JP3164343U - Lossless DC-DC converter - Google Patents

Lossless DC-DC converter Download PDF

Info

Publication number
JP3164343U
JP3164343U JP2010006303U JP2010006303U JP3164343U JP 3164343 U JP3164343 U JP 3164343U JP 2010006303 U JP2010006303 U JP 2010006303U JP 2010006303 U JP2010006303 U JP 2010006303U JP 3164343 U JP3164343 U JP 3164343U
Authority
JP
Japan
Prior art keywords
voltage
capacitor
power
output
lossless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010006303U
Other languages
Japanese (ja)
Inventor
有賀 守昭
守昭 有賀
Original Assignee
Sud株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sud株式会社 filed Critical Sud株式会社
Priority to JP2010006303U priority Critical patent/JP3164343U/en
Application granted granted Critical
Publication of JP3164343U publication Critical patent/JP3164343U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】電圧の変換ロスをなくし、蓄電機能を有し、安定性を高めた無損失DC−DC変換器を提供する。【解決手段】複数のキャパシタを逆流防止阻止を介して接続する。出力側にリップル防止コンデンサーを取り付ける。【選択図】図5Disclosed is a lossless DC-DC converter that eliminates voltage conversion loss, has a power storage function, and has improved stability. A plurality of capacitors are connected through prevention of backflow prevention. Install a ripple prevention capacitor on the output side. [Selection] Figure 5

Description

本考案は直流エネルギーの有効利用に関する物で、本考案の利用によって従来直流同士の電圧変換でもインバータ等により交流を介して行っていた為に発生していた変換ロスを無くすと共に、従来の数倍の電圧にワイドレンジ対応し、変換器自体に蓄電機能も持たせた、より安定性を高めたDC−DC変換器に関するものです。また、高価な電源安定装置やバッテリーを取付けなければ、使用できなかった直流電源装置を安価に供給すると共に、災害等、万一の電力不足にも急速充電を可能にして利便性を高めたものでもあります。更に、太陽光発電パネルの不安定な電源から発電される朝夕の微小な電力や、風力発電、温度差発電等によって発生する微小な自然エネルギーを有効に蓄積して、変換するので、微小エネルギーを安定的に電力として供給できます。  The present invention relates to the effective use of DC energy. By using the present invention, the conventional DC conversion between DCs has been done through AC through inverters, etc., and several times the conventional loss. This is related to a DC-DC converter with higher stability, which is compatible with a wide range of voltage and has a storage function in the converter itself. In addition to supplying a DC power supply that could not be used if an expensive power stabilizer or battery was not installed, it was also possible to quickly charge in the event of a power shortage due to a disaster, etc. It is also. Furthermore, the minute energy generated by the unstable power source of the photovoltaic power generation panel and the minute natural energy generated by wind power generation, temperature difference power generation, etc. are effectively stored and converted, so the minute energy can be converted. Stable power can be supplied.

LED照明の発達による省エネルギーの兆しや大量に販売されている携帯電話等の電子機器が半導体で構成されている昨今、これらの半導体器機の実動作電圧は5V程度の低圧直流になっています。しかしながら、従来の配電システムが100V交流等、交流を中心としたものであるため、近年の高効率器機に電力を供給する為に、わざわざ交流を低圧直流に変換して供給せざるを得なくなっています。また、太陽光発電等、自然エネルギーを利用した発電システムの多くは直流を発生するものの、これら自然エネルギーはその名の通り自然に由来するため、朝夕の太陽が昇って無い時や無風時の微小なエネルギーや風力発電が台風時に受ける設計値を越えるエネルギーまで時系列でワイドレンジに発生変化するため、従来の電力技術に合わせて、リミッター等を付けて、電力装置の破壊を防いだりしており、自然エネルギーの中から折角発電した電力を有効に利用出来ていません。太陽光発電を例に取ると、太陽光発電は太陽が出れば発電量が多くなり、雲がかかれば発電量が少なくなります。また、夜間や雨が降っても僅かながら発電しているにも関わらず、リミッター下限以下となり、発電していないと同等になってしまいます。また、太陽光発電では長雨が続いた場合には、もはや自然エネルギーには期待できず、この様な場合でも、困る事無く簡単に、電源からバックアップできなくてはユーザーの自然エネルギーに対する信頼は得られません。従って、従来は、バッテリーを使ったり、商用電力系統と電力疎通ができる様にコンディショナーと言われる部品を入れたりと複雑で購入価格も高く、法規制に縛られ、メンテナンスも大変な装置を使っていました。地球温暖化防止に伴い、電力使用量を抑制すると言う省エネルギーは大きなテーマになっていますが、それをカバーする為に、バッテリーを取付けたり、売電をしたりと、電気を使う為に何度も変換して、高価で多大な電装品を利用せざるを得ない状況にあり、採算性も悪い為に、補助金等の工夫がされているが、なかなか思うように普及せずに、自然エネルギー利用以前に、家庭やオフィスの省エネルギーが進行していません。  These days, the actual operating voltage of these semiconductor devices has become a low-voltage direct current of about 5V. Electronic devices such as mobile phones that are sold in large quantities are showing signs of energy saving due to the development of LED lighting. However, since the conventional power distribution system is centered on alternating current such as 100V alternating current, in order to supply power to recent high-efficiency devices, it is necessary to bother to convert alternating current into low-voltage direct current. The In addition, many of the power generation systems that use natural energy, such as solar power generation, generate direct current, but these natural energies are derived from nature as the name suggests, so there is a small amount of time when the sun is not rising or when there is no wind. In order to generate and change a wide range of energy and wind energy that exceeds the design value that wind power generation receives during typhoons, a limiter, etc. is attached in accordance with conventional power technology to prevent destruction of the power equipment. , The power generated from the natural energy is not used effectively. Taking solar power as an example, the amount of power generated by solar power generation increases when the sun comes out, and the amount of power generation decreases when clouds are applied. In addition, even if it rains at night or even if it rains, it is below the limit of the limiter even though it is generating a little, and it will be equivalent to not generating electricity. In addition, with solar power generation, if long rain continues, natural energy can no longer be expected, and even in such a case, if users cannot easily back up from the power source, they can gain confidence in the natural energy. I can't. Therefore, in the past, using batteries and using parts called conditioners so that they can communicate with the commercial power system are complicated, expensive to purchase, restricted by laws and regulations, and maintenance is difficult. It was. Energy conservation is one of the major themes for the prevention of global warming, and the amount of power used is reduced. To cover this, it is necessary to install a battery, sell electricity, etc. However, it is in a situation where it is necessary to use a large amount of expensive electrical equipment, and subsidies have been devised due to poor profitability. Prior to energy use, energy conservation in homes and offices has not progressed.

従来、直流のある電圧から所望する直流電圧に変換する場合、一度交流に変換して、再度、直流に直して変換していました。その為に、変換ロスが発生すると共に、変換装置を守る為に、設計値を越える微小エネルギーや大エネルギーでは、リミッターで切り捨てて変換装置の破壊を防いでいたため、狭い変換許容値であり、太陽光発電等の自然エネルギーの様なワイドレンジな入力に関しては結果的に大変効率の悪いものでした。また、DC−DC変換装置はその名の通り、変換だけを目的としており、外部にバッテリーやコンディショナー等の装置を別に取り付けなくては電力供給源として使えませんでした。本考案では、無損失でワイドレンジに電圧変換を可能にすると共に、電力蓄積機能を持たせる事で安定給電を計り、万一の欠電に急速充電を可能として、ただ単なる無損失DC−DC変換器ではなく実用電源にしようとするものです。    Conventionally, when converting from a DC voltage to a desired DC voltage, it was first converted to AC and then converted again to DC. For this reason, conversion loss occurs, and in order to protect the conversion device, the minute energy or large energy exceeding the design value was cut off with a limiter to prevent the conversion device from being destroyed. As a result, it was very inefficient for wide-range inputs such as solar energy. As its name suggests, the DC-DC converter is intended only for conversion, and it could not be used as a power supply source unless a battery, conditioner, or other device was installed outside. In the present invention, voltage conversion to a wide range is possible without loss, and by providing a power storage function, stable power supply is measured, enabling quick charging in the event of a shortage of electricity, just lossless DC-DC It is intended to be a practical power supply instead of a converter.

本考案は、入力側はキャパシタが直流電源のリップル等の不安定な波動を吸収する性質と急速充電機能を持ち合わせる事を利用して、微小電力から大電力までを蓄積させます。太陽光発電パネル等発電量が不安定ではあるが、確実に発電する自然エネルギーの電力をまさにタンクの様に、バラツキを大きなリップルと考えてキャパシタに溜め込みます。当然、安定した直流電力であっても同様にキャパシタに貯め込みます。
キャパシタは最大電圧が規定されていますが、最小電圧の制限が無い為、入力電圧に対して十分余裕を持った許容電圧になるように設定します。この時に、入力電圧や電気蓄積目標容量に合わせて、複数個のキャパシタを直列や並列に接続して、入力電圧を各キャパシタに蓄積させます。キャパシタの直並列切替は従来力率改善に使われて来たため、接続切替そのものは大きな過去の実績があります。キャパシタは電気蓄積量と電圧が既知の特性線を描く特徴を持っていますので、各キャパシタ端子間の電圧を計測することにより、各キャパシタ内部の電気蓄積量を確実に把握することができます。
また、個々のキャパシタの過去の利用履歴と合計電圧を計測することにより、個別に電圧計測しなくとも演算によって各キャパシタ内部の電気蓄積量及び電圧を推定することも出来ます。
太陽光等の微小電力に限らず、緊急時等の瞬時加圧による電気蓄積や深夜電力による安価な電力供給も同様な仕組みで出来ます。
次に、出力側は必要な電圧に合わせて、電気蓄積されたキャパシタの中から選択的に接続するキャパシタを選び出します。入力側と同様に使用電圧や容量に合わせて、直列、並列の組み合わせ接続をします。選択されたキャパシタは電力使用と共に電気蓄積容量が減り電圧低下しますので、更に別のキャパシタを組み合わせ接続して電圧低下を防ぎます。また、接続切替時のリップルを防ぐ為に出力側にはリップル防止コンデンサーを入れておきます。その一方、LED照明の様に断続的な電圧によって流入電力を調整する器機には、接続切替を断続的に行う事により、特別な変換器無しに直接給電できます。
これらの接続切替を電圧計、リレー等の接続切替回路、演算コンピュータによって希望出力電圧に合わせる様に自動的に行う事により、安定的電圧を供給します。また、前述の通り、キャパシタは個々に電圧計測しなくとも、電気蓄積しそれに比例した電圧を出しますので、出力電圧変動が厳しくないものについては、過去の利用経歴と入力側印加電圧と出力電圧がわかれば、演算のみによって、順次切り替える事も可能です。
これらのキャパシタが電気的に混触しないように逆流防止素子を適宜に配置します。
In the present invention, the capacitor on the input side accumulates from minute power to large power by utilizing the property that the capacitor absorbs unstable waves such as ripples of DC power supply and quick charge function. Although the amount of power generated by photovoltaic panels, etc. is unstable, the power of natural energy that can be generated reliably is stored in a capacitor as if it were a tank, and the variation was regarded as a large ripple. Naturally, even stable DC power is stored in the capacitor in the same way.
Although the maximum voltage is specified for the capacitor, there is no limit on the minimum voltage, so set the allowable voltage with a sufficient margin for the input voltage. At this time, a plurality of capacitors are connected in series or in parallel according to the input voltage and the target storage capacity, and the input voltage is stored in each capacitor. Capacitor series / parallel switching has been used for power factor improvement in the past, so connection switching itself has a long history. Capacitors have the characteristic of having a characteristic line with a known amount of electrical storage and voltage. By measuring the voltage between each capacitor terminal, the amount of electrical storage inside each capacitor can be reliably determined.
In addition, by measuring the past usage history and total voltage of each capacitor, it is possible to estimate the amount of electricity stored in each capacitor and voltage by calculation without measuring the voltage individually.
Not only small electric power such as sunlight, but also electric storage by instantaneous pressurization in an emergency etc. and inexpensive power supply by late-night power can be done with the same mechanism.
Next, the output side selects a capacitor to be connected selectively from among the capacitors that have been electrically stored according to the required voltage. In the same way as the input side, combination connection in series and parallel is made according to the operating voltage and capacity. The selected capacitor will decrease the voltage of the electricity storage capacity as the power is used, so a voltage drop will be prevented by connecting another capacitor in combination. In addition, in order to prevent ripple when switching the connection, put a ripple prevention capacitor on the output side. On the other hand, equipment that adjusts inflow power by intermittent voltage, such as LED lighting, can be directly fed without special converter by switching connection intermittently.
A stable voltage is supplied by automatically switching these connections to match the desired output voltage using a connection switching circuit such as a voltmeter or a relay, or an arithmetic computer. In addition, as described above, capacitors do not measure voltage individually, but store electricity and generate a voltage proportional to it, so for those whose output voltage fluctuation is not severe, past usage history, input side applied voltage and output voltage If you know, you can switch sequentially only by calculation.
Arrange the backflow prevention elements appropriately so that these capacitors do not come into electrical contact.

本考案により、太陽光発電等の自然エネルギーが発生した微小電力から最大電力まで無駄なくキャパシタの組合せで蓄積し、使用することが出来ます。また、深夜電力や緊急充電、キャパシタグリッド等、電力需要の即応体制を作る事が出来ます。蓄積された電力はキャパシタの直並列接続の利用によりインバータやトランスを使用する事無く目標電圧で取り出す事が出来ますので、変換ロスが全くありません。キャパシタの急速充電機能を利用すれば、数秒単位での商用電源利用となり、本考案による無損失DC−DC変換器を使用することにより夜間電力利用、無効電力利用と大幅な省エネが達成できると共に、部品点数の減少やバッテリー不使用によるメンテナンスフリーを実現し、コストダウンが図れます。更に、自然エネルギーを信頼出来る電力として使う事が可能になります。  With this device, it is possible to accumulate and use a combination of capacitors from micro power generated by natural energy such as photovoltaic power generation to maximum power without waste. In addition, we can create an immediate response system for power demand such as late-night power, emergency charging, and capacitor grid. The stored power can be taken out at the target voltage without using an inverter or transformer by using a series-parallel connection of capacitors, so there is no conversion loss. By using the quick charge function of the capacitor, it becomes a commercial power supply in seconds, and by using the lossless DC-DC converter according to the present invention, it is possible to achieve nighttime power use, reactive power use and significant energy saving, Costs can be reduced by reducing the number of parts and maintenance-free by not using batteries. In addition, natural energy can be used as reliable power.

考案を簡単に示す為に、図1に入力電圧10Vを出力電圧2.5Vに降圧して使う場合と逆に入力電圧2.5Vを出力電圧10Vに昇圧して使う場合の概念図を示します。まず、図1で入力電圧10Vを出力2.5Vに降圧して使う場合を説明します。4個の最大許容電圧2.5Vのキャパシタ(1−1)から(1−4)を逆流防止素子(2−1−1)から(2−4−1)、を介して直列接続して入力電圧を印加して10Vまでキャパシタに電力蓄積します。(図1(a))次にキャパシタ(1−1)から(1−4)を逆流防止阻止(2−1−2)から(2−4−2)を介して並列に接続して2.5V出力を得ます。(図1(b))キャパシタ特性から電力利用と共に電圧が低下してくるので、キャパシタ(1−1)と(1−2)を直列にして、更に(1−3)と(1−4)を直列したものを逆流防止阻止(2−1−2)から(2−4−2)を介して並列接続して、再度2.5Vを得ます。(図1(c))更に電圧使用と共に電圧が低下してきますので、キャパシタ(1−1)から(1−4)を防止阻止(2−1−2)から(2−4−2)を介して直列接続して、再度2.5Vを得ます。(図1(d))また、蓄電を必要としない場合は図1(a)と図1(b)のみの繰り返しのみで対応もできます。
次に同様に図2で電圧2.5V受電を10Vに昇圧して使う場合を説明します。16個の最大許容電圧2.5Vのキャパシタ(1−1)から(1−16)を逆流防止素子(2−1−1)から(2−16−1)、を介して並列接続して2.5Vまで電圧蓄積します。(図2(a))次にキャパシタ(1−1)から(1−4)を逆流防止阻止(2−1−2)から(2−4−2)を介して直列に接続して10V出力を得ます。この時にキャパシタ(1−5)から(1−8)、(1−9)から(1−12)、(1−13)から(1−16)も同様に直列にしてこれらを並列に接続します。(図2(b))電力利用により、電圧が低下してくるので、キャパシタ(1−1)から(1−8)逆流防止素子(2−1−2)から(2−8−2)、を介して直列接続してキャパシタ(1−9)から(1−16)を直列したものを並列に接続して再度、10Vを得ます。(図2(c))更に電圧が低下しきたら、キャパシタ(1−1)から(1−16)を逆流防止素子(2−1−2)から(2−16−2)を介して直列に接続して再度10Vを得ます。(図2(d))また、蓄電を必要としない場合は図2(a)と図2(b)のみの繰り返しのみで対応もできます。
図1、図2の電力出力カーブを図3(a)(b)に示します。また、電圧変動を小さくする為に、それぞれのユニットを、複数用意して、蓄電と放電を交互にして連続利用すると共に、若干の電圧低下した段階で次のユニットを並列にスタートして、電圧低下を平準化した例を図3(c)に示します。
また、意図的に切替スイッチで出力ON−OFFして出力を調整して、LED等の入力制限回路に直接使う事も出来ます。図3(d)
図4に図1から図3を実現する為の回路の一例を示します。入力電圧及び出力電圧を計測して、キャパシタ内の蓄積電力を推定して、入出力切替スイッチ(3)によって入力と出力を切り替えます。これと共に逆流防止阻止の極性を反対にします。また、直並列切替スイッチ(4)でキャパシタの直並列を切り替えます。
図5に更に、電力の安定を必要とする場合、多数のキャパシタをブロック化して、演算回路で、入力電圧、出力電圧、個々のキャパシタ電圧を計測して、選択的にキャパシタブロックから逆流防止素子を介して適宜のキャパシタを選択して接続する例を示します。
For the sake of simplicity, Fig. 1 shows a conceptual diagram of the case where the input voltage of 10V is stepped down to the output voltage of 2.5V and the input voltage of 2.5V is boosted to the output voltage of 10V. . First, the case where the input voltage of 10V is stepped down to the output of 2.5V is used in Fig. 1. Four capacitors (1-1) to (1-4) having a maximum allowable voltage of 2.5 V are connected in series via backflow prevention elements (2-1-1) to (2-4-1). The voltage is applied and the power is stored in the capacitor up to 10V. (FIG. 1 (a)) Next, capacitors (1-1) to (1-4) are connected in parallel via backflow prevention prevention (2-1-2) to (2-4-2). 5V output is obtained. (FIG. 1 (b)) Since the voltage decreases with the use of power due to the capacitor characteristics, capacitors (1-1) and (1-2) are connected in series, and (1-3) and (1-4) Are connected in parallel via reverse flow prevention block (2-1-2) through (2-4-2) to obtain 2.5V again. (Fig. 1 (c)) Since the voltage decreases further as the voltage is used, capacitors (1-1) to (1-4) are prevented from being blocked (2-1-2) to (2-4-2). Connect in series and get 2.5V again. (Fig. 1 (d)) In addition, when electricity storage is not required, it can be handled by repeating only Fig. 1 (a) and Fig. 1 (b).
Next, the case where the voltage of 2.5V power reception is boosted to 10V in Fig. 2 is explained. Sixteen capacitors (1-1) to (1-16) having a maximum allowable voltage of 2.5 V are connected in parallel via the backflow prevention elements (2-1-1) to (2-16-1). Accumulate voltage up to 5V. (FIG. 2 (a)) Next, capacitors (1-1) to (1-4) are connected in series via backflow prevention prevention (2-1-2) to (2-4-2) to output 10V. Get. At this time, capacitors (1-5) to (1-8), (1-9) to (1-12), and (1-13) to (1-16) are similarly connected in series and connected in parallel. The (FIG. 2 (b)) Since the voltage decreases due to the use of power, the capacitors (1-1) to (1-8) the backflow prevention elements (2-1-2) to (2-8-2), Connected in series through the capacitor (1-9) to (1-16) in series and connected in parallel to obtain 10V again. (FIG. 2 (c)) When the voltage further decreases, capacitors (1-1) to (1-16) are connected in series via backflow prevention elements (2-1-2) to (2-16-2). Connect and get 10V again. (Fig. 2 (d)) In addition, when electricity storage is not required, it can be handled by repeating only Fig. 2 (a) and Fig. 2 (b).
The power output curves of Figs. 1 and 2 are shown in Figs. 3 (a) and 3 (b). In order to reduce voltage fluctuations, prepare multiple units and use them continuously by alternately storing and discharging, and start the next unit in parallel when the voltage drops slightly. An example of leveling the drop is shown in Fig. 3 (c).
It is also possible to adjust the output by turning the output on and off intentionally with a changeover switch, and use it directly for input limiting circuits such as LEDs. FIG. 3 (d)
Fig. 4 shows an example of a circuit for realizing Fig. 1 to Fig. 3. The input voltage and output voltage are measured, the accumulated power in the capacitor is estimated, and input and output are switched by the input / output switch (3). At the same time, reverse the polarity of prevention of backflow prevention. The series / parallel switch (4) is used to switch the capacitor series.
Further, in the case where it is necessary to stabilize the power in FIG. 5, a large number of capacitors are made into blocks, and an input circuit, an output voltage, and individual capacitor voltages are measured by an arithmetic circuit, and a backflow prevention element is selectively selected from the capacitor block An example of selecting and connecting an appropriate capacitor via is shown below.

10Vを2.5Vに変換する例Example of converting 10V to 2.5V 2.5Vを10Vに変換する例Example of converting 2.5V to 10V 出力特性図Output characteristics シンプルな実施回路の例1Example 1 of simple implementation circuit 演算でランダムにキャパシタを選択する実施回路の例Example of an implementation circuit that randomly selects a capacitor by calculation

(1)はキャパシタ(1−1〜1−16)
(2)は逆流防止素子(2−1−1〜2−16−1)(2−1−2〜2−16−2)
(3)は入出力切替スイッチ
(4)は直並列切替スイッチ
(5)は出力リップル防止コンデンサー
(6)は電圧計
(1) is a capacitor (1-1 to 1-16)
(2) is a backflow prevention element (2-1-1 to 2-16-1) (2-1-2 to 2-16-2).
(3) Input / output changeover switch (4) Series-parallel changeover switch (5) Output ripple prevention capacitor (6) Voltmeter

Claims (5)

複数のキャパシタを逆流防止素子を介して接続して入力電圧を受け、当該キャパシタの直並列を所望出力電圧に合わせて接続変更して逆流防止素子を介して出力させる無損失DC−DC変換器。A lossless DC-DC converter in which a plurality of capacitors are connected via a backflow prevention element to receive an input voltage, and the series-parallel connection of the capacitors is changed in connection with a desired output voltage and output via the backflow prevention element. 入力電圧を計測してキャパシタ蓄電容量を推定して所望の電圧で入力を終了して出力に切り替えて、出力電圧を計測してキャパシタの直並列を切り替えて所望の出力電圧を得る請求項1の無損失DC−DC変換器。The input voltage is measured to estimate the capacitor storage capacity, the input is terminated at the desired voltage and switched to the output, and the output voltage is measured to switch the series / parallel of the capacitor to obtain the desired output voltage. Lossless DC-DC converter. 動作タイミングをずらした複数の請求項2の無損失出力を組み合わせた請求項2の無損失DC−DC変換器。The lossless DC-DC converter according to claim 2, wherein a plurality of lossless outputs according to claim 2 are combined at different operation timings. 出力側にリップル防止コンデンサーを取り付けた請求項3の無損失DC−DC変換器。4. The lossless DC-DC converter according to claim 3, wherein a ripple prevention capacitor is attached to the output side. 多数のキャパシタをブロック化して、演算回路により各キャパシタの電圧測定を行い設計条件に基づき入力用か出力用判断し、逆流防止素子を介して直並列に接続して入力電圧を出力電圧に変換する請求項4の無損失DC−DC変換器。Block many capacitors, measure the voltage of each capacitor with an arithmetic circuit, determine whether it is for input or output based on the design conditions, and connect it in series and parallel via a backflow prevention element to convert the input voltage into an output voltage The lossless DC-DC converter according to claim 4.
JP2010006303U 2010-09-02 2010-09-02 Lossless DC-DC converter Expired - Fee Related JP3164343U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006303U JP3164343U (en) 2010-09-02 2010-09-02 Lossless DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006303U JP3164343U (en) 2010-09-02 2010-09-02 Lossless DC-DC converter

Publications (1)

Publication Number Publication Date
JP3164343U true JP3164343U (en) 2010-11-25

Family

ID=54875748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006303U Expired - Fee Related JP3164343U (en) 2010-09-02 2010-09-02 Lossless DC-DC converter

Country Status (1)

Country Link
JP (1) JP3164343U (en)

Similar Documents

Publication Publication Date Title
US20220393471A1 (en) Method and Apparatus for Storing and Depleting Energy
US9722435B2 (en) Battery charge balancing device and battery charge balancing system
JP5584763B2 (en) DC power distribution system
JP4641507B2 (en) Power supply system
TWI524618B (en) Power management apparatus and method of controlling the same
EP2793345A1 (en) Electric power supply system
WO2011039599A1 (en) Power distribution system
JP6158562B2 (en) Power conversion apparatus, control system, and control method
JP5541982B2 (en) DC power distribution system
WO2012093538A1 (en) Dc power supply system
KR20140034848A (en) Charging apparatus
JP5019399B2 (en) Residential electrical energy management system
Rajaraman et al. Economic analysis of deployment of DC power and appliances along with solar in urban multi-storied buildings
US20160118800A1 (en) Method for operating a battery converter and bidirectional battery converter
JP6522901B2 (en) DC distribution system
JPWO2020161765A1 (en) DC power supply system
RU2153752C1 (en) Process of uninterrupted electric power supply of users of electric power system operating on recommenced sources of energy
KR20150085227A (en) The control device and method for Energy Storage System
KR102222560B1 (en) An energy storage system
KR101587488B1 (en) High efficiency battery charge/discharge system and method in grid-tied system
US20220200287A1 (en) Power control apparatus, control method for power control apparatus, and distributed power generating system
CN102522814A (en) Wind-solar hybrid distribution type generating set
JP3164343U (en) Lossless DC-DC converter
JP2007300728A (en) Power generating device
CN112994056B (en) Off-grid power generation system, control method thereof and application system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees