JP2008125311A - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP2008125311A
JP2008125311A JP2006308753A JP2006308753A JP2008125311A JP 2008125311 A JP2008125311 A JP 2008125311A JP 2006308753 A JP2006308753 A JP 2006308753A JP 2006308753 A JP2006308753 A JP 2006308753A JP 2008125311 A JP2008125311 A JP 2008125311A
Authority
JP
Japan
Prior art keywords
power supply
voltage
series
current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006308753A
Other languages
Japanese (ja)
Other versions
JP4931558B2 (en
Inventor
Sakae Shibazaki
栄 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006308753A priority Critical patent/JP4931558B2/en
Publication of JP2008125311A publication Critical patent/JP2008125311A/en
Application granted granted Critical
Publication of JP4931558B2 publication Critical patent/JP4931558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Abstract

<P>PROBLEM TO BE SOLVED: To control total six switch elements so that a current waveform of an AC power supply becomes a sine waveform of a low distortion factor (THD). <P>SOLUTION: In the switching power supply circuit, an error amplifier of a voltage loop amplifies and integrates the error difference of a detection signal of a DC output voltage and a reference signal Vref, a multiplier multiplies it by a detection signal of an AC power supply to generate a reference signal Iref of an AC input current, an adder circuit superimposes the difference of two voltage signals of two capacitors connected in series on the Iref, and an error amplifier of the current loop amplifies and integrates the error of the output signal from the adder circuit and the detection signal of AC input current to output a sine wave signal. Six switch elements are then controlled by performing PWM modulation with four carriers of different offset levels, thus reducing the high frequency component of an AC current on the output side of a high band blocking filter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は交流電源を入力とする高力率形スイッチング電源装置(以下「PFC」という。)の改善に関するものである。   The present invention relates to an improvement in a high power factor type switching power supply (hereinafter referred to as “PFC”) using an AC power supply as an input.

従来のPFCとして図8に示すような回路方式がある。   As a conventional PFC, there is a circuit system as shown in FIG.

図8はスイッチ素子を縦に2つ直列に接続したアームによるもので、入力電圧が正の時にローサンドのスイッチ素子Q2がスイッチング動作を行ない、入力電圧が負の時にハイサイドのスイッチ素子Q1がスイッチング動作を行なう。   Fig. 8 shows an arm in which two switch elements are connected in series. When the input voltage is positive, the low-sand switch element Q2 performs the switching operation. When the input voltage is negative, the high-side switch element Q1 switches. Perform the action.

また、直流電源を入力とし、交流電圧を出力するインバータには、従来からマルチレベルインバータという回路方式が多数報告されている。(マルチレベルインバータについては特許文献1、2参照)。   A number of circuit systems called multi-level inverters have been reported for inverters that receive a DC power supply and output an AC voltage. (See Patent Documents 1 and 2 for multi-level inverters).

交流電源を入力とし、直流電圧を出力とするPFCコンバータは一般にインバータとは正反対の動作を行なうため、主回路構成は同じとなり、電力の流れの向きが反対になるものである。そのため、マルチレベルインバータの主回路構成は、そのままマルチレベルコンバータの主回路構成として使用できるものである。   A PFC converter that receives an AC power supply and outputs a DC voltage generally operates in the opposite direction to the inverter, and therefore has the same main circuit configuration and the opposite direction of power flow. Therefore, the main circuit configuration of the multilevel inverter can be used as it is as the main circuit configuration of the multilevel converter.

マルチレベルコンバータの制御方法として非特許文献1において発表されている。これはDSPを用いて、入力電圧の大きさによりヒステリシス制御の方法を切り替えるものである。
特開2000-341964号公報 特開2003-319662号公報 B.-R.Lin and D.-J. Chen, ”SLIDING MODE CONTROL OF NEUTRAL POINT CLAMPED PWMRECTIFIER”, INTELEC 2001
Non-patent document 1 discloses a method for controlling a multilevel converter. This uses a DSP to switch the hysteresis control method depending on the magnitude of the input voltage.
JP 2000-341964 A Japanese Patent Laid-Open No. 2003-319662 B.-R.Lin and D.-J. Chen, “SLIDING MODE CONTROL OF NEUTRAL POINT CLAMPED PWMRECTIFIER”, INTELEC 2001

図8の従来のコンバータの回路方式では、高域阻止フィルタを小型化するため、入力電流の高周波分を低減するには、スイッチング周波数を上げるか、昇圧チョークの大型化をする必要があった。スイッチング周波数を上げる場合はスイッチング損による効率の低下という問題があり、昇圧チョークの大型化は装置の大型化とコストの増大という問題があった。   In the circuit system of the conventional converter of FIG. 8, in order to reduce the high-frequency blocking filter, it is necessary to increase the switching frequency or increase the size of the boost choke in order to reduce the high frequency component of the input current. When the switching frequency is increased, there is a problem that efficiency is lowered due to switching loss, and an increase in the size of the boosting choke has a problem that the apparatus is increased in size and cost.

また、コンバータをマルチレベル化するため、マルチレベルコンバータの主回路構成を採用しても、コンバータの制御方式にインバータの制御方式をそのまま適用することはできないという問題もある。インバータの制御方式には交流出力電圧か、もしくは交流出力電流の制御ループが1つだけであるのに対し、コンバータの制御方式は直流出力電圧の制御ループと交流入力電流の制御ループの2つが必要となるためである。また、インバータでは出力を上げる時にはPWM変調によりパルス幅を広くするのに対し、コンバータでは入力電圧が交流のため、交流入力電圧のゼロクロス付近ではパルス幅を広げ、最大ピーク付近ではパルス幅を狭めるという逆の制御になる。しかも、交流入力電流波形を歪み率(THD)の低い正弦波波形とするためには、電流を制御する誤差増幅器出力をゼロクロス付近で連続になるような制御ループを構築しなければならない。また、出力の2つ直列に接続された平滑用コンデンサ電圧が等しくならずアンバランスを起こすと、スイッチ素子や平滑用コンデンサに過大電圧が加わる問題が発生するため、2つ直列に接続された平滑用コンデンサ電圧を等しい大きさにバランス制御しなければならないという課題もある。
また、非特許文献1のようにDSPを使用した制御方法は複雑でコストが増大してしまう他、ヒステリシス制御のためキャリア周波数が一定ではなく、高域阻止フィルタの設計が難しいという問題がある。
Further, since the converter is multilevel, there is a problem that even if the main circuit configuration of the multilevel converter is adopted, the inverter control method cannot be applied as it is to the converter control method. The inverter control system has only one AC output voltage or AC output current control loop, whereas the converter control system requires two DC output voltage control loops and AC input current control loops. It is because it becomes. Also, in the inverter, when the output is increased, the pulse width is widened by PWM modulation, whereas in the converter, the input voltage is AC, so the pulse width is widened near the zero cross of the AC input voltage, and the pulse width is narrowed near the maximum peak. It becomes the reverse control. Moreover, in order to make the AC input current waveform a sine wave waveform with a low distortion rate (THD), a control loop must be constructed so that the error amplifier output for controlling the current is continuous near the zero cross. In addition, if the two smoothing capacitor voltages connected in series are not equal and an imbalance occurs, there is a problem that an excessive voltage is applied to the switch element and the smoothing capacitor. There is also a problem that the capacitor voltage must be balanced and controlled to the same magnitude.
In addition, the control method using the DSP as in Non-Patent Document 1 is complicated and increases the cost, and the carrier frequency is not constant due to hysteresis control, and it is difficult to design a high-frequency block filter.

本発明は、上記問題に鑑みてなされたものであり、小型化並びに低コスト化を実現したスイッチング電源装置を提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a switching power supply device that achieves miniaturization and cost reduction.

上記課題を解決するため、本発明に係るスイッチング電源装置は、マルチレベルコンバータにおいて、直流出力電圧の検出信号と基準信号Vrefの誤差分を電圧ループの誤差増幅器により増幅・積分し、乗算器により交流電源の検出信号と乗算することで交流入力電流の基準信号Irefを作り、上記Irefに2つ直列に接続されたコンデンサの2つの電圧検出信号の差分を加算演算回路によって重畳し、上記加算演算回路の出力信号と交流入力電流の検出信号との誤差分を電流ループの誤差増幅器により増幅・積分し、正弦波状の信号を出力し、4つのオフセットレベルの異なった3角波キャリアとのPWM変調を行なうことによって、高域阻止フィルタを介した交流電源の電流波形が歪み率(THD)の低い正弦波状になるように計6つのスイッチ素子を制御することを特徴とする。   In order to solve the above-described problems, a switching power supply according to the present invention is a multilevel converter, which amplifies and integrates an error between a detection signal of a DC output voltage and a reference signal Vref by an error amplifier of a voltage loop, and an AC by a multiplier. By multiplying the detection signal of the power supply, a reference signal Iref of AC input current is created, and the difference between two voltage detection signals of two capacitors connected in series to the Iref is superimposed by an addition operation circuit, and the addition operation circuit Amplifies and integrates the error between the output signal and the AC input current detection signal using an error amplifier in the current loop, outputs a sinusoidal signal, and performs PWM modulation with a triangular wave carrier with four different offset levels. By doing this, a total of six switch elements are controlled so that the current waveform of the AC power supply through the high-frequency blocking filter becomes a sine wave with a low distortion rate (THD). And wherein the Rukoto.

本発明によれば、図5に示すように、高域阻止フィルタの出力側の交流電流の高周波分を低減し、高域阻止フィルタを小型化・低コスト化することができる。   According to the present invention, as shown in FIG. 5, the high frequency component of the alternating current on the output side of the high-frequency blocking filter can be reduced, and the high-frequency blocking filter can be reduced in size and cost.

また、昇圧チョークに加わる電圧変化分とスイッチ素子に加わる電圧を半分にすることによって装置全体の損失を低減できる。昇圧チョークは加わる電圧変化分が半分になると、コアのΔBが半分になる。チョークのコア損失はΔBの2乗〜2.5乗に比例するため、昇圧チョークに加わる電圧変化分が半分にできることはコア損失を4分の1以下にできることになる。スイッチ素子は従来の半分の耐圧の素子が使用できるが、従来1個の所に直列に2個必要になる。MOSFET等の半導体素子は、耐圧が半分の素子はQg−Ronのトレードオフが倍以上改善されるため、スイッチ素子が2個直列になっても損失が低減できることになる。   Further, the loss of the entire device can be reduced by halving the voltage change applied to the boost choke and the voltage applied to the switch element. When the voltage change applied to the boost choke is halved, the core ΔB is halved. Since the core loss of the choke is proportional to the square to 2.5 of ΔB, the fact that the voltage change applied to the boost choke can be halved means that the core loss can be reduced to a quarter or less. As the switch element, an element having a withstand voltage half that of the prior art can be used, but two conventional switch elements are required in series at one place. A semiconductor element such as a MOSFET can reduce the loss even if two switch elements are connected in series because the Qg-Ron trade-off is improved more than twice in the case of an element having a withstand voltage of half.

また、2つ直列のコンデンサ電圧を等しい大きさにバランス制御できるため、半分の耐圧の平滑用コンデンサが使用できる。   In addition, since the two series capacitor voltages can be balanced and controlled to be equal in magnitude, a smoothing capacitor having a half withstand voltage can be used.

また、キャリア周波数を一定にすることができるため、高域阻止フィルタやEMIフィルタの設計が容易になる。   In addition, since the carrier frequency can be made constant, the design of a high-frequency blocking filter and an EMI filter becomes easy.

図1に本発明を実施するための回路図を示す。   FIG. 1 shows a circuit diagram for carrying out the present invention.

交流電源1を入力とし、電気的負荷8に直流電圧を出力するコンバータである。
上記直流電圧出力の正負極間に2つ直列に接続された平滑用コンデンサ7と電気的負荷8と4つのスイッチ素子のマルチレベルのアームと2つのスイッチ素子のアームが並列接続される。
The converter receives the AC power supply 1 and outputs a DC voltage to the electrical load 8.
Two smoothing capacitors 7, an electrical load 8, a multi-level arm of four switch elements, and an arm of two switch elements are connected in parallel between the positive and negative electrodes of the DC voltage output.

交流電源1は高域阻止フィルタ2を介し、一端は、電流検出素子3と昇圧チョーク4に接続される。昇圧チョーク4は、マルチレベルのアームの間に接続さる。高域阻止フィルタ2のもう一端は、上記2つのスイッチ素子のアームの間に接続される。   The AC power supply 1 is connected to a current detection element 3 and a boosting choke 4 at one end via a high-frequency blocking filter 2. The step-up choke 4 is connected between the multi-level arms. The other end of the high-pass blocking filter 2 is connected between the arms of the two switch elements.

上記直流出力電圧の検出信号と基準信号Vref18の誤差分を電圧ループの誤差増幅器9により増幅・積分し、乗算回路10により交流電源1の検出信号を乗算することで交流入力電流の基準信号Irefを作り、上記Irefに平滑用コンデンサ7の2つの電圧信号を差動増幅器17で差分をとり、加算演算回路11で上記Irefに重畳し、上記加算演算回路11の出力信号と交流入力電流の検出信号との誤差分を電流ループの誤差増幅器9により増幅・積分し、正弦波状の信号を出力する。4つのオフセットレベルの異なった3角波発振器14,15,20,21とのPWM変調を行ない、PWM1,2,3,4の信号を作る。Q4は、Vacが正の期間はPWM2、Vacが負の期間はPWM4の信号を出力する。Q2は、Vacが正の期間はPWM1、Vacが負の期間はPWM3を出力する。Q1はQ2の反転した波形で、Q3はQ4の反転した波形を使用するため、Q1とQ2、Q3とQ4はそれぞれ交互にON・OFFする。Q6はVacが正の期間にONし、Q5はVacが負の期間にONする。また、3角波発振器の波形形状は、のこぎり波でも問題無く動作する。   The error between the detection signal of the DC output voltage and the reference signal Vref 18 is amplified and integrated by the error amplifier 9 of the voltage loop, and the multiplication signal 10 is multiplied by the detection signal of the AC power source 1 to obtain the reference signal Iref of the AC input current. The difference voltage between the two voltage signals of the smoothing capacitor 7 is made to the Iref by the differential amplifier 17 and superimposed on the Iref by the addition operation circuit 11, and the output signal of the addition operation circuit 11 and the detection signal of the AC input current Is amplified and integrated by the error amplifier 9 in the current loop, and a sinusoidal signal is output. PWM modulation is performed with the four triangular wave oscillators 14, 15, 20, and 21 having different offset levels to generate PWM 1, 2, 3, 4 signals. Q4 outputs a PWM2 signal when Vac is positive and a PWM4 signal when Vac is negative. Q2 outputs PWM1 when Vac is positive and PWM3 when Vac is negative. Since Q1 uses the inverted waveform of Q2, and Q3 uses the inverted waveform of Q4, Q1 and Q2, and Q3 and Q4 are turned on and off alternately. Q6 turns on when Vac is positive, and Q5 turns on when Vac is negative. Further, the waveform shape of the triangular wave oscillator operates without a problem even with a sawtooth wave.

マルチレベルコンバータにおいて、本発明の制御方法にインターリーブ方式を適用した場合の回路図を図6に示す。図7に各部の波形を示す。   FIG. 6 shows a circuit diagram when the interleaving method is applied to the control method of the present invention in the multilevel converter. FIG. 7 shows the waveform of each part.

3角波発振器SAW5,6,7,8はそれぞれSAW1,2,3,4の波形から180°位相がずれたものである。ヒステリシス制御では周波数が変化してしまうためインターリーブ方式を適用することが難しいが、本発明の制御方法では搬送波キャリアの位相をずらすことで簡単にインターリーブ方式を適用することができる。   Triangular wave oscillators SAW5, 6, 7, and 8 are 180 ° out of phase with the waveforms of SAW1, 2, 3, and 4, respectively. In the hysteresis control, it is difficult to apply the interleave method because the frequency changes, but in the control method of the present invention, the interleave method can be easily applied by shifting the phase of the carrier wave.

複数のアームによるインターリーブ方式を適用することで、さらなる高域阻止フィルタの小型化・低コスト化を図ることができ、昇圧チョークとスイッチ素子の電流は小さくできる。   By applying the interleaving method using a plurality of arms, it is possible to further reduce the size and cost of the high-frequency blocking filter and reduce the currents of the boost choke and the switch element.

本発明の実施の形態に係るスイッチング電源装置を示す回路図である。It is a circuit diagram which shows the switching power supply device which concerns on embodiment of this invention. 本発明の実施の形態に係るスイッチング電源装置による各部の波形を示す図である。It is a figure which shows the waveform of each part by the switching power supply device which concerns on embodiment of this invention. 交流電源1の大きさと昇圧チョーク7の状態による電流経路の解析結果を示す図である。It is a figure which shows the analysis result of the current path by the magnitude | size of AC power supply 1, and the state of the pressure | voltage rise choke 7. FIG. Q1〜6のスイッチ素子の電流波形とそれぞれのゲート信号を示す図である。It is a figure which shows the current waveform of each switching element of Q1-6, and each gate signal. 図1と図6と図8の昇圧チョークのリップル電流の比較を示す図であり、上段の図は図8の従来の回路方式の昇圧チョークのリップル電流Irippleを示す図、中段の図は図1のマルチレベル方式の昇圧チョークのリップル電流Irippleを示す図、下段の図は図6のマルチレベル方式とインターリーブ方式との組み合わせによるリップル電流Irippleを示す図(下段)と、個々の昇圧チョークのリップル電流Iin1,Iin2を示す図(上段)である。FIG. 9 is a diagram showing a comparison of ripple currents of the boost choke of FIG. 1, FIG. 6, and FIG. 8. The upper diagram shows the ripple current Iripple of the boost choke of the conventional circuit system of FIG. 8, and the middle diagram is FIG. Fig. 6 shows the ripple current Iripple of the multi-level boost choke, and the lower diagram shows the ripple current Iripple (lower) of the combination of the multi-level method and the interleave method shown in Fig. 6 and the ripple current of each boost choke. It is a figure (upper stage) which shows Iin1 and Iin2. 本発明の別の実施の形態に係るスイッチング電源装置をインターリーブ方式に適用した場合の回路図である。It is a circuit diagram at the time of applying the switching power supply device which concerns on another embodiment of this invention to an interleave system. 図6の制御方法による各部の波形を示す図である。It is a figure which shows the waveform of each part by the control method of FIG. 従来のコンバータの回路方式を示す図である。It is a figure which shows the circuit system of the conventional converter.

符号の説明Explanation of symbols

1 交流電源
2 高域阻止フィルタ
3 電流検出素子
4 昇圧チョーク
5 スイッチ素子
6 整流ダイオード
7 平滑用コンデンサ
8 電気的負荷
9 誤差増幅器
10 乗算回路
11 加算演算回路
12 コンパレータ
13 NOT論理回路
14 三角波発振器SAW1
15 三角波発振器SAW2
16 AND論理回路
17 差動増幅器
18 基準電圧Vref
19 OR論理回路
20 三角波発振器SAW3
21 三角波発振器SAW4
22 三角波発振器SAW5(SAW1から180°位相がずれた波形)
23 三角波発振器SAW6(SAW2から180°位相がずれた波形)
24 三角波発振器SAW7(SAW3から180°位相がずれた波形)
25 三角波発振器SAW8(SAW4から180°位相がずれた波形)
26 のこぎり波発振器
DESCRIPTION OF SYMBOLS 1 AC power supply 2 High region blocking filter 3 Current detection element 4 Boost choke 5 Switch element 6 Rectifier diode 7 Smoothing capacitor 8 Electrical load 9 Error amplifier 10 Multiplication circuit 11 Addition operation circuit 12 Comparator 13 NOT logic circuit 14 Triangular wave oscillator SAW1
15 Triangular wave oscillator SAW2
16 AND logic circuit 17 Differential amplifier 18 Reference voltage Vref
19 OR logic circuit 20 Triangular wave oscillator SAW3
21 Triangular wave oscillator SAW4
22 Triangular wave oscillator SAW5 (waveform with 180 ° phase shift from SAW1)
23 Triangular wave oscillator SAW6 (waveform with 180 ° phase shift from SAW2)
24 Triangular wave oscillator SAW7 (waveform with 180 ° phase shift from SAW3)
25 Triangular wave oscillator SAW8 (waveform with 180 ° phase shift from SAW4)
26 sawtooth oscillator

Claims (1)

交流電源を入力とし、直流電圧を出力するコンバータであり、上記直流電圧出力の正負極間に2つ直列に接続されたコンデンサと4つ直列に接続されたスイッチ素子を並列接続し、上記2つ直列に接続されたコンデンサの間から上記4つ直列に接続されたスイッチ素子の一番正極側のスイッチ素子の負極端へ整流ダイオードを接続し、上記4つ直列に接続されたスイッチ素子の一番負極側のスイッチ素子の正極端から上記2つ直列に接続されたコンデンサの間へ整流ダイオードを接続することでマルチレベルのアームを構成し、上記直流電圧出力の正負極間に2つ直列に接続されたスイッチ素子のアームを並列接続し、高域阻止フィルタを介した上記交流電源に電流検出素子と昇圧チョークを直列接続したものを、上記マルチレベルのアームの間と上記2つ直列に接続されたスイッチ素子のアームの間に接続したマルチレベルコンバータを備えたスイッチング電源装置において、
上記直流出力電圧の検出信号と基準信号Vrefとの誤差分を電圧ループの誤差増幅器により増幅・積分し、乗算器により交流電源の検出信号と乗算することで交流入力電流の基準信号Irefを作り、上記Irefに上記2つ直列に接続されたコンデンサの2つの電圧検出信号の差分を加算演算回路によって重畳し、上記加算演算回路の出力信号と交流入力電流の検出信号との誤差分を電流ループの誤差増幅器により増幅・積分し、正弦波状の信号を出力し、4つのオフセットレベルの異なった搬送波キャリアとのPWM変調を行ない、上記高域阻止フィルタを介した交流電源の電流波形が歪み率(THD)の低い正弦波状になるように計6つのスイッチ素子を制御することを特徴とするスイッチング電源装置。
A converter that receives an AC power supply and outputs a DC voltage. Two capacitors connected in series and four switch elements connected in series between the positive and negative electrodes of the DC voltage output are connected in parallel. A rectifier diode is connected from between the capacitors connected in series to the negative terminal of the switch element on the most positive side of the four switch elements connected in series, and the first switch element connected in series is connected to the first switch element. A multi-level arm is constructed by connecting a rectifier diode between the two positively connected capacitors from the positive terminal of the negative-side switch element, and the two are connected in series between the positive and negative electrodes of the DC voltage output. The multi-level arm is formed by connecting the arm of the switch element connected in parallel and connecting the current detection element and the boosting choke in series to the AC power source via the high-frequency blocking filter. In the switching power supply apparatus having a multi-level converter which is connected between the between the arms of the two serially connected switching elements,
The difference between the detection signal of the DC output voltage and the reference signal Vref is amplified and integrated by the error amplifier of the voltage loop, and the reference signal Iref of the AC input current is created by multiplying the detection signal of the AC power source by the multiplier. The difference between the two voltage detection signals of the two capacitors connected in series is superimposed on Iref by an addition operation circuit, and the error between the output signal of the addition operation circuit and the detection signal of the AC input current is superimposed on the current loop. Amplifies and integrates by error amplifier, outputs sinusoidal signal, performs PWM modulation with carrier wave carrier with four different offset levels, and the current waveform of AC power supply through the high-frequency blocking filter is distortion rate (THD A switching power supply characterized by controlling a total of six switching elements so as to have a low sine wave shape.
JP2006308753A 2006-11-15 2006-11-15 Switching power supply Active JP4931558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308753A JP4931558B2 (en) 2006-11-15 2006-11-15 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308753A JP4931558B2 (en) 2006-11-15 2006-11-15 Switching power supply

Publications (2)

Publication Number Publication Date
JP2008125311A true JP2008125311A (en) 2008-05-29
JP4931558B2 JP4931558B2 (en) 2012-05-16

Family

ID=39509493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308753A Active JP4931558B2 (en) 2006-11-15 2006-11-15 Switching power supply

Country Status (1)

Country Link
JP (1) JP4931558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098957A3 (en) * 2015-05-26 2017-05-03 Delta Electronics, Inc. Detecting device and detecting method for detecting output impedance angle of inverter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328728A (en) * 1992-05-18 1993-12-10 Sanken Electric Co Ltd Ac/dc converter
JPH06233537A (en) * 1993-02-01 1994-08-19 Toshiba Corp Controller of neutral point clamp system converter
JPH08182342A (en) * 1994-12-21 1996-07-12 Hitachi Ltd Power converter
JP2002058257A (en) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd Control apparatus for multiple power converter
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328728A (en) * 1992-05-18 1993-12-10 Sanken Electric Co Ltd Ac/dc converter
JPH06233537A (en) * 1993-02-01 1994-08-19 Toshiba Corp Controller of neutral point clamp system converter
JPH08182342A (en) * 1994-12-21 1996-07-12 Hitachi Ltd Power converter
JP2002058257A (en) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd Control apparatus for multiple power converter
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098957A3 (en) * 2015-05-26 2017-05-03 Delta Electronics, Inc. Detecting device and detecting method for detecting output impedance angle of inverter
US9772360B2 (en) 2015-05-26 2017-09-26 Delta Electronics, Inc. Detecting device and detecting method for detecting output impedance angle of inverter

Also Published As

Publication number Publication date
JP4931558B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP3994953B2 (en) Power factor correction circuit
US9419542B2 (en) Inverter device
JP2008125310A (en) Switching power supply
JP2012239265A (en) Matrix converter
JP2007097319A (en) Ac/dc conversion circuit
WO2011024351A1 (en) Power conversion device and control method therefor
WO2014115777A1 (en) Matrix convertor
JP2016187279A (en) Three-phase/single phase matric converter
WO2012094670A2 (en) Dc-dc converter
JP4929863B2 (en) Power converter
JP2011172372A (en) Pfc converter
JP6142926B2 (en) Power converter
JP2008125313A (en) Switching power supply
US8456879B2 (en) Switching power supply apparatus
JP2010119159A (en) Dc power supply unit and air conditioner equipped with it
JP2005218224A (en) Power factor improving circuit
JP2010063326A (en) Power conversion device
JP2004135372A (en) Power-factor-improved converter
JP5323383B2 (en) Power converter
JP6286380B2 (en) Power converter
JP4931558B2 (en) Switching power supply
TWI759932B (en) Interleaved three phase wye-delta connected power converter
JP2006025540A (en) Power converter
JP5950970B2 (en) Power converter
JP2000262071A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250