JP2007028860A - Power-converting device and rolling stock equipped with the same - Google Patents

Power-converting device and rolling stock equipped with the same Download PDF

Info

Publication number
JP2007028860A
JP2007028860A JP2005210720A JP2005210720A JP2007028860A JP 2007028860 A JP2007028860 A JP 2007028860A JP 2005210720 A JP2005210720 A JP 2005210720A JP 2005210720 A JP2005210720 A JP 2005210720A JP 2007028860 A JP2007028860 A JP 2007028860A
Authority
JP
Japan
Prior art keywords
switching element
semiconductor switching
terminal
power
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005210720A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kono
恭彦 河野
Mutsuhiro Mori
睦宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005210720A priority Critical patent/JP2007028860A/en
Publication of JP2007028860A publication Critical patent/JP2007028860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small power conversion device that reduces the number of component parts, constituting a multiple-level power-converting device and that has less power loss. <P>SOLUTION: In this power-converting device, connection units, in which a plurality of switching devices comprising IGBTs and diodes connected inverse parallel are connected in series, are connected to both ends of two DC voltage source connected in series. The connection point of the series connection of the switching devices comprising IGBTs and diodes connected inverse parallel is used as an AC output terminal. Furthermore, two switching elements, having backward breakdown strength voltage are connected in reverse parallel, and its one end is connected to an intermediate terminal of the DC voltage, and the other end connected to the AC output terminal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、直流と交流を相互に変換する電力変換装置と、この電力変換器を備えた鉄道車輌に関する。   The present invention relates to a power conversion device that converts direct current and alternating current to each other, and a railway vehicle including the power converter.

電力変換技術の中で最も重要な技術の一つに直流から交流を生成するインバータがある。特にスイッチング素子にIGBTを使ったIGBTインバータは、家電品から鉄道車両まで広い分野で使われている。   One of the most important technologies in power conversion technology is an inverter that generates alternating current from direct current. In particular, IGBT inverters using IGBTs as switching elements are used in a wide range of fields from home appliances to railway vehicles.

インバータには2つの直流電位から交流を生成する2レベルインバータと、3つ以上の複数の直流電位から交流を生成するマルチレベルインバータがある。2レベルインバータは部品点数が少なく、小型・安価という特徴がある。一方、マルチレベルインバータは出力する交流にひずみが少なく、低騒音・低ノイズという特徴を持つ。   There are two-level inverters that generate AC from two DC potentials and multi-level inverters that generate AC from three or more DC potentials. The two-level inverter has a small number of parts, and is small and inexpensive. On the other hand, multi-level inverters are characterized by low distortion and low noise with little distortion in the output AC.

図2に特許文献1に開示の3レベルインバータの回路でU相のみ取り出したものを示す。図2で符号201〜204はトランジスタ、211、214はフリーホイールダイオード、231、232はクランプダイオード、250は交流出力端子、251、252は電源コンデンサ、253は中性点である。   FIG. 2 shows a three-level inverter circuit disclosed in Patent Document 1 in which only the U phase is extracted. In FIG. 2, reference numerals 201 to 204 are transistors, 211 and 214 are free wheel diodes, 231 and 232 are clamp diodes, 250 is an AC output terminal, 251 and 252 are power supply capacitors, and 253 is a neutral point.

図2の回路において、トランジスタ201がオンしトランジスタ204がオフしている場合には正の直流電位が交流出力端子250に出力され、トランジスタ202、203がオンし、トランジスタ201、204がオフの場合には中性点253の電位が出力され、トランジスタ204がオンし、トランジスタ201がオフしている場合には負の電位が出力される。これにより、直流電源から交流を生成する。   In the circuit of FIG. 2, when the transistor 201 is turned on and the transistor 204 is turned off, a positive DC potential is output to the AC output terminal 250, the transistors 202 and 203 are turned on, and the transistors 201 and 204 are turned off. , The potential of the neutral point 253 is output, and when the transistor 204 is turned on and the transistor 201 is turned off, a negative potential is output. As a result, alternating current is generated from the direct current power source.

特開昭56−121374号公報(第3図、第6図、2ページ左下欄6行〜2ページ右下欄13行と、3ページ右下欄5行〜14行の記載。)Japanese Patent Application Laid-Open No. 56-121374 (FIGS. 3 and 6, description on page 2, lower left column, line 6 to page 2, lower right column, line 13 and page 3, lower right column, lines 5 to 14)

しかし、図2に示す従来技術のインバータでは、正の電圧が出力される場合にはトランジスタ201がオンして電流が直流側から交流側に流れるが、この際にはトランジスタ一個しか素子を通らないために、損失は、トランジスタの抵抗R×電流値Iとなる。一方中性点から交流出力端子250に電流を流す場合にはダイオードとトランジスタの二つの素子を電流が通るために損失は(ダイオードの抵抗Rd+トランジスタの抵抗R)×電流値Iとなり、中性点から電流を出力する場合の損失が大きくなる。   However, in the prior art inverter shown in FIG. 2, when a positive voltage is output, the transistor 201 is turned on and current flows from the DC side to the AC side, but in this case, only one transistor passes through the element. Therefore, the loss is the resistance R × current value I of the transistor. On the other hand, when a current is passed from the neutral point to the AC output terminal 250, since the current passes through the two elements of the diode and the transistor, the loss becomes (diode resistance Rd + transistor resistance R) × current value I. The loss in the case of outputting current from becomes large.

本発明の目的は、損失を低減した小型・軽量の電力変換装置とこの電力変換装置を搭載した鉄道車輌の提供である。   An object of the present invention is to provide a small and lightweight power conversion device with reduced loss and a railway vehicle equipped with the power conversion device.

本発明の電力変換装置は、直列接続した第1の直流電圧源と第2の直流電圧源と、前記直流電圧源の両端の第1の端子と第2の端子と、第1の直流電源と第2の直流電源の接続点に接続された第3の端子とを有し、自己消弧能力を持つ半導体スイッチング素子である第1のIGBTと第2のIGBTと、この2個のIGBTにそれぞれ逆並列に接続したダイオードとから構成されるスイッチングデバイスを一相当り少なくとも2個用い、この2つのスイッチングデバイスを直列接続し、この両端を前記第1の端子と第2の端子に接続し、前記2つのスイッチングデバイスの接続点を交流出力端子とする第1の回路と、逆並列接続した第3のIGBTと第4のIGBTとからなる第3のスイッチングデバイスと、前記第3のスイッチングデバイスを前記第3の端子と前記交流出力端子とに接続する第2の回路とを有し、前記第3のIGBTと第4のIGBTが逆方向耐圧を持つ。   The power converter of the present invention includes a first DC voltage source and a second DC voltage source connected in series, a first terminal and a second terminal at both ends of the DC voltage source, a first DC power source, A first terminal and a second IGBT, which are semiconductor switching elements having a self-extinguishing capability, and a third terminal connected to the connection point of the second DC power source, At least two switching devices composed of diodes connected in antiparallel are used, the two switching devices are connected in series, and both ends thereof are connected to the first terminal and the second terminal, A first circuit having an AC output terminal as a connection point of the two switching devices; a third switching device including a third IGBT and a fourth IGBT connected in reverse parallel; and the third switching device. The and a second circuit connected to said AC output terminal and the third terminal, the third IGBT and the fourth IGBT has a reverse breakdown voltage.

そして、前記第3のIGBTがオン状態からオフ状態に移行するよりも少なくとも1μs以上前に第4のIGBTにオン指令が入力されている。同様に、前記第4のIGBTがオン状態からオフ状態に移行するよりも少なくとも1μs以上前に第3のIGBTにオン指令が入力されている。また、前記第3のIGBTと第4のIGBTがノンパンチスルー型IGBTであり、さらに、前記第3のIGBTと第4のIGBTの順方向耐圧、逆方向耐圧が、前記直流電源の第1の端子と第2の端子の間の電圧の1/2よりも高い。   An ON command is input to the fourth IGBT at least 1 μs or more before the third IGBT shifts from the ON state to the OFF state. Similarly, the ON command is input to the third IGBT at least 1 μs or more before the fourth IGBT shifts from the ON state to the OFF state. The third IGBT and the fourth IGBT are non-punch through IGBTs, and the forward breakdown voltage and the reverse breakdown voltage of the third IGBT and the fourth IGBT are the first breakdown voltage of the DC power supply. It is higher than ½ of the voltage between the terminal and the second terminal.

本発明によれば、電力装置の小型化・軽量化が図れ、損失を低減できる。この、損失の低減により放熱器を小型・軽量にでき、本発明の電力変換装置を搭載した鉄道車輌では、客席・貨物スペースの容量増加、車輌の高速化が達成できる。   According to the present invention, the power device can be reduced in size and weight, and loss can be reduced. By reducing the loss, the radiator can be made smaller and lighter, and in the railway vehicle equipped with the power conversion device of the present invention, the capacity of passenger seats and cargo space can be increased and the speed of the vehicle can be increased.

以下、本発明の詳細を図面を用いて説明する。   Hereinafter, details of the present invention will be described with reference to the drawings.

図1は本実施例の電力変換装置の説明図を示す。図1において符号101、104はIGBT、102、103は逆阻止IGBT、111、114はフリーホイールダイオード、121〜124はゲートドライバ、150は交流出力端子、151、152は電源コンデンサ、153は中性点である。ここで、逆阻止IGBTとは、逆耐圧を持つIGBTである。   FIG. 1 is an explanatory diagram of a power conversion apparatus according to this embodiment. 1, reference numerals 101 and 104 are IGBTs, 102 and 103 are reverse blocking IGBTs, 111 and 114 are free wheel diodes, 121 to 124 are gate drivers, 150 is an AC output terminal, 151 and 152 are power supply capacitors, and 153 is neutral. Is a point. Here, the reverse blocking IGBT is an IGBT having a reverse breakdown voltage.

本実施例の回路の動作を図3の波形を使って説明する。図3は図1の回路のゲートドライバ121〜124に入力する指令パターンと交流出力端子150に出力される電圧波形を示している。電流が交流出力端子150から負荷に流れ出ている場合を説明する。時刻t1以前は逆阻止IGBT103だけがオンしている。しかし逆阻止IGBT103は電流に対して逆方向に接続されているので、交流出力端子150から流れ出す電流は、フリーホイールダイオード114を通して負の電源側から供給される。このためにこの期間の交流出力端子150の電位は負になっている。   The operation of the circuit of this embodiment will be described using the waveforms in FIG. FIG. 3 shows a command pattern input to the gate drivers 121 to 124 of the circuit of FIG. 1 and a voltage waveform output to the AC output terminal 150. A case where current flows from the AC output terminal 150 to the load will be described. Prior to time t1, only the reverse blocking IGBT 103 is on. However, since the reverse blocking IGBT 103 is connected in the reverse direction to the current, the current flowing out from the AC output terminal 150 is supplied from the negative power supply side through the freewheel diode 114. For this reason, the potential of the AC output terminal 150 during this period is negative.

次に、時刻t1で逆阻止IGBT102がオンすると、電流は中性点153から逆阻止IGBT102を通って交流出力端子150に流れる。この時、交流出力端子150の電位は中性点153の電位になる。次に時刻t2で逆阻止IGBT103がオフするが、逆阻止IGBT103にはもともと電流が流れていないので電流に変化はない。続いて時刻t3でIGBT101がオンすると、電流はIGBT101を通して直流電源の正側から交流出力端子150に流れる。逆阻止IGBT102は逆方向に電圧が印加されるためにオフ状態となる。また、逆阻止IGBT103は順方向に電圧が印加されるが、ゲートドライバ123への入力信号がオフであるため、電流は流れない。この期間は正の電圧が交流出力端子に出力される。時刻t4でIGBT101がオフすると電流は再び逆阻止IGBT102から流れるようになり、交流出力端子150には中性点153の電圧が出力される。時刻t5で逆阻止IGBT103がオンしても逆方向であるために電流の流れは変化せず、出力電圧は変わらない。時刻t6では逆阻止IGBT102がオフすると電流は直流電圧の負側からフリーホイールダイオード114を通って交流出力端子150に流れる。この時、逆阻止IGBT103には逆方向の電圧が印加される。また、逆阻止IGBT102には順方向の電圧が印加されるがゲートドライバ122にオフの信号が入力されているために、電流は流れない。この期間には負の電位が交流出力端子150に出力される。時刻t7にIGBT104がオンしても電流はフリーホイールダイオード114を流れているために、変化は起きない。時刻t8でIGBT104がオフしても同様に電流に変化は起きず、出力電圧も負の電位のままである。時刻t9で再び逆阻止IGBT102がオンすると、電流は中性点153から逆阻止IGBT102を通って交流出力端子150に流れるようになり、交流出力端子150には中性点153の電位が出力される。このようにして、直流電圧から負と中性点と正の電位からなる交流波形が生成される。   Next, when reverse blocking IGBT 102 is turned on at time t <b> 1, current flows from neutral point 153 through reverse blocking IGBT 102 to AC output terminal 150. At this time, the potential of the AC output terminal 150 becomes the potential of the neutral point 153. Next, the reverse blocking IGBT 103 is turned off at time t2, but since no current flows through the reverse blocking IGBT 103, the current does not change. Subsequently, when the IGBT 101 is turned on at time t3, a current flows from the positive side of the DC power supply to the AC output terminal 150 through the IGBT 101. The reverse blocking IGBT 102 is turned off because a voltage is applied in the reverse direction. Further, although the reverse blocking IGBT 103 is applied with a voltage in the forward direction, no current flows because the input signal to the gate driver 123 is off. During this period, a positive voltage is output to the AC output terminal. When the IGBT 101 is turned off at time t 4, the current again flows from the reverse blocking IGBT 102, and the voltage at the neutral point 153 is output to the AC output terminal 150. Even if the reverse blocking IGBT 103 is turned on at time t5, the current flow does not change because the reverse direction is applied, and the output voltage does not change. At time t6, when the reverse blocking IGBT 102 is turned off, current flows from the negative side of the DC voltage to the AC output terminal 150 through the free wheel diode 114. At this time, a reverse voltage is applied to the reverse blocking IGBT 103. Further, although a forward voltage is applied to the reverse blocking IGBT 102, no current flows because an OFF signal is input to the gate driver 122. During this period, a negative potential is output to the AC output terminal 150. Even if the IGBT 104 is turned on at the time t7, the current flows through the free wheel diode 114, so that no change occurs. Even if the IGBT 104 is turned off at time t8, the current does not change in the same manner, and the output voltage remains at a negative potential. When the reverse blocking IGBT 102 is turned on again at time t9, the current flows from the neutral point 153 through the reverse blocking IGBT 102 to the AC output terminal 150, and the potential of the neutral point 153 is output to the AC output terminal 150. . In this way, an AC waveform composed of a negative voltage, a neutral point, and a positive potential is generated from the DC voltage.

本回路の制御で注意しなければならないのは、逆阻止IGBT102と逆阻止IGBT103をオン、オフさせるタイミングである。逆耐圧を持つIGBTである逆阻止IGBTは、逆方向に電圧を印加する場合にはゲートに正の電圧を印加しておかなければならない。なぜなら、ゲートに正の電圧を印加しないで逆方向電圧を印加すると漏れ電流が発生して、損失を発生させ、最悪の場合、損失による発熱でIGBTが破壊する場合もあるためである。このために、逆方向の電圧が印加されるIGBTのゲートには前もって正の電圧を印加しておくことが好ましい。図3では、時刻t3にIGBT101がオンし、逆阻止IGBT103に逆方向電圧がかかる前の時刻t2で、逆阻止IGBT103のゲートに正の電圧を入力している。このt2とt3の間隔はIGBTの動作遅延などを考慮し、少なくとも1μs以上は必要である。これはゲートドライバからオンの信号がIGBTのゲートに入力されてから、実際にIGBTのゲート電圧がオン状態まで増加するのに必要な時間である。   What should be noted in the control of this circuit is the timing when the reverse blocking IGBT 102 and the reverse blocking IGBT 103 are turned on and off. A reverse blocking IGBT, which is an IGBT having a reverse withstand voltage, must apply a positive voltage to the gate when applying a voltage in the reverse direction. This is because if a reverse voltage is applied to the gate without applying a positive voltage, a leakage current is generated and a loss occurs. In the worst case, the IGBT may be destroyed due to heat generated by the loss. For this reason, it is preferable to apply a positive voltage in advance to the gate of the IGBT to which a reverse voltage is applied. In FIG. 3, the IGBT 101 is turned on at time t <b> 3 and a positive voltage is input to the gate of the reverse blocking IGBT 103 at time t <b> 2 before reverse voltage is applied to the reverse blocking IGBT 103. The interval between t2 and t3 needs to be at least 1 μs in consideration of the operation delay of the IGBT. This is the time required for the gate voltage of the IGBT to actually increase to the ON state after the ON signal is input from the gate driver to the gate of the IGBT.

以上のような駆動シーケンスは逆耐圧を持つ逆阻止IGBTを使った回路は特有であり、従来技術のIGBTとダイオードを直列接続した場合には、ダイオードが逆方向の印加電圧を保持するために、IGBTのゲートに正の電圧を印加する必要がないため考慮する必要がない。   The drive sequence as described above is unique in a circuit using a reverse blocking IGBT having a reverse breakdown voltage. When a conventional IGBT and a diode are connected in series, the diode holds a reverse applied voltage. There is no need to consider a positive voltage applied to the gate of the IGBT.

以上、電流が直流電源側から交流出力側に流れる場合について説明したが、電流が交流出力側から電源側に向かって流れる場合については上述の動作と相補の動作となり、IGBT101とIGBT104、逆阻止IGBT102と逆阻止IGBT103を入れ替えて考えれば同様の動きをすることは当業者にとって明らかである。   The case where the current flows from the DC power source side to the AC output side has been described above. However, when the current flows from the AC output side toward the power source side, the operation is complementary to the above operation, and the IGBT 101 and the IGBT 104 and the reverse blocking IGBT 102 are operated. It will be apparent to those skilled in the art that the reverse movement IGBT 103 is replaced and considered to perform the same movement.

また、IGBT101とIGBT104の耐圧は、直流電源の両端の電圧より高くなければならないが、逆阻止IGBT102と逆阻止IGBT103の耐圧は直流電源の両端間の電圧の1/2より大きくすればよく、IGBT101やIGBT104より耐圧の低い素子を適用できる。IGBTは耐圧が低くなるにつれ、導通損失が小さくなるので、逆阻止IGBT102と逆阻止IGBT103に耐圧の低いIGBTを適用すると、電力変換器システムとしての損失を低減できる。   The breakdown voltage of the IGBT 101 and the IGBT 104 must be higher than the voltage across the DC power supply, but the breakdown voltage of the reverse blocking IGBT 102 and the reverse blocking IGBT 103 only needs to be greater than ½ of the voltage across the DC power supply. Alternatively, an element having a lower withstand voltage than that of the IGBT 104 can be used. As the breakdown voltage of the IGBT decreases, the conduction loss decreases. Therefore, when an IGBT having a low breakdown voltage is applied to the reverse blocking IGBT 102 and the reverse blocking IGBT 103, the loss as a power converter system can be reduced.

図4は本実施例に適用するIGBTの断面構造を示す。図4において、符号401はコレクタ電極、402はpコレクタ層、403はn-ドリフト層、404はゲート酸化膜、405はゲート電極、406は層間絶縁膜、407はn+エミッタ層、408はp+層、409はpベース層、410はエミッタ電極である。 FIG. 4 shows a cross-sectional structure of an IGBT applied to this embodiment. In FIG. 4, reference numeral 401 denotes a collector electrode, 402 denotes a p collector layer, 403 denotes an n drift layer, 404 denotes a gate oxide film, 405 denotes a gate electrode, 406 denotes an interlayer insulating film, 407 denotes an n + emitter layer, and 408 denotes p. The + layer, 409 is a p base layer, and 410 is an emitter electrode.

図4のIGBTは、順方向、すなわちコレクタ側が正、エミッタ側が負になる方向に定格電圧を印加した時に、pベース層409とn- ドリフト層403で形成されるpn接合からn- ドリフト層403内に拡がる空乏層が、pコレクタ層402に達しない、いわゆるノンパンチスルー型(NPT型)IGBT構造となっている。これは次のような理由による。逆阻止IGBTでは逆方向電圧、すなわちコレクタ側が負、エミッタ側が正を印加される。逆方向電圧が印加されると、pコレクタ層402とn- ドリフト層403で形成されるpn接合に強い電界が生じる。このために、この接合はp型、n型いずれか一方の濃度が低い、いわゆる階段接合である必要があり、図4に示すようなpコレクタ層402とn- ドリフト層403が直接接する構成になる。この構造では定格電圧を印加した場合に空乏層がn- ドリフト層403全体に拡がる、いわゆるパンチスルー現象が起きないようにしなければならず、n- ドリフト層403の厚みを、定格電圧印加時に発生する空乏層の厚みより厚くする必要がある。パンチスルー現象が起こると、pコレクタ層402とpベース層409が空乏層でつながり、電流が流れるためである。 IGBT of FIG. 4, the forward, that is, when the collector side is positive and the application of a rated voltage in the direction in which the emitter side becomes negative, p base layer 409 and the n - n from the pn junction formed by the drift layer 403 - drift layer 403 The depletion layer extending inward has a so-called non-punch through type (NPT type) IGBT structure that does not reach the p collector layer 402. This is due to the following reason. In the reverse blocking IGBT, a reverse voltage, that is, a negative voltage is applied to the collector side and a positive voltage is applied to the emitter side. When a reverse voltage is applied, a strong electric field is generated at the pn junction formed by the p collector layer 402 and the n drift layer 403. For this reason, this junction needs to be a so-called step junction where the concentration of either the p-type or n-type is low, and the p collector layer 402 and the n drift layer 403 are in direct contact as shown in FIG. Become. In this structure a depletion layer in the case of applying a rated voltage n - spreads throughout the drift layer 403, it must be so-called punch-through phenomenon does not occur, n - the thickness of the drift layer 403, generated when the rated voltage is applied It is necessary to make it thicker than the thickness of the depletion layer. This is because when the punch-through phenomenon occurs, the p collector layer 402 and the p base layer 409 are connected by a depletion layer and current flows.

このように本実施例では、逆耐圧を持つNPT型IGBT構造を逆阻止IGBT102と逆阻止IGBT103とに適用することにより、従来技術のマルチレベルインバータには必要であったクランプダイオードを削除できる。   As described above, in this embodiment, by applying the NPT type IGBT structure having the reverse breakdown voltage to the reverse blocking IGBT 102 and the reverse blocking IGBT 103, the clamp diode necessary for the conventional multilevel inverter can be eliminated.

図5は本実施例の電力変換器を示す回路図である。図5において符号501、503、506、508はIGBT、符号502、504、505、507は逆阻止IGBT、511〜514はフリーホイールダイオード、521、523〜528、530はゲートドライバ、550は交流出力端子、531〜534は電源コンデンサ、535は中性点、541、542はクランプダイオードである。   FIG. 5 is a circuit diagram showing the power converter of this embodiment. 5, reference numerals 501, 503, 506, and 508 are IGBTs, reference numerals 502, 504, 505, and 507 are reverse blocking IGBTs, 511 to 514 are free wheel diodes, 521, 523 to 528, 530 are gate drivers, and 550 is an AC output. Terminals, 531 to 534 are power supply capacitors, 535 is a neutral point, and 541 and 542 are clamp diodes.

本実施例では、5レベルインバータに適用した例を示している。5レベルインバータでは直流電位として、電源両端の電位と、中性点535、及び中性点535と正・負それぞれの電位の中間に設けられた中間電位点の5つの電位を有する。中性点535と交流出力端子550との間は逆並列に接続した逆阻止IGBT504、505で接続されている。また、中間電位点と交流出力端子550は逆阻止IGBT502とIGBT503、あるいは、逆阻止IGBT507とIGBT506とで接続される。本実施例によれば、IGBTが逆耐圧を持つためにダイオードを直列に接続する必要が無くなり、使用する素子の個数を低減できる。   In this embodiment, an example applied to a 5-level inverter is shown. The five-level inverter has five potentials, namely, a potential at both ends of the power source, a neutral point 535, and an intermediate potential point provided between the neutral point 535 and the positive and negative potentials. The neutral point 535 and the AC output terminal 550 are connected by reverse blocking IGBTs 504 and 505 connected in antiparallel. Further, the intermediate potential point and the AC output terminal 550 are connected by reverse blocking IGBT 502 and IGBT 503 or reverse blocking IGBT 507 and IGBT 506. According to the present embodiment, since the IGBT has a reverse breakdown voltage, it is not necessary to connect diodes in series, and the number of elements to be used can be reduced.

本実施例では5レベルインバータの例を示したが、もちろんこれに限定されるものではなく7レベル以上のマルチレベルインバータでも同様に適用可能である。   In the present embodiment, an example of a five-level inverter is shown, but of course it is not limited to this, and a multi-level inverter of 7 levels or more can be similarly applied.

以上、本発明を直流から交流を生成するインバータに適用する例について説明してきたが、交流から直流を生成するコンバータに適用しても同様である。すなわち、上述の実施例の交流出力端子を交流入力端子とし、直流入力端子を直流出力端子となるよう使用すればコンバータとして動作させることができ、上述のインバータの実施例と同様の効果を得られることは、当業者にとっては明らかである。   The example in which the present invention is applied to an inverter that generates alternating current from direct current has been described above, but the same applies to a converter that generates direct current from alternating current. That is, if the AC output terminal of the above-described embodiment is used as an AC input terminal and the DC input terminal is used as a DC output terminal, it can be operated as a converter, and the same effect as the above-described inverter embodiment can be obtained. This will be apparent to those skilled in the art.

図6は本発明を鉄道車両用電力変換装置に適用した実施例を示す。図6において、符号600は交流架線、601は集電器、602は変圧器、603はコンバータ、604はフィルタコンデンサ、605はインバータ、606はモーターである。   FIG. 6 shows an embodiment in which the present invention is applied to a railway vehicle power converter. In FIG. 6, reference numeral 600 is an AC overhead wire, 601 is a current collector, 602 is a transformer, 603 is a converter, 604 is a filter capacitor, 605 is an inverter, and 606 is a motor.

図6の動作を説明する。交流架線600から集電器601を介して取り込まれた交流電流は、変圧器602で降圧されコンバータ603に供給される。コンバータ603では供給された交流電流が直流電流に変換され、インバータ605に入力される。フィルタコンデンサ604は、直流電圧を安定させるために接続されており、負荷の急変に十分対応できる容量とすることが好ましい。インバータ605では入力された直流電流を3相の交流電流に変換し、モーター606に供給している。   The operation of FIG. 6 will be described. The alternating current taken from the AC overhead line 600 through the current collector 601 is stepped down by the transformer 602 and supplied to the converter 603. In the converter 603, the supplied alternating current is converted into a direct current and input to the inverter 605. The filter capacitor 604 is connected to stabilize the DC voltage, and preferably has a capacity that can sufficiently cope with a sudden change in load. The inverter 605 converts the input direct current into a three-phase alternating current and supplies it to the motor 606.

実施例1から実施例3の電力変換装置をコンバータ603、インバータ605に適用すれば部品点数を減らすことができ、装置の小型・軽量化、損失の低減が可能となる。損失が減れば電力変換装置の冷却器も小型化できるために、車輌内の電気機器を少ないスペースで鉄道車輌に搭載することが可能となる。このため、乗客のためのスペースを増大させて乗客の快適性を向上できたり、座席数を増やすことにより輸送力をアップできる。また、電気機器が軽量になるので最高速度を増大でき、乗客や荷物が目的地まで到達する時間を短縮でき、利便性をアップできる。   If the power conversion device according to the first to third embodiments is applied to the converter 603 and the inverter 605, the number of parts can be reduced, and the device can be reduced in size and weight and loss can be reduced. If the loss is reduced, the cooler of the power conversion device can be reduced in size, so that the electric equipment in the vehicle can be mounted on the railway vehicle in a small space. For this reason, the comfort for passengers can be improved by increasing the space for passengers, and the transportation capacity can be increased by increasing the number of seats. In addition, since the electrical equipment becomes lighter, the maximum speed can be increased, the time for passengers and luggage to reach the destination can be shortened, and convenience can be improved.

以上、本実施例では交流架線から電力を取り入れる交流車輌に適用した例を示したが、もちろん直流架線から電力を取り入れ走行する直流車輌についても同様に効果があることは言うまでもない。また、交流車輌の例ではコンバータインバータ両方に本発明の電力変換回路を適用する例を示したが、もちろんコンバータのみ、あるいはインバータのみに適用することも可能である。特に、動作周波数の高いコンバータ側には騒音・ノイズの発生しにくいマルチレベルコンバータを適用することが好ましい。   As described above, the present embodiment shows an example in which the present invention is applied to an AC vehicle that takes in electric power from an AC overhead line. Needless to say, the present invention is also effective in a DC vehicle that travels by taking in electric power from a DC overhead line. Moreover, although the example which applies the power converter circuit of this invention to both converter inverters was shown in the example of AC vehicle, of course, it is also possible to apply only to a converter or only an inverter. In particular, it is preferable to apply a multi-level converter that hardly generates noise / noise to the converter side having a high operating frequency.

実施例1の電力変換装置の回路の説明図である。It is explanatory drawing of the circuit of the power converter device of Example 1. FIG. 従来技術の3レベルインバータ回路の説明図である。It is explanatory drawing of the 3 level inverter circuit of a prior art. 実施例1の電力変換装置の動作シーケンスの説明図である。It is explanatory drawing of the operation | movement sequence of the power converter device of Example 1. FIG. 実施例2の逆阻止IGBTの断面図である。6 is a cross-sectional view of a reverse blocking IGBT of Example 2. FIG. 実施例3の電力変換装置の回路の説明図である。It is explanatory drawing of the circuit of the power converter device of Example 3. FIG. 実施例4の電力変換装置を搭載した鉄道車輌の説明図である。It is explanatory drawing of the railway vehicle carrying the power converter device of Example 4. FIG.

符号の説明Explanation of symbols

101、104、501、503、506、508…IGBT、102、103、502、504、505、507…逆阻止IGBT、111、114、211、214、511〜514…フリーホイールダイオード、121〜124、521、523〜528、530…ゲートドライバ、150、250、550…交流出力端子、151、152、251、252、531〜534…電源コンデンサ、153、253、535…中性点、201〜204…トランジスタ、231、232、541、542…クランプダイオード、401…コレクタ電極、402…pコレクタ層、403…n- ドリフト層、404…ゲート酸化膜、405…ゲート電極、406…層間絶縁膜、407…n+ エミッタ層、408…p+ 層、409…pベース層、410…エミッタ電極、600…交流架線、601…集電器、602…変圧器、603…コンバータ、604…フィルタコンデンサ、605…インバータ、606…モーター。

101, 104, 501, 503, 506, 508 ... IGBT, 102, 103, 502, 504, 505, 507 ... Reverse blocking IGBT, 111, 114, 211, 214, 511-514 ... Freewheel diode, 121-124, 521, 523-528, 530 ... Gate driver, 150, 250, 550 ... AC output terminal, 151, 152, 251, 252, 531-534 ... Power supply capacitor, 153, 253, 535 ... Neutral point, 201-204 ... transistors, 231,232,541,542 ... clamping diodes, 401 ... a collector electrode, 402 ... p collector layer, 403 ... n - drift layer, 404 ... gate oxide film, 405 ... gate electrode, 406 ... interlayer insulating film, 407 ... n + emitter layer, 408 ... p + layer, 409 ... p base layer, 4 0 ... emitter electrode, 600 ... AC overhead wire, 601 ... current collector, 602 ... transformer, 603 ... converter, 604 ... filter capacitor 605 ... inverter, 606 ... motor.

Claims (12)

直流と交流を交互に変換する電力変換装置において、
該電力変換装置が、
直列接続した第1の直流電圧源と第2の直流電圧源の両端に接続する第1の端子と第2の端子と、前記第1の直流電圧源と第2の直流電圧源の接続点に接続する第3の端子と、
直列に接続した自己消弧型の第1の半導体スイッチング素子と第2の半導体スイッチング素子と、該第1の半導体スイッチング素子と第2の半導体スイッチング素子とに逆並列に接続するダイオードを有し、前記直列に接続した第1の半導体スイッチング素子と第2の半導体スイッチング素子の両端を前記第1の端子と第2の端子に接続し、前記第1の半導体スイッチング素子と第2の半導体スイッチング素子の接続点を交流出力端子とする第1の回路と、
逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の一方の接続点を前記第3の端子に接続し、前記逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の他方の接続点を前記交流出力端子に接続する第2の回路とを備え、
前記第3の半導体スイッチング素子と第4の半導体スイッチング素子とが逆方向耐圧を有する素子であることを特徴とする電力変換装置。
In the power converter that alternately converts direct current and alternating current,
The power converter is
A first terminal and a second terminal connected to both ends of the first DC voltage source and the second DC voltage source connected in series, and a connection point between the first DC voltage source and the second DC voltage source. A third terminal to be connected;
A self-extinguishing first semiconductor switching element and a second semiconductor switching element connected in series, and a diode connected in antiparallel to the first semiconductor switching element and the second semiconductor switching element; Both ends of the first semiconductor switching element and the second semiconductor switching element connected in series are connected to the first terminal and the second terminal, and the first semiconductor switching element and the second semiconductor switching element are connected to each other. A first circuit having the connection point as an AC output terminal;
One connection point of the third semiconductor switching element and the fourth semiconductor switching element connected in antiparallel is connected to the third terminal, and the third semiconductor switching element and the fourth semiconductor connected in antiparallel are connected. A second circuit for connecting the other connection point of the switching element to the AC output terminal,
The power conversion device, wherein the third semiconductor switching element and the fourth semiconductor switching element are elements having a reverse breakdown voltage.
請求項1に記載の電力変換装置において、
前記第3の半導体スイッチング素子がオン状態からオフ状態に移行する時に、前記第4の半導体スイッチング素子にオン指令が入力されていることを特徴とする電力変換装置。
The power conversion device according to claim 1,
An on-command is input to the fourth semiconductor switching element when the third semiconductor switching element shifts from an on state to an off state.
請求項2に記載の電力変換装置において、
前記第3の半導体スイッチング素子がオン状態からオフ状態に移行する1μs以上前に、前記第4の半導体スイッチング素子にオン指令が入力されていることを特徴とする電力変換装置。
The power conversion device according to claim 2,
The power conversion device, wherein an ON command is input to the fourth semiconductor switching element at least 1 μs before the third semiconductor switching element shifts from the ON state to the OFF state.
請求項1に記載の電力変換装置において、
前記第4の半導体スイッチング素子がオン状態からオフ状態に移行する時に、前記第3の半導体スイッチング素子にオン指令が入力されていることを特徴とする電力変換装置。
The power conversion device according to claim 1,
An on-command is input to the third semiconductor switching element when the fourth semiconductor switching element shifts from an on state to an off state.
請求項4に記載の電力変換装置において、
前記第4の半導体スイッチング素子がオン状態からオフ状態に移行する1μs以上前に、前記第3の半導体スイッチング素子にオン指令が入力されていることを特徴とする電力変換装置。
The power conversion device according to claim 4,
The power conversion device according to claim 1, wherein an on command is input to the third semiconductor switching element at least 1 μs before the fourth semiconductor switching element shifts from the on state to the off state.
請求項1に記載の電力変換装置において、
前記第3の半導体スイッチング素子と第4の半導体スイッチング素子とがノンパンチスルー型IGBTであることを特徴とする電力変換装置。
The power conversion device according to claim 1,
The power conversion device, wherein the third semiconductor switching element and the fourth semiconductor switching element are non-punch-through IGBTs.
請求項1に記載の電力変換装置において、
前記第3の半導体スイッチング素子と第4の半導体スイッチング素子の順方向耐圧と逆方向耐圧とが、前記直流電源の第1の端子と第2の端子の間の電圧の1/2よりも高いことを特徴とす電力変換装置。
The power conversion device according to claim 1,
The forward breakdown voltage and reverse breakdown voltage of the third semiconductor switching element and the fourth semiconductor switching element are higher than ½ of the voltage between the first terminal and the second terminal of the DC power supply. Power conversion device characterized by
請求項1に記載の電力変換装置において、
前記第3の半導体スイッチング素子と、第4の半導体スイッチング素子とが、
一対の主表面と、一方の主表面に隣接する第一導電型の第一の層と、他方の主表面と第一の層に隣接する第二導電型の第二の層と、他方の主表面に隣接し第2の層内に選択的に形成された第1導電型の第3の層と、他方の主表面に隣接し第3の層内に選択的に形成された第2導電型の第4の層と、第2の層と第4の層の間で他方の主表面に露出する第3の層の表面部分に絶縁膜を介して形成された絶縁電極と、第3の層と第4の層に接触して形成された第2の電極と、第1の層に接触して形成された第3の電極とを有することを特徴とする電力変換装置。
The power conversion device according to claim 1,
The third semiconductor switching element and the fourth semiconductor switching element are:
A pair of main surfaces, a first conductivity type first layer adjacent to one main surface, a second conductivity type second layer adjacent to the other main surface and the first layer, and the other main surface A third layer of the first conductivity type adjacent to the surface and selectively formed in the second layer, and a second conductivity type adjacent to the other main surface and selectively formed in the third layer A fourth layer, an insulating electrode formed between the second layer and the fourth layer on the surface portion of the third layer exposed on the other main surface via an insulating film, and a third layer And a fourth electrode formed in contact with the fourth layer, and a third electrode formed in contact with the first layer.
直流と交流を交互に変換する電力変換装置において、
該電力変換装置が、
直列接続した複数の直流電圧源の両端に接続する第1の端子と第2の端子と、前記複数の直流電圧源の接続点に接続する複数の中間直流端子と、中性点端子と、
自己消弧型の半導体スイッチング素子にダイオードを逆並列に接続した半導体スイッチング素子接続体を、複数個直列に接続し、該複数個の接続体を直列に接続した両端を、前記第1の端子と第2の端子に接続するとともに、前記直列接続された接続体の接続点の中の一つを交流出力端子とする第1の回路と、
逆並列に接続した2つの半導体スイッチング素子の一方の接続点を前記中性端子に接続し、前記逆並列に接続した2つの半導体スイッチング素子の他方の接続点を前記交流出力端子に接続する第2の回路と、
前記第1の回路の接続体の接続点と前記中間直流端子とに接続する、自己消弧型の半導体スイッチング素子にダイオードを逆並列に接続した別の半導体スイッチング素子接続体を有し、を備え、
前記逆並列に接続した2つの半導体スイッチング素子と、前記別の接続体の半導体スイッチング素子とが、逆方向耐圧を有する素子であることを特徴とする電力変換装置。
In the power converter that alternately converts direct current and alternating current,
The power converter is
A first terminal and a second terminal connected to both ends of a plurality of DC voltage sources connected in series; a plurality of intermediate DC terminals connected to a connection point of the plurality of DC voltage sources; and a neutral point terminal;
A plurality of semiconductor switching element connecting bodies each having a diode connected in antiparallel to a self-extinguishing semiconductor switching element are connected in series, and both ends of the plurality of connecting bodies connected in series are connected to the first terminal. A first circuit connected to the second terminal and having one of the connection points of the series-connected connectors as an AC output terminal;
A second connection point where one connection point of two semiconductor switching elements connected in reverse parallel is connected to the neutral terminal, and the other connection point of the two semiconductor switching elements connected in reverse parallel is connected to the AC output terminal. And the circuit
Another semiconductor switching element connection body having a diode connected in reverse parallel to a self-extinguishing type semiconductor switching element connected to a connection point of the connection body of the first circuit and the intermediate DC terminal; and ,
The power conversion device, wherein the two semiconductor switching elements connected in reverse parallel and the semiconductor switching element of the different connection body are elements having a reverse breakdown voltage.
架線から電力を収集する集電器と、収集した電力を交流電力に変換するインバータと、該インバータが出力する交流電力で駆動されるモーターとを備えた鉄道車両において、
前記インバータが、
直列接続した第1の直流電圧源と第2の直流電圧源の両端に接続する第1の端子と第2の端子と、前記第1の直流電圧源と第2の直流電圧源の接続点に接続する第3の端子と、
直列に接続した自己消弧型の第1の半導体スイッチング素子と第2の半導体スイッチング素子と、該第1の半導体スイッチング素子と第2の半導体スイッチング素子とに逆並列に接続するダイオードを有し、前記直列に接続した第1の半導体スイッチング素子と第2の半導体スイッチング素子の両端を前記第1の端子と第2の端子に接続し、前記第1の半導体スイッチング素子と第2の半導体スイッチング素子の接続点を交流出力端子とする第1の回路と、
逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の一方の接続点を前記第3の端子に接続し、前記逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の他方の接続点を前記交流出力端子に接続する第2の回路とを備え、
前記第3の半導体スイッチング素子と第4の半導体スイッチング素子とが逆方向耐圧を有する素子であることを特徴とする鉄道車輌。
In a railway vehicle comprising a current collector that collects power from an overhead line, an inverter that converts the collected power into AC power, and a motor that is driven by AC power output from the inverter,
The inverter is
A first terminal and a second terminal connected to both ends of the first DC voltage source and the second DC voltage source connected in series, and a connection point between the first DC voltage source and the second DC voltage source. A third terminal to be connected;
A self-extinguishing first semiconductor switching element and a second semiconductor switching element connected in series, and a diode connected in antiparallel to the first semiconductor switching element and the second semiconductor switching element; Both ends of the first semiconductor switching element and the second semiconductor switching element connected in series are connected to the first terminal and the second terminal, and the first semiconductor switching element and the second semiconductor switching element are connected to each other. A first circuit having the connection point as an AC output terminal;
One connection point of the third semiconductor switching element and the fourth semiconductor switching element connected in antiparallel is connected to the third terminal, and the third semiconductor switching element and the fourth semiconductor connected in antiparallel are connected. A second circuit for connecting the other connection point of the switching element to the AC output terminal,
The railway vehicle, wherein the third semiconductor switching element and the fourth semiconductor switching element are elements having a reverse breakdown voltage.
請求項10に記載の鉄道車輌において、
前記架線から収集した電力が直流電力であって、前記インバータの第3の半導体スイッチング素子と第4の半導体スイッチング素子とが、ノンパンチスルー型IGBTであることを特徴とする鉄道車輌。
The railway vehicle according to claim 10,
The railway vehicle, wherein the power collected from the overhead wire is DC power, and the third semiconductor switching element and the fourth semiconductor switching element of the inverter are non-punch-through IGBTs.
請求項10に記載の鉄道車輌において、
前記架線から収集した電力が交流電力であって、該交流電力を直流電力に変換するコンバータを備え、該コンバータが、
直列接続した第1の直流電圧源と第2の直流電圧源の両端に接続する第1の端子と第2の端子と、前記第1の直流電圧源と第2の直流電圧源の接続点に接続する第3の端子と、
直列に接続した自己消弧型の第1の半導体スイッチング素子と第2の半導体スイッチング素子と、該第1の半導体スイッチング素子と第2の半導体スイッチング素子とに逆並列に接続するダイオードを有し、前記直列に接続した第1の半導体スイッチング素子と第2の半導体スイッチング素子の両端を前記第1の端子と第2の端子に接続し、前記第1の半導体スイッチング素子と第2の半導体スイッチング素子の接続点を交流出力端子とする第1の回路と、
逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の一方の接続点を前記第3の端子に接続し、前記逆並列に接続した第3の半導体スイッチング素子と第4の半導体スイッチング素子の他方の接続点を前記交流出力端子に接続する第2の回路とを備え、
前記第3の半導体スイッチング素子と第4の半導体スイッチング素子とが逆方向耐圧を有する素子であることを特徴とする鉄道車輌。
The railway vehicle according to claim 10,
The power collected from the overhead wire is AC power, and includes a converter that converts the AC power to DC power,
A first terminal and a second terminal connected to both ends of the first DC voltage source and the second DC voltage source connected in series, and a connection point between the first DC voltage source and the second DC voltage source. A third terminal to be connected;
A self-extinguishing first semiconductor switching element and a second semiconductor switching element connected in series, and a diode connected in antiparallel to the first semiconductor switching element and the second semiconductor switching element; Both ends of the first semiconductor switching element and the second semiconductor switching element connected in series are connected to the first terminal and the second terminal, and the first semiconductor switching element and the second semiconductor switching element are connected to each other. A first circuit having the connection point as an AC output terminal;
One connection point of the third semiconductor switching element and the fourth semiconductor switching element connected in antiparallel is connected to the third terminal, and the third semiconductor switching element and the fourth semiconductor connected in antiparallel are connected. A second circuit for connecting the other connection point of the switching element to the AC output terminal,
The railway vehicle, wherein the third semiconductor switching element and the fourth semiconductor switching element are elements having a reverse breakdown voltage.
JP2005210720A 2005-07-21 2005-07-21 Power-converting device and rolling stock equipped with the same Pending JP2007028860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210720A JP2007028860A (en) 2005-07-21 2005-07-21 Power-converting device and rolling stock equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210720A JP2007028860A (en) 2005-07-21 2005-07-21 Power-converting device and rolling stock equipped with the same

Publications (1)

Publication Number Publication Date
JP2007028860A true JP2007028860A (en) 2007-02-01

Family

ID=37788874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210720A Pending JP2007028860A (en) 2005-07-21 2005-07-21 Power-converting device and rolling stock equipped with the same

Country Status (1)

Country Link
JP (1) JP2007028860A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027818A (en) * 2007-07-18 2009-02-05 Fuji Electric Systems Co Ltd Control method for three-level inverter
WO2010044164A1 (en) * 2008-10-16 2010-04-22 東芝三菱電機産業システム株式会社 Power converter
JP2010246267A (en) * 2009-04-06 2010-10-28 Fuji Electric Systems Co Ltd Five-level inverter
JP4626722B1 (en) * 2009-08-26 2011-02-09 ダイキン工業株式会社 Power converter and control method thereof
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
JP2011142783A (en) * 2010-01-08 2011-07-21 Toshiba Corp Power converter
CN102347703A (en) * 2010-07-22 2012-02-08 富士电机株式会社 Power conversion device
JP2012044824A (en) * 2010-08-23 2012-03-01 Fuji Electric Co Ltd Power conversion device
JP2012065429A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power inverter circuit
CN102594181A (en) * 2012-02-20 2012-07-18 阳光电源股份有限公司 Multilevel inversion topological unit and multilevel inverter
JP2012139048A (en) * 2010-12-27 2012-07-19 Fuji Electric Co Ltd Dc-dc conversion circuit and power conversion system using the same
JP2012186943A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Power conversion apparatus
KR101214446B1 (en) 2011-11-14 2012-12-21 한국전기연구원 Mirror type multi-level converter
CN102918759A (en) * 2010-04-19 2013-02-06 宝威电源意大利股份公司 Multi-level DC/AC converter
WO2013099053A1 (en) 2011-12-28 2013-07-04 パナソニック株式会社 Multilevel inverter device
KR101300391B1 (en) * 2011-10-14 2013-08-26 전남대학교산학협력단 Even-level inverter
KR101320152B1 (en) 2012-06-29 2013-10-23 전남대학교산학협력단 Multi-level converter, and inverter having the same and solar power supplying apparatus having the same
KR101336911B1 (en) 2012-12-06 2013-12-04 (주)인텍에프에이 Power converting system comprising 3 level inverter and method for controlling the same
KR101350532B1 (en) 2012-06-29 2014-01-15 전남대학교산학협력단 Multi-level converter, and inverter having the same and solar power supplying apparatus having the same
WO2014054067A1 (en) 2012-10-02 2014-04-10 富士電機株式会社 Power converter and inverter device equipped with same
WO2014073023A1 (en) 2012-11-09 2014-05-15 富士電機株式会社 Inverter device
KR101399120B1 (en) * 2014-03-13 2014-05-27 (주)티피에스 Power converter
CN104115389A (en) * 2012-03-15 2014-10-22 富士电机株式会社 Power conversion apparatus
KR101462750B1 (en) * 2013-01-16 2014-11-17 삼성전기주식회사 Multi level inverter
KR101484105B1 (en) 2013-12-05 2015-01-16 한밭대학교 산학협력단 Multilevel inverter with a single input source
JP2015503902A (en) * 2012-01-11 2015-02-02 ボンバルディール・トランスポーテイション・ゲゼルシヤフト・ミット・ベシュレンクテル・ハフツング Generation of switching sequence of cascaded multi-level converter
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
KR101516089B1 (en) * 2013-12-10 2015-05-06 주식회사 포스코아이씨티 Controlling system for multilevel inverter and controlling method for the same
KR101525650B1 (en) * 2012-02-16 2015-06-11 삼성전기주식회사 Even- level inverter and driving method thereof
JP2015181325A (en) * 2014-03-03 2015-10-15 株式会社明電舎 Five-level power conversion apparatus
WO2015172851A1 (en) * 2014-05-16 2015-11-19 Abb Technology Ag Multi level inverter
CN105281566A (en) * 2015-11-10 2016-01-27 中国科学院电工研究所 Three-level direct-current chopper circuit topology for space
JP2016015883A (en) * 2015-09-17 2016-01-28 富士電機株式会社 Power conversion apparatus
KR101627505B1 (en) * 2015-10-22 2016-06-07 성신전기공업(주) Uninterruptible Power Supply
JP2017158349A (en) * 2016-03-03 2017-09-07 株式会社日立製作所 Power conversion apparatus
JP2018093620A (en) * 2016-12-02 2018-06-14 富士電機株式会社 Chopper circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121374A (en) * 1980-02-26 1981-09-24 Toshiba Corp Inverter device
JPH04334977A (en) * 1991-05-13 1992-11-24 Toshiba Corp Power converter
JPH05328731A (en) * 1992-05-25 1993-12-10 Toyo Electric Mfg Co Ltd Multilevel inverter
JP2002247862A (en) * 2001-02-20 2002-08-30 Hitachi Ltd Power converter
JP2002319676A (en) * 2000-08-09 2002-10-31 Fuji Electric Co Ltd Semiconductor device, manufacturing method and control method
JP2003180086A (en) * 2001-12-11 2003-06-27 Railway Technical Res Inst Amplitude modulation type power conversion device
JP2003230276A (en) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd Control method for power converter
JP2004312939A (en) * 2003-04-09 2004-11-04 Mitsubishi Electric Corp Controller for electric vehicle
JP2005185039A (en) * 2003-12-22 2005-07-07 Fuji Electric Holdings Co Ltd Power converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121374A (en) * 1980-02-26 1981-09-24 Toshiba Corp Inverter device
JPH04334977A (en) * 1991-05-13 1992-11-24 Toshiba Corp Power converter
JPH05328731A (en) * 1992-05-25 1993-12-10 Toyo Electric Mfg Co Ltd Multilevel inverter
JP2002319676A (en) * 2000-08-09 2002-10-31 Fuji Electric Co Ltd Semiconductor device, manufacturing method and control method
JP2002247862A (en) * 2001-02-20 2002-08-30 Hitachi Ltd Power converter
JP2003180086A (en) * 2001-12-11 2003-06-27 Railway Technical Res Inst Amplitude modulation type power conversion device
JP2003230276A (en) * 2002-01-30 2003-08-15 Fuji Electric Co Ltd Control method for power converter
JP2004312939A (en) * 2003-04-09 2004-11-04 Mitsubishi Electric Corp Controller for electric vehicle
JP2005185039A (en) * 2003-12-22 2005-07-07 Fuji Electric Holdings Co Ltd Power converter

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027818A (en) * 2007-07-18 2009-02-05 Fuji Electric Systems Co Ltd Control method for three-level inverter
US8994216B2 (en) 2008-07-30 2015-03-31 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
WO2010044164A1 (en) * 2008-10-16 2010-04-22 東芝三菱電機産業システム株式会社 Power converter
KR101189352B1 (en) * 2008-10-16 2012-10-09 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power converter
US8508957B2 (en) 2008-10-16 2013-08-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device for converting DC power to AC power
JP5085742B2 (en) * 2008-10-16 2012-11-28 東芝三菱電機産業システム株式会社 Power converter
JP2010246267A (en) * 2009-04-06 2010-10-28 Fuji Electric Systems Co Ltd Five-level inverter
EP2251969B1 (en) * 2009-04-06 2016-10-05 Fuji Electric Co., Ltd. Five-level inverter
US8773870B2 (en) 2009-08-26 2014-07-08 Daikin Industries, Ltd. Power converter and method for controlling same
JP2011072175A (en) * 2009-08-26 2011-04-07 Daikin Industries Ltd Power conversion device and control method therefor
CN102474192A (en) * 2009-08-26 2012-05-23 大金工业株式会社 Power conversion device and control method therefor
WO2011024351A1 (en) * 2009-08-26 2011-03-03 ダイキン工業株式会社 Power conversion device and control method therefor
JP4626722B1 (en) * 2009-08-26 2011-02-09 ダイキン工業株式会社 Power converter and control method thereof
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
JP2011142783A (en) * 2010-01-08 2011-07-21 Toshiba Corp Power converter
CN102918759B (en) * 2010-04-19 2015-12-09 宝威电源意大利股份公司 Many level DC/AC transducer and DC/AC voltage conversion method
US9030857B2 (en) 2010-04-19 2015-05-12 Power-One Italy S.P.A. Five-stage neutral point clamped inverter
CN102918759A (en) * 2010-04-19 2013-02-06 宝威电源意大利股份公司 Multi-level DC/AC converter
JP2012029428A (en) * 2010-07-22 2012-02-09 Fuji Electric Co Ltd Power conversion device
CN102347703A (en) * 2010-07-22 2012-02-08 富士电机株式会社 Power conversion device
US9509230B2 (en) 2010-07-22 2016-11-29 Fuji Electric Co., Ltd. Power conversion device
JP2012044824A (en) * 2010-08-23 2012-03-01 Fuji Electric Co Ltd Power conversion device
CN102377349A (en) * 2010-08-23 2012-03-14 富士电机株式会社 Electric power converter
JP2012065429A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power inverter circuit
JP2012139048A (en) * 2010-12-27 2012-07-19 Fuji Electric Co Ltd Dc-dc conversion circuit and power conversion system using the same
US9042137B2 (en) 2011-01-14 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Even-level inverter
JP2012186943A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Power conversion apparatus
KR101300391B1 (en) * 2011-10-14 2013-08-26 전남대학교산학협력단 Even-level inverter
KR101214446B1 (en) 2011-11-14 2012-12-21 한국전기연구원 Mirror type multi-level converter
WO2013099053A1 (en) 2011-12-28 2013-07-04 パナソニック株式会社 Multilevel inverter device
JP2015503902A (en) * 2012-01-11 2015-02-02 ボンバルディール・トランスポーテイション・ゲゼルシヤフト・ミット・ベシュレンクテル・ハフツング Generation of switching sequence of cascaded multi-level converter
KR101525650B1 (en) * 2012-02-16 2015-06-11 삼성전기주식회사 Even- level inverter and driving method thereof
CN102594181A (en) * 2012-02-20 2012-07-18 阳光电源股份有限公司 Multilevel inversion topological unit and multilevel inverter
CN104115389A (en) * 2012-03-15 2014-10-22 富士电机株式会社 Power conversion apparatus
CN104115389B (en) * 2012-03-15 2017-06-23 富士电机株式会社 Power conversion device
KR101350532B1 (en) 2012-06-29 2014-01-15 전남대학교산학협력단 Multi-level converter, and inverter having the same and solar power supplying apparatus having the same
KR101320152B1 (en) 2012-06-29 2013-10-23 전남대학교산학협력단 Multi-level converter, and inverter having the same and solar power supplying apparatus having the same
US9397582B2 (en) 2012-10-02 2016-07-19 Fuji Electric Co., Ltd. Power converter, and inverter device including the power converter
WO2014054067A1 (en) 2012-10-02 2014-04-10 富士電機株式会社 Power converter and inverter device equipped with same
WO2014073023A1 (en) 2012-11-09 2014-05-15 富士電機株式会社 Inverter device
CN104704735A (en) * 2012-11-09 2015-06-10 富士电机株式会社 Inverter device
CN104704735B (en) * 2012-11-09 2017-09-26 富士电机株式会社 DC-to-AC converter
US9531298B2 (en) 2012-11-09 2016-12-27 Fuji Electric Co., Ltd. Inverter device
KR101336911B1 (en) 2012-12-06 2013-12-04 (주)인텍에프에이 Power converting system comprising 3 level inverter and method for controlling the same
KR101462750B1 (en) * 2013-01-16 2014-11-17 삼성전기주식회사 Multi level inverter
KR101484105B1 (en) 2013-12-05 2015-01-16 한밭대학교 산학협력단 Multilevel inverter with a single input source
KR101516089B1 (en) * 2013-12-10 2015-05-06 주식회사 포스코아이씨티 Controlling system for multilevel inverter and controlling method for the same
JP2015181325A (en) * 2014-03-03 2015-10-15 株式会社明電舎 Five-level power conversion apparatus
KR101399120B1 (en) * 2014-03-13 2014-05-27 (주)티피에스 Power converter
CN106489233A (en) * 2014-05-16 2017-03-08 Abb瑞士股份有限公司 Multi-electrical level inverter
WO2015172851A1 (en) * 2014-05-16 2015-11-19 Abb Technology Ag Multi level inverter
US10063162B2 (en) 2014-05-16 2018-08-28 Abb Schweiz Ag Multi level inverter
CN106489233B (en) * 2014-05-16 2019-08-20 Abb瑞士股份有限公司 Multi-electrical level inverter
JP2016015883A (en) * 2015-09-17 2016-01-28 富士電機株式会社 Power conversion apparatus
KR101627505B1 (en) * 2015-10-22 2016-06-07 성신전기공업(주) Uninterruptible Power Supply
CN105281566A (en) * 2015-11-10 2016-01-27 中国科学院电工研究所 Three-level direct-current chopper circuit topology for space
JP2017158349A (en) * 2016-03-03 2017-09-07 株式会社日立製作所 Power conversion apparatus
JP2018093620A (en) * 2016-12-02 2018-06-14 富士電機株式会社 Chopper circuit

Similar Documents

Publication Publication Date Title
JP2007028860A (en) Power-converting device and rolling stock equipped with the same
JP3153408B2 (en) Series multiplex power converter
JP3665934B2 (en) 3-level inverter device
JP5317413B2 (en) Semiconductor switch and power converter using the semiconductor switch
US20120201066A1 (en) Dual switching frequency hybrid power converter
KR101387515B1 (en) Power semiconductor module, power converting apparatus and railway car
US11267351B2 (en) Power conversion device
JP2005295671A (en) Bidirectional voltage rising/dropping chopper circuit and inverter circuit, and dc-dc converter circuit using the same
KR101720915B1 (en) Regenerative converter
JP6136011B2 (en) Semiconductor device and power conversion device
JP6597917B2 (en) 3-level inverter
JPWO2011136003A1 (en) Switching circuit
CN105765818B (en) Four-part AC MOSFET switch
JP2013131774A (en) Power semiconductor module, power conversion device, and rolling stock
US20210234475A1 (en) Scalable multi-level power converter
JP2006230035A (en) Power converter and its driving method
JPWO2019146179A1 (en) Electric railroad vehicle equipped with a power converter and a power converter
JP4491718B2 (en) 3-level converter
CA3108004C (en) Modular power converter
KR20190049878A (en) Power conversion device
WO2019039064A1 (en) Semiconductor power conversion circuit, and semiconductor device and motor drive device using same
JP2016111883A (en) Power conversion device and railway vehicle equipped with the same
JP2018107893A (en) Power control unit
JP2017123723A (en) Voltage converter
JP3553396B2 (en) Semiconductor element stack and power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102