EP3625881A1 - Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters - Google Patents

Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters

Info

Publication number
EP3625881A1
EP3625881A1 EP18728055.7A EP18728055A EP3625881A1 EP 3625881 A1 EP3625881 A1 EP 3625881A1 EP 18728055 A EP18728055 A EP 18728055A EP 3625881 A1 EP3625881 A1 EP 3625881A1
Authority
EP
European Patent Office
Prior art keywords
intermediate circuit
capacitance
capacitor
inverter
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18728055.7A
Other languages
German (de)
French (fr)
Inventor
Heinz Lindenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive Germany GmbH
Original Assignee
Valeo Siemens eAutomotive Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive Germany GmbH filed Critical Valeo Siemens eAutomotive Germany GmbH
Publication of EP3625881A1 publication Critical patent/EP3625881A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention relates to an inverter according to the preamble of patent claim 1.
  • Such an inverter is well known and is used for example for supplying a three-phase motor in electrically or partially electrically operated vehicles.
  • the inverter has a plurality of half-bridge circuits or half-bridges, which are controlled by a controller by means of pulse-width-modulated signals to generate a predetermined alternating voltage.
  • a so-called DC link capacitor is provided, which is connected to supply lines for the supply of direct current.
  • CM common mode
  • DM disturbances During operation of the inverter, push-pull or so-called differential mode (DM) disturbances also occur.
  • the DM disturbances are caused by current changes in parasitic inductances of power transistors used in the half bridges and of the DC link capacitor.
  • DM disturbances increase with the magnitude of the phase current delivered by the half bridges to the electric motor.
  • DM disturbances are sometimes not sufficiently filtered.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • an inverter with improved suppression of DM disturbances should be specified.
  • the inverter is intended to be as simple and inexpensive to produce as possible.
  • a plurality of DC link capacitors connected in parallel be provided to reduce push-pull or DM faults, wherein a sum of the capacitances of the plurality of DC link capacitors corresponds to the predetermined DC link capacitance.
  • the intermediate circuit capacitor provided according to the prior art is replaced by a plurality of DC link capacitors connected in parallel.
  • the originally specified for the single DC link capacitor DC link capacity is maintained.
  • the division of the intermediate circuit capacitor according to the invention into a plurality of intermediate circuit capacitors advantageously brings about a marked reduction in DM disturbances, in particular in the generation of high phase currents.
  • the division of the DC link capacitor into a plurality of DC link capacitors can be realized easily and inexpensively. It is particularly possible because a necessary capacity for driving the switching device is usually smaller than another necessary capacity to reduce the ripple voltage to the predetermined maximum value. With regard to the setting of the specified maximum ripple voltage, the sum of the capacitances of the divided DC link capacitors is decisive. The specified maximum ripple voltage and thus the choice of the size of the DC link capacitance results from customer requirements.
  • the size of the DC link capacitance can be determined, for example, by simulation on a model reproducing the relevant inverter circuit. Such a model takes into account in particular the type of modulation, the cosine Phi of the electric motor, the clock frequency of the power transistors in the half bridges and the DC link capacitance.
  • the boundary conditions are set so that a maximum ripple voltage results.
  • the DC link capacitance is adjusted so that a given maximum ripple voltage results in such boundary conditions.
  • a typical DC link capacitance is in the range from 400 to 1000 F.
  • the first intermediate circuit capacitor can also be preceded by a plurality of second intermediate circuit capacitors.
  • the sum of the first and the second capacitances corresponds to the predetermined DC link capacitance.
  • the first capacity forms a proportion of 95 to 70%
  • the second capacity forms a proportion of 5 to 30% of the predetermined intermediate circuit capacity.
  • a first capacitance of a first DC link capacitor connected to the switching device is greater than a second capacitance of a second DC link capacitor connected upstream of the first DC link capacitor.
  • the first capacitor of the first DC link capacitor is chosen so large that so that the switching device can always be sufficiently supplied with power.
  • the difference between the specified DC link capacitance and the first capacitance results in the second capacitance.
  • the inductance L is formed by the connecting lines between the first and the second DC link capacitor.
  • a filter circuit for reducing in particular CM disturbances is turned on in the supply lines for supplying the intermediate circuit capacitors with current, wherein the filter circuit comprise one or more filter stages connected in series.
  • the filter circuit comprise one or more filter stages connected in series.
  • an X capacitor is advantageously connected between the supply lines.
  • each supply line is connected to ground via a Y capacitor.
  • the mass is formed by the housing or the housing potential of a housing of the inverter.
  • the filter stage comprises a ring core choke surrounding the supply lines and in each case a filter choke encompassing each of the supply lines.
  • the toroidal core choke and the filter choke can be combined in a suitably designed component.
  • Fig. 2 is a schematic circuit arrangement of a second inverter
  • Fig. 3 shows the noise level over the frequency.
  • reference numeral 1 denotes a battery which supplies a voltage of, for example, 200 to 400 volts.
  • the battery 1 supplies an inverter generally designated by the reference numeral 2.
  • a first supply line is denoted by the reference numeral 3 and a second supply line with designated by the reference numeral 4.
  • filter circuit is turned on, which comprises two filter stages. Each of the filter stages has an X-capacitor 6 connected between the supply lines 3, 4 and Y-capacitors 7, which are connected between each of the supply lines 3, 4 and a ground G of a housing.
  • the reference numeral 8 schematically denotes a supply core 3, 4 surrounding the toroidal core choke.
  • Reference numeral 9 denotes filter chokes surrounding each of the supply lines 3, 4.
  • the filter circuit 5 has two identical filter stages here. In particular, it serves to reduce CM disturbances.
  • the filter circuit 5 is followed by an inverter 10.
  • the inverter 10 has on the input side a first DC link capacitance 1 1 and a second DC link capacitance 12 connected in parallel thereto.
  • the first DC link capacitance 11 is followed by half bridges 13, which each comprise two power transistors 14. These may be so-called IGBTs (insulated gate bipolar transistor).
  • IGBTs insulated gate bipolar transistor
  • the controller 15 For driving the half bridges 13, a designated by the reference numeral 15 control is provided.
  • the controller 15 generates pulse-width-modulated signals.
  • the phases u, v and w generated by the half bridges 13 form a sinusoidal alternating current for driving the three-phase motor M. If the three-phase motor M is operated as a generator, the three-phase current generated by the half-bridges 13 is converted into a direct current and in the battery. 1 saved.
  • a first capacitance C1 of the first DC link capacitor 11 and a second capacitance C2 of the second DC link capacitor 12 add up to a predetermined DC link capacitance C.
  • the second intermediate circuit capacitor 12 connected in parallel with the first intermediate circuit capacitor 11 forms an LC element.
  • the inductance L is formed by the connection lines 16 provided between the first intermediate circuit capacitor 11 and the second intermediate circuit capacitor 12. The LC element reduces during operation of the inverter 10 occurring DM interference.
  • the DC link capacitance C results from the sum of the first capacitance C1 and the second capacitance C2.
  • the first capacitance C1 can form a proportion of 95 to 70% and the second capacitance C2 can form a proportion of 5 to 30% at the predetermined DC link capacitance C.
  • FIG. 2 shows a schematic circuit arrangement of a further inverter, which differs from the circuit arrangement shown in FIG. 1 only in that two second intermediate circuit capacitors 12 are connected in parallel to the first intermediate circuit capacitor 11.
  • two LC elements are formed, which cause an even more effective reduction of DM interference.
  • the sum of the first capacitance C1 of the first DC link capacitor and the second capacitances C2 of the second DC link capacitors 12 here again corresponds to the predetermined DC link capacitance C, which results from a predetermined maximum ripple voltage given predetermined boundary or operating conditions.
  • the first capacitance C1 may be in the range of 300 to 600 F.
  • Each of the second capacitances C2 may be in the range of 30 to 150 ⁇ F.
  • the curve A in FIG. 3 shows the interference level in a conventional inverter in which only a single DC link capacitor is provided.
  • a DC link capacitance C of the single DC link capacitor has been 500 F.
  • the curve B shows the noise level for an inverter, in which a first intermediate circuit capacitor 1 1 in parallel with a second intermediate circuit capacitor 12 is connected upstream.
  • a first capacitance C1 of the first DC link capacitor 11 is 400 F
  • a second capacitance C2 of the second DC link capacitor 12 is 100 F.
  • a total link capacitance of 500 F is obtained clearly shows that the noise level represented by the curve B is significantly lower than the noise level represented by the curve A.

Abstract

The invention relates to an inverter (1) having an intermediate circuit capacitor, the terminals of which are connected to supply lines (3, 4) for power supply and to a switching device (10) comprising a plurality of half-bridges (13), wherein the intermediate circuit capacitor has a predefined intermediate circuit capacitance (C), the magnitude of which is such that a ripple voltage formed in the supply lines (3, 4) by switching operations in the switching device (10) under predefined operating conditions is reduced to a predefined maximum ripple voltage. In order to reduce differential-mode interference, it is proposed according to the invention that a plurality of parallel-connected intermediate circuit capacitors (11, 12) are provided, wherein the sum of the capacitances (C1, C2) of the plurality of intermediate circuit capacitors (11, 12) corresponds to the intermediate circuit capacitance (C).

Description

WECHSELRICHTER MIT ZWISCHENKREISKONDENSATORKASKADE SOWIE  INVERTERS WITH INTERMEDIATE CIRCUIT CASCADE AS WELL
DC-SEITIGEN GLEICHTAKT- UND GEGENTAKTFILTERN DC-SIDED AND COMPARE FILTERS
Die Erfindung betrifft einen Inverter nach dem Oberbegriff des Patentanspruchs 1 . The invention relates to an inverter according to the preamble of patent claim 1.
Ein solcher Inverter ist allgemein bekannt und wird beispielsweise zur Versorgung eines Drehstrommotors in elektrisch oder teilweise elektrisch betriebenen Fahrzeugen verwendet. Zur Umwandlung von Gleichstrom in Wechselstrom weist der Inverter mehrere Halbbrückenschaltungen bzw. Halbbrücken auf, welche zur Erzeugung einer vorgegebenen Wechselspannung von einer Steuerung mittels Pulsweiten-modulierter Signale angesteuert werden. Zur Versorgung der Halbbrücken mit Strom ist ein sogenannter Zwischenkreiskondensator vorgesehen, welcher mit Versorgungslei- tungen zur Versorgung mit Gleichstrom verbunden ist. Such an inverter is well known and is used for example for supplying a three-phase motor in electrically or partially electrically operated vehicles. For the conversion of direct current into alternating current, the inverter has a plurality of half-bridge circuits or half-bridges, which are controlled by a controller by means of pulse-width-modulated signals to generate a predetermined alternating voltage. To supply the half-bridges with current, a so-called DC link capacitor is provided, which is connected to supply lines for the supply of direct current.
Wegen der getakteten Ansteuerung der Halbbrücken treten in der Versorgungsleitung Gleichtakt- bzw. Common-Mode-(CM)-Störungen auf, welche eine Rip- pelspannung verursachen. Zur Vermeidung eines durch die Rippelspannung sich ausbildenden elektromagnetischen Störfelds ist es erforderlich, die Rippelspannung auf einen maximalen vorgegebenen Wert zu vermindern. Zu diesem Zweck wird eine Zwischenkreiskapazitat des Zwischenkreiskondensators in geeigneter Weise gewählt. Die dementsprechend gewählte Zwischenkreiskapazität ist größer als eine zur Versorgung der Halbbrücken erforderliche Kapazität. Because of the clocked driving of the half bridges, common mode (CM) disturbances occur in the supply line which cause a rippling voltage. To avoid an electromagnetic interference field forming by the ripple voltage, it is necessary to reduce the ripple voltage to a maximum predetermined value. For this purpose, a DC link capacitance of the DC link capacitor is suitably selected. The accordingly selected intermediate circuit capacity is greater than a capacity required to supply the half-bridges.
Beim Betrieb des Inverters treten ferner Gegentakt- oder sogenannte Differential- Mode-(DM)-Störungen auf. Die DM-Störungen entstehen durch Stromänderungen in parasitären Induktivitäten von in den Halbbrücken verwendeten Leistungstransistoren sowie des Zwischenkreiskondensators. DM-Störungen nehmen mit der Größe des von den Halbbrücken an den Elektromotor gelieferten Phasenstroms zu. Bei einem großen abgefragten Phasenstrom werden DM-Störungen bisher mitunter nicht ausreichend gefiltert. Aufgabe der Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es soll insbesondere ein Inverter mit verbesserter Unterdrückung von DM- Störungen angegeben werden. Nach einem weiteren Ziel der Erfindung soll der In- verter möglichst einfach und kostengünstig herstellbar sein. During operation of the inverter, push-pull or so-called differential mode (DM) disturbances also occur. The DM disturbances are caused by current changes in parasitic inductances of power transistors used in the half bridges and of the DC link capacitor. DM disturbances increase with the magnitude of the phase current delivered by the half bridges to the electric motor. In a large interrogated phase current DM disturbances are sometimes not sufficiently filtered. The object of the invention is to eliminate the disadvantages of the prior art. In particular, an inverter with improved suppression of DM disturbances should be specified. According to a further object of the invention, the inverter is intended to be as simple and inexpensive to produce as possible.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der abhängigen Patentansprüche. This object is solved by the features of patent claim 1. Advantageous embodiments of the invention will become apparent from the features of the dependent claims.
Nach Maßgabe der Erfindung wird vorgeschlagen, dass zur Verminderung von Gegentakt- bzw. DM-Störungen mehrere parallel geschaltete Zwischenkreiskon- densatoren vorgesehen sind, wobei eine Summe der Kapazitäten der mehreren Zwischenkreiskondensatoren der vorgegebenen Zwischenkreiskapazität ent- spricht. Mit anderen Worten wird der nach dem Stand der Technik vorgesehene Zwischenkreiskondensator durch mehrere parallel geschaltete Zwischenkreiskondensatoren ersetzt. Dabei bleibt die für den einzigen Zwischenkreiskondensator ursprünglich vorgegebene Zwischenkreiskapazität erhalten. Durch das Vorsehen mehrerer Zwischenkreiskondensatoren bleibt die Rippelspannung im Wesentli- chen unverändert. According to the invention, it is proposed that a plurality of DC link capacitors connected in parallel be provided to reduce push-pull or DM faults, wherein a sum of the capacitances of the plurality of DC link capacitors corresponds to the predetermined DC link capacitance. In other words, the intermediate circuit capacitor provided according to the prior art is replaced by a plurality of DC link capacitors connected in parallel. In this case, the originally specified for the single DC link capacitor DC link capacity is maintained. By providing a plurality of DC link capacitors, the ripple voltage remains essentially unchanged.
Die erfindungsgemäße Aufteilung des Zwischenkreiskondensators in mehrere Zwischenkreiskondensatoren bewirkt vorteilhafterweise eine deutliche Verminderung von DM-Störungen, insbesondere bei der Erzeugung hoher Phasenströme. Die Aufteilung des Zwischenkreiskondensators in mehrere Zwischenkreiskondensatoren lässt sich einfach und kostengünstig realisieren. Sie ist insbesondere deshalb möglich, weil eine notwendige Kapazität zur Ansteuerung der Schalteinrichtung in der Regel kleiner ist als eine weitere notwendige Kapazität zur Verminderung der Rippelspannung auf den vorgegebenen Maximalwert. Im Hinblick auf die Einstel- lung der vorgegebenen maximalen Rippelspannung ist die Summe der Kapazitäten der aufgeteilten Zwischenkreiskondensatoren maßgeblich. Die vorgegebene maximale Rippelspannung und damit die Wahl der Größe der Zwischenkreiskapazitat ergibt sich aus Anforderungen des Kunden. Bei einer vorgegebenen maximalen Rippelspannung kann die Größe der Zwischenkreiskapazitat beispielsweise durch Simulation an einem die betreffende Inverterschaltung wiedergegebenen Modell ermittelt werden. Ein solches Modell berücksichtigt insbesondere die Art der Modulation, den Kosinus Phi des Elektromotors, die Taktfrequenz der Leistungstransistoren in den Halbbrücken sowie die Zwischenkreiskapazitat. Bei der Simulation werden die Randbedingungen so eingestellt, dass eine maximale Rippelspannung sich ergibt. Sodann wird die Zwischenkreiskapazitat so eingestellt, dass sich bei solchen Randbedingungen eine vorgegebene maximale Rippelspannung ergibt. Bei Invertern zur Verwendung im Automotivebereich liegt eine typische Zwischenkreiskapazitat im Bereich von 400 bis 1000 F. The division of the intermediate circuit capacitor according to the invention into a plurality of intermediate circuit capacitors advantageously brings about a marked reduction in DM disturbances, in particular in the generation of high phase currents. The division of the DC link capacitor into a plurality of DC link capacitors can be realized easily and inexpensively. It is particularly possible because a necessary capacity for driving the switching device is usually smaller than another necessary capacity to reduce the ripple voltage to the predetermined maximum value. With regard to the setting of the specified maximum ripple voltage, the sum of the capacitances of the divided DC link capacitors is decisive. The specified maximum ripple voltage and thus the choice of the size of the DC link capacitance results from customer requirements. For a given maximum ripple voltage, the size of the DC link capacitance can be determined, for example, by simulation on a model reproducing the relevant inverter circuit. Such a model takes into account in particular the type of modulation, the cosine Phi of the electric motor, the clock frequency of the power transistors in the half bridges and the DC link capacitance. In the simulation, the boundary conditions are set so that a maximum ripple voltage results. Then, the DC link capacitance is adjusted so that a given maximum ripple voltage results in such boundary conditions. In the case of inverters for use in the automotive sector, a typical DC link capacitance is in the range from 400 to 1000 F.
Dem ersten Zwischenkreiskondensator können auch mehrere zweite Zwischen- kreiskondensatoren vorgeschaltet sein. Auch in diesem Fall gilt, dass die Summe der ersten und der zweiten Kapazitäten der vorgegebenen Zwischenkreiskapazitat entspricht. Durch das Vorsehen mehrerer zweiter Zwischenkreiskondensatoren können DM-Störungen noch effektiver vermindert werden. Zweckmäßigerweise bildet die erste Kapazität einen Anteil von 95 bis 70%, und die zweite Kapazität einen Anteil von 5 bis 30% an der vorgegebenen Zwischen- kreiskapazität. The first intermediate circuit capacitor can also be preceded by a plurality of second intermediate circuit capacitors. In this case too, the sum of the first and the second capacitances corresponds to the predetermined DC link capacitance. By providing a plurality of second DC link capacitors DM disturbances can be reduced even more effectively. Conveniently, the first capacity forms a proportion of 95 to 70%, and the second capacity forms a proportion of 5 to 30% of the predetermined intermediate circuit capacity.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist eine erste Kapa- zität eines mit der Schalteinrichtung verbundenen ersten Zwischenkreiskondensa- tors größer als eine zweite Kapazität eines dem ersten Zwischenkreiskondensator eingangsseitig vorgeschalteten zweiten Zwischenkreiskondensators. Die erste Kapazität des ersten Zwischenkreiskondensators ist so groß gewählt, dass damit die Schalteinrichtung stets ausreichend mit Strom versorgt werden kann. Aus der Dif- ferenz der vorgegebenen Zwischenkreiskapazität und der ersten Kapazität ergibt sich die zweite Kapazität. Wegen des vorgeschlagenen Vorsehens eines ersten und eines zweiten Zwischenkreiskondensators ergibt sich ein LC-Glied, welches eine Verminderung von DM-Störungen bewirkt. Die Induktivität L wird dabei durch die Verbindungsleitungen zwischen dem ersten und dem zweiten Zwischenkreis- kondensator gebildet. Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in die Versorgungsleitungen zur Versorgung der Zwischenkreiskondensatoren mit Strom eine Filterschaltung zur Verminderung insbesondere von CM-Störungen eingeschaltet, wobei die Filterschaltung eine oder mehrere hintereinander geschaltete Filterstufen umfassen. In einer Filterstufe ist vorteilhafterweise zwischen die Versorgungs- leitungen ein X-Kondensator geschaltet. Ferner ist jede Versorgungsleitung über einen Y-Kondensator gegen Masse geschaltet. Die Masse wird durch das Gehäuse bzw. das Gehäusepotenzial eines Gehäuses des Inverters gebildet. According to a further advantageous embodiment of the invention, a first capacitance of a first DC link capacitor connected to the switching device is greater than a second capacitance of a second DC link capacitor connected upstream of the first DC link capacitor. The first capacitor of the first DC link capacitor is chosen so large that so that the switching device can always be sufficiently supplied with power. The difference between the specified DC link capacitance and the first capacitance results in the second capacitance. Because of the proposed provision of a first and a second DC link capacitor results in an LC element, which causes a reduction of DM disorders. The inductance L is formed by the connecting lines between the first and the second DC link capacitor. According to a further advantageous embodiment of the invention, a filter circuit for reducing in particular CM disturbances is turned on in the supply lines for supplying the intermediate circuit capacitors with current, wherein the filter circuit comprise one or more filter stages connected in series. In a filter stage, an X capacitor is advantageously connected between the supply lines. Furthermore, each supply line is connected to ground via a Y capacitor. The mass is formed by the housing or the housing potential of a housing of the inverter.
Nach einer weiteren Ausgestaltung umfasst die Filterstufe eine die Versorgungs- leitungen umgebende Ringkerndrossel sowie jeweils eine jede der Versorgungsleitungen umgreifende Filterdrossel. Die Ringkerndrossel und die Filterdrosseln können in einem geeignet ausgebildeten Bauelement zusammengefasst sein. According to a further embodiment, the filter stage comprises a ring core choke surrounding the supply lines and in each case a filter choke encompassing each of the supply lines. The toroidal core choke and the filter choke can be combined in a suitably designed component.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnun- gen näher erläutert. Es zeigen: Exemplary embodiments of the invention will be explained in more detail below with reference to the drawings. Show it:
Fig. 1 eine schematische erste Schaltungsanordnung eines Inverters, 1 shows a schematic first circuit arrangement of an inverter,
Fig. 2 eine schematische Schaltungsanordnung eines zweiten Inverters und Fig. 2 is a schematic circuit arrangement of a second inverter and
Fig. 3 den Störpegel über der Frequenz. Fig. 3 shows the noise level over the frequency.
In den Fig. 1 und 2 ist mit dem Bezugszeichen 1 eine Batterie bezeichnet, welche eine Spannung von beispielsweise 200 bis 400 V liefert. Die Batterie 1 versorgt ei- nen allgemein mit dem Bezugszeichen 2 bezeichneten Inverter. Eine erste Versorgungsleitung ist mit dem Bezugszeichen 3 und eine zweite Versorgungsleitung mit dem Bezugszeichen 4 bezeichnet. In die Versorgungsleitungen 3, 4 ist eine allgemein mit dem Bezugszeichen 5 bezeichnete Filterschaltung eingeschaltet, welche zwei Filterstufen umfasst. Jede der Filterstufen weist einen zwischen die Versorgungsleitungen 3, 4 geschalteten X-Kondensator 6 sowie Y-Kondensatoren 7 auf, welche zwischen jede der Versorgungsleitungen 3, 4 und einer Masse G eines Gehäuses geschaltet sind. Mit dem Bezugszeichen 8 ist schematisch eine die Versorgungsleitungen 3, 4 umgebende Ringkerndrossel bezeichnet. Das Bezugszeichen 9 bezeichnet Filterdrosseln, welche jede der Versorgungsleitungen 3, 4 umgeben. Die Filterschaltung 5 weist hier zwei identische Filterstufen auf. Sie dient insbesondere der Verminderung von CM-Störungen. In Figs. 1 and 2, reference numeral 1 denotes a battery which supplies a voltage of, for example, 200 to 400 volts. The battery 1 supplies an inverter generally designated by the reference numeral 2. A first supply line is denoted by the reference numeral 3 and a second supply line with designated by the reference numeral 4. In the supply lines 3, 4 is a generally designated by the reference numeral 5 filter circuit is turned on, which comprises two filter stages. Each of the filter stages has an X-capacitor 6 connected between the supply lines 3, 4 and Y-capacitors 7, which are connected between each of the supply lines 3, 4 and a ground G of a housing. The reference numeral 8 schematically denotes a supply core 3, 4 surrounding the toroidal core choke. Reference numeral 9 denotes filter chokes surrounding each of the supply lines 3, 4. The filter circuit 5 has two identical filter stages here. In particular, it serves to reduce CM disturbances.
Der Filterschaltung 5 ist ein Wechselrichter 10 nachgeschaltet. Der Wechselrichter 10 umfasst eingangsseitig eine erste Zwischenkreiskapazität 1 1 sowie eine parallel dazu geschaltete zweite Zwischenkreiskapazität 12. Der ersten Zwischenkreis- kapazität 1 1 sind Halbbrücken 13 nachgeschaltet, welche jeweils zwei Leistungstransistoren 14 umfassen. Es kann sich dabei um sogenannte IGBTs (insulated gate bipolar transistor) handeln. Zur Ansteuerung der Halbbrücken 13 ist eine mit dem Bezugszeichen 15 bezeichnete Steuerung vorgesehen. Mit der Steuerung 15 werden Pulsweiten-modulierte Signale erzeugt. The filter circuit 5 is followed by an inverter 10. The inverter 10 has on the input side a first DC link capacitance 1 1 and a second DC link capacitance 12 connected in parallel thereto. The first DC link capacitance 11 is followed by half bridges 13, which each comprise two power transistors 14. These may be so-called IGBTs (insulated gate bipolar transistor). For driving the half bridges 13, a designated by the reference numeral 15 control is provided. The controller 15 generates pulse-width-modulated signals.
Die von den Halbbrücken 13 erzeugten Phasen u, v und w bilden nährungsweise einen sinusförmigen Wechselstrom zum Antrieb des Drehstrommotors M. Sofern der Drehstrommotor M als Generator betrieben wird, wird der davon erzeugte Drehstrom durch die Halbbrücken 13 in einen Gleichstrom gewandelt und in der Batterie 1 gespeichert. The phases u, v and w generated by the half bridges 13 form a sinusoidal alternating current for driving the three-phase motor M. If the three-phase motor M is operated as a generator, the three-phase current generated by the half-bridges 13 is converted into a direct current and in the battery. 1 saved.
In der vorliegenden Schaltungsanordnung addieren sich eine erste Kapazität C1 des ersten Zwischenkreiskondensators 1 1 und eine zweite Kapazität C2 des zweiten Zwischenkreiskondensators 12 zu einer vorgegebenen Zwischenkreiskapazität C. Der dem ersten Zwischenkreiskondensator 1 1 parallel vorgeschaltete zweite Zwi- schenkreiskondensator 12 bildet ein LC-Glied. Die Induktivität L wird dabei durch die zwischen dem ersten Zwischenkreiskondensator 1 1 und dem zweiten Zwischenkreiskondensator 12 vorgesehenen Verbindungsleitungen 16 gebildet. Das LC-Glied vermindert beim Betrieb des Wechselrichters 10 auftretende DM-Störungen. In the present circuit arrangement, a first capacitance C1 of the first DC link capacitor 11 and a second capacitance C2 of the second DC link capacitor 12 add up to a predetermined DC link capacitance C. The second intermediate circuit capacitor 12 connected in parallel with the first intermediate circuit capacitor 11 forms an LC element. The inductance L is formed by the connection lines 16 provided between the first intermediate circuit capacitor 11 and the second intermediate circuit capacitor 12. The LC element reduces during operation of the inverter 10 occurring DM interference.
Trotz der erfindungsgemäß vorgeschlagenen Aufteilung des Zwischenkreiskon- densators auf einen ersten Zwischenkreiskondensator 1 1 und einen zweiten Zwi- schenkreiskondensator 12 bleibt die vorgegebene Zwischenkreiskapazität C insgesamt erhalten. Despite the invention proposed division of the DC link capacitor on a first DC link capacitor 1 1 and a second intermediate circuit capacitor 12, the predetermined DC link capacitance C is maintained.
Die Zwischenkreiskapazität C ergibt sich aus der Summe der ersten Kapazität C1 und der zweiten Kapazität C2. Dabei kann die erste Kapazität C1 einen Anteil von 95 bis 70% und die zweite Kapazität C2 einen Anteil von 5 bis 30% an der vorgegebenen Zwischenkreiskapazität C bilden. The DC link capacitance C results from the sum of the first capacitance C1 and the second capacitance C2. In this case, the first capacitance C1 can form a proportion of 95 to 70% and the second capacitance C2 can form a proportion of 5 to 30% at the predetermined DC link capacitance C.
Fig. 2 zeigt eine schematische Schaltungsanordnung eines weiteren Inverters, welche sich von der in Fig. 1 gezeigten Schaltungsanordnung lediglich dadurch unterscheidet, dass dem ersten Zwischenkreiskondensator 1 1 zwei zweite Zwi- schenkreiskondensatoren 12 parallel vorgeschaltet sind. Durch die beiden zweiten Zwischenkreiskondensatoren 12 werden zwei LC-Glieder gebildet, welche eine noch effektivere Verminderung von DM-Störungen bewirken. Die Summe der ersten Kapazität C1 des ersten Zwischenkreiskondensators und der zweiten Kapazi- täten C2 der zweiten Zwischenkreiskondensatoren 12 entspricht auch hier wieder der vorgegebenen Zwischenkreiskapazität C, welche sich aus einer vorgegebenen maximalen Rippelspannung bei vorgegebenen Rand- bzw. Betriebsbedingungen ergibt. Im vorliegenden Ausführungsbeispiel kann die erste Kapazität C1 im Bereich von 300 bis 600 F liegen. Jede der zweiten Kapazitäten C2 kann im Bereich von 30 bis 150 }F liegen. Fig. 3 zeigt den Störpegel auf den Versorgungsleitungen 3, 4 in Abhängigkeit der Frequenz. Die Kurve A in Fig. 3 zeigt den Störpegel bei einem herkömmlichen In- verter, bei dem lediglich ein einziger Zwischenkreiskondensator vorgesehen ist. Eine Zwischenkreiskapazität C des einzigen Zwischenkreiskondensators hat 500 F betragen. Die Kurve B zeigt den Störpegel für einen Inverter, bei dem einem ersten Zwischenkreiskondensator 1 1 parallel ein zweiter Zwischenkreiskondensator 12 vorgeschaltet ist. Eine erste Kapazität C1 des ersten Zwischenkreiskondensators 1 1 beträgt 400 F, eine zweite Kapazität C2 des zweiten Zwischen kreiskon- densators 12 beträgt 100 F. Es ergibt sich in diesem Fall - wie bei der Kurve A - insgesamt eine Zwischenkreiskapazität von 500 F. Gleichwohl wird in Fig. 3 deutlich, dass die durch die Kurve B wiedergegebene Störpegel deutlich niedriger ist als der durch die Kurve A wiedergegebene Störpegel. FIG. 2 shows a schematic circuit arrangement of a further inverter, which differs from the circuit arrangement shown in FIG. 1 only in that two second intermediate circuit capacitors 12 are connected in parallel to the first intermediate circuit capacitor 11. By the two second DC link capacitors 12, two LC elements are formed, which cause an even more effective reduction of DM interference. The sum of the first capacitance C1 of the first DC link capacitor and the second capacitances C2 of the second DC link capacitors 12 here again corresponds to the predetermined DC link capacitance C, which results from a predetermined maximum ripple voltage given predetermined boundary or operating conditions. In the present embodiment, the first capacitance C1 may be in the range of 300 to 600 F. Each of the second capacitances C2 may be in the range of 30 to 150} F. Fig. 3 shows the noise level on the supply lines 3, 4 as a function of frequency. The curve A in FIG. 3 shows the interference level in a conventional inverter in which only a single DC link capacitor is provided. A DC link capacitance C of the single DC link capacitor has been 500 F. The curve B shows the noise level for an inverter, in which a first intermediate circuit capacitor 1 1 in parallel with a second intermediate circuit capacitor 12 is connected upstream. A first capacitance C1 of the first DC link capacitor 11 is 400 F, a second capacitance C2 of the second DC link capacitor 12 is 100 F. In this case, as in the case of the curve A, a total link capacitance of 500 F is obtained clearly shows that the noise level represented by the curve B is significantly lower than the noise level represented by the curve A.
1 Batterie 1 battery
2 Inverter  2 inverters
3 erste Versorgungsleitung 3 first supply line
4 zweite Versorgungsleitung  4 second supply line
5 Filterschaltung  5 filter circuit
6 X-Kondensator  6 x capacitor
7 Y-Kondensator  7 Y capacitor
8 Ringkerndrossel 8 toroidal choke
9 Filterdrossel  9 filter choke
10 Wechselrichter  10 inverters
1 1 erster Zwischenkreiskondensator 1 1 first DC link capacitor
12 zweiter Zwischenkreiskondensator 13 Halbbrücke 12 second DC link capacitor 13 half-bridge
14 Leistungstransistor  14 power transistor
15 Steuerung  15 control
16 Verbindungsleitung C Zwischenkreiskapazität  16 Connecting cable C DC link capacity
C1 erste Kapazität  C1 first capacity
C2 zweite Kapazität  C2 second capacity
G Masse  G mass
M Drehstrommotor  M three-phase motor
u, v, w Phase u, v, w phase

Claims

Patentansprüche claims
1 . Inverter (1 ) mit einem Zwischenkreiskondensator, dessen Anschlüsse mit Versorgungsleitungen (3, 4) zur Versorgung mit Strom und mit einer mehrere Halbbrücken (13) umfassenden Schalteinrichtung (10) verbunden sind, wobei der Zwischenkreiskondensator eine vorgegebene Zwischenkreiskapazität (C) aufweist, deren Größe so bemessen ist, dass eine durch Schaltvorgänge in der Schalteinrichtung (10) in den Versorgungsleitungen (3, 4) gebildete Rip- pelspannung bei vorgegebenen Betriebsbedingungen auf eine vorgegebene maximale Rippelspannung vermindert wird, dadurch gekennzeichnet, dass zur Verminderung von Gegentakt-Störungen mehrere parallel geschaltete Zwischenkreiskondensatoren (1 1 , 12) vorgesehen sind, wobei eine Summe der Kapazitäten (C1 , C2) der mehreren Zwischenkreiskondensatoren (1 1 , 12) der vorgegebenen Zwischenkreiskapazität (C) entspricht. 1 . Inverter (1) with an intermediate circuit capacitor, the terminals of which are connected to supply lines (3, 4) for supplying current and to a switching device (10) comprising a plurality of half bridges (13), the intermediate circuit capacitor having a predetermined intermediate circuit capacitance (C) whose size is dimensioned such that a rippling voltage formed by switching operations in the switching device (10) in the supply lines (3, 4) is reduced to a predetermined maximum ripple voltage under predetermined operating conditions, characterized in that a plurality of parallel switched to reduce differential mode interference DC link capacitors (1 1, 12) are provided, wherein a sum of the capacitances (C1, C2) of the plurality of DC link capacitors (1 1, 12) corresponds to the predetermined DC link capacitance (C).
2. Inverter (1 ) nach Anspruch 1 , wobei eine erste Kapazität (C1 ) eines mit der Schalteinrichtung (10) verbundenen ersten Zwischenkreiskondensators (1 1 ) größer als eine zweite Kapazität (C2) eines dem ersten Zwischenkreiskondensator (1 1 ) eingangsseitig vorgeschalteten zweiten Zwischenkreiskondensators (12) ist. 2. Inverter (1) according to claim 1, wherein a first capacitance (C1) of one of the switching device (10) connected to the first DC link capacitor (1 1) greater than a second capacitance (C2) of the first DC link capacitor (1 1) upstream of the input second DC link capacitor (12).
3. Inverter (1 ) nach einem der vorgehenden Ansprüche, wobei dem ersten Zwischenkreiskondensator (1 1 ) mehrere zweite Zwischenkreiskondensatoren (12) eingangsseitig vorgeschaltet sind. 3. Inverter (1) according to one of the preceding claims, wherein the first intermediate circuit capacitor (1 1) a plurality of second intermediate circuit capacitors (12) are connected upstream on the input side.
4. Inverter (1 ) nach einem der vorgehenden Ansprüche, wobei die erste Kapa- zität (C1 ) einen Anteil von 95 bis 70%, und die zweite Kapazität (C2) einen Anteil von 5 bis 30% an der vorgegebenen Zwischenkreiskapazität (C) bildet. 4. Inverter (1) according to one of the preceding claims, wherein the first capacitance (C1) has a proportion of 95 to 70%, and the second capacitance (C2) a proportion of 5 to 30% of the predetermined intermediate circuit capacitance (C) forms.
5. Inverter (1 ) nach einem der vorgehenden Ansprüche, wobei in die Versorgungsleitungen (3, 4) eine Filterschaltung (5) zur Verminderung von Gleichtakt- Störungen eingeschaltet ist, wobei die Filterschaltung (5) eine oder mehrere hintereinander geschaltete Filterstufen umfasst. 5. inverter (1) according to any one of the preceding claims, wherein in the supply lines (3, 4) a filter circuit (5) is switched on to reduce common mode noise, wherein the filter circuit (5) comprises one or more series-connected filter stages.
6. Inverter (1 ) nach einem der vorgehenden Ansprüche, wobei in der Filterstufe zwischen die Versorgungsleitungen (3, 4) ein X-Kondensator (6) geschaltet ist und jede Versorgungsleitung (3, 4) über einen Y-Kondensator (7) gegen Masse (G) geschaltet ist. 6. Inverter (1) according to one of the preceding claims, wherein in the filter stage between the supply lines (3, 4), an X-capacitor (6) is connected and each supply line (3, 4) via a Y-capacitor (7) against Ground (G) is connected.
7. Inverter (1 ) nach einem der vorgehenden Ansprüche, wobei die Filterstufe eine die Versorgungsleitungen (3, 4) umgebende Ringkerndrossel (8) sowie jeweils eine jede der Versorgungsleitungen (3, 4) umgreifende Filterdrossel (9) umfasst. 7. Inverter (1) according to one of the preceding claims, wherein the filter stage comprises a supply line (3, 4) surrounding the toroidal core choke (8) and each one of each of the supply lines (3, 4) encompassing the filter choke (9).
EP18728055.7A 2017-05-16 2018-05-15 Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters Pending EP3625881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017110608.1A DE102017110608A1 (en) 2017-05-16 2017-05-16 inverter
PCT/EP2018/062602 WO2018210869A1 (en) 2017-05-16 2018-05-15 Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters

Publications (1)

Publication Number Publication Date
EP3625881A1 true EP3625881A1 (en) 2020-03-25

Family

ID=62455438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18728055.7A Pending EP3625881A1 (en) 2017-05-16 2018-05-15 Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters

Country Status (6)

Country Link
US (1) US11018572B2 (en)
EP (1) EP3625881A1 (en)
JP (1) JP7132248B2 (en)
CN (1) CN110637411B (en)
DE (1) DE102017110608A1 (en)
WO (1) WO2018210869A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672048B1 (en) * 2018-12-21 2021-02-03 Schaffner EMV AG Motor drive with a filter including a three-phase differential mode reactor with common mode damping
DE102020103166A1 (en) * 2020-02-07 2021-08-12 Hanon Systems Procedure for preheating an intermediate circuit capacitance
CN111884500B (en) * 2020-08-03 2022-02-22 中车青岛四方车辆研究所有限公司 Method for suppressing common-mode conducted interference of vehicle-mounted charger
KR20220072676A (en) * 2020-11-25 2022-06-02 현대모비스 주식회사 Filter circuit for preventing reverse inflow of electromagnetic waves
DE102021105114A1 (en) 2021-03-03 2022-09-08 Airbus Defence and Space GmbH Bridge circuit, power module and drive system provided therewith
DE102021202042A1 (en) 2021-03-03 2022-09-08 Valeo Siemens Eautomotive Germany Gmbh Converter for an on-board network of an electrically driven vehicle and on-board network for an electrically driven vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209951A (en) * 1988-02-18 1989-08-23 Fuji Electric Co Ltd Power conversion device
JPH08237936A (en) * 1995-02-28 1996-09-13 Fuji Electric Co Ltd Noise filter for voltage type inverter
JP3494051B2 (en) 1999-01-14 2004-02-03 トヨタ自動車株式会社 Inverter smoothing circuit
DE10062075A1 (en) * 2000-12-13 2002-06-27 Bosch Gmbh Robert Converter with integrated DC link capacitors
JP2008263729A (en) * 2007-04-12 2008-10-30 Nippon Yusoki Co Ltd Power supply circuit
JP4597202B2 (en) * 2008-03-07 2010-12-15 株式会社日立製作所 Power converter
WO2009147985A1 (en) * 2008-06-03 2009-12-10 株式会社村田製作所 Capacitor circuit and power conversion circuit
KR101543039B1 (en) * 2009-10-26 2015-08-10 현대자동차주식회사 Method for constructing capacitor module circuit of inverter using impedance matching
JP5999677B2 (en) * 2011-09-20 2016-09-28 ローム株式会社 Electronic circuit
DE102012002089A1 (en) * 2012-02-06 2013-08-08 Sew-Eurodrive Gmbh & Co. Kg Drive system with energy storage and method for operating a drive system
ES2824000T3 (en) * 2012-03-05 2021-05-11 Fuji Electric Co Ltd Power conversion device
KR101819256B1 (en) 2013-12-18 2018-01-16 엘에스산전 주식회사 Low voltage electromagnetic interference filter of electric vehicle
US9893603B2 (en) 2014-06-06 2018-02-13 Hitachi Automotive Systems, Ltd. Power converter
JP6414014B2 (en) 2015-07-07 2018-10-31 株式会社豊田自動織機 In-vehicle inverter device and in-vehicle electric compressor
US20170256354A1 (en) * 2016-03-03 2017-09-07 Hamilton Sundstrand Corporation Multiple parallel semiconductor switching system including current sharing filter inductor

Also Published As

Publication number Publication date
US11018572B2 (en) 2021-05-25
CN110637411B (en) 2022-05-17
WO2018210869A1 (en) 2018-11-22
US20200204058A1 (en) 2020-06-25
JP2020520223A (en) 2020-07-02
DE102017110608A1 (en) 2018-11-22
CN110637411A (en) 2019-12-31
JP7132248B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
EP3625881A1 (en) Inverter with intermediate circuit capacitor cascade and dc-side common-mode and differential-mode filters
DE102007008765A1 (en) Improved power converter with reduced common mode voltage
AT512752B1 (en) Rectifier circuit with current injection
DE10392856T5 (en) Active Emi filter
EP2623363B1 (en) Apparatus and method for charging a traction battery of an electric vehicle
EP3840980B1 (en) Charging apparatus with controllable intermediate circuit neutral point voltage and drive system with such charging apparatus
DE102005019215B4 (en) Output filter for a pulsed power converter
EP2367272B1 (en) Inverter
WO2014206704A1 (en) Converter assembly having multi-step converters connected in parallel and method for controlling said multi-step converters
EP3338353A1 (en) Voltage converter, electric drive system and method for reducing interference voltages
EP3602762B1 (en) Inverter
EP4046268B1 (en) Determination of filter parameters within an inverter
WO2020064432A1 (en) Charging circuit for a vehicle-side stored electrical energy source
AT516643B1 (en) Rectifier circuit
DE102017216468A1 (en) Charging an electrical energy storage of a motor vehicle
DE102019008340A1 (en) POWER SUPPLY
DE202015100540U1 (en) A filter assembly
WO2021174279A1 (en) Machine converter and method for operating a machine converter
DE102013212229A1 (en) Voltage converter and method for operating a voltage converter
DE102010054005A1 (en) Electrical device e.g. frequency converter for switching power supply, has common-mode rejection choke to avoid saturation of magnetically effective core when pulse duration in starting phase is larger than that in steady operation phase
DE102007034450A1 (en) Device for supplying voltage, particularly potential transformers, has controller for pulse-width-modulation of switches, which has difference of partial voltages of supply voltage
CH698725B1 (en) Device for three-phase drive system of hybrid motor vehicle, has star-point of stator phase of polyphase machine taken to input face first end of HF-isolated circuit part
DE102023107921B3 (en) Method and inverter system with power factor correction for providing a multi-phase current
DE102011089963A1 (en) Pulse width modulation controller for use in micro-controller, outputs control signal, where slope of signal pulses of control signal is clocked with frequency that is larger than another frequency around specific factor
WO2020007812A1 (en) Method for operating a circuit for producing an electromagnetic field, and circuit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210421

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO EAUTOMOTIVE GERMANY GMBH