no load.

第3図は本発明の共振形コンバータをコンデンサの高電
圧充電器に適用した実施例を示す、Eは直流電源、 Q
l〜[14は直流電源Eにまたがってブリ、/ジ接続さ
れたPET、I)1〜D4は各FET、Ql〜口4に逆
並列接続されたダイオード1C1は共振用コンデンサ。
Figure 3 shows an embodiment in which the resonant converter of the present invention is applied to a high voltage charger for a capacitor, where E is a DC power supply and Q is
1 to 14 are PETs connected across the DC power supply E, I) 1 to D4 are each FET, and a diode 1C1 connected in antiparallel to Ql to port 4 is a resonance capacitor.

Llは共振用インダクタンス、 TIは昇圧トランス。Ll is the resonance inductance, and TI is the step-up transformer.

C−はこのT2の2次側に接続されたコツククロフト・
ウオルトン回路等の高電圧整流回路、 Coは充電すべ
きコンデンサである。
C- is the Kotscroft connected to the secondary side of this T2.
A high voltage rectifier circuit such as a Walton circuit, Co is a capacitor to be charged.

コンデンサCoの充電電圧を検出抵抗R1により検出し
、誤差増幅器^1によって、基準電圧Vrefと比較し
て誤差信号を発生して、この誤差信号に対応して、ゲー
ト信号発生回路へ2において、各FETのゲート信号G
1−G4を発生する。
The charging voltage of the capacitor Co is detected by the detection resistor R1, and the error amplifier ^1 compares it with the reference voltage Vref to generate an error signal. FET gate signal G
Generate 1-G4.

ここで前記のようにLl、CIを選ぶと、このFETQ
1〜Q4の電流が山形となり、かつ電源電圧Eの時に、
トランスT1の1次入力電圧が1.5Eになる。
Here, if Ll and CI are selected as described above, this FETQ
When the currents from 1 to Q4 form a mountain shape and the power supply voltage is E,
The primary input voltage of transformer T1 becomes 1.5E.

このような構成において、充電開始命令がくると、充電
電圧Vrefに達するまでは、誤差増幅器はFET、Q
l〜q4が最大パルス幅、約T/2をオンするようゲー
ト信号61〜G4を加える。するとコンデンサCoは最
初は負荷短絡と等価なのでこのコンバータは1次換算出
力電流として、 l5=ET/8L1の出力電流を供給
する。ここでIo= Po/1.5EとすればIs= 
ET/8L1= ET/8X O,11E”÷Po= 
Po10.88Eよって、 Is/io = 1.7 従って、約1.71oの出力電流を供給する。この電流
は第4図の如くコンデンサCoの充電に従って減少し、
充電電圧がVoになると定格電流1oの定格運転状態に
なる。充電電圧がVoに達すると誤差増幅器はゲート信
号を停止し、充電を止める。この充電時間Lcは通常の
定電流1oにより充電時間tCより短くできる。実際に
はコンデンサGoの電圧は回路の寄生的な電流により低
下するので、この分を若干補充電しなければならない。
In such a configuration, when a charging start command is received, the error amplifier operates as FET and Q until the charging voltage Vref is reached.
Gate signals 61 to G4 are applied so that l to q4 turn on the maximum pulse width, approximately T/2. Then, since the capacitor Co is initially equivalent to a load short circuit, this converter supplies an output current of l5=ET/8L1 as a primary conversion output current. Here, if Io= Po/1.5E, then Is=
ET/8L1= ET/8X O, 11E"÷Po=
With Po10.88E, Is/io = 1.7, thus providing an output current of approximately 1.71o. This current decreases as the capacitor Co is charged, as shown in Figure 4.
When the charging voltage reaches Vo, the battery enters a rated operating state with a rated current of 1o. When the charging voltage reaches Vo, the error amplifier stops the gate signal and stops charging. This charging time Lc can be made shorter than the charging time tC by using a normal constant current 1o. In reality, the voltage of the capacitor Go decreases due to the parasitic current in the circuit, so it is necessary to supplementally charge the capacitor Go to some extent.

以後はコンデンサCoの自然放電を補充するためコンバ
ータは軽負荷運転となる。この時本発明によればリカバ
リ電流が生じないで、第2図+9) (IIに示すよう
に正弦波共振電流なので、スイッチングロスやノイズを
生じない。
Thereafter, the converter operates under light load to replenish the natural discharge of the capacitor Co. At this time, according to the present invention, no recovery current is generated, and since the current is a sine wave resonance current as shown in FIG. 2 (+9) (II), switching loss and noise are not generated.

以上、実施例ではブリフジ回路について説明してきたが
1例えば第1図におけるスイッチ素子s1とS4をコン
デンサに置き換えることによりハーフブリッジ形に実施
できる。尚、実際にはトランスの励磁インダクタンスに
より共振コンデンサc1は上記計算値より大きくするの
が普通である。またCIの一部又は全部にトランス2次
巻線の分布容量を利用することができる。
In the above embodiments, the bridge circuit has been described. For example, by replacing the switch elements s1 and S4 in FIG. 1 with capacitors, the circuit can be implemented in a half-bridge type. In reality, the resonant capacitor c1 is usually set larger than the above calculated value depending on the excitation inductance of the transformer. Further, the distributed capacitance of the transformer secondary winding can be used for part or all of the CI.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたような特徴を有していて。 The present invention has the features described above.

無負荷時のりカバリモードがないので、スイッチ素子の
過大電流防止のための回路部品が不要となり、コンデン
サ充電器あるいは進行波管のように無負荷運転の多い装
置に用いて安全で経済的である。
Since there is no recovery mode during no-load, there is no need for circuit components to prevent overcurrent in the switch element, making it safe and economical to use in devices that frequently operate without load, such as capacitor chargers or traveling wave tubes. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る共振形コンバータ回路の原理図を
示し、第2図は第1図に示す回路の動作を説明するため
の各部の波形図を示し、第3図は本発明の共振形コンバ
ータをコンデンサの高電圧充電器に通用した実施例を示
し、第4図は第3図に示す回路のコンデンサCoに流れ
る電流波形を示す。 E・・・直流電源     B・・・ブリッジ整流回路
S1〜S4・・・スイッチ素子 CI・・・共振用コン
デンサLl・・・共振用インダクタンス RL・・・負
荷C2・・・フィルタコンデンサ Ql〜Q4・・・F
ETDI−04・・・ダイオード T1・・・昇圧トラ
ンスC++・・・高電圧整流回路 Co・・・コンデン
サR1・・・検出抵抗  Vref・・・基準電圧At
・・・誤差増幅器 ^2・・・ゲート信号発生回路61
〜G4・・・ゲート信号 特許出願人 オリジン電気株式会社
FIG. 1 shows a principle diagram of a resonant converter circuit according to the present invention, FIG. 2 shows a waveform diagram of each part to explain the operation of the circuit shown in FIG. 1, and FIG. FIG. 4 shows the waveform of the current flowing through the capacitor Co of the circuit shown in FIG. 3. E...DC power supply B...Bridge rectifier circuit S1-S4...Switch element CI...Resonance capacitor Ll...Resonance inductance RL...Load C2...Filter capacitor Ql-Q4.・・F
ETDI-04...Diode T1...Step-up transformer C++...High voltage rectifier circuit Co...Capacitor R1...Detection resistor Vref...Reference voltage At
...Error amplifier ^2...Gate signal generation circuit 61
~G4...Gate signal patent applicant Origin Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 逆並列ダイオードを有した自己消弧形スイッチ素子によ
りブリッジ回路を構成し、そのブリッジ回路の交流端子
間に共振用コンデンサと共振用インダクタンスの直列回
路を接続するとともにその共振用コンデンサの両端から
整流手段を介して直流出力を取り出すようにした並列形
共振コンバータにおいて、 共振用コンデンサとインダクタンスの共振周波数frを
前記自己消弧形スイッチ素子の開閉駆動周波数fsに対
してfr≧2fsとなるよう選定したことを特徴とする
並列形共振コンバータ。
[Claims] A bridge circuit is constructed of self-extinguishing switching elements having anti-parallel diodes, and a series circuit of a resonance capacitor and a resonance inductance is connected between the AC terminals of the bridge circuit, and the resonance In a parallel resonant converter in which a DC output is taken out from both ends of a capacitor via a rectifier, the resonant frequency fr of the resonant capacitor and inductance is set so that fr≧2fs with respect to the switching drive frequency fs of the self-extinguishing switching element. A parallel type resonant converter characterized by being selected so that.
JP63221962A 1988-09-05 1988-09-05 Parallel resonant converter Expired - Fee Related JPH0648904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221962A JPH0648904B2 (en) 1988-09-05 1988-09-05 Parallel resonant converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221962A JPH0648904B2 (en) 1988-09-05 1988-09-05 Parallel resonant converter

Publications (2)

Publication Number Publication Date
JPH0270267A true JPH0270267A (en) 1990-03-09
JPH0648904B2 JPH0648904B2 (en) 1994-06-22

Family

ID=16774887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221962A Expired - Fee Related JPH0648904B2 (en) 1988-09-05 1988-09-05 Parallel resonant converter

Country Status (1)

Country Link
JP (1) JPH0648904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267476A3 (en) * 2001-06-13 2004-07-07 Philips Intellectual Property & Standards GmbH Voltage converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489526B2 (en) * 2004-08-20 2009-02-10 Analog Devices, Inc. Power and information signal transfer using micro-transformers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267476A3 (en) * 2001-06-13 2004-07-07 Philips Intellectual Property & Standards GmbH Voltage converter

Also Published As

Publication number Publication date
JPH0648904B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JP5065188B2 (en) Series resonant converter
JP3382012B2 (en) Self-excited inverter device
US5448467A (en) Electrical power converter circuit
US20050190583A1 (en) Soft-switching half-bridge inverter power supply system
JPH0197169A (en) High-frequency resonance type power converter
JPH02501974A (en) Quasi-resonant current mode static power conversion method and device
JP3286673B2 (en) Converter circuit for charger
US4811185A (en) DC to DC power converter
JP2702048B2 (en) Uninterruptible switching regulator
CN100377481C (en) Integration converton with three phase power factor correction
KR960010828B1 (en) High power factor power supply
Chakraborty et al. A multi-port, isolated PV microinverter with low decoupling capacitance & integrated battery charger
EP0012648B1 (en) Single-pole commutation circuit
Liao et al. Control and modulation of a bipolar multi-level active power pulsation buffer for single-phase converters
JP3370522B2 (en) Boost type bridge inverter circuit and control method thereof
JPH0270267A (en) Parallel resonance converter
JP3414143B2 (en) Power supply
JPH07135769A (en) Dc resonance converter
JP4275223B2 (en) Power supply
JPH0327768A (en) Control method for resonant dc-dc convertor
JP2603646B2 (en) converter
JP3205631B2 (en) DC-DC converter
JP2580108B2 (en) Power converter
JPH07107742A (en) Series resonance converter
JPH0578273B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees