JP3841253B2 - Neutral point potential control method for neutral point clamp inverter - Google Patents

Neutral point potential control method for neutral point clamp inverter Download PDF

Info

Publication number
JP3841253B2
JP3841253B2 JP22889399A JP22889399A JP3841253B2 JP 3841253 B2 JP3841253 B2 JP 3841253B2 JP 22889399 A JP22889399 A JP 22889399A JP 22889399 A JP22889399 A JP 22889399A JP 3841253 B2 JP3841253 B2 JP 3841253B2
Authority
JP
Japan
Prior art keywords
vector
phase
inverter
output
becomes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22889399A
Other languages
Japanese (ja)
Other versions
JP2001057784A (en
Inventor
克利 山中
彰 熊谷
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22889399A priority Critical patent/JP3841253B2/en
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to CNB008114609A priority patent/CN100492856C/en
Priority to EP00951922A priority patent/EP1221761B1/en
Priority to PCT/JP2000/005347 priority patent/WO2001013504A1/en
Priority to DE60042601T priority patent/DE60042601D1/en
Priority to US10/048,343 priority patent/US6490185B1/en
Priority to KR1020027001665A priority patent/KR100651222B1/en
Priority to TW089116277A priority patent/TW476183B/en
Publication of JP2001057784A publication Critical patent/JP2001057784A/en
Application granted granted Critical
Publication of JP3841253B2 publication Critical patent/JP3841253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータの可変速駆動や系統連系を行う3相中性点クランプ式インバータなどの電力変換装置の中性点電位制御方法に関する。
【0002】
【従来の技術】
従来、3相中性点クランプ式インバータの中性点電位制御方法としては特許公報第2821168号「インバータ装置と交流電動機駆動システム」に示されているような、指令電圧に零相電圧を加えて制御する方法や空間電圧ベクトル方式を用いて出力するベクトルの時間を調整することで中性点電位を制御する方式が一般的である。
図4は3相中性点クランプ式インバータの基本的構成を示すもので、図中、1は3相交流電源、2は整流素子、3,4は平滑コンデンサ、6〜23はダイオード、24〜35はIGBT、36はモータである。
図4において、中性点電圧(直列接続されたインバータの平滑コンデンサの接続点Oの電圧)と負母線電圧との電位差をVcnとすると、中性点電位制御はVcnをインバータの母線電圧Vpnの1/2の電圧に制御しなければならない。
図4のような3相中性点クランプ式インバータが図5に示す出力ベクトルを選択してVcnをコントロールする場合、Vcnのコントロールに利用できる電圧ベクトルは、xp(1),xn(1),xp(2),xn(2),xp(3),xn(3),yp(1),yn(1),yp(2),yn(2),yp(3),yn(3)の12のベクトルしかない。この12のベクトルを出力した場合の負荷とインバータの平滑コンデンサとの接続状態を図6に示す。
【0003】
負荷電流が図6に示す矢印の方向に流れているとすれば、例えば領域1のxp(1)とxn(1)の接続状態では中性点へ流れ込む電流の向きが逆になるため、図7のようにU相の電流が変動しない程度の短い微少時間にxp(1),xn(1)を発生させると、Vcnはxp(1)の発生時に上昇し、xn(1)の発生時に下降し、xp(1)の発生時間Tpとxn(1)の発生時間Tnの時間が等しければxp(1)とxn(1)の総発生時間Tout(=Tp+Tn)での平均のVcnは一定の電圧となり、Tp>Tnならば平均のVcnは上昇し。Tp<Tnならば平均のVcnは下降する。
このようにして、図6において横に並んでいるベクトル(xp(1)とxn(1),yp(1)とyn(1),xp(2)とxn(2),yp(2)とyn(2),xp(3)とxn(3),yp(3)とyn(3))の発生時間比率を調整することでVcnがコントロールできることが分かる。
指令電圧に零相電圧を加える中性点電位制御では、正の零相電圧を加えることでxp(1),xp(2),xp(3),yp(1),yp(2),yp(3)の発生時間比率を長くし、負の零相電圧を加えることでxn(1),xn(2),xn(3),yn(1),yn(2),yn(3)の発生時間を長くしているのとほぼ等価である。
【0004】
空間電圧ベクトルを用いた方式では、例えば領域i(i=1,2...,6)内のある電圧ベクトルを出力するときのxp(j),xn(j)ベクトルの総出力時間をTx(i)、yp(k),yn(k)ベクトルの総出力時間をTy(i)、xp(j)の出力時間をTxp(j)、xn(j)の出力時間をTxn(j)、yp(k)の出力時間をTyp(k)、yn(k)の出力時間をTyn(k)とすると、
Txp(j)=αTx(i)
Txn(j)=(1−α)Tx(i)
Typ(k)=αTy(i)
Tyn(k)=(1−α)Ty(i)
(i=1のときj=1,k=1でi=2のときj=2,k=1でi=3のときj=2,k=2でi=4のときj=3,k=2でi=5のときj=3,k=3でi=6のときj=1,k=3とする。)
のように設定するαを定義すれば、電動状態のときは
αを大きくするとVcnが上昇し、
αを小さくするとVcnが下降し、
また、回生状態の時は
αを大きくするとVcnが下降し、
αを小さくするとVcnが上昇するので、
αを調整することで中性点電位をコントロールすることが可能となる。
【0005】
【発明が解決しようとする課題】
しかし、従来の零相電圧を指令に加える中性点電位制御方法では負荷力率が零付近で中性点電位制御不能となるため、これを解決し負荷力率に影響されずに中性点電位制御を行う方法としては、特開平9−182455号公報のように零相電圧として変調指令の偶数次成分を重畳する方法があるが、制御が複雑である割には効果が薄いという問題があった。
また、特許第2888104号公報のように所定相の電流の方向によって対応する中性点電位期間を調節する方法もあるが、多相インバータでは相間出力電圧の制御がうまくできないという問題があった。
そこで本発明が解決しようとする課題は、相間出力電圧の品質を落とさずに、簡単な相電流の測定または予測で力率に関係なく中性点電位制御を行うことができ、また負荷地絡時の負荷電流アンバランスによる中性点電位変動も抑制することができ、これによりインバータの品質・安定性・安全性を向上することのできる3相中性点クランプ式インバータの中性点電位制御方法を提供することである。
【0006】
【課題を解決するための手段】
本発明は前記の課題を解決するために、
(1)3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、
前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyn(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyn(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記U相の電流の方向によって前記ベクトルxp(1)と前記ベクトルxn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記V相の電流の方向によって前記ベクトルxp(2)と前記ベクトルxn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記W相の電流の方向によって前記ベクトルxp(3)と前記ベクトルxn(3)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記W相の電流の方向によって前記ベクトルyp(1)と前記ベクトルyn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記U相の電流の方向によって前記ベクトルyp(2)と前記ベクトルyn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記V相の電流の方向によって前記ベクトルyp(3)と前記ベクトルyn(3)の発生時間比率を変化させて、
前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法とする。
【0007】
(2)3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、
前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyn(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyn(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記V相と前記W相の和の電流方向によって前記ベクトルxp(1)と前記ベクトルxn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記U相と前記W相の和の電流方向によって前記ベクトルxp(2)と前記ベクトルxn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記U相と前記V相の和の電流方向によって前記ベクトルxp(3)と前記ベクトルxn(3)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記U相と前記V相の和の電流方向によって前記ベクトルyp(1)と前記ベクトルyn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記V相と前記W相の和の電流方向によって前記ベクトルyp(2)と前記ベクトルyn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記U相と前記W相の和の電流方向によって前記ベクトルyp(3)と前記ベクトルyn(3)の発生時間比率を変化させて、
前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法とする。
【0008】
(3)3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、
前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyp(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyp(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記U相の電流Iuと前記V相Ivと前記W相Iwの電流の和を比較しIuとIv+Iwが同符号で
|Iu|<|Iv+Iw|ならば前記ベクトルxp(1)の発生を抑制し
|Iu|>|Iv+Iw|ならば前記ベクトルxn(1)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記V相の電流Ivと前記U相Iuと前記W相Iwの電流の和を比較しIvとIu+Iwが同符号で
|Iv|<|Iu+Iw|ならば前記ベクトルxp(2)の発生を抑制し
|Iv|>|Iu+Iw|ならば前記ベクトルxn(2)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記W相の電流Iwと前記U相Iuと前記V相Ivの電流の和を比較しIwとIu+Ivが同符号で
|Iw|<|Iu+Iv|ならば前記ベクトルxp(3)の発生を抑制し
|Iw|>|Iu+Iv|ならば前記ベクトルxn(3)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記W相の電流Iwと前記U相Iuと前記V相Ivの電流の和を比較しIwとIu+Ivが同符号で
|Iw|<|Iu+Iv|ならば前記ベクトルyn(1)の発生を抑制し
|Iw|>|Iu+Iv|ならば前記ベクトルyp(1)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記U相の電流Iuと前記V相Ivと前記W相Iwの電流の和を比較しIuとIv+Iwが同符号で
|Iu|<|Iv+Iw|ならば前記ベクトルyn(2)の発生を抑制し
|Iu|>|Iv+Iw|ならば前記ベクトルyp(2)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記V相の電流Ivと前記U相Iuと前記W相Iwの電流の和を比較しIvとIu+Iwが同符号で
|Iv|<|Iu+Iw|ならば前記ベクトルyn(3)の発生を抑制し
|Iv|>|Iu+Iw|ならば前記ベクトルyp(3)の発生を抑制させて前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法とする。
前述の(1)(2)ような3相中性点クランプ式インバータの中性点電位制御方法ならば、負荷力率に関係なく中性点電位制御が可能となり、また負荷電流の方向を検出するだけなので制御が簡単になる。また(3)のような3相中性点クランプ式インバータの中性点電位制御ならば、インバータ出力が地絡した場合の急激な中性点電位変動を抑制することが可能であり安全性が向上する。
【0009】
【発明の実施の形態】
本発明の実施例について図面を参照して説明する。
本発明の第1の実施例は、まず従来の中性点電位制御で利用していた前述のαに加えα1,α2という二つのパラメータを用意して、領域i(i=1,2,...,6)内のある電圧ベクトルを出力するときのxp(j),xn(j)ベクトルの総出力時間をTx(i)、yp(k),yn(k)ベクトルの総出力時間をTy(i)、xp(j)の出力時間をTxp(j)、xn(j)の出力時間をTxn(j)、yp(k)の出力時間をTyp(k)、yn(k)の出力時間をTyn(k)とすると、
Txp(j)=α1・Tx(i)
Txn(j)=(1−α1)・Tx(i)
Typ(k)=α2・Ty(i)
Tyn(k)=(1−α2)・Ty(i)
(i=1のときj=1,k=1でi=2のときj=2,k=1でi=3のときj=2,k=2でi=4のときj=3,k=2でi=5のときj=3,k=3でi=6のときj=1,k=3とする)
のように変更する。
【0010】
次に、X1,X2というパラメータを用意してX1,X2と相電流の対応を表1に示すよう設定し、インバータ出力の相電流Iu,Iv,Iw(インバータからモータに電流が流れた場合を正とする)を表1にしたがってX1,X2にあてはめ、
X1≧0 ならば α1=α
X1<0 ならば α1=(1−α)
X2≧0 ならば α2=(1−α)
X2<0 ならば α2=α
のようにαとα1,α2とを対応させる。
【0011】
図1に実施例1の制御ブロックを示す。
このようにすると、中性点電流に流れる電流の向きを相電流の正負の判断で整えることができ、負荷力率に関係なくαを大きくするとVcnが上昇し、αを小さくするとVcnが下降する中性点電位が可能となる。
【表1】

Figure 0003841253
【0012】
本発明の第2の実施例は、実施例1では1相のみの電流方向を測定していたのを、表2のように2相の電流値の和の方向を測定するように変更したものである。
図2に実施例2の制御ブロックを示す。
【表2】
Figure 0003841253
【0013】
本発明の第3の実施例は、3相出力のインバータの場合で出力電流がバランスしている場合には、実施例1,実施例2のように1相または2相の和の電流方向を測定すればよいが、負荷の地絡などで出力電流がバランスしていない場合には中性点電位制御が不能となるなどの問題が生じる。そこで図3に示すような制御ブロックを実施例1,実施例2へ加え、出力電流アンバランス時にはα1,α2の値を調整して、より中性点へ流れる電流が少ない方のベクトルを選択して発生する。このようにすることで出力電流アンバランス時の中性点電位の変動を抑制することができる。
また、実施例1,2,3では各相電流の方向を実際に測定するように説明したが、各相電流の方向はインバータが出力すべき電流の指令値などから導き予測した値を用いてもよい。
【0014】
【発明の効果】
以上、説明したように本発明の中性点クランプ式インバータの中性点電位制御方法を用いれば、負荷電流の方向を測定または予測するという簡単な方法で力率に関係なく中性点電位制御を行うことが可能となり、インバータの安定性・安全性が著しく向上する。また負荷地絡時の負荷電流アンバランスによる中性点電位変動も抑制することができ、さらに安全性が向上する。
【図面の簡単な説明】
【図1】 本発明実施例1の追加制御ブロック図である。
【図2】 本発明実施例2の追加制御ブロック図である。
【図3】 本発明実施例3の追加制御ブロック図である。
【図4】 一般的な3相中性点クランプ式インバータの主回路図である。
【図5】 3相中性点クランプ式インバータの空間電圧ベクトルを示すベクトル図である。
【図6】 3相中性点クランプ式インバータの中性点電位制御に利用できるベクトル発生時のインバータ平滑コンデンサと負荷との接続状態図である。
【図7】 xp(1),xn(1)ベクトルを発生した場合の中性点電位変化を示す概念図である。
【符号の説明】
1 3相電源、2 整流素子、3,4 平滑コンデンサ、6〜23 ダイオード、24〜35 IGBT、36 モータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a neutral point potential control method for a power conversion device such as a three-phase neutral point clamp inverter that performs variable speed driving of a motor and system interconnection.
[0002]
[Prior art]
Conventionally, as a neutral point potential control method of a three-phase neutral point clamp type inverter, a zero-phase voltage is added to a command voltage as shown in Japanese Patent No. 282168 “Inverter device and AC motor drive system”. In general, a neutral point potential is controlled by adjusting the time of a vector to be output using a control method or a space voltage vector method.
FIG. 4 shows a basic configuration of a three-phase neutral point clamp type inverter. In the figure, 1 is a three-phase AC power source, 2 is a rectifier, 3 and 4 are smoothing capacitors, 6 to 23 are diodes, and 24 to 35 is an IGBT, and 36 is a motor.
In FIG. 4, when the potential difference between the neutral point voltage (voltage at the connection point O of the smoothing capacitor of the inverter connected in series) and the negative bus voltage is Vcn, the neutral point potential control is performed by setting Vcn to the bus voltage Vpn of the inverter. The voltage must be controlled to ½.
When a three-phase neutral point clamp type inverter as shown in FIG. 4 selects the output vector shown in FIG. 5 and controls Vcn, the voltage vectors that can be used for controlling Vcn are xp (1), xn (1), xp (2), xn (2), xp (3), xn (3), yp (1), yn (1), yp (2), yn (2), yp (3), yn (3) There are only 12 vectors. FIG. 6 shows the connection state between the load and the smoothing capacitor of the inverter when these 12 vectors are output.
[0003]
If the load current is flowing in the direction of the arrow shown in FIG. 6, for example, in the connection state of xp (1) and xn (1) in region 1, the direction of the current flowing into the neutral point is reversed. When xp (1) and xn (1) are generated in such a short time that the U-phase current does not fluctuate as in FIG. 7, Vcn rises when xp (1) occurs, and when xn (1) occurs If the generation time Tp of xp (1) and the generation time Tn of xn (1) are equal, the average Vcn at the total generation time Tout (= Tp + Tn) of xp (1) and xn (1) is constant. If Tp> Tn, the average Vcn rises. If Tp <Tn, the average Vcn decreases.
In this way, the vectors (xp (1) and xn (1), yp (1) and yn (1), xp (2), xn (2), yp (2)) horizontally arranged in FIG. It can be seen that Vcn can be controlled by adjusting the generation time ratio of yn (2), xp (3) and xn (3), yp (3) and yn (3)).
In the neutral point potential control for adding a zero-phase voltage to the command voltage, xp (1), xp (2), xp (3), yp (1), yp (2), yp are applied by adding a positive zero-phase voltage. By increasing the generation time ratio of (3) and applying a negative zero-phase voltage, xn (1), xn (2), xn (3), yn (1), yn (2), yn (3) This is almost equivalent to increasing the generation time.
[0004]
In the method using the spatial voltage vector, for example, the total output time of xp (j) and xn (j) vectors when outputting a certain voltage vector in the region i (i = 1, 2,..., 6) is expressed as Tx. The total output time of (i), yp (k), yn (k) vectors is Ty (i), the output time of xp (j) is Txp (j), the output time of xn (j) is Txn (j), If the output time of yp (k) is Typ (k) and the output time of yn (k) is Tyn (k),
Txp (j) = αTx (i)
Txn (j) = (1-α) Tx (i)
Typ (k) = αTy (i)
Tyn (k) = (1-α) Ty (i)
(When i = 1, j = 1, k = 1, i = 2, j = 2, k = 1, i = 3, j = 2, k = 2, i = 4, j = 3, k = 2, i = 5, j = 3, k = 3, i = 6, j = 1, k = 3)
If α is set as follows, Vcn increases when α is increased in the electric state,
When α is reduced, Vcn decreases,
In the regenerative state, increasing α increases Vcn,
Since Vcn increases when α is reduced,
The neutral point potential can be controlled by adjusting α.
[0005]
[Problems to be solved by the invention]
However, in the conventional neutral point potential control method in which the zero phase voltage is applied to the command, the neutral point potential control becomes impossible when the load power factor is near zero, so this is solved and the neutral point is not affected by the load power factor. As a method of controlling the potential, there is a method of superimposing the even-order component of the modulation command as a zero-phase voltage as disclosed in Japanese Patent Application Laid-Open No. 9-182455, but there is a problem that the effect is small for complicated control. there were.
In addition, there is a method of adjusting the corresponding neutral point potential period according to the current direction of the predetermined phase as in Japanese Patent No. 2888104, but there is a problem that the interphase output voltage cannot be controlled well with a multiphase inverter.
Therefore, the problem to be solved by the present invention is that neutral point potential control can be performed regardless of the power factor by simple measurement or prediction of phase current without degrading the quality of the output voltage between phases. Neutral point potential control of a three-phase neutral point clamp type inverter that can suppress neutral point potential fluctuation due to load current imbalance during operation and thereby improve inverter quality, stability and safety Is to provide a method.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
(1) The state where the phase output terminal of the three-phase neutral point clamp type inverter is connected to the positive bus voltage point of the inverter is P, the state where the phase output terminal is connected to the neutral point of the bus of the inverter is O, and The state connected to the negative bus voltage point is N,
An output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by a vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is expressed as a vector yn (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is a vector yn (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the vector xp (1) and the vector xn (1) depend on the direction of the U-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the vector xp (2) and the vector xn (2) depend on the direction of the V-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the vector xp (3) and the vector xn (3) depending on the direction of the W-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the vector yp (1) and the vector yn (1) depending on the direction of the W-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the vector yp (2) and the vector yn (2) depending on the direction of the U-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the vector yp (3) and the vector yn (3) depending on the direction of the V-phase current. ) Occurrence time ratio,
A neutral point potential control method is characterized in that the neutral point voltage of the three-phase neutral point clamp inverter is stabilized.
[0007]
(2) P indicates that the phase output terminal of the three-phase neutral point clamped inverter is connected to the positive bus voltage point of the inverter, O indicates that the phase output terminal is connected to the neutral point of the inverter bus, and The state connected to the negative bus voltage point is N,
An output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by a vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is expressed as a vector yn (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is a vector yn (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the vector xp (1) and the vector xp (1) are determined according to the current direction of the sum of the V phase and the W phase. Changing the generation time ratio of the vector xn (1);
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the vector xp (2) and the vector xp (2) are determined according to the current direction of the sum of the U phase and the W phase. Changing the generation time ratio of the vector xn (2);
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the vector xp (3) and the vector xp (3) are determined according to the current direction of the sum of the U phase and the V phase. Changing the generation time ratio of the vector xn (3);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the vector yp (1) and the vector yp (1) are changed according to the current direction of the sum of the U phase and the V phase. Changing the generation time ratio of the vector yn (1);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the vector yp (2) and the vector yp (2) are determined according to the current direction of the sum of the V phase and the W phase. Changing the generation time ratio of the vector yn (2);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the vector yp (3) and the vector yp (3) are determined according to the current direction of the sum of the U phase and the W phase. By changing the generation time ratio of the vector yn (3),
A neutral point potential control method is characterized in that the neutral point voltage of the three-phase neutral point clamp inverter is stabilized.
[0008]
(3) The state where the phase output terminal of the three-phase neutral point clamp type inverter is connected to the positive bus voltage point of the inverter is P, the state where the phase output terminal is connected to the neutral point of the inverter bus is O, The state connected to the negative bus voltage point is N,
An output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by a vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is represented by a vector yp (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is expressed as a vector yp (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the sum of the U-phase current Iu, the V-phase Iv, and the W-phase Iw If Iu and Iv + Iw have the same sign and | Iu | <| Iv + Iw |, the generation of the vector xp (1) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the sum of the V-phase current Iv, the U-phase Iu, and the W-phase Iw If Iv and Iu + Iw have the same sign and | Iv | <| Iu + Iw |, the generation of the vector xp (2) is suppressed, and if | Iv |> | Iu + Iw |, the generation of the vector xn (2) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the sum of the W-phase current Iw, the U-phase Iu, and the V-phase Iv If Iw and Iu + Iv have the same sign and | Iw | <| Iu + Iv |, the generation of the vector xp (3) is suppressed. If | Iw |> | Iu + Iv |, the generation of the vector xn (3) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the sum of the W-phase current Iw, the U-phase Iu, and the V-phase Iv If Iw and Iu + Iv have the same sign and | Iw | <| Iu + Iv |, the generation of the vector yn (1) is suppressed. If | Iw |> | Iu + Iv |, the generation of the vector yp (1) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the sum of the U-phase current Iu, the V-phase Iv, and the W-phase Iw If Iu and Iv + Iw have the same sign and | Iu | <| Iv + Iw |, the generation of the vector yn (2) is suppressed, and if | Iu |> | Iv + Iw |, the generation of the vector yp (2) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the sum of the V-phase current Iv, the U-phase Iu, and the W-phase Iw If Iv and Iu + Iw have the same sign and | Iv | <| Iu + Iw |, the generation of the vector yn (3) is suppressed, and if | Iv |> | Iu + Iw |, the generation of the vector yp (3) is suppressed. The neutral point potential control method is characterized in that the neutral point voltage of the three-phase neutral point clamp inverter is stabilized.
The neutral point potential control method of the three-phase neutral point clamp type inverter as described in (1) and (2) above enables neutral point potential control regardless of the load power factor and detects the direction of the load current. This makes it easier to control. In addition, if the neutral point potential control of the three-phase neutral point clamp type inverter as in (3) is used, it is possible to suppress a sudden neutral point potential fluctuation when the inverter output is grounded, and safety is improved. improves.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In the first embodiment of the present invention, two parameters α1 and α2 are prepared in addition to the aforementioned α used in the conventional neutral point potential control, and the region i (i = 1, 2,. , 6), the total output time of xp (j) and xn (j) vectors when outputting a certain voltage vector is Tx (i), and the total output time of yp (k) and yn (k) vectors. The output time of Ty (i) and xp (j) is Txp (j), the output time of xn (j) is Txn (j), the output time of yp (k) is the output of Typ (k) and yn (k) If time is Tyn (k),
Txp (j) = α1 · Tx (i)
Txn (j) = (1-α1) · Tx (i)
Typ (k) = α2 · Ty (i)
Tyn (k) = (1-α2) · Ty (i)
(When i = 1, j = 1, k = 1, i = 2, j = 2, k = 1, i = 3, j = 2, k = 2, i = 4, j = 3, k = 2, i = 5, j = 3, k = 3, i = 6, j = 1, k = 3)
Change as follows.
[0010]
Next, parameters X1 and X2 are prepared, and the correspondence between X1 and X2 and the phase current is set as shown in Table 1, and the phase currents Iu, Iv, Iw of the inverter output (when the current flows from the inverter to the motor) Is applied to X1 and X2 according to Table 1,
If X1 ≧ 0, α1 = α
If X1 <0, α1 = (1-α)
If X2 ≧ 0, α2 = (1-α)
If X2 <0, α2 = α
As shown, α and α1 and α2 are made to correspond to each other.
[0011]
FIG. 1 shows a control block of the first embodiment.
In this way, the direction of the current flowing through the neutral point current can be adjusted by determining whether the phase current is positive or negative. Vcn increases when α is increased regardless of the load power factor, and Vcn decreases when α is decreased. Neutral point potential is possible.
[Table 1]
Figure 0003841253
[0012]
In the second embodiment of the present invention, the current direction of only one phase is measured in the first embodiment but is changed to measure the direction of the sum of the current values of two phases as shown in Table 2. It is.
FIG. 2 shows a control block of the second embodiment.
[Table 2]
Figure 0003841253
[0013]
In the third embodiment of the present invention, when the output current is balanced in the case of a three-phase output inverter, the current direction of the sum of one phase or two phases is changed as in the first and second embodiments. However, if the output current is not balanced due to a ground fault of the load, there is a problem that neutral point potential control becomes impossible. Therefore, a control block as shown in FIG. 3 is added to the first and second embodiments, and when the output current is unbalanced, the values of α1 and α2 are adjusted to select a vector with less current flowing to the neutral point. Occur. By doing in this way, the fluctuation | variation of the neutral point electric potential at the time of output current imbalance can be suppressed.
In the first, second, and third embodiments, the direction of each phase current has been described as actually measured. However, the direction of each phase current is estimated using a value that is derived and predicted from the command value of the current that the inverter should output. Also good.
[0014]
【The invention's effect】
As described above, if the neutral point potential control method of the neutral point clamp type inverter of the present invention is used, the neutral point potential control can be performed regardless of the power factor by a simple method of measuring or predicting the direction of the load current. This makes it possible to significantly improve the stability and safety of the inverter. Further, the neutral point potential fluctuation due to the load current imbalance at the time of the load ground fault can be suppressed, and the safety is further improved.
[Brief description of the drawings]
FIG. 1 is an additional control block diagram according to a first embodiment of the present invention.
FIG. 2 is a block diagram of additional control according to the second embodiment of the present invention.
FIG. 3 is a block diagram of additional control according to the third embodiment of the present invention.
FIG. 4 is a main circuit diagram of a general three-phase neutral point clamp type inverter.
FIG. 5 is a vector diagram showing a spatial voltage vector of a three-phase neutral point clamp type inverter.
FIG. 6 is a connection state diagram of an inverter smoothing capacitor and a load when generating a vector that can be used for neutral point potential control of a three-phase neutral point clamp type inverter.
FIG. 7 is a conceptual diagram showing a neutral point potential change when xp (1) and xn (1) vectors are generated.
[Explanation of symbols]
1 3-phase power supply, 2 rectifier, 3, 4 smoothing capacitor, 6-23 diode, 24-35 IGBT, 36 motor

Claims (3)

3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、
前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyn(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyn(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記U相の電流の方向によって前記ベクトルxp(1)と前記ベクトルxn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記V相の電流の方向によって前記ベクトルxp(2)と前記ベクトルxn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記W相の電流の方向によって前記ベクトルxp(3)と前記ベクトルxn(3)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記W相の電流の方向によって前記ベクトルyp(1)と前記ベクトルyn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記U相の電流の方向によって前記ベクトルyp(2)と前記ベクトルyn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記V相の電流の方向によって前記ベクトルyp(3)と前記ベクトルyn(3)の発生時間比率を変化させて、前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法。
The state where the phase output terminal of the three-phase neutral point clamp type inverter is connected to the positive bus voltage point of the inverter is P, the state where the phase output terminal is connected to the neutral point of the inverter bus is O, the negative bus voltage of the inverter Let N be the state connected to a point.
An output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by a vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is expressed as a vector yn (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is a vector yn (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the vector xp (1) and the vector xn (1) depend on the direction of the U-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the vector xp (2) and the vector xn (2) depend on the direction of the V-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the vector xp (3) and the vector xn (3) depending on the direction of the W-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the vector yp (1) and the vector yn (1) depending on the direction of the W-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the vector yp (2) and the vector yn (2) depending on the direction of the U-phase current. ) Occurrence time ratio,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the vector yp (3) and the vector yn (3) depending on the direction of the V-phase current. The neutral point potential control method is characterized in that the neutral point voltage of the three-phase neutral point clamp type inverter is stabilized by changing the generation time ratio of (3).
3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、
前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyn(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyn(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記V相と前記W相の和の電流方向によって前記ベクトルxp(1)と前記ベクトルxn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記U相と前記W相の和の電流方向によって前記ベクトルxp(2)と前記ベクトルxn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記U相と前記V相の和の電流方向によって前記ベクトルxp(3)と前記ベクトルxn(3)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記U相と前記V相の和の電流方向によって前記ベクトルyp(1)と前記ベクトルyn(1)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記V相と前記W相の和の電流方向によって前記ベクトルyp(2)と前記ベクトルyn(2)の発生時間比率を変化させ、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記U相と前記W相の和の電流方向によって前記ベクトルyp(3)と前記ベクトルyn(3)の発生時間比率を変化させて、
前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法。
The state where the phase output terminal of the three-phase neutral point clamp type inverter is connected to the positive bus voltage point of the inverter is P, the state where the phase output terminal is connected to the neutral point of the inverter bus is O, the negative bus voltage of the inverter Let N be the state connected to a point.
An output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by a vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is expressed as a vector yn (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is a vector yn (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the vector xp (1) and the vector xp (1) are determined according to the current direction of the sum of the V phase and the W phase. Changing the generation time ratio of the vector xn (1);
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the vector xp (2) and the vector xp (2) are determined according to the current direction of the sum of the U phase and the W phase. Changing the generation time ratio of the vector xn (2);
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the vector xp (3) and the vector xp (3) are determined according to the current direction of the sum of the U phase and the V phase. Changing the generation time ratio of the vector xn (3);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the vector yp (1) and the vector yp (1) are changed according to the current direction of the sum of the U phase and the V phase. Changing the generation time ratio of the vector yn (1);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the vector yp (2) and the vector yp (2) are determined according to the current direction of the sum of the V phase and the W phase. Changing the generation time ratio of the vector yn (2);
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the vector yp (3) and the vector yp (3) are determined according to the current direction of the sum of the U phase and the W phase. By changing the generation time ratio of the vector yn (3),
A neutral point potential control method comprising stabilizing a neutral point voltage of the three-phase neutral point clamp inverter.
3相中性点クランプ式インバータの相出力端子が前記インバータの正母線電圧点に接続される状態をP,前記インバータの母線の中性点に接
続される状態をO,前記インバータの負母線電圧点に接続される状態をNとして、 前記インバータの3相の出力状態がU相V相W相の順番で
POOとなる出力状態をベクトルxp(1),
ONNとなる出力状態をベクトルxn(1),
PPOとなる出力状態をベクトルyp(1),
OONとなる出力状態をベクトルyp(1),
OPOとなる出力状態をベクトルxp(2),
NONとなる出力状態をベクトルxn(2),
OPPとなる出力状態をベクトルyp(2),
NOOとなる出力状態をベクトルyp(2),
OOPとなる出力状態をベクトルxp(3),
NNOとなる出力状態をベクトルxn(3),
POPとなる出力状態をベクトルyp(3),
ONOとなる出力状態をベクトルyn(3)
のように出力電圧を空間ベクトルとして表記をすると、
前記3相中性点クランプ式インバータにおいて、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(3)と前記ベクトルyp(1)とに挟まれる場合には前記U相の電流Iuと前記V相Ivと前記W相Iwの電流の和を比較しIuとIv+Iwが同符号で
|Iu|<|Iv+Iw|ならば前記ベクトルxp(1)の発生を抑制し
|Iu|>|Iv+Iw|ならば前記ベクトルxn(1)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(1)と前記ベクトルyp(2)とに挟まれる場合には前記V相の電流Ivと前記U相Iuと前記W相Iwの電流の和を比較しIvとIu+Iwが同符号で
|Iv|<|Iu+Iw|ならば前記ベクトルxp(2)の発生を抑制し
|Iv|>|Iu+Iw|ならば前記ベクトルxn(2)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルyp(2)と前記ベクトルyp(3)とに挟まれる場合には前記W相の電流Iwと前記U相Iuと前記V相Ivの電流の和を比較しIwとIu+Ivが同符号で
|Iw|<|Iu+Iv|ならば前記ベクトルxp(3)の発生を抑制し
|Iw|>|Iu+Iv|ならば前記ベクトルxn(3)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(1)と前記ベクトルxp(2)とに挟まれる場合には前記W相の電流Iwと前記U相Iuと前記V相Ivの電流の和を比較しIwとIu+Ivが同符号で
|Iw|<|Iu+Iv|ならば前記ベクトルyn(1)の発生を抑制し
|Iw|>|Iu+Iv|ならば前記ベクトルyp(1)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(2)と前記ベクトルxp(3)とに挟まれる場合には前記U相の電流Iuと前記V相Ivと前記W相Iwの電流の和を比較しIuとIv+Iwが同符号で
|Iu|<|Iv+Iw|ならば前記ベクトルyn(2)の発生を抑制し
|Iu|>|Iv+Iw|ならば前記ベクトルyp(2)の発生を抑制し、
前記インバータで出力させる電圧ベクトルの角度が前記ベクトルxp(3)と前記ベクトルxp(1)とに挟まれる場合には前記V相の電流Ivと前記U相Iuと前記W相Iwの電流の和を比較しIvとIu+Iwが同符号で
|Iv|<|Iu+Iw|ならば前記ベクトルyn(3)の発生を抑制し
|Iv|>|Iu+Iw|ならば前記ベクトルyp(3)の発生を抑制させて前記3相中性点クランプ式インバータの中性点電圧の安定化を行うことを特徴とする中性点電位制御方法。
The state where the phase output terminal of the three-phase neutral point clamp type inverter is connected to the positive bus voltage point of the inverter is P, the state where the phase output terminal is connected to the neutral point of the inverter bus is O, the negative bus voltage of the inverter The state connected to the point is N, and the output state in which the three-phase output state of the inverter becomes POO in the order of the U phase, the V phase, and the W phase is represented by the vector xp (1),
The output state that becomes ONN is represented by a vector xn (1),
The output state that becomes PPO is expressed as a vector yp (1),
The output state that becomes ON is represented by a vector yp (1),
The output state that becomes OPO is expressed as a vector xp (2),
The output state that becomes NON is expressed as a vector xn (2),
The output state to be OPP is expressed as a vector yp (2),
The output state that becomes NOO is expressed as a vector yp (2),
The output state that becomes OOP is expressed as a vector xp (3),
The output state that becomes NNO is expressed as a vector xn (3),
The output state that becomes POP is expressed as a vector yp (3),
The output state that becomes ONO is expressed as a vector yn (3).
If the output voltage is expressed as a space vector like
In the three-phase neutral point clamp type inverter,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (3) and the vector yp (1), the sum of the U-phase current Iu, the V-phase Iv, and the W-phase Iw If Iu and Iv + Iw have the same sign and | Iu | <| Iv + Iw |, the generation of the vector xp (1) is suppressed, and if | Iu |> | Iv + Iw |, the generation of the vector xn (1) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (1) and the vector yp (2), the sum of the V-phase current Iv, the U-phase Iu, and the W-phase Iw If Iv and Iu + Iw have the same sign and | Iv | <| Iu + Iw |, the generation of the vector xp (2) is suppressed, and if | Iv |> | Iu + Iw |, the generation of the vector xn (2) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector yp (2) and the vector yp (3), the sum of the W-phase current Iw, the U-phase Iu, and the V-phase Iv If Iw and Iu + Iv have the same sign and | Iw | <| Iu + Iv |, the generation of the vector xp (3) is suppressed. If | Iw |> | Iu + Iv |, the generation of the vector xn (3) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (1) and the vector xp (2), the sum of the W-phase current Iw, the U-phase Iu, and the V-phase Iv If Iw and Iu + Iv have the same sign and | Iw | <| Iu + Iv |, the generation of the vector yn (1) is suppressed. If | Iw |> | Iu + Iv |, the generation of the vector yp (1) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (2) and the vector xp (3), the sum of the U-phase current Iu, the V-phase Iv, and the W-phase Iw If Iu and Iv + Iw have the same sign and | Iu | <| Iv + Iw |, the generation of the vector yn (2) is suppressed, and if | Iu |> | Iv + Iw |, the generation of the vector yp (2) is suppressed. ,
When the angle of the voltage vector output by the inverter is sandwiched between the vector xp (3) and the vector xp (1), the sum of the V-phase current Iv, the U-phase Iu, and the W-phase Iw If Iv and Iu + Iw have the same sign and | Iv | <| Iu + Iw |, the generation of the vector yn (3) is suppressed, and if | Iv |> | Iu + Iw |, the generation of the vector yp (3) is suppressed. And neutralizing the neutral point voltage of the three-phase neutral point clamp inverter.
JP22889399A 1999-08-12 1999-08-12 Neutral point potential control method for neutral point clamp inverter Expired - Lifetime JP3841253B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP22889399A JP3841253B2 (en) 1999-08-12 1999-08-12 Neutral point potential control method for neutral point clamp inverter
EP00951922A EP1221761B1 (en) 1999-08-12 2000-08-09 Method for controlling neutral point potential of inverter of neutral point clamping type
PCT/JP2000/005347 WO2001013504A1 (en) 1999-08-12 2000-08-09 Method for controlling neutral point potential of inverter of neutral point clamping type
DE60042601T DE60042601D1 (en) 1999-08-12 2000-08-09 METHOD FOR REGULATING THE ZERO POINT POTENTIAL OF A TRACKER WITH ZERO-POINT LIMITATION
CNB008114609A CN100492856C (en) 1999-08-12 2000-08-09 Tri-phase neutral point clamping type PWM inventer device
US10/048,343 US6490185B1 (en) 1999-08-12 2000-08-09 Method for controlling neutral point potential of inverter of neutral point clamping type
KR1020027001665A KR100651222B1 (en) 1999-08-12 2000-08-09 Method for controlling neutral point potential of inverter of neutral point clamping type
TW089116277A TW476183B (en) 1999-08-12 2000-08-11 Neutral point potential control method of neutral point clamp type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22889399A JP3841253B2 (en) 1999-08-12 1999-08-12 Neutral point potential control method for neutral point clamp inverter

Publications (2)

Publication Number Publication Date
JP2001057784A JP2001057784A (en) 2001-02-27
JP3841253B2 true JP3841253B2 (en) 2006-11-01

Family

ID=16883516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22889399A Expired - Lifetime JP3841253B2 (en) 1999-08-12 1999-08-12 Neutral point potential control method for neutral point clamp inverter

Country Status (1)

Country Link
JP (1) JP3841253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1347565A4 (en) 2000-12-07 2007-03-14 Yaskawa Denki Seisakusho Kk Three-level neutral point clamping pwm inverter and neutral point voltage controller
EP2348627A1 (en) * 2010-01-25 2011-07-27 ABB Research Ltd. Converter circuit and method for operating a multilevel converter circuit
FR2958815B1 (en) * 2010-04-07 2012-03-16 Schneider Toshiba Inverter METHOD FOR CONTROLLING AN INVERTER OF NPC TYPE

Also Published As

Publication number Publication date
JP2001057784A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
US8232753B2 (en) Control device for electric motor drive apparatus
EP2642658B1 (en) Controller for electric motor
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
US8872454B2 (en) Control unit of rotary device
WO2001013504A1 (en) Method for controlling neutral point potential of inverter of neutral point clamping type
CN110785920B (en) Inverter device and electric power steering device
EP3255783B1 (en) Motor drive device
JP6390489B2 (en) Inverter control device
US20190229664A1 (en) Control apparatus for alternating-current rotary electric machine
CN111837327B (en) Power conversion device, motor drive system, and control method
US20180241326A1 (en) Drive System
US20110241587A1 (en) Direct-current to three-phase alternating-current inverter system
JP2004304868A (en) Motor controller
US7436147B2 (en) Motor driving apparatus
JP2005065439A (en) Control method for voltage-type inverter
JP2733724B2 (en) Current control device for multi-winding AC motor
JP6861892B2 (en) Power converter
JP3841253B2 (en) Neutral point potential control method for neutral point clamp inverter
CN113454907A (en) Rotating electric machine control system
JP5402094B2 (en) Power converter
JPH10191677A (en) Speed control apparatus for ac motor
JP2022175118A (en) Power conversion device and program
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same
US20240162842A1 (en) Electric motor
JP2004274806A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Ref document number: 3841253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

EXPY Cancellation because of completion of term