JP2008125313A - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP2008125313A
JP2008125313A JP2006308755A JP2006308755A JP2008125313A JP 2008125313 A JP2008125313 A JP 2008125313A JP 2006308755 A JP2006308755 A JP 2006308755A JP 2006308755 A JP2006308755 A JP 2006308755A JP 2008125313 A JP2008125313 A JP 2008125313A
Authority
JP
Japan
Prior art keywords
power supply
current
choke
arm
boosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308755A
Other languages
Japanese (ja)
Inventor
Sakae Shibazaki
栄 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006308755A priority Critical patent/JP2008125313A/en
Publication of JP2008125313A publication Critical patent/JP2008125313A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and the cost of an input filter in a high power factor switching power supply (PFC), and to reduce a loss of the power supply caused by a semiconductor. <P>SOLUTION: The switching power supply achieves high efficiency by employing a two-transistor critical mode PFC interleave system in place of a single transistor critical mode PFC interleave system thereby reducing a loss of a VF by a diode bridge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は交流電源を入力とする高力率形スイッチング電源装置(以下PFC)の改善に関するものである。   The present invention relates to an improvement of a high power factor type switching power supply (hereinafter referred to as PFC) using an AC power supply as an input.

従来のPFCとして図4、図6に示すような回路方式がある。   As a conventional PFC, there are circuit systems as shown in FIGS.

図4は1石式の電流臨界モードPFCで、図6は図4のPFCを複数並列接続し、それぞれの昇圧チョークのリップル電流の位相差を均等に制御する。これにより、入力フィルタに流れる高周波リップル電流の周波数を上げ、且つ高周波成分の振幅を小さくすることができ、入力フィルタの小型化・低コスト化を達成するものである。(特許文献1参照)
特開2006−204008号公報
FIG. 4 is a one-stone current critical mode PFC, and FIG. 6 is a parallel connection of a plurality of PFCs of FIG. 4 to uniformly control the phase difference of the ripple current of each boost choke. As a result, the frequency of the high-frequency ripple current flowing through the input filter can be increased and the amplitude of the high-frequency component can be reduced, and the input filter can be reduced in size and cost. (See Patent Document 1)
JP 2006-204008 A

しかしながら、大きな出力容量で高い効率を実現するには、これらの1石式の回路方式ではダイオードブリッジによるVF2個分で発生する損失が大きいという問題がある。   However, in order to realize high efficiency with a large output capacity, there is a problem that the loss generated by two VFs due to the diode bridge is large in these one-stone circuit systems.

本発明は上記課題を鑑みてなされたものであり、入力フィルタの小型化・低コスト化、且つ、半導体によって発生する装置の損失低減を達成可能なスイッチング電源装置を提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a switching power supply device that can achieve a reduction in size and cost of an input filter and a reduction in loss of a device generated by a semiconductor. It is.

上記した目的を達成するため、本発明は、交流電源を入力とし、直流電圧を出力するコンバータであり、上記直流電圧出力の正負極に平滑用コンデンサと2つ直列のスイッチ素子のアームと2つ直列の整流ダイオードを接続し、高域阻止フィルタを介した上記交流電源に電流検出素子と昇圧チョークを直列接続し、上記昇圧チョークの一端と上記高域阻止フィルタの一端を上記アームの中間点と上記整流ダイオードの中間点に接続し、上記昇圧チョークの励磁がリセットされた後にオンが始まるように制御された臨界制御モード高力率形スイッチング電源に、電流検出素子と昇圧チョークと2つ直列のスイッチ素子のアームによって構成される昇圧動作を行なう回路が上記高域阻止フィルタの出力と上記直流電圧出力の正負極に複数台接続されたスイッチング電源装置において、上記アームの電流を別のアームを制御する電流閾値に減算することによってオフタイミングをずらす制御をループ状に構成し、全ての昇圧チョークのリップル電流の位相差を均等に制御することを特徴とする。   In order to achieve the above-described object, the present invention is a converter that receives an AC power supply and outputs a DC voltage. The DC voltage output has positive and negative electrodes, a smoothing capacitor, two series switch element arms, and two. A series rectifier diode is connected, a current detecting element and a boost choke are connected in series to the AC power source via a high-frequency blocking filter, and one end of the boost choke and one end of the high-frequency blocking filter are connected to the intermediate point of the arm. A critical control mode high power factor type switching power supply connected to the intermediate point of the rectifier diode and controlled to start after the boost choke excitation is reset is connected in series with a current detection element and two boost chokes. A plurality of booster operation circuits composed of switch element arms are connected to the output of the high-frequency block filter and the positive and negative electrodes of the DC voltage output. In the switching power supply unit, the control of shifting the off timing by subtracting the current of the above arm from the current threshold value for controlling another arm is configured in a loop, and the phase difference of the ripple current of all boosting chokes is equally controlled It is characterized by doing.

本発明によれば、入力フィルタの小型化・低コスト化を達成し、且つ、半導体によって発生する損失を低減できる。   According to the present invention, it is possible to reduce the size and cost of the input filter and reduce the loss caused by the semiconductor.

図1に本発明を実施するための回路図を示す。   FIG. 1 shows a circuit diagram for carrying out the present invention.

交流電源を入力とし、直流電圧を出力するコンバータの構成となっている。直流電圧出力の正負極に平滑用コンデンサ7と2つ直列のスイッチ素子5のアームと2つ直列の整流ダイオード6を接続する。交流電源1は高域阻止フィルタ2を介し、電流検出素子3と昇圧チョーク4に直列接続する。昇圧チョーク4の一端と高域阻止フィルタ2の一端を、アームの中間点と整流ダイオード6の中間点に接続する。直流出力に接続された平滑用コンデンサ7には電気的負荷8が接続される。   The converter has a configuration in which an AC power supply is input and a DC voltage is output. A smoothing capacitor 7, two series switch arms 5 and two series rectifier diodes 6 are connected to the positive and negative electrodes of the DC voltage output. The AC power source 1 is connected in series to the current detection element 3 and the boost choke 4 via the high-frequency blocking filter 2. One end of the boosting choke 4 and one end of the high-pass blocking filter 2 are connected to the intermediate point of the arm and the intermediate point of the rectifier diode 6. An electrical load 8 is connected to the smoothing capacitor 7 connected to the DC output.

直流出力電圧を誤差増幅器9によって基準電圧Vref18との電圧の誤差分を増幅・積分し、乗算器10によって入力電圧の全波整流信号との乗算を行ない電流基準信号Irefを出力する。このIrefと、電流検出素子3によって検出した入力電流の全波整流信号をコンパレータ12によって比較しRSラッチ回路14のリセット信号とする。   The DC output voltage is amplified and integrated by the error amplifier 9 with respect to the voltage error from the reference voltage Vref18, and the multiplier 10 multiplies the input voltage by the full-wave rectified signal to output a current reference signal Iref. The comparator 12 compares the Iref and the full-wave rectified signal of the input current detected by the current detection element 3 to obtain a reset signal for the RS latch circuit 14.

また、オンするタイミングは昇圧チョーク4の電圧検出巻線により検出する。交流電源1の電圧極性の正負を検出し、正負の期間ごとに電圧検出巻線の電圧を分けて検出することで昇圧チョーク4の励磁のリセットを検出し、RSラッチ回路14のセット信号とする。RSラッチ回路14の出力により、交流電源1の電圧が正の期間はアームの下側のスイッチ素子5をオンオフし、負の期間はアームの上側のスイッチ素子5をオンオフする。   The turn-on timing is detected by the voltage detection winding of the boost choke 4. By detecting the polarity of the voltage polarity of the AC power supply 1 and detecting the voltage of the voltage detection winding separately for each positive and negative period, the reset of excitation of the boost choke 4 is detected and used as a set signal for the RS latch circuit 14 . The output of the RS latch circuit 14 turns on / off the switch element 5 on the lower side of the arm while the voltage of the AC power supply 1 is positive, and turns on / off the switch element 5 on the upper side of the arm during the negative period.

各スイッチ素子5には電流検出素子3を接続し、検出した電流信号を加算回路23により加算する。さらに、もう一組の電流検出素子と昇圧チョークと2つ直列のスイッチ素子のアームによって構成される回路と、それを臨界モードで制御する制御回路から成る昇圧回路を高域阻止フィルタの出力と直流電圧出力の正負極に複数台接続する。   The current detection element 3 is connected to each switch element 5, and the detected current signal is added by the addition circuit 23. Further, a booster circuit comprising a circuit composed of another pair of current detecting elements, a booster choke and two series switch element arms, and a control circuit for controlling it in a critical mode, is connected to the output of the high-frequency blocking filter and the direct current. Connect multiple units to the positive and negative electrodes of the voltage output.

アームの電流をもう一組のアームを制御する電流閾値である電流基準信号Irefに加減算回路24によって減算することによってオフタイミングをずらす制御を行なう。この制御をループ状に構成することによって、全ての昇圧チョークのリップル電流の位相差を均等に制御することができる。   Control for shifting the off timing is performed by subtracting the current of the arm by the addition / subtraction circuit 24 from the current reference signal Iref which is a current threshold value for controlling another set of arms. By configuring this control in a loop shape, the phase difference of the ripple currents of all the boost chokes can be controlled uniformly.

本発明は昇圧回路が複数台接続できる特徴があるが、図2は最小の構成となる昇圧回路が2組の時の本発明の実施例である。図3は図2の各部の波形である。   The present invention is characterized in that a plurality of booster circuits can be connected. FIG. 2 shows an embodiment of the present invention when there are two sets of booster circuits having the minimum configuration. FIG. 3 shows waveforms at various parts in FIG.

図3に示すように、Irip(1)とIrip(2)の和がIrippleとなり、昇圧チョークのリップル電流の位相差を均等に制御している。昇圧回路が2組の例では、Irippleの高周波リップル成分の周波数は2倍となる。そのため、昇圧回路の組数を増やすほど本発明の効果を大きくすることができる。   As shown in FIG. 3, the sum of Irip (1) and Irip (2) becomes Iripple, and the phase difference of the ripple current of the boost choke is controlled uniformly. In the example of two booster circuits, the frequency of the high-frequency ripple component of Iripple is doubled. Therefore, the effect of the present invention can be increased as the number of booster circuit sets is increased.

本発明の実施の形態に係るスイッチング電源装置を示す回路図である。It is a circuit diagram which shows the switching power supply device which concerns on embodiment of this invention. 本発明の別の実施の形態に係るスイッチング電源装置であって、昇圧回路がふたつの時の回路図である。FIG. 10 is a circuit diagram of a switching power supply apparatus according to another embodiment of the present invention when there are two booster circuits. 図2の各部の波形を示す図である。It is a figure which shows the waveform of each part of FIG. 従来例の1石式の電流臨界モードPFCの回路図である。FIG. 6 is a circuit diagram of a conventional one-crystal current critical mode PFC. 図4の電流臨界モードPFCの昇圧チョークの電流波形を示す図である。FIG. 5 is a diagram showing a current waveform of a boost choke in the current critical mode PFC of FIG. 4. 別の従来例(特許文献1)の回路図である。It is a circuit diagram of another conventional example (patent document 1). 図6の昇圧チョークの電流波形を示す図である。It is a figure which shows the electric current waveform of the pressure | voltage rise choke of FIG.

符号の説明Explanation of symbols

1 交流電源
2 高域阻止フィルタ
3 電流検出素子
4 昇圧チョーク
5 スイッチ素子
6 整流ダイオード
7 平滑用コンデンサ
8 電気的負荷
9 誤差増幅器
10 乗算回路
11 絶対値演算回路
12 コンパレータ
13 NOT論理回路
14 RSラッチ回路
15 OR論理回路
16 AND論理回路
17 差動増幅器
18 基準電圧Vref
19 タイマー回路
20 ディレイ遅延回路
21 閾値を設定する為のVthの電圧源
22 閾値を設定する為の−Vthの電圧源
23 加算回路
24 加減算回路
25 ブリッジダイオード
26 電流検出抵抗
27 臨界制御モードPFC
DESCRIPTION OF SYMBOLS 1 AC power supply 2 High frequency block filter 3 Current detection element 4 Boost choke 5 Switch element 6 Rectifier diode 7 Smoothing capacitor 8 Electric load 9 Error amplifier 10 Multiplication circuit 11 Absolute value calculation circuit 12 Comparator 13 NOT logic circuit 14 RS latch circuit 15 OR logic circuit 16 AND logic circuit 17 differential amplifier 18 reference voltage Vref
19 Timer circuit 20 Delay delay circuit 21 Vth voltage source 22 for setting the threshold value −Vth voltage source 23 for setting the threshold value 23 Adder circuit 24 Addition / subtraction circuit 25 Bridge diode 26 Current detection resistor 27 Critical control mode PFC

Claims (1)

交流電源を入力とし、直流電圧を出力するコンバータであり、上記直流電圧出力の正負極に平滑用コンデンサと2つ直列のスイッチ素子のアームと2つ直列の整流ダイオードを接続し、高域阻止フィルタを介した上記交流電源に電流検出素子と昇圧チョークを直列接続し、上記昇圧チョークの一端と上記高域阻止フィルタの一端を上記アームの中間点と上記整流ダイオードの中間点に接続し、上記昇圧チョークの励磁がリセットされた後にオンが始まるように制御された臨界制御モード高力率形スイッチング電源に、電流検出素子と昇圧チョークと2つ直列のスイッチ素子のアームによって構成される昇圧動作を行なう回路が上記高域阻止フィルタの出力と上記直流電圧出力の正負極に複数台接続されたスイッチング電源装置において、
上記アームの電流を別のアームを制御する電流閾値に減算することによってオフタイミングをずらす制御をループ状に構成し、全ての昇圧チョークのリップル電流の位相差を均等に制御することを特徴とするスイッチング電源装置。
A converter that takes an AC power supply as an input and outputs a DC voltage, and a high-frequency blocking filter comprising a smoothing capacitor, two series switch element arms, and two series rectifier diodes connected to the positive and negative electrodes of the DC voltage output. A current detecting element and a boosting choke are connected in series to the AC power source via the power supply, and one end of the boosting choke and one end of the high-pass blocking filter are connected to the midpoint of the arm and the midpoint of the rectifier diode, A critical control mode high power factor type switching power supply controlled to start on after the excitation of the choke is reset performs a boosting operation constituted by an arm of a current detection element, a boosting choke, and two switching elements in series. In a switching power supply device in which a plurality of circuits are connected to the output of the high-frequency blocking filter and the positive and negative electrodes of the DC voltage output,
A control for shifting the off timing by subtracting the current of the arm from a current threshold value for controlling another arm is configured in a loop shape, and the phase difference of the ripple currents of all boosting chokes is uniformly controlled. Switching power supply.
JP2006308755A 2006-11-15 2006-11-15 Switching power supply Pending JP2008125313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308755A JP2008125313A (en) 2006-11-15 2006-11-15 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308755A JP2008125313A (en) 2006-11-15 2006-11-15 Switching power supply

Publications (1)

Publication Number Publication Date
JP2008125313A true JP2008125313A (en) 2008-05-29

Family

ID=39509495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308755A Pending JP2008125313A (en) 2006-11-15 2006-11-15 Switching power supply

Country Status (1)

Country Link
JP (1) JP2008125313A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074969A (en) * 2008-09-19 2010-04-02 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
EP2276157A1 (en) * 2009-07-17 2011-01-19 Huawei Technologies Co., Ltd. Power converter, device and method for interleaving controlling power factor correction circuits
JP2011019323A (en) * 2009-07-08 2011-01-27 Sanken Electric Co Ltd Power factor correction circuit
CN102549900A (en) * 2009-08-10 2012-07-04 艾默生环境优化技术有限公司 System and method for rejecting DC current in power factor correction systems
US9088232B2 (en) 2009-08-10 2015-07-21 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US9154061B2 (en) 2009-08-10 2015-10-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9240749B2 (en) 2012-08-10 2016-01-19 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186768A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Dc power source unit
JP2006204008A (en) * 2005-01-20 2006-08-03 Shindengen Electric Mfg Co Ltd Switching power unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186768A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Dc power source unit
JP2006204008A (en) * 2005-01-20 2006-08-03 Shindengen Electric Mfg Co Ltd Switching power unit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074969A (en) * 2008-09-19 2010-04-02 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion apparatus
JP2011019323A (en) * 2009-07-08 2011-01-27 Sanken Electric Co Ltd Power factor correction circuit
EP2276157A1 (en) * 2009-07-17 2011-01-19 Huawei Technologies Co., Ltd. Power converter, device and method for interleaving controlling power factor correction circuits
CN101958657A (en) * 2009-07-17 2011-01-26 华为技术有限公司 Power supply switching circuit, equipment and alternate control method of power factor correction circuit
US9154061B2 (en) 2009-08-10 2015-10-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9088232B2 (en) 2009-08-10 2015-07-21 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
CN102549900A (en) * 2009-08-10 2012-07-04 艾默生环境优化技术有限公司 System and method for rejecting DC current in power factor correction systems
US9564846B2 (en) 2009-08-10 2017-02-07 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US9705433B2 (en) 2009-08-10 2017-07-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9912263B2 (en) 2009-08-10 2018-03-06 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US9991834B2 (en) 2012-04-26 2018-06-05 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US10075116B2 (en) 2012-04-26 2018-09-11 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
US9240749B2 (en) 2012-08-10 2016-01-19 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
US9853588B2 (en) 2012-08-10 2017-12-26 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping

Similar Documents

Publication Publication Date Title
US8094473B2 (en) Bridgeless power factor correction circuit
JP5316823B2 (en) PFC converter
US9516708B2 (en) Method for operating an LLC resonant converter for a light-emitting means, converter, and LED converter device
JP5182375B2 (en) PFC converter
JP2008125310A (en) Switching power supply
TWI633807B (en) Switching power supply system, control circuit and associated control method
JP2008125313A (en) Switching power supply
CN102820799B (en) Switching power supply circuit, semiconductor device, and LED lighting device
WO2011052197A1 (en) Switching power supply circuit and power factor controller
JP6479160B2 (en) Converter device
US9917503B2 (en) Overcurrent protection circuit and power factor correction circuit comprising the same
TW201924202A (en) Bridgeless AC-DC converter with power factor correction and method therefor
CN109889062B (en) Power converter and method of controlling power converter
US20150138856A1 (en) Power factor correction autodetect
US10148170B2 (en) Switching power converter with magnetizing current shaping
JP2008278679A (en) Power factor improvement circuit
US20180026521A1 (en) Ripple suppression method, circuit and load driving circuit thereof
JP2004260989A (en) Switching power supply
TWI551024B (en) Ac-dc power conversion device and control method thereof
JP5004559B2 (en) Switching power supply
JP5691495B2 (en) LED driving power supply device and LED lighting device
JP4518965B2 (en) Switching power supply
JP5222587B2 (en) Power factor correction circuit
JP6134492B2 (en) Lighting device
JP6557460B2 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417