JP2733724B2 - Current control device for multi-winding AC motor - Google Patents

Current control device for multi-winding AC motor

Info

Publication number
JP2733724B2
JP2733724B2 JP4087590A JP8759092A JP2733724B2 JP 2733724 B2 JP2733724 B2 JP 2733724B2 JP 4087590 A JP4087590 A JP 4087590A JP 8759092 A JP8759092 A JP 8759092A JP 2733724 B2 JP2733724 B2 JP 2733724B2
Authority
JP
Japan
Prior art keywords
current
winding
motor
component
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4087590A
Other languages
Japanese (ja)
Other versions
JPH05260792A (en
Inventor
潤一 高橋
繁 ▲すぎ▼山
英一 堀内
正美 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4087590A priority Critical patent/JP2733724B2/en
Publication of JPH05260792A publication Critical patent/JPH05260792A/en
Application granted granted Critical
Publication of JP2733724B2 publication Critical patent/JP2733724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数のインバータ装置
により多相交流電動機を可変速させる交流可変速駆動シ
ステムに係り、特に、多重化インバータによる多巻線交
流電動機の電流制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC variable speed drive system in which a multi-phase AC motor is variable-speed driven by a plurality of inverters, and more particularly to a current control device for a multi-winding AC motor using a multiplexed inverter.

【0002】[0002]

【従来の技術】大容量の交流可変速駆動システムを実現
する場合、単位電力変換装置を複数台組合せて容量増大
を図る多重化技術がある。多重化の方法としては、一般
に、単位電力変換装置を直列あるいは並列に接続する方
法が知られている。しかし、直列接続の場合は各々の単
位電力変換装置の電圧分担が平均化せず、また、並列接
続の場合は各々の単位電力変換装置の電流分担が平均化
せず、これらはいずれも負荷に供給可能な電力を低減す
る要因となるという問題がある。なお、電流分担を改善
する方法として、例えば、2台の電力変換装置を、出力
端子にリアクトルを介して並列接続する方法等が知られ
ているが、リアクトル等の付帯的な機器を必要とし、装
置のコストが高くなるという問題がある。ここで、単位
電力変換装置として3相出力電圧形インバータ装置を用
いた場合を例にして、インバータ装置を複数台並列接続
して多重化する場合について、その問題点を具体的に説
明する。複数台並列接続の多重化例として、特開昭63
−305792号公報に記載されているような方法があ
る。図2は、同公報の主回路構成を示し、2台の電圧形
インバータ装置を2つの巻線群に分割した多巻線電動機
に並列接続し、多重化した例である。なお、1は直流電
源、2A,2Bは電圧形インバータ装置、3は6端子U
1,V1,W1,U2,V2,W2を有する3相交流電動機で
ある。なお、iU1,iU2は端子U1,U2に流れる電
流を示す。今、図示していない1つの電圧指令に応じて
2台のインバータ装置2A,2Bが同じ電圧を出力する
よう動作させる。しかし、インバータ内のゲート回路動
作、スイッチング素子の動作等にバラツキがあり、各イ
ンバータ間の出力電圧に不平衡が発生し、多巻線電動機
3の各巻線電流に不平衡が発生する。このため、各イン
バータの容量を増加させる必要がある。また、電流アン
バランスにより、多巻線電動機3の出力トルクにトルク
リプルが発生し、高応答、高精度の可変速制御が出来な
いという問題がある。また、上記電流アンバランスを無
くする方法として、各インバータに個別の電流制御回路
を持つ方法が考えられる。しかし、この方法によれば、
各インバータ出力電流の大きさは合わせられるが、多相
交流機の各巻線間の電流位相は不平衡となる、したがっ
て、電動機の出力トルクにトルクリプルが発生し、高応
答の電流制御が出来ないという問題は残る。上記従来技
術は、多巻線電動機の各巻線間の電流位相が不平衡とな
り、これにより出力トルクにトルクリプルが発生すると
いう問題については考慮されておらず、低トルクリプル
化出来ない問題があった。
2. Description of the Related Art To realize a large-capacity AC variable-speed drive system, there is a multiplexing technique for increasing the capacity by combining a plurality of unit power converters. As a multiplexing method, a method of connecting unit power converters in series or in parallel is generally known. However, in the case of a series connection, the voltage sharing of each unit power converter is not averaged, and in the case of a parallel connection, the current sharing of each unit power converter is not averaged, and all of these are applied to the load. There is a problem that it becomes a factor to reduce the power that can be supplied. As a method of improving current sharing, for example, a method of connecting two power converters in parallel to an output terminal via a reactor is known, but requires ancillary equipment such as a reactor, There is a problem that the cost of the apparatus is increased. Here, taking a case where a three-phase output voltage type inverter device is used as a unit power converter as an example, a case where a plurality of inverter devices are connected in parallel and multiplexed will be specifically described. As an example of multiplexing multiple units in parallel,
There is a method as described in JP-A-305792. FIG. 2 shows a main circuit configuration of the publication, showing an example in which two voltage source inverter devices are connected in parallel to a multi-winding motor divided into two winding groups and multiplexed. 1 is a DC power supply, 2A and 2B are voltage type inverter devices, and 3 is a 6-terminal U
1, is V 1, W 1, U 2 , V 2, W 2 3 -phase AC motor having a. Incidentally, Iu1, iU2 denotes a current flowing through the terminal U 1, U 2. Now, the two inverter devices 2A and 2B are operated to output the same voltage according to one voltage command (not shown). However, there are variations in the operation of the gate circuit, the operation of the switching elements, and the like in the inverter, and an imbalance occurs in the output voltage between the inverters, and an imbalance occurs in each winding current of the multi-winding motor 3. Therefore, it is necessary to increase the capacity of each inverter. Further, due to the current imbalance, torque ripple is generated in the output torque of the multi-winding motor 3, and there is a problem that high response and high precision variable speed control cannot be performed. As a method for eliminating the current imbalance, a method in which each inverter has an individual current control circuit can be considered. However, according to this method,
Although the magnitude of each inverter output current is matched, the current phase between the windings of the polyphase AC machine becomes unbalanced. Therefore, torque ripple occurs in the output torque of the motor, and high-response current control cannot be performed. The problem remains. The prior art described above does not consider the problem that the current phases between the windings of the multi-winding motor become unbalanced, thereby causing torque ripple in the output torque, and there is a problem that the torque ripple cannot be reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上述
の事情に鑑み、多巻線交流電動機の各巻線間電流の大き
さと位相の不平衡を無くし、低トルクリプル、高応答の
電流制御を実現し、かつ、高応答、高精度の大容量交流
可変速を実現するに好適な多巻線交流電動機の電流制御
装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a multi-winding AC motor which eliminates imbalance between the magnitude and phase of the current between windings, and provides low torque ripple and high response current control. It is an object of the present invention to provide a current control device for a multi-winding AC motor suitable for realizing a high-response, high-accuracy large-capacity AC variable speed.

【0004】[0004]

【課題を解決するための手段】上記目的は、多巻線交流
電動機の各巻線電流を、励磁成分電流とそれに直交した
トルク成分電流の2軸成分電流(以下、d−q軸成分電
流Id,Iqと呼ぶ)に分離して検出すると、各成分電
流の差信号が各巻線の交流電流の位相差を意味すること
に着目し、前記各巻線のId,Iqの差信号が零となる
よう、各インバータの電圧指令信号を補正する電流アン
バランス補償回路と、各巻線のd−q軸成分電流の平均
値を演算する平均電流検出回路を設けることによって、
達成される。
The object of the present invention is to convert each winding current of a multi-winding AC motor into a two-axis component current (hereinafter referred to as a dq-axis component current Id, an excitation component current and a torque component current orthogonal thereto). Note that the difference signal of each component current means the phase difference of the AC current of each winding, and the difference signal of Id and Iq of each winding becomes zero. By providing a current unbalance compensation circuit that corrects the voltage command signal of each inverter and an average current detection circuit that calculates the average value of the dq-axis component currents of each winding,
Achieved.

【0005】[0005]

【作用】多巻線交流電動機の各巻線電流の大きさと位相
を検出し、この各巻線電流の大きさと位相に差が発生す
ると、電流アンバランス補償回路と平均電流検出回路が
交流電流の大きさと位相の誤差を無くするよう作用す
る。このため、各巻線間の電流の不平衡が無くなり、低
トルクリプル、高応答かつ高精度の電流制御を実現す
る。
[Function] The magnitude and phase of each winding current of a multi-winding AC motor are detected, and when a difference occurs between the magnitude and phase of each winding current, the current imbalance compensation circuit and the average current detection circuit determine the magnitude and phase of the AC current. It works to eliminate phase errors. For this reason, current imbalance between the windings is eliminated, and low torque ripple, high response, and high precision current control are realized.

【0006】[0006]

【実施例】以下、本発明の一実施例を図1、図3により
説明する。図1は本発明の実施例を示す構成図、図3は
本発明となる電流制御方法を説明するベクトル図を示
す。図1において、主回路構成は、従来の主回路構成で
ある図2と同一であり、2台の電圧形インバータ装置2
A,2Bを2つの巻線群に分割した多巻線電動機3に並
列接続し、多重化した例である。各インバータ2A,2
Bの出力側に各インバータの出力電流を検出する電流検
出器4A,4Bが設けられている。なお、各電流検出器
4A,4Bは、図示は省略しているが、3相電流を検出
するため3つの検出器を持っている。各インバータ2
A,2Bは、各々の交流電圧指令信号Va*,vb*に
対応したPWM(Pulse Width Modul
ation)パルスを出力するPWMパルス発生回路5
A,5Bを介して、前記交流電圧指令信号Va*,vb
*に応じた電圧を出力し、多巻線電動機3に電力を供給
している。電流制御系は、電流の大きさと位相の指令
を、励磁成分電流指令Id*、トルク成分電流指令Iq
*、1次周波数指令ω1*として与え、以下に説明する
多重電流制御回路6により、電動機の各巻線に必要な交
流電圧指令信号va*,vb*を演算出力し、前記PW
Mパルス発生回路5A,5B、インバータ2A,2Bを
介して、多巻線電動機3に電流ia,ibを流し、前記
電流検出器4A,4Bよりの検出値ia,ibをフィー
ドバック値とする電流制御系を構成している。多重電流
制御回路6は、1次周波数指令ω1*を入力とし2相正
弦波基準(位相)信号を出力する2相正弦波発生回路
7、回転座標系のd−q軸成分電圧指令Vda*,Vq
a*,Vdb*,Vqb*から固定子座標系の3相交流
電圧指令信号va*,vb*に座標変換する電圧指令座
標変換器8A,8B、各巻線交流電流ia,ibをd−
q軸成分電流Ida,Iqa,Idb,Iqbに座標変
換する電流成分検出座標変換器9A,9B、各巻線のd
−q軸成分電流の平均値を演算する平均電流検出回路1
0、各成分電流指令Id*,Iq*を指令とし、前記平
均電流検出回路10の出力である平均電流I ̄d,I ̄
qとの偏差を入力とする平均電流制御回路11、前記平
均電流I ̄d,I ̄qと各巻線のd−q軸成分電流との
偏差を入力して各巻線電流のアンバランスを補正する電
流アンバランス補償回路12A,12B、加算器13
A,13Bより構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a vector diagram for explaining a current control method according to the present invention. In FIG. 1, the main circuit configuration is the same as that of the conventional main circuit configuration of FIG.
This is an example in which A and 2B are connected in parallel to a multi-winding motor 3 divided into two winding groups and multiplexed. Each inverter 2A, 2
Current detectors 4A and 4B for detecting the output current of each inverter are provided on the output side of B. Although not shown, each of the current detectors 4A and 4B has three detectors for detecting a three-phase current. Each inverter 2
A and 2B are PWM (Pulse Width Modul) corresponding to the respective AC voltage command signals Va * and vb *.
ation) PWM pulse generating circuit 5 for outputting a pulse
A, 5B, the AC voltage command signals Va *, vb
A voltage corresponding to * is output to supply power to the multi-winding motor 3. The current control system converts the current magnitude and phase commands into an excitation component current command Id * and a torque component current command Iq.
* AC frequency command signals va * and vb * required for each winding of the motor are calculated and output by the multiplex current control circuit 6 described below.
Current control ia, ib is supplied to the multi-winding motor 3 via the M pulse generation circuits 5A, 5B and the inverters 2A, 2B, and current control is performed using the detection values ia, ib from the current detectors 4A, 4B as feedback values. Make up the system. The multiplex current control circuit 6 receives a primary frequency command ω1 * as input and outputs a two-phase sine wave reference (phase) signal, a d-q axis component voltage command Vda *, Vq
a *, Vdb *, Vqb *, voltage command coordinate converters 8A, 8B for coordinate conversion into three-phase AC voltage command signals va *, vb * in the stator coordinate system, and d-
Current component detection coordinate converters 9A and 9B for performing coordinate conversion into q-axis component currents Ida, Iqa, Idb and Iqb, and d of each winding
-Average current detection circuit 1 for calculating the average value of the q-axis component current
0, each component current command Id *, Iq * as a command, and the average current I {d, I} which is the output of the average current detection circuit 10
The average current control circuit 11, which receives the deviation from q as an input, corrects the imbalance between the winding currents by inputting the deviation between the average currents I ̄d, I ̄q and the dq-axis component currents of each winding. Current imbalance compensation circuits 12A and 12B, adder 13
A, 13B.

【0007】今、各インバータ間の出力電圧に不平衡が
無いとすると、各巻線には等しい交流電流ia,ibが
流れ、各巻線のd−q軸成分電流は等しくなる。即ち、
各電流成分検出座標変換器9A,9Bの出力が等しくな
り、前記各電流アンバランス補償回路12A,12Bの
出力は零となる。この状態においては、前記平均電流制
御回路11の出力であるd−q軸成分電圧指令が各巻線
の電圧指令座標変換器8A,8Bに入力され、電圧指令
座標変換器8A,8Bより等しい交流電圧指令信号va
*,vb*が出力され、各インバータ間の出力電圧は等
しくなる。次に、各インバータ間の出力電圧に不平衡が
ある場合の動作について、以下説明する。前述のように
インバータの出力電圧に不平衡があると、各巻線電流に
不平衡が発生する。まず、各巻線電流ia,ibの大き
さに不平衡がある場合、各巻線のd−q軸成分電流検出
値(電流成分検出座標変換器9A,9Bの出力)Id
a,Iqa,Idb,Iqbに差が発生する。平均電流
検出回路10において各巻線のd軸成分電流検出値Id
aとIdbの平均値I ̄d及び各巻線のq軸成分電流検
出値IqaとIqbの平均値I ̄qを求め、これらの平
均値を各電流アンバランス補償回路12A,12Bに入
力し、これらの平均値からそれぞれの各巻線のd−q軸
成分電流検出値の偏差をとる。各電流アンバランス補償
回路12A,12Bは、この偏差に基づいて、各巻線の
d−q軸成分電流の差が零となるよう、各巻線のd−q
軸成分電圧指令を補正する信号を出力する。この信号は
加算器13A,13Bにおいて加算され、電圧指令座標
変換器8A,8Bから交流電圧指令信号va*,vb*
が出力され、インバータ内部の電圧不平衡分を補償する
ようインバータが動作し、各巻線間の交流電流の大きさ
が一致するようになる。つぎに、各巻線電流ia,ib
の電流位相による不平衡がある場合、この時の、電流波
形の一例を図3(a)に示す。同図に示すA系,B系の
波形の交流電流ia,ibが流れている状態、即ち、電
流指令i*に対して、A系の交流電流iaが電流位相θ
a、B系の交流電流ibが電流位相θbのように、各巻
線の電流位相が異なっているとき、各巻線のd−q軸成
分電流検出値(電流成分検出座標変換器9A,9Bの出
力)Ida,Iqa,Idb,Iqbは、図3(b)、
(c)に示すベクトル図のように検出される。即ち、基
準指令であるId*,Iq*に対して、A系のIdaは
小さく、Iqaは大きく、逆にB系のIdbは大きく、
Iqbは小さく検出される。したがって、電流指令i*
に対して各巻線の交流電流ia,ibに位相差がある
と、各巻線のd−q軸成分電流検出値に差が発生し、こ
の差は、交流電流の位相差を検出しているのと等価にな
る。そこで、各巻線のd−q軸成分電流検出値に差が発
生すると、各巻線のd−q軸成分電流検出値をそれぞれ
各電流アンバランス補償回路12A,12Bに入力し、
前述と同様、平均電流検出回路10の各巻線のd軸成分
電流の平均値I ̄d及び各巻線のq軸成分電流の平均値
I ̄qとの偏差をとる。各電流アンバランス補償回路1
2A,12Bは、この偏差に基づいて、各巻線のd−q
軸成分電流の差が零となるよう、各巻線のd−q軸成分
電圧指令を補正する信号を出力し、加算器13A,13
Bを介して交流電圧指令信号va*,vb*が出力さ
れ、インバータ内部の電圧不平衡分を補償するようイン
バータが動作し、各巻線間の交流電流が位相が一致する
ようになる。いままでは、それぞれ各巻線電流ia,i
bの大きさまたは電流位相による不平衡がある場合につ
いて説明したが、本実施例は、各巻線電流ia,ibの
大きさ及び電流位相による不平衡が同時に発生した場合
にも、同様に機能することは云うまでもない。
Assuming that there is no imbalance in the output voltage between the inverters, equal alternating currents ia and ib flow through the windings, and the dq axis component currents of the windings become equal. That is,
The outputs of the current component detection coordinate converters 9A and 9B become equal, and the outputs of the current imbalance compensation circuits 12A and 12B become zero. In this state, the dq axis component voltage command output from the average current control circuit 11 is input to the voltage command coordinate converters 8A and 8B of the respective windings, and the AC voltage is equal to the voltage command coordinate converters 8A and 8B. Command signal va
*, Vb * are output, and the output voltages between the inverters become equal. Next, the operation when the output voltages between the inverters are unbalanced will be described below. If the output voltage of the inverter is unbalanced as described above, an unbalance occurs in each winding current. First, when the magnitudes of the respective winding currents ia and ib are unbalanced, dq-axis component current detection values of the respective windings (outputs of the current component detection coordinate converters 9A and 9B) Id
Differences occur between a, Iqa, Idb, and Iqb. The d-axis component current detection value Id of each winding in the average current detection circuit 10
The average value I ̄d of a and Idb and the average value I ̄q of the q-axis component current detection values Iqa and Iqb of each winding are obtained, and these average values are input to the current imbalance compensation circuits 12A and 12B. The deviation of the dq-axis component current detection value of each winding from the average value of. Each of the current imbalance compensation circuits 12A and 12B determines the dq of each winding based on the deviation so that the difference between the dq axis component currents of each winding becomes zero.
A signal for correcting the axis component voltage command is output. These signals are added in adders 13A and 13B, and AC voltage command signals va * and vb * are output from voltage command coordinate converters 8A and 8B.
Is output, and the inverter operates so as to compensate for the voltage imbalance in the inverter, so that the magnitudes of the alternating currents between the windings match. Next, each winding current ia, ib
FIG. 3A shows an example of the current waveform at this time when there is an imbalance due to the current phase of FIG. In the state where the AC currents ia and ib having the waveforms of the A-system and the B-system shown in FIG.
When the current phases of the windings are different from each other, such as the current phase θb of the AC current ib of the a and B systems, the dq-axis component current detection value of each winding (the output of the current component detection coordinate converters 9A and 9B). 3) Ida, Iqa, Idb, Iqb are shown in FIG.
Detection is performed as shown in the vector diagram of FIG. That is, for the reference commands Id * and Iq *, A system Ida is small, Iqa is large, and B system Idb is large.
Iqb is detected small. Therefore, the current command i *
In contrast, if there is a phase difference between the AC currents ia and ib of the respective windings, a difference occurs in the dq-axis component current detection values of the respective windings. This difference detects the phase difference of the AC current. Is equivalent to Then, when a difference occurs between the dq-axis component current detection values of the windings, the dq-axis component current detection values of the windings are input to the current imbalance compensation circuits 12A and 12B, respectively.
As described above, the deviation between the average value I ̄d of the d-axis component current of each winding of the average current detection circuit 10 and the average value I ̄q of the q-axis component current of each winding is calculated. Each current imbalance compensation circuit 1
2A and 12B are dq of each winding based on this deviation.
A signal for correcting the dq axis component voltage command of each winding is output so that the difference between the axis component currents becomes zero, and the adders 13A, 13A
The AC voltage command signals va *, vb * are output via B, and the inverter operates to compensate for the voltage imbalance in the inverter, so that the phases of the AC currents between the windings match. In each case, each winding current ia, i
Although the case where there is an imbalance due to the magnitude of b or the current phase has been described, the present embodiment also functions similarly when imbalance occurs due to the magnitude and current phase of each winding current ia, ib. Needless to say.

【0008】以上説明した図1の実施例は、多巻線電動
機の各巻線に同相の電流を流す方式の場合であり、他の
実施例として、例えば、各巻線間の電流位相を30°の
位相差で電流を流す6相交流電動機方式がある。この場
合の実施例を図4に示す。図4は、6相交流電動機の場
合の電流制御構成図を示す。図4において、図1との相
異点は、位相加算回路14が追加されていることであ
り、他の回路は同様の動作をするので説明は省略する。
6相交流電動機の場合、位相加算回路14により各巻線
の基準正弦波信号に30°の位相差を持たせる。これに
より、各巻線の交流電圧指令信号va*,vb*及び各
巻線のd−q軸成分電流検出器9A,9Bの入力である
基準位相に30°の位相差を持たせている。このため、
位相の異なる交流電流を基準位相に対するd−q軸成分
電流として検出でき、前述の図1の実施例と同様の動作
を行なうことが出来る。
The embodiment of FIG. 1 described above is a system in which an in-phase current flows through each winding of a multi-winding motor. As another embodiment, for example, the current phase between the windings is set to 30 °. There is a six-phase AC motor system in which a current flows through a phase difference. An embodiment in this case is shown in FIG. FIG. 4 shows a current control configuration diagram for a six-phase AC motor. 4 differs from FIG. 1 in that a phase addition circuit 14 is added, and the other circuits operate in the same manner, and therefore description thereof is omitted.
In the case of a six-phase AC motor, the reference sine wave signal of each winding has a phase difference of 30 ° by the phase adding circuit 14. Thus, the AC voltage command signals va * and vb * of each winding and the reference phase which is the input of the dq-axis component current detectors 9A and 9B of each winding have a phase difference of 30 °. For this reason,
Alternating currents having different phases can be detected as dq-axis component currents with respect to the reference phase, and the same operation as in the embodiment of FIG. 1 can be performed.

【0009】また、本発明の他の実施例として、9相あ
るいは9端子電動機方式がある。この場合にも、各巻線
のd−q軸成分電流の平均値を演算する平均電流検出回
路及び各巻線の電流アンバランスを補正する電流アンバ
ランス補償回路を設ける考え方は同じであり、本発明の
多重電流制御回路であれば、6相から9相に制御回路を
容易に拡張でき、大容量化を容易に行うことが出来る。
As another embodiment of the present invention, there is a nine-phase or nine-terminal motor system. Also in this case, the concept of providing an average current detection circuit that calculates the average value of the dq axis component currents of each winding and a current unbalance compensation circuit that corrects the current imbalance of each winding is the same, and the present invention is the same. With a multiplex current control circuit, the control circuit can be easily expanded from six phases to nine phases, and the capacity can be easily increased.

【0010】[0010]

【発明の効果】本発明によれば、多重化を行なうための
特別な付帯機器を用いることなく、平均電流検出回路及
び電流アンバランス補償回路を設けることにより、多巻
線あるいは多相交流電動機の電流不平衡を無くすること
が出来るので、低コストの多重インバータ装置を提供で
きるとともに、低トルクリプル、高応答の電流制御を実
現することができ、また、高応答、高精度の大容量交流
可変速装置を提供し得る利点がある。
According to the present invention, an average current detecting circuit and a current imbalance compensating circuit are provided without using any additional equipment for performing multiplexing. Since current imbalance can be eliminated, a low-cost multiplex inverter device can be provided, low-torque ripple, high-response current control can be realized, and high-response, high-accuracy, large-capacity AC variable speed There are advantages that can be provided with the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の電圧形インバータの2重化構成例を示す
構成図
FIG. 2 is a configuration diagram showing an example of a duplex configuration of a conventional voltage source inverter.

【図3】本発明となる電流制御を説明するためのベクト
ル図
FIG. 3 is a vector diagram for explaining current control according to the present invention.

【図4】本発明の他の実施例を示す構成図FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2A,2B 電圧形インバータ装置 3 多巻線交流電動機 4A,4B 電流検出器 9A,9B 電流成分検出座標変換器 10 平均電流検出回路 11 平均電流制御回路 12A,12B 電流アンバランス補償回路 13A,13B 加算器 2A, 2B Voltage source inverter device 3 Multi-winding AC motor 4A, 4B Current detector 9A, 9B Current component detection coordinate converter 10 Average current detection circuit 11 Average current control circuit 12A, 12B Current unbalance compensation circuit 13A, 13B Addition vessel

フロントページの続き (72)発明者 小野寺 正美 茨城県日立市大みか町五丁目2番1号 株式会社日立製作所 大みか工場内 (56)参考文献 特開 平4−325893(JP,A) 特開 平3−253293(JP,A)Continuation of front page (72) Inventor Masami Onodera 5-2-1 Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Omika Plant (56) References JP-A-4-3255893 (JP, A) JP-A-3 −253293 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流電源の電圧を可変電圧・可変周波の
交流に変換する複数台の電力変換器と、該複数の電力変
換器によって駆動される多巻線交流電動機よりなる交流
可変速制御装置において、各電力変換器に交流電圧指令
信号を発する電圧指令座標変換手段と、該多巻線電動機
の各巻線電流の励磁成分電流とトルク成分電流を検出す
る各成分電流検出手段と、前記各成分電流検出手段の出
力信号より平均電流値を演算する平均電流検出手段と、
励磁成分電流とトルク成分電流の各成分電流指令と前記
平均電流検出手段の出力信号との偏差に基づいて各成分
電圧指令を出力する平均電流制御手段と、前記平均電流
検出手段の出力信号と前記各成分電流検出手段の出力信
号との偏差に基づいて各成分のアンバランス補償電圧を
出力する各巻線電流アンバランス補償手段を備え、前記
多巻線交流電動機の各巻線間電流に不平衡が発生したと
き、前記電圧指令信号を補正することを特徴とする多巻
線交流電動機の電流制御装置。
1. An AC variable speed control device comprising: a plurality of power converters for converting a voltage of a DC power supply into a variable voltage / variable frequency AC; and a multi-winding AC motor driven by the plurality of power converters. A voltage command coordinate conversion means for issuing an AC voltage command signal to each power converter; an excitation current and an excitation current of each winding current of the multi-winding motor; Average current detection means for calculating an average current value from an output signal of the current detection means,
An average current control unit that outputs each component voltage command based on a deviation between each component current command of an excitation component current and a torque component current and an output signal of the average current detection unit; an output signal of the average current detection unit; A winding current unbalance compensating unit that outputs an unbalance compensation voltage for each component based on a deviation from an output signal of each component current detecting unit; A current control device for a multi-winding AC motor, wherein the current control device corrects the voltage command signal.
【請求項2】 請求項1において、各成分電流検出手段
は、各巻線の交流電流を励磁成分電流とトルク成分電流
に座標変換し、各巻線の電流位相が異なっているとき、
基準指令に対する各巻線の励磁成分電流検出値及びトル
ク成分電流検出値の差を求め、この差が交流電流の位相
差と等価であることを特徴とする多巻線交流電動機の電
流制御装置。
2. The method according to claim 1, wherein each component current detecting means converts the AC current of each winding into an excitation component current and a torque component current, and when the current phases of the windings are different,
A current control device for a multi-winding AC motor, wherein a difference between an excitation component current detection value and a torque component current detection value of each winding with respect to a reference command is obtained, and the difference is equivalent to a phase difference of an AC current.
【請求項3】 請求項1または請求項2において、各巻
線の前記電圧指令座標変換手段と前記各成分電流検出手
段の基準位相に所定の位相差を持たせる位相加算手段を
設けることを特徴とする多巻線交流電動機の電流制御装
置。
3. The method according to claim 1, further comprising a phase adding means for giving a predetermined phase difference between a reference phase of the voltage command coordinate converting means of each winding and a reference phase of each of the component current detecting means. Control device for multi-winding AC motors.
【請求項4】 請求項1または請求項2において、多巻
線交流電動機は、9相あるいは9端子電動機であること
を特徴とする多巻線交流電動機の電流制御装置。
4. The current control device for a multi-winding AC motor according to claim 1, wherein the multi-winding AC motor is a 9-phase or 9-terminal motor.
JP4087590A 1992-03-12 1992-03-12 Current control device for multi-winding AC motor Expired - Lifetime JP2733724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087590A JP2733724B2 (en) 1992-03-12 1992-03-12 Current control device for multi-winding AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087590A JP2733724B2 (en) 1992-03-12 1992-03-12 Current control device for multi-winding AC motor

Publications (2)

Publication Number Publication Date
JPH05260792A JPH05260792A (en) 1993-10-08
JP2733724B2 true JP2733724B2 (en) 1998-03-30

Family

ID=13919218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087590A Expired - Lifetime JP2733724B2 (en) 1992-03-12 1992-03-12 Current control device for multi-winding AC motor

Country Status (1)

Country Link
JP (1) JP2733724B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001952A1 (en) * 2002-06-24 2003-12-31 Toshiba Elevator Kabushiki Kaisha Elevator control device
US10236818B2 (en) 2014-10-15 2019-03-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Drive and control apparatus for multiple-winding motor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938486B2 (en) 2001-11-06 2007-06-27 三菱電機株式会社 Multi-winding motor controller
US7710081B2 (en) * 2006-10-27 2010-05-04 Direct Drive Systems, Inc. Electromechanical energy conversion systems
WO2009072359A1 (en) * 2007-12-04 2009-06-11 Mitsubishi Electric Corporation Ac motor controller
JP5527025B2 (en) * 2010-06-04 2014-06-18 株式会社明電舎 Position sensorless control device for synchronous machine
DE102011101686B4 (en) 2011-05-16 2013-02-21 Phoenix Contact Gmbh & Co. Kg System cabling for multiple relay arrangement
JP5397785B2 (en) 2011-08-01 2014-01-22 株式会社デンソー Control device for three-phase rotating machine
JP6022951B2 (en) * 2013-01-18 2016-11-09 トヨタ自動車株式会社 Electric power steering device
JP2015233372A (en) * 2014-06-09 2015-12-24 株式会社日本製鋼所 Control method of multi-coil ac motor
DE112014007197T5 (en) 2014-11-20 2017-08-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation DRIVE CONTROL DEVICE FOR A MULTILINGER MOTOR
JP7136568B2 (en) * 2018-03-06 2022-09-13 Necプラットフォームズ株式会社 Three-phase AC power supply system, control method for three-phase AC power supply system, and control program for three-phase AC power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001952A1 (en) * 2002-06-24 2003-12-31 Toshiba Elevator Kabushiki Kaisha Elevator control device
CN1310420C (en) * 2002-06-24 2007-04-11 东芝电梯株式会社 Control device of elevator
US10236818B2 (en) 2014-10-15 2019-03-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Drive and control apparatus for multiple-winding motor

Also Published As

Publication number Publication date
JPH05260792A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
EP2003758B1 (en) Power conversion apparatus and module including the power conversion apparatus
US6731095B2 (en) Controller for multiplex winding motor
US20140268970A1 (en) Matrix converter and method for controlling matrix converter
CA2285846C (en) Power converting system multiplexed with voltage dividing transformers, the voltage transformers, and controller for the system
JP3236983B2 (en) Power converter
JP2614788B2 (en) AC motor control device
JP2733724B2 (en) Current control device for multi-winding AC motor
JP6615012B2 (en) Reactive power compensator
CN111837327B (en) Power conversion device, motor drive system, and control method
TWI274465B (en) Control method of voltage source inverter
JP2004304868A (en) Motor controller
US5481172A (en) Circuit for controlling power converting apparatus
JP5351390B2 (en) Power converter
JPH03253293A (en) Driving system for ac motor and controlling method thereof
US5151853A (en) Cycloconverter and the method of controlling the same
JPH02261063A (en) Inverter device and driving system for ac motor
JP3276135B2 (en) Power converter
JPH10191677A (en) Speed control apparatus for ac motor
JP4401724B2 (en) Power converter
JP2004120968A (en) Power converter
JP3222028B2 (en) Motor drive system
JP7040077B2 (en) Power converter
JPH0315273A (en) Inverter
JP3531485B2 (en) Power converter
JP4177983B2 (en) Multiple power converter and control method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15