JP3186369B2 - Control circuit of three-level inverter - Google Patents

Control circuit of three-level inverter

Info

Publication number
JP3186369B2
JP3186369B2 JP24888393A JP24888393A JP3186369B2 JP 3186369 B2 JP3186369 B2 JP 3186369B2 JP 24888393 A JP24888393 A JP 24888393A JP 24888393 A JP24888393 A JP 24888393A JP 3186369 B2 JP3186369 B2 JP 3186369B2
Authority
JP
Japan
Prior art keywords
inverter
neutral point
component
point
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24888393A
Other languages
Japanese (ja)
Other versions
JPH0779574A (en
Inventor
茂 神谷
眞 橋井
究 鈴木
博 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24888393A priority Critical patent/JP3186369B2/en
Publication of JPH0779574A publication Critical patent/JPH0779574A/en
Application granted granted Critical
Publication of JP3186369B2 publication Critical patent/JP3186369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は出力電圧が正、負及び零
の3つの状態をとる3レベルインバータの制御回路に関
し、詳しくは、インバータの直流電源回路の中性点(中
間電位点)における電位変動を抑制するための制御回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control circuit for a three-level inverter in which an output voltage takes three states of positive, negative and zero, and more particularly, to a control circuit at a neutral point (intermediate potential point) of a DC power supply circuit of the inverter. The present invention relates to a control circuit for suppressing potential fluctuation.

【0002】[0002]

【従来の技術】近年、高圧大容量化を比較的容易に実現
でき、出力高調波が少ない等の理由から、3レベルイン
バータが注目されてきている。図9はこの3レベルイン
バータの基本回路を示しており、図において、EDCは直
流電源、C1,C2は直流入力コンデンサ、Pは正電位
点、Nは負電位点、0は中性点、GU1,GU2,GX1,GX2,
V1,GV2,GY1,GY2,GW1,GW2,GZ1,GZ2はGTOか
らなる半導体スイッチング素子、DU0,DX0,DV0,D
Y0,DW0,DZ0は結合ダイオード、Mは誘導電動機等の
交流電動機である。
2. Description of the Related Art In recent years, three-level inverters have attracted attention because they can relatively easily realize high voltage and large capacity and have small output harmonics. FIG. 9 shows a basic circuit of this three-level inverter. In the figure, E DC is a DC power supply, C 1 and C 2 are DC input capacitors, P is a positive potential point, N is a negative potential point, and 0 is a neutral potential point. Points, G U1 , G U2 , G X1 , G X2 ,
G V1 , G V2 , G Y1 , G Y2 , G W1 , G W2 , G Z1 , G Z2 are semiconductor switching elements made of GTO, D U0 , D X0 , D V0 , D
Y0 , DW0 , and DZ0 are coupling diodes, and M is an AC motor such as an induction motor.

【0003】ここで、スイッチング素子GU1,GU2,
X1,GX2からなる直列回路と、GV1,GV2,GY1,GY2
からなる直列回路と、GW1,GW2,GZ1,GZ2からなる直
列回路の各両端は、直流電源回路の正電位点P及び負電
位点Nに接続されている。また、スイッチング素子
U2,GX2の相互接続点と、GV2,GY2の相互接続点と、
W2,GZ2の相互接続点は、インバータ出力端子として
交流電動機Mに接続されている。更に、結合ダイオード
U0,DX0,DV0,DY0,DW0,DZ0は、中性点0とス
イッチング素子GU1,GU2、GX1,GX2、GV1,GV2、G
Y1,GY2、GW1,GW2、GZ1,GZ2の相互接続点との間に
それぞれ接続されている。なお、フライホイールダイオ
ードは便宜上、図示を省略してある。
Here, the switching elements G U1 , G U2 ,
A series circuit composed of G X1 and G X2 and G V1 , G V2 , G Y1 and G Y2
A series circuit consisting of the two ends of the series circuit consisting of G W1, G W2, G Z1 , G Z2 is connected to a positive potential point P and a negative potential point N of the DC power supply circuit. Further, an interconnection point of the switching elements G U2 and G X2, an interconnection point of G V2 and G Y2 ,
The interconnection point of G W2 and G Z2 is connected to AC motor M as an inverter output terminal. Further, the coupling diodes D U0 , D X0 , D V0 , D Y0 , D W0 , D Z0 are connected to the neutral point 0 and the switching elements G U1 , G U2 , G X1 , G X2 , G V1 , G V2 , G
It is connected between the interconnection points of Y1 , GY2 , GW1 , GW2 , GZ1 and GZ2 , respectively. The flywheel diode is not shown for convenience.

【0004】上記構成の3レベルインバータでは、スイ
ッチングパターンにより、中性点0がスイッチング素子
及びダイオードを介して交流電動機Mに接続される期間
があり、この期間に中性点0を流れる電流(中性点電
流)によって、中性点電位がインバータの基本周波数の
3倍で変動する場合があることが知られている(棚町ほ
か「3レベルインバータの中性点電圧の交流的変動の抑
制法」平成4年電気学会産業応用全国大会NO.91
参照)。また、この中性点電流は特定条件のもとで直流
成分を持ち、その場合の中性点電位は正または負に大き
く偏ることがある(沢田ほか「中性点クランプ電圧形P
WMインバータ」平成3年電気学会全国大会NO.5
33 参照)。このような中性点電位の変動は、スイッ
チング素子への過大な電圧印加を招くおそれがある。
In the three-level inverter having the above configuration, there is a period during which the neutral point 0 is connected to the AC motor M via the switching element and the diode due to the switching pattern. It is known that the neutral point potential may fluctuate at three times the fundamental frequency of the inverter depending on the neutral point current (Tanamachi, et al., "Method of suppressing AC fluctuation of neutral point voltage of three-level inverter") No. 91 of the 1992 IEEJ National Industrial Application Conference
reference). Also, this neutral point current has a DC component under specific conditions, and in that case, the neutral point potential may be greatly biased to positive or negative (see Sawada et al.
WM Inverter "1991 IEEJ National Convention NO. 5
33). Such a change in the neutral point potential may cause excessive voltage application to the switching element.

【0005】上記不都合を防止するための一つの方法と
して、以下に述べる従来技術(嶋村ほか「NPCインバ
ータの直流入力コンデンサ電圧の平衡化制御」電気学会
半導体電力変換研究会資料 SPC−91−37)があ
る。図10は上記文献に記載されたコンデンサ電圧平衡
化制御回路を、また、図11はこの制御回路により制御
される3レベルインバータをそれぞれ示している。
As one method for preventing the above-mentioned inconvenience, a conventional technique described below (Shimamura et al., "Equilibrium Control of DC Input Capacitor Voltage of NPC Inverter", SPC-91-37, IEEJ Semiconductor Power Conversion Study Group) There is. FIG. 10 shows a capacitor voltage balancing control circuit described in the above document, and FIG. 11 shows a three-level inverter controlled by the control circuit.

【0006】その動作を略述すると、図10において、
図11のコンデンサ電圧ED1,ED2からその差分信号S
EDを作り出し、この信号SEDを一次遅れフィルタに通し
て直流成分信号SEDIを取り出す。更に、信号SEDとS
EDIとから交流成分信号SEAIを作る。また、有効・無効
電力検出回路101によって検出したインバータの出力
有効・無効電力PM1,QM1と電流制御回路103からの
インバータ出力周波数(指令)FIとに基づき、極性判
断回路102により極性切替信号POL1を作り出す。
The operation is briefly described in FIG.
From the capacitor voltages E D1 and E D2 of FIG.
Creating a ED, the signal S ED retrieve a DC component signal S EDI through a first-order lag filter. Further, the signals S ED and S
Create an AC component signal S EAI from EDI . Also, based on the inverter output active / reactive power P M1 , Q M1 detected by the active / reactive power detection circuit 101 and the inverter output frequency (command) F I from the current control circuit 103, the polarity determination circuit 102 switches the polarity. Produce the signal P OL1 .

【0007】一方、前記直流成分信号SEDI及び交流成
分信号SEAIには帰還係数KDI,KAIがそれぞれ掛けら
れ、その和である補償量SBI1は極性切替信号POL1によ
り制御されるスイッチ104により必要に応じ極性変換
されて最終的な補償量SBI2が生成される。この補償量
BI2は電流制御回路103からのインバータの各相出
力電圧指令VUI1 *,VVI1 *,VWI1 *に加算され、最終的
な出力電圧指令VUI2 *,VVI2 *,VWI2 *となる。
On the other hand, the DC component signal S EDI and the AC component signal S EAI are respectively multiplied by feedback coefficients K DI and K AI , and a compensation amount S BI1 which is the sum thereof is a switch controlled by a polarity switching signal P OL1. The polarity is converted as needed by 104 to generate a final compensation amount S BI2 . This compensation amount S BI2 is added to each phase output voltage command V UI1 * , V VI1 * , V WI1 * of the inverter from the current control circuit 103, and the final output voltage command V UI2 * , V VI2 * , V WI2 *

【0008】これらの出力電圧指令VUI2 *,VVI2 *,V
WI2 *に基づいてインバータを制御することにより、コン
デンサ電圧ED1,ED2の不平衡が解消され、換言すれば
中性点電位の変動が抑制される。なお、図11におい
て、LSは直流リアクトル、DU1,DU2,DX1,DX2,D
V1,DV2,DY1,DY2,DW1,DW2,DZ1,DZ2はフラ
イホイールダイオード、IMは誘導電動機をそれぞれ示
す。
These output voltage commands V UI2 * , V VI2 * , V
By controlling the inverter based on WI2 *, unbalanced capacitor voltage E D1, E D2 can be eliminated, variations in the neutral point potential can be suppressed in other words. In FIG. 11, L S is a DC reactor, D U1 , D U2 , D X1 , D X2 , D
V1 , DV2 , DY1 , DY2 , DW1 , DW2 , DZ1 , and DZ2 denote flywheel diodes, and IM denotes an induction motor.

【0009】さて、上記従来技術では、図10から明ら
かなように、極性切替信号POL1を作り出すために電動
機IMの各相電圧eUI,eVI,eWI及び電流iUI,iVI,i
WIを検出している。これは、電動機IMの運転モードが
駆動モード(力率>0)か制動モード(力率<0)かを
判定するためであり、この運転モードの判定は、中性点
電流の直流成分の極性が駆動/制動モードで異なるの
で、その極性を考慮して電圧指令値に加算しなくてはな
らないという理由による。
In the above prior art, as is apparent from FIG. 10, in order to generate the polarity switching signal POL1 , the phase voltages e UI , e VI , e WI and the currents i UI , i VI , i WI of the motor IM are generated.
WI is detected. This is for determining whether the operation mode of the motor IM is the drive mode (power factor> 0) or the braking mode (power factor <0). The determination of the operation mode is based on the polarity of the DC component of the neutral point current. Is different in the drive / brake mode, and the polarity must be considered and added to the voltage command value.

【0010】[0010]

【発明が解決しようとする課題】上記従来技術には、次
のような問題がある。 力率=0(完全無負荷)の状態では、補償量SBI2
どれだけ加算しても中性点電流の直流成分が発生しない
ので、制御自体が無効になる。 力率=0付近の軽負荷時においては、電動機電圧や電
流を検出する計器用変圧器、変流器の誤差や、電流脈動
分に起因する電流検出の困難さ等により、駆動/制動モ
ードの正確な判定が困難であり、極性切替信号POL1
切り替わる可能性が高い。極性切替信号POL1が切り替
わると補償量SBI2の極性が変わるため補償極性も本来
ものとは逆になってしまい、かえってコンデンサ電圧の
不平衡を助長してしまうおそれがある。
The above prior art has the following problems. In the state of power factor = 0 (completely no load), no matter how much the compensation amount S BI2 is added, no DC component of the neutral point current is generated, and the control itself is invalidated. At the time of light load near power factor = 0, the drive / brake mode is disabled due to errors in the instrument transformer and current transformer that detect the motor voltage and current, and the difficulty of current detection due to current pulsation. It is difficult to make an accurate determination, and there is a high possibility that the polarity switching signal POL1 is also switched. When the polarity switching signal P OL1 is switched, the polarity of the compensation amount S BI2 is changed, so that the compensation polarity is also opposite to the original one, and there is a possibility that the unbalance of the capacitor voltage is promoted.

【0011】同じく力率=0付近の軽負荷時には、図
10における帰還係数KDI,KAIを掛けた後の信号S
DI1,SAI1の大きさに対し、これらにより発生する中性
点電流の直流成分の大きさの割合が小さくなり、制御の
効きが悪くなる。これを改善するために帰還係数KDI
AIを大きくするとしても、インバータが出力できる電
圧には上限があるため、この方法にも限界がある。 結局、例えば力率0.2以下では有効に制御できないと
いった軽負荷時における制御の限界がある。
At the time of light load near the power factor = 0, the signal S after multiplying the feedback coefficients K DI and K AI in FIG.
The ratio of the magnitude of the DC component of the neutral point current generated by these to the magnitudes of DI1 and SAI1 becomes small, and the control effect becomes poor. To improve this, the feedback coefficient K DI ,
Even if K AI is increased, there is an upper limit to the voltage that can be output by the inverter, and thus there is a limit to this method. As a result, there is a limit to the control at a light load, for example, the control cannot be effectively performed at a power factor of 0.2 or less.

【0012】本発明は上記問題点を解決するためになさ
れたもので、その目的とするところは、無負荷時や軽負
荷時においても制御を有効にして直流入力コンデンサの
電圧を平衡化し、半導体スイッチング素子等の回路素子
を保護できるようにした3レベルインバータの制御回路
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. It is an object of the present invention to enable control even under no load or light load to balance the voltage of a DC input capacitor, An object of the present invention is to provide a three-level inverter control circuit capable of protecting circuit elements such as switching elements.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、直流電源回路に両端が接続された第1な
いし第4の半導体スイッチング素子の直列回路と第1、
第2の結合ダイオードとを三相分備え、例えばPWM制
御される3レベルインバータにおいて、インバータの各
相出力電圧指令にインバータ基本周波数の偶数次調波
(例えば6次調波や2次調波)を加算する手段と、直流
電源回路の中性点の電位変動を直流入力コンデンサの電
圧偏差により検出し、その大きさに基づいて、出力電圧
指令に加算するべき偶数次調波の大きさを決定する手段
とを備えたものである。
In order to achieve the above object, the present invention provides a series circuit of first to fourth semiconductor switching elements having both ends connected to a DC power supply circuit.
For example, in a three-level inverter that has three phases including a second coupling diode and is PWM controlled, an even harmonic (for example, a sixth harmonic or a second harmonic) of the inverter fundamental frequency is added to each phase output voltage command of the inverter. Means for detecting the potential fluctuation at the neutral point of the DC power supply circuit based on the voltage deviation of the DC input capacitor, and determining the magnitude of the even-order harmonic to be added to the output voltage command based on the magnitude thereof. Means for performing the operation.

【0014】[0014]

【作用】まず、最初に、インバータの出力電圧指令が直
流成分あるいは交流成分(インバータ基本周波数のn次
調波成分)を含む場合について、中性点電流の直流成分
の特性を求めてみる。図7は、この解析に用いたPWM
の方法を示しており、電圧指令信号と三角波搬送波との
比較により、スイッチング素子に対する点弧パルスを生
成して図示のようなインバータ出力相電圧を得るものと
する。
First, the characteristics of the DC component of the neutral point current will be obtained when the output voltage command of the inverter includes a DC component or an AC component (n-th harmonic component of the inverter fundamental frequency). FIG. 7 shows the PWM used in this analysis.
It is assumed that a firing pulse for the switching element is generated by comparing the voltage command signal with the triangular carrier to obtain an inverter output phase voltage as shown in the figure.

【0015】いま、インバータの出力相電圧が0の期間
で“1”、+ED1か−ED2の期間で“0”となるスイッ
チング関数SNXを定義し、搬送波周波数がインバータ出
力周波数に比べて十分に高いと仮定すると、搬送波周波
数成分は無視され、SNXは数式1により定義される。
[0015] Now, "1" in the period of the output phase voltage of the inverter is 0, it defines a switching function S NX becomes "0" during the period of + E D1 or -E D2, carrier frequency than the inverter output frequency Assuming that it is sufficiently high, the carrier frequency component is ignored and S NX is defined by Equation 1.

【0016】[0016]

【数1】 SNX=1−{λsinθ+d+kλsin n(θ−α)} (0≦θ≦π) =1+{λsinθ+d+kλsin n(θ−α)} (π≦θ≦2π)S NX = 1− {λ sin θ + d + kλ sin n (θ−α)} (0 ≦ θ ≦ π) = 1 + {λ sin θ + d + kλ sin n (θ−α)} (π ≦ θ ≦ 2π)

【0017】但し、数式1において、 λ:変調率(電圧指令の波高値) d:直流成分の大きさ k:一定値 α:インバータ出力電圧指令とn次調波成分との位相差 n:1,2,3,4,5,…… である。Where: λ: modulation factor (peak value of voltage command) d: magnitude of DC component k: constant value α: phase difference between inverter output voltage command and nth harmonic component n: 1 , 2, 3, 4, 5,...

【0018】1相分の中性点電流iN'は、インバータ出
力相電圧が0の期間にのみ流れるので、数式2により表
すことができる。
The neutral point current i N ′ for one phase flows only during a period when the inverter output phase voltage is 0, and can be expressed by Equation 2.

【0019】[0019]

【数2】iN'=SNX・iM [Equation 2] i N ′ = S NX・ i M

【0020】但し、数式2において、 iM:電動機電流(=√2IM sin(θ−φ)) IM:電動機電流実効値 φ:力率角In the equation (2), i M : motor current (= √2I M sin (θ−φ)) I M : motor current effective value φ: power factor angle

【0021】上記数式2をフーリエ級数に展開すると、
数式3となる。なお、数式3において、Amc,Amsは係
数である。
When the above equation 2 is expanded to a Fourier series,
Equation 3 is obtained. In Expression 3, A mc and A ms are coefficients.

【0022】[0022]

【数3】 (Equation 3)

【0023】ここで、1相分の中性点電流iN'に含まれ
る直流成分A0'を、以下のように場合分けして求める。 (1)電圧指令が直流成分dを含む場合(数式1におい
てk=0の場合)。この場合、直流成分A0'は数式4の
ように求められる。
Here, the DC component A 0 ′ included in the neutral point current i N ′ for one phase is obtained by classifying as follows. (1) When the voltage command includes a DC component d (k = 0 in Equation 1). In this case, the DC component A 0 ′ is obtained as in Expression 4.

【0024】[0024]

【数4】 (Equation 4)

【0025】(2)電圧指令が奇数次調波を含む場合
(数式1においてd=0、n=1,3,5,……の場
合)。この場合、直流成分A0'は数式5すなわち0とな
る。
(2) The case where the voltage command includes an odd harmonic (d = 0, n = 1, 3, 5,... In Equation 1). In this case, the DC component A 0 ′ is represented by Equation 5, that is, 0.

【0026】[0026]

【数5】A0'=0A 0 '= 0

【0027】(3)電圧指令が偶数次調波を含む場合
(数式1においてd=0、n=2,4,6,……の場
合)。この場合、直流成分A0'は数式6のように求めら
れる。
(3) When the voltage command includes an even harmonic (d = 0, n = 2, 4, 6,... In Equation 1). In this case, the DC component A 0 ′ is obtained as in Expression 6.

【0028】[0028]

【数6】 (Equation 6)

【0029】次に、上記直流成分A0'について検討す
る。電圧指令が直流成分を含む場合、数式4により、直
流成分の大きさdが一定値のときには│A0'│はcosφ
に比例するので、力率(cosφ)=±1の時に最大とな
り、直流成分A0'の極性は駆動/制動モードにより変わ
る。電圧指令が奇数次調波を含む場合、数式5により直
流成分A0'は0である。
Next, the DC component A 0 ′ will be discussed. When the voltage command includes a DC component, | A 0 '| becomes cosφ when the magnitude d of the DC component is a constant value according to Expression 4.
, And becomes maximum when the power factor (cos φ) = ± 1, and the polarity of the DC component A 0 ′ changes depending on the driving / braking mode. When the voltage command includes an odd harmonic, the DC component A 0 ′ is 0 according to Expression 5.

【0030】電圧指令が偶数次調波を含む場合、電圧指
令とn次調波成分との位相角αにより性質が異なる。す
なわち、数式6において、kが一定値であれば、│A0'
│はα=0またはα=π/n〔rad〕のときsinφに
比例(A0'はα=0のときsinφに比例し、α=π/n
〔rad〕のとき−sinφに比例)し、力率=0のとき
最大となり、その極性は駆動/制動モードに関わらず同
じである。また、kが一定値であれば、│A0'│はα=
±π/(2n)〔rad〕のときcosφに比例(A0'は
α=π/(2n)〔rad〕のとき−cosφに比例し、
α=−π/(2n)〔rad〕のときcosφに比例)す
るので、力率=±1のとき最大となり、その極性は駆動
/制動モードによって変わる。
When the voltage command includes an even-order harmonic, the characteristics differ depending on the phase angle α between the voltage command and the n-th harmonic component. That is, in Equation 6, if k is a constant value, | A 0 '
Is proportional to sinφ when α = 0 or α = π / n [rad] (A 0 ′ is proportional to sinφ when α = 0, α = π / n
[Rad], and becomes the maximum when the power factor = 0, and the polarity is the same regardless of the driving / braking mode. Also, if k is a constant value, | A 0 '|
Is proportional to cos φ when ± π / (2n) [rad] (A 0 ′ is proportional to −cos φ when α = π / (2n) [rad],
When α = −π / (2n) [rad], it is proportional to cos φ), so that it becomes maximum when the power factor = ± 1, and its polarity changes depending on the driving / braking mode.

【0031】ここで、位相角αと偶数次調波の極性との
関係を説明する。位相角αの偶数次調波をXとし、位相
角がα−(π/n)〔rad〕の偶数次調波をYとする
と、位相角の定義から、数式7の関係が成り立つ。つま
り、位相角αの偶数次調波Xと位相角がα−(π/n)
〔rad〕の偶数次調波Yとは逆極性になる。
Here, the relationship between the phase angle α and the polarity of the even-order harmonic will be described. Assuming that the even-order harmonic having the phase angle α is X and the even-order harmonic having the phase angle α− (π / n) [rad] is Y, the relationship of Expression 7 is established from the definition of the phase angle. That is, the even harmonic X of the phase angle α and the phase angle are α− (π / n).
It has a polarity opposite to that of the even-order harmonic Y of [rad].

【0032】[0032]

【数7】X=−YX = −Y

【0033】なお、中性点電流(3相分)の直流成分
は、上述の(1)〜(3)の何れの場合も3・A0'とし
て得られる。
The DC component of the neutral point current (for three phases) is obtained as 3 · A 0 ′ in any of the above-mentioned cases (1) to (3).

【0034】以上の解析結果から、出力電圧指令に直流
成分または偶数次調波を加算すれば、直流成分の極性や
偶数次調波の位相角(極性)等を変えることにより、思
い通りの方向に中性点電流の直流成分を発生させること
ができ、これにより中性点電流の変動ないし中性点電位
の変動を抑制できることがわかる。このような点から、
先の従来技術では出力電圧指令に直流成分を加算してい
るが、中性点電流の直流成分の極性は駆動/制動モード
によって変化するため、この運転モードの検出が不可欠
になっていた。
From the above analysis results, if a DC component or even-order harmonic is added to the output voltage command, the polarity of the DC component or the phase angle (polarity) of the even-order harmonic is changed, so that the desired direction can be obtained. It can be seen that a direct current component of the neutral point current can be generated, thereby suppressing a change in the neutral point current or a change in the neutral point potential. From these points,
In the above prior art, a DC component is added to the output voltage command. However, since the polarity of the DC component of the neutral point current changes depending on the driving / braking mode, the detection of this operation mode is indispensable.

【0035】そこで、本発明では、インバータの出力電
圧指令にインバータ基本周波数の偶数次調波(位相角α
=0またはπ/n〔rad〕)を加算することにより、
運転モードを検出しなくてもコンデンサ電圧の変動を抑
制できるようにした。すなわち、前記数式6により、直
流成分A0'は、図8(a)に示すように偶数次調波(2
次調波)が出力電圧指令と同位相(α=0)の場合には
+sinφに比例し、また、図8(b)に示すように逆位
相(α=π/n=π/2〔rad〕)の場合には−sin
φに比例する。従って、インバータに設けられた2つの
直流入力コンデンサの電圧偏差に応じた極性(同位相ま
たは逆位相)で偶数次調波を加算すれば、コンデンサ電
圧の変動を抑制する方向に直流成分A0'を流すことがで
きる。
Therefore, in the present invention, an even harmonic of the inverter fundamental frequency (phase angle α
= 0 or π / n [rad]).
The fluctuation of the capacitor voltage can be suppressed without detecting the operation mode. That is, according to Equation 6, the DC component A 0 ′ is converted into the even-order harmonic (2) as shown in FIG.
When the second harmonic is in phase with the output voltage command (α = 0), it is proportional to + sin φ, and has an opposite phase (α = π / n = π / 2 [rad]) as shown in FIG. ]) For -sin
It is proportional to φ. Therefore, if even-order harmonics are added with polarities (in-phase or opposite-phase) according to the voltage deviation between the two DC input capacitors provided in the inverter, the DC component A 0 ′ in the direction of suppressing the capacitor voltage fluctuation. Can flow.

【0036】なお、本発明において、直流成分A0'はsi
nφまたは−sinφに比例するので、力率=0のときに最
大となり、その極性は駆動/制動モード何れも同じにな
る。これにより、無負荷時や軽負荷時においても運転モ
ードに関わらず有効な、コンデンサ電圧の平衡化制御を
行うことが可能になる。
In the present invention, the DC component A 0 ′ is
Since it is proportional to nφ or −sinφ, it becomes maximum when the power factor = 0, and its polarity becomes the same in both the driving / braking modes. This makes it possible to perform effective capacitor voltage balancing control regardless of the operation mode even under no load or light load.

【0037】[0037]

【実施例】以下、図に沿って本発明の実施例を説明す
る。図1は本発明の第1実施例を示すブロック図であ
る。図において、制御回路10は、直流入力コンデンサ
(図9におけるコンデンサC1,C2)の電圧ED1,ED2
入力される加算器11と、加算器11からの偏差S1
入力されるP調節器、PI調節器等の調節器12と、イ
ンバータ各相電圧指令の位相角θR *S *T *に対応す
るsin(6θ)の値が格納されたsin(6θ)テーブル13
と、その出力信号であるsin(6θR *),sin(6θS *),si
n(6θT *)と調節器12の出力信号S2とを各々乗算する
乗算器14R,14S,14Tと、乗算器14R,14S
14Tの出力信号をインバータ各相電圧指令vR *
S *,vT *に各々加算する加算器21R,21S,21T
とから構成されている。そして、加算器21R,21S
21Tの出力が最終的な各相出力電圧指令vR **
S **,vT **となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the present invention. In the figure, a control circuit 10 includes a DC input capacitor.
An adder 11 to which the voltages E D1 and E D2 of the capacitors C 1 and C 2 in FIG. 9 are inputted, and a regulator such as a P regulator and a PI regulator to which a deviation S 1 from the adder 11 is inputted. 12 and a sin (6θ) table 13 in which the values of sin (6θ) corresponding to the phase angles θ R * , θ S * , θ T * of the inverter phase voltage commands are stored.
If its an output signal sin (6θ R *), sin (6θ S *), si
n (6θ T * ) and multipliers 14 R , 14 S , 14 T for multiplying the output signal S 2 of the controller 12, respectively, and multipliers 14 R , 14 S ,
The 14 T output signal is converted to the inverter phase voltage command v R * ,
adders 21 R , 21 S , 21 T for adding to v S * , v T * , respectively
It is composed of Then, the adders 21 R , 21 S ,
The output of 21 T is the final output voltage command for each phase v R ** ,
v S ** and v T ** .

【0038】ここで、インバータ各相電圧指令vR *,v
S *,vT *に加算するインバータ基本周波数の偶数次調波
として6次調波を選んだ理由を以下に説明する。すなわ
ち、2,4,8,10,……次調波は逆相ないし正相で
あるためインバータ線間電圧に現われるが、6,12,
24,……次調波は零相であるためインバータ線間電圧
に影響を与えない。この中で、6次調波はA0'が最も大
きくなるため、加算するべき偶数次調波として選択した
ものである。
Here, each inverter phase voltage command v R * , v
S *, v T * to why you chose the 6-order harmonics as even-order harmonics of the inverter fundamental frequency to be added will be described below. That is, 2, 4, 8, 10,..., The next harmonic appears in the inverter line voltage because it is in reverse phase or positive phase.
24... Since the next harmonic is a zero phase, it does not affect the inverter line voltage. Among them, the sixth harmonic is selected as an even harmonic to be added, because A 0 ′ is the largest.

【0039】図1において、ED2がED1よりも大きい場
合、S1,S2の極性は正となり、インバータ電圧指令と
偶数次調波との位相差α=0となる。従って、前述のよ
うにA0'はsinφに比例し、その極性は正になってED1
を大きく、ED2を小さくするように働く。これにより、
コンデンサ電圧ED1,ED2が等しくなるように作用し、
中性点電位の変動が抑制される。また、ED1がED2より
も大きい場合、S1,S2の極性は負となり、インバータ
電圧指令と偶数次調波との位相差α=π/6〔rad〕
となる。従って、A0'は−sinφに比例し、その極性は
負になってED1を小さく、ED2を大きくするように働
く。このため、前記同様にコンデンサ電圧ED1,ED2
等しくなるように作用し、中性点電位の変動が抑制され
る。
In FIG. 1, when E D2 is larger than E D1 , the polarities of S 1 and S 2 become positive, and the phase difference α = 0 between the inverter voltage command and the even harmonics. Therefore, as described above, A 0 ′ is proportional to sin φ, and its polarity becomes positive, and E D1
To increase and reduce E D2 . This allows
Acts so that the capacitor voltages E D1 and E D2 become equal,
Fluctuation of the neutral point potential is suppressed. When E D1 is larger than E D2 , the polarities of S 1 and S 2 become negative, and the phase difference α = π / 6 [rad] between the inverter voltage command and the even-order harmonic.
Becomes Therefore, A 0 'is proportional to -Sinfai, the polarity reduced E D1 becomes negative, it serves to increase the E D2. For this reason, the capacitor voltages E D1 and E D2 act so as to be equal to each other as described above, and the fluctuation of the neutral point potential is suppressed.

【0040】次に、図2は本発明の第2実施例を示して
いる。この実施例は、第1実施例における一方のコンデ
ンサ電圧ED1を用いず、一定値であるEDC/2(EDC
3レベルインバータの直流中間電圧(電源電圧))をED1
の代わりに加算器11の一方の入力としたものであり、
その他については第1実施例と同様である。この実施例
によれば、電圧検出器が1つで済むため、回路構成の簡
略化が可能である。
FIG. 2 shows a second embodiment of the present invention. This embodiment does not use one of the capacitor voltage E D1 in the first embodiment, E DC / 2 is a fixed value (E DC:
The DC intermediate voltage (power supply voltage) of the three-level inverter is E D1
Is one of the inputs of the adder 11 in place of
Others are the same as the first embodiment. According to this embodiment, since only one voltage detector is required, the circuit configuration can be simplified.

【0041】図3は本発明の第3実施例を示している。
この実施例は、第1実施例における他方のコンデンサ電
圧ED2を用いず、一定値であるEDC/2をED2の代わり
に加算器11の一方の入力としたものであり、その他に
ついては第1実施例と同様である。この実施例において
も、第2実施例と同一の効果を得ることができる。
FIG. 3 shows a third embodiment of the present invention.
In this embodiment, the constant value E DC / 2 is used as one input of the adder 11 instead of E D2 without using the other capacitor voltage E D2 in the first embodiment. This is the same as the first embodiment. In this embodiment, the same effects as in the second embodiment can be obtained.

【0042】図4は本発明の第4実施例を示している。
この実施例は、第1実施例のsin(6θ)テーブル13の
代わりに、制御回路10A内にsin(2θ)テーブル15
を備えたもので、その他については第1実施例と同様で
ある。この実施例において、インバータ各相電圧指令v
R *,vS *,vT *に加算するインバータ基本周波数の偶数
次調波として2次調波を選んだ理由は次のとおりであ
る。
FIG. 4 shows a fourth embodiment of the present invention.
In this embodiment, a sin (2θ) table 15 is provided in the control circuit 10A instead of the sin (6θ) table 13 of the first embodiment.
The rest is the same as the first embodiment. In this embodiment, the inverter phase voltage command v
R *, v S *, v T * Why did you choose the second-order harmonics as even-order harmonics of the inverter fundamental frequency to be added to the is as follows.

【0043】第1実施例に関連して述べたように、2次
調波はインバータ線間電圧に現われる。しかるに、線間
電圧に2次調波が現われても問題とならないような用途
(例えばただ単にファンが回転すれば良いといったよう
な用途)であれば、本発明を適用しても何ら支障がない
と言える。しかも、数式6から明らかなように、2次調
波を用いれば直流成分A0'の大きさが偶数次調波の中で
最も大きいので、中性点電位の変動抑制効果も最も大き
くなるためである。
As described in connection with the first embodiment, the second harmonic appears in the inverter line voltage. However, if the application does not cause a problem even if a second harmonic appears in the line voltage (for example, an application in which a fan simply rotates), there is no problem even if the present invention is applied. It can be said. Moreover, as is apparent from Equation 6, when the second harmonic is used, the magnitude of the DC component A 0 ′ is the largest among the even harmonics, so that the fluctuation suppression effect of the neutral point potential is also the largest. It is.

【0044】図5、図6はそれぞれ本発明の第5、第6
実施例を示しており、前記第2、第3実施例においてsi
n(6θ)テーブル13の代わりにsin(2θ)テーブル15
を用いるものである。これらの実施例においても、第
2、第3実施例並びに第4実施例と同様の効果を得るこ
とができる。
FIGS. 5 and 6 show the fifth and sixth embodiments of the present invention, respectively.
An embodiment is shown, and in the second and third embodiments, si
sin (2θ) table 15 instead of n (6θ) table 13
Is used. In these embodiments, the same effects as in the second, third, and fourth embodiments can be obtained.

【0045】[0045]

【発明の効果】以上述べたように本発明によれば、完全
無負荷時や軽負荷時にもコンデンサ電圧の不平衡を有効
に抑制して回路素子への過大な電圧印加を防止すること
ができる。また、コンデンサ電圧の平衡化制御にあた
り、駆動/制動モードの判定を不要にして力率=0付近
での制御極性の切り換えをなくしたことにより、従来の
ようにコンデンサ電圧の不平衡をかえって助長するよう
な不都合もない。
As described above, according to the present invention, it is possible to effectively suppress the imbalance of the capacitor voltage even at the time of complete no-load or light load, and to prevent application of an excessive voltage to the circuit element. . In addition, in the capacitor voltage balancing control, it is not necessary to determine the driving / braking mode, and switching of the control polarity near the power factor = 0 is eliminated. There is no such inconvenience.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示すブロック図である。FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示すブロック図である。FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示すブロック図である。FIG. 4 is a block diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を示すブロック図である。FIG. 5 is a block diagram showing a fifth embodiment of the present invention.

【図6】本発明の第6実施例を示すブロック図である。FIG. 6 is a block diagram showing a sixth embodiment of the present invention.

【図7】本発明の解析に用いたPWMの説明図である。FIG. 7 is an explanatory diagram of PWM used for analysis of the present invention.

【図8】本発明における電圧指令と偶数次調波との位相
差を示す図である。
FIG. 8 is a diagram showing a phase difference between a voltage command and an even harmonic in the present invention.

【図9】3レベルインバータの基本回路図である。FIG. 9 is a basic circuit diagram of a three-level inverter.

【図10】従来技術としてのコンデンサ電圧平衡化制御
回路を示す図である。
FIG. 10 is a diagram showing a capacitor voltage balancing control circuit as a conventional technique.

【図11】図10の回路により制御される3レベルイン
バータの回路図である。
11 is a circuit diagram of a three-level inverter controlled by the circuit of FIG.

【符号の説明】[Explanation of symbols]

10,10A 制御回路 11,21R,21S,21T 加算器 14R,14S,14T 乗算器 12 調節器 13 sin(6θ)テーブル 15 sin(2θ)テーブル10, 10A control circuit 11, 21 R , 21 S , 21 T adder 14 R , 14 S , 14 T multiplier 12 regulator 13 sin (6θ) table 15 sin (2θ) table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大沢 博 神奈川県横須賀市長坂二丁目2番1号 株式会社富士電機総合研究所内 (56)参考文献 特開 平2−261063(JP,A) 特開 平5−227796(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/48 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hiroshi Osawa 2-2-1 Nagasaka, Yokosuka City, Kanagawa Prefecture Inside Fuji Electric Research Laboratory Co., Ltd. (56) References JP-A-2-261630 (JP, A) Hei 5-227796 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H02M 7/48

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流電源両端の正電位点及び負電位点と
これらの間の中性点との間に接続された直流入力コンデ
ンサを有する直流電源回路を備え、第1ないし第4の半
導体スイッチング素子からなる3つの直列回路の両端が
前記正電位点及び負電位点にそれぞれ接続されると共
に、第2及び第3の半導体スイッチング素子の相互接続
点がインバータ出力端子にそれぞれ接続され、第1及び
第2の半導体スイッチング素子の相互接続点と前記中性
点との間に第1の結合ダイオードがそれぞれ接続され、
かつ、第3及び第4の半導体スイッチング素子の相互接
続点と前記中性点との間に第2の結合ダイオードがそれ
ぞれ接続されてなる3レベルインバータにおいて、 インバータの各相出力電圧指令にインバータ基本周波数
の偶数次調波を加算する手段と、 前記中性点の電位変動に基づいて前記偶数次調波の大き
さを決定する手段とを備えたことを特徴とする3レベル
インバータの制御回路。
A first semiconductor switching device comprising a DC power supply circuit having a DC input capacitor connected between a positive potential point and a negative potential point at both ends of the DC power supply and a neutral point therebetween; Both ends of three series circuits composed of elements are connected to the positive potential point and the negative potential point, respectively, and the interconnection points of the second and third semiconductor switching elements are connected to the inverter output terminals, respectively. First coupling diodes are respectively connected between the interconnection point of the second semiconductor switching element and the neutral point,
In addition, in a three-level inverter in which a second coupling diode is connected between the interconnection point of the third and fourth semiconductor switching elements and the neutral point, an inverter basic voltage is applied to each phase output voltage command of the inverter. A control circuit for a three-level inverter, comprising: means for adding an even-order harmonic of a frequency; and means for determining the magnitude of the even-order harmonic based on a potential change at the neutral point.
JP24888393A 1993-09-09 1993-09-09 Control circuit of three-level inverter Expired - Lifetime JP3186369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24888393A JP3186369B2 (en) 1993-09-09 1993-09-09 Control circuit of three-level inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24888393A JP3186369B2 (en) 1993-09-09 1993-09-09 Control circuit of three-level inverter

Publications (2)

Publication Number Publication Date
JPH0779574A JPH0779574A (en) 1995-03-20
JP3186369B2 true JP3186369B2 (en) 2001-07-11

Family

ID=17184862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24888393A Expired - Lifetime JP3186369B2 (en) 1993-09-09 1993-09-09 Control circuit of three-level inverter

Country Status (1)

Country Link
JP (1) JP3186369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033565A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Power converter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192258B2 (en) * 2008-02-21 2013-05-08 東芝三菱電機産業システム株式会社 Clamp type power converter
IT1396963B1 (en) * 2009-10-20 2012-12-20 Meta System Spa SYSTEM AND METHOD FOR THE COMPENSATION OF THE UNBALANCE OF INPUT VOLTAGES IN THE MULTILEVEL INVERTER
JP5540699B2 (en) * 2009-12-28 2014-07-02 富士電機株式会社 Power converter
JP2013110815A (en) 2011-11-18 2013-06-06 Meidensha Corp Neutral point clamped multilevel power converter
CN103138594B (en) 2011-11-22 2016-03-02 通用电气公司 The control system of neutral point clamped multi current transformer and control method and compensatory control unit
CN105900328B (en) * 2014-01-06 2018-11-06 东芝三菱电机产业系统株式会社 Power conversion device
JP6418020B2 (en) * 2014-05-30 2018-11-07 株式会社明電舎 Control method of parallel connection system of three level inverter and parallel connection system of three level inverter
JP6318965B2 (en) * 2014-08-11 2018-05-09 株式会社明電舎 3 level power converter parallel connection system
EP3836381A1 (en) * 2019-12-11 2021-06-16 ABB Schweiz AG Control of npc converter using voltage harmonic injection
JP7316259B2 (en) * 2020-10-05 2023-07-27 東芝三菱電機産業システム株式会社 Controller for three-level power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033565A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Power converter

Also Published As

Publication number Publication date
JPH0779574A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US5327335A (en) Harmonic feedback control for an inverter
JP2679411B2 (en) Parallel operation control device for AC output converter
EP0390184B1 (en) Improvements in variable-voltage &amp; variable-frequency power converter
JP2526992B2 (en) AC output converter parallel operation system
US5016158A (en) Parallel multi-inverter system and motor drive system using the same
JP3186369B2 (en) Control circuit of three-level inverter
JP3248321B2 (en) Control circuit of three-level inverter
JP2005033895A (en) Power converter
JP2733724B2 (en) Current control device for multi-winding AC motor
JP3337041B2 (en) Control method for single-phase three-wire inverter device
JPH0783615B2 (en) Three-phase converter
US5151853A (en) Cycloconverter and the method of controlling the same
JP2821181B2 (en) Inverter device
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JP2712229B2 (en) Reactive power compensator using inverter
JPH0515165A (en) Control method for three-phase three-wire neutral clamping inverter
JP2000102168A (en) Active filter control method
JP2774246B2 (en) Control device for current source converter
JPH09182455A (en) Control circuit of three-level inverter
JP3274274B2 (en) Demagnetization suppression control circuit
JP3254910B2 (en) Control circuit of three-phase balancer
JP2843220B2 (en) Cycloconverter device
JPH08111937A (en) General purpose compensating apparatus
JPH03159570A (en) Inverter device
JPS5911274B2 (en) Control device for commutatorless motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010410

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13