JPH08237936A - Noise filter for voltage type inverter - Google Patents

Noise filter for voltage type inverter

Info

Publication number
JPH08237936A
JPH08237936A JP7039474A JP3947495A JPH08237936A JP H08237936 A JPH08237936 A JP H08237936A JP 7039474 A JP7039474 A JP 7039474A JP 3947495 A JP3947495 A JP 3947495A JP H08237936 A JPH08237936 A JP H08237936A
Authority
JP
Japan
Prior art keywords
circuit
power
zero
power converter
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039474A
Other languages
Japanese (ja)
Inventor
Kiyoaki Sasagawa
清明 笹川
Masato Mochizuki
昌人 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7039474A priority Critical patent/JPH08237936A/en
Priority to GB9603817A priority patent/GB2310553A/en
Priority to DE1996107201 priority patent/DE19607201A1/en
Publication of JPH08237936A publication Critical patent/JPH08237936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Filters And Equalizers (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE: To block the flow-out of high frequency noise to the power supply side reliably using a small-sized noise filter by inserting a first low-pass filter circuit between the DC side of a first power converter and a smoothing capacitor. CONSTITUTION: A second low-pass filter circuit 20 comprising four sets of filter capacitors 12-15, and a secondary winding 21 wound around a zero-phase reactor 11 while being short-circuited through a short circuit resistor 22 is inserted between a rectifier 2 and a smoothing capacitor 3. Since the characteristics of the low-pass filter circuit deteriorate upon the occurrence of resonance phenomenon of the inductance of wiring and the capacitance of filter capacitor, the secondary winding 21 wound around the core of the zero-phase reactor 11 is short-circuited with the short circuit resistor having resistance R in order to attenuate the resonance thus preventing the characteristics of the low-pass filter circuit from deteriorating. With such circuitry, the flow-out of high frequency noise to the AC power supply side is blocked by means of a small-sized filter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】この発明は、自己消弧形半導体ス
イッチ素子で構成している電圧形インバータが動作する
際の高周波ノイズを除去する電圧形インバータのノイズ
フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a noise filter for a voltage source inverter which removes high frequency noise when a voltage source inverter composed of a self-turn-off type semiconductor switching device operates.

【従来の技術】図8は電圧形インバータの従来例を示し
た主回路接続図である。この図8の従来例回路におい
て、第1電力変換器としての整流器2を図示していない
交流電源に接続して、この交流電源が供給する交流電力
を直流電力に変換して直流中間回路へ出力させる。整流
器2が出力する直流電力にはリップル分が含まれている
ので、直流中間回路に接続した平滑コンデンサ3がこの
リップル分を吸収・除去する。直流中間回路に接続した
第2電力変換器としてのインバータ4は、この平滑され
た直流電力を入力し、例えばパルス幅変調制御によりこ
れを所望の電圧と周波数の交流電力に変換し、誘導電動
機5を可変速運転する。自己消弧形半導体スイッチ素子
としてのゲート絶縁バイポーラトランジスタ(以下では
IGBTと略記する)4Tとフィードバックダイオード
4Dとを逆並列接続して得られるスイッチング回路を3
相ブリッジ接続してインバータ4を構成し、これら各I
GBT4Tにはゲート駆動回路4Gを別個に備える。最
近では、パルス幅変調制御する際のキャリア周波数の高
周波化を図るために、IGBTなどの高速スイッチング
素子が多用されるようになってきている。
2. Description of the Related Art FIG. 8 is a main circuit connection diagram showing a conventional example of a voltage source inverter. In the conventional circuit of FIG. 8, the rectifier 2 as the first power converter is connected to an AC power supply (not shown), the AC power supplied by the AC power supply is converted into DC power, and the DC power is output to the DC intermediate circuit. Let Since the DC power output from the rectifier 2 contains a ripple component, the smoothing capacitor 3 connected to the DC intermediate circuit absorbs and removes this ripple component. The inverter 4 as the second power converter connected to the DC intermediate circuit inputs the smoothed DC power and converts it into AC power of a desired voltage and frequency by, for example, pulse width modulation control, and the induction motor 5 Variable speed operation. A switching circuit obtained by connecting a gate-insulated bipolar transistor (abbreviated as IGBT hereinafter) 4T and a feedback diode 4D as a self-extinguishing type semiconductor switching element in antiparallel is 3
Inverter 4 is configured by phase bridge connection, and each of these I
The gate drive circuit 4G is separately provided in the GBT 4T. In recent years, high-speed switching elements such as IGBTs have been widely used in order to increase the carrier frequency when performing pulse width modulation control.

【発明が解決しようとする課題】IGBTなどの高速ス
イッチング素子を使用すると、スイッチングの際に変化
率が非常に大きい電圧(大きな dV/dT)を発生する。と
ころで、インバータ4と大地との間には浮遊静電容量6
が存在するので、前述の電圧変化率 dV/dTによって、漏
れ電流IE がこの浮遊静電容量6を介して大地へ流れ
る。図8の従来例回路において、漏れ電流IE の経路は
一点鎖線で図示のように、交流電源(図示せず)→整流
器2→直流中間回路→インバータ4→浮遊静電容量6→
大地、の経路で流れる。この漏れ電流IE の値は下記の
数式1で表されるが、C0 は浮遊静電容量6の値であ
る。
When a high speed switching element such as an IGBT is used, a voltage having a very large change rate (large dV / dT) is generated during switching. By the way, a floating electrostatic capacitance 6 is placed between the inverter 4 and the ground.
Therefore, the leakage current I E flows to the ground through the floating electrostatic capacitance 6 due to the above-mentioned voltage change rate dV / dT. In the conventional circuit of FIG. 8, the path of the leakage current I E is, as shown by the one-dot chain line, an AC power source (not shown) → rectifier 2 → DC intermediate circuit → inverter 4 → stray capacitance 6 →
It flows on the path of the earth. The value of this leakage current I E is expressed by the following mathematical formula 1, and C 0 is the value of the floating capacitance 6.

【数1】IE =C0 ・( dV/dT) この数式1で明らかなように、電圧変化率 dV/dTが大に
なるほど漏れ電流IEが増加する。この漏れ電流IE
交流電源側へ流出すれば、当該交流電源に接続している
他の機器(特に電子機器)に悪影響を与えることにな
る。そこで図8の従来例回路には図示していないが、整
流器2の交流入力側には、各相毎にノイズフィルタを設
置して、前述した漏れ電流IE が電源側へ流出するのを
防止している。しかしながら、整流器2の交流入力側の
各相にノイズフィルタを設置すると、以下に記載の不都
合がある。即ち、 整流器2の交流入力として3相交流電源を使用するこ
とが多いが、3相分のノイズフィルタを設置することは
部品点数の増加となる。特にフィルタを構成するフェラ
イトコアは大形・高価であるから、インバータ装置を大
形化・高価格化させることになる。 このようなノイズフィルタと整流器2,平滑コンデン
サ3,及びインバータ4とを一体化して電圧形インバー
タを構成させると、この電圧形インバータが大形化して
しまう。又、このノイズフィルタを既存の電圧形インバ
ータに追加して取付けるのは困難である。 そこでこの発明の目的は、電圧形インバータのスイッチ
ング動作に伴って生じる高周波ノイズが電源側へ流出す
るのを、小形のノイズフィルタで確実に阻止できるよう
にすることにある。
[Equation 1] I E = C 0 · (dV / dT) As is clear from this mathematical expression 1, the leakage current I E increases as the voltage change rate dV / dT increases. If this leakage current I E flows out to the AC power supply side, it adversely affects other devices (especially electronic devices) connected to the AC power supply. Therefore, although not shown in the conventional circuit of FIG. 8, a noise filter is installed for each phase on the AC input side of the rectifier 2 to prevent the above-mentioned leakage current I E from flowing out to the power supply side. are doing. However, if a noise filter is installed in each phase on the AC input side of the rectifier 2, the following inconvenience occurs. That is, although a three-phase AC power source is often used as the AC input of the rectifier 2, installing a noise filter for three phases increases the number of parts. In particular, since the ferrite core that constitutes the filter is large and expensive, the inverter device becomes large and expensive. If such a noise filter, the rectifier 2, the smoothing capacitor 3, and the inverter 4 are integrated to form a voltage source inverter, the voltage source inverter becomes large. Also, it is difficult to add this noise filter to an existing voltage source inverter. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable a small noise filter to reliably prevent high-frequency noise generated by the switching operation of a voltage-type inverter from flowing out to the power supply side.

【課題を解決するための手段】前述の目的を達成するた
めに、この発明の電圧形インバータのノイズフィルタ
は、交流電源に接続して直流中間回路へ直流電力を出力
する第1電力変換器と、この直流中間回路に接続して所
望の電圧と周波数の交流電力を出力する自己消弧形半導
体スイッチ素子を構成要素にした第2電力変換器、及び
前記直流中間回路に接続した平滑コンデンサとで構成し
ている電圧形インバータにおいて、零相リアクトルとコ
ンデンサとでなる第1ローパスフィルタ回路を、前記第
1電力変換器の直流側と前記平滑コンデンサとの間に挿
入するものとする。又は、零相リアクトルとこの零相リ
アクトルに設けた2次巻線とこの2次巻線を短絡する抵
抗,及びコンデンサとでなる第2ローパスフィルタ回路
を、前記第1電力変換器の直流側と前記平滑コンデンサ
との間に挿入するものとする。又は、零相リアクトルと
この零相リアクトルに設けた2次巻線とこの2次巻線に
流れる電流を検出する電流検出器,及びコンデンサとで
なる第3ローパスフィルタ回路を、前期第1電力変換器
の直流側と前記平滑コンデンサとの間に挿入し、前記2
次巻線の検出電流が所定値を越えれば地絡事故と判定す
る地絡検出器を備えるものとする。
In order to achieve the above-mentioned object, the noise filter of the voltage source inverter of the present invention comprises a first power converter which is connected to an AC power source and outputs DC power to a DC intermediate circuit. A second power converter having a self-extinguishing type semiconductor switch element as a constituent element, which is connected to the DC intermediate circuit to output AC power having a desired voltage and frequency, and a smoothing capacitor connected to the DC intermediate circuit. In the configured voltage source inverter, the first low-pass filter circuit including the zero-phase reactor and the capacitor is inserted between the DC side of the first power converter and the smoothing capacitor. Alternatively, a second low-pass filter circuit composed of a zero-phase reactor, a secondary winding provided in the zero-phase reactor, a resistor short-circuiting the secondary winding, and a capacitor is connected to the DC side of the first power converter. It shall be inserted between the smoothing capacitor. Alternatively, a third low-pass filter circuit including a zero-phase reactor, a secondary winding provided in the zero-phase reactor, a current detector for detecting a current flowing in the secondary winding, and a capacitor is used as the first power conversion circuit in the first period. Inserted between the DC side of the container and the smoothing capacitor, and
It shall be equipped with a ground fault detector that determines a ground fault if the detected current of the next winding exceeds a specified value.

【作用】第1電力変換器が変換して出力する直流の正極
側電流が流れる線路と、負極側電流が流れる線路とを共
通の鉄心に巻き付けてできている零相リアクトルとコン
デンサとの組み合わせでローパスフィルタ回路を構成
し、このローパスフィルタ回路を第1電力変換器の直流
側と直流中間回路に接続した平滑コンデンサとの間に挿
入する。ローパスフィルタ回路を構成している前記零相
リアクトルは、直流中間回路の正極側線路と負極側線路
とに同時に流れる正規電流には影響を及ぼさないけれど
も、浮遊静電容量を介して大地へ流れる漏れ電流は、零
相リアクトルを構成している正極側巻線,或いは負極側
巻線のいずれか一方にのみ流れるので、このとき零相リ
アクトルはこの漏れ電流に対してはインダクタンスとし
て作用する。よって一端を接地しているコンデンサと前
記の零相リアクトルとを組み合わせてローパスフィルタ
回路を構成すれば、前述した漏れ電流を抑制することが
できる。
The combination of the zero-phase reactor and the capacitor, which are formed by winding the line through which the positive current of the direct current, which is converted and output by the first power converter, and the line through which the negative current flows, are wound around a common iron core. A low-pass filter circuit is configured, and this low-pass filter circuit is inserted between the DC side of the first power converter and the smoothing capacitor connected to the DC intermediate circuit. Although the zero-phase reactor that constitutes the low-pass filter circuit does not affect the normal current that flows in the positive side line and the negative side line of the DC intermediate circuit at the same time, it leaks to the ground through the floating electrostatic capacitance. Since the current flows only through either the positive side winding or the negative side winding forming the zero-phase reactor, the zero-phase reactor acts as an inductance for this leakage current at this time. Therefore, if the low-pass filter circuit is configured by combining the capacitor whose one end is grounded and the zero-phase reactor, the above-mentioned leakage current can be suppressed.

【実施例】図1は本発明の第1実施例を表した主回路接
続図であるが、この第1実施例回路に記載の第1電力変
換器としての整流器2,平滑コンデンサ3,第2電力変
換器としてのインバータ4とこれを構成するフィードバ
ックダイオード4Dとゲート駆動回路4GとIGBT4
T,及び誘導電動機5の名称・用途・機能は、図8で既
述の従来例回路の場合と同じであるから、これらの説明
は省略する。図1の第1実施例回路では、整流器2と直
流中間回路の平滑コンデンサ3との間に第1ローパスフ
ィルタ回路10を挿入する。この第1ローパスフィルタ
回路10は、ドーナッツ状に形成している鉄心の中央に
設けた穴に直流中間回路の正極側線路と負極側線路とを
一括して貫通させている零相リアクトル11と、零相リ
アクトル11よりも整流器2側の正極側線路と負極側線
路とに接続したフィルタコンデンサ12と13、及び零
相リアクトル11よりも平滑コンデンサ3側の正極側線
路と負極側線路とに接続したフィルタコンデンサ14と
15とで構成しているが、これら各フィルタコンデンサ
12〜15の他端はアース回路に接続する。尚、図示し
ている零相リアクトル11は、正極側線路と負極側線路
とが鉄心の中心穴を貫通しているので、それぞれが巻数
が1のコイルを形成していることになるが、正極側線路
を鉄心に複数回巻付け、且つ負極側線路も同じ鉄心に同
じ回数を巻付ける構成であっても差し支えないのは勿論
である。更に鉄心として飽和特性の良好な材料(たとえ
ばフェライトコア)を使用すれば、漏れ電流IE の抑制
効果が向上する。図2は図1に図示の第1実施例回路で
浮遊静電容量を介して漏れ電流が流れる経路を表した電
流経路表示図である。この図2において、漏れ電流IE
は、直流中間回路の正極側線路と浮遊静電容量6とを経
て大地へ流れる場合を一点鎖線で図示している。前述し
たように、インバータ4を構成するIGBT4Tは高速
スイッチング動作を繰り返すので、浮遊静電容量6には
変化率が大きい電圧が高速で繰り返し印加されるので、
この漏れ電流IE は高周波成分の電流である。従って高
周波の漏れ電流IE を抑制するには、ローパスフィルタ
が効果を発揮する。そこで直流中間回路に第1ローパス
フィルタ回路10を挿入することで漏れ電流IE を抑制
している。図3は図1の第1実施例回路に記載の第1ロ
ーパスフィルタ回路10の等価回路を表した等価回路図
であって、零相リアクトル11がLなる値のインダクタ
ンスとなり、このインダクタンスLの前後にC1 とC2
なる静電容量のフィルタコンデンサがあってローパスフ
ィルタ回路を形成している。尚、18は直流中間回路の
正極側線路又は負極側線路であり、19はアース回路で
ある。図4は本発明の第2実施例を表した主回路接続図
であるが、この第2実施例回路に記載の第1電力変換器
としての整流器2,平滑コンデンサ3,第2電力変換器
としてのインバータ4とこれを構成するフィードバック
ダイオード4Dとゲート駆動回路4GとIGBT4T,
誘導電動機5,零相リアクトル11,及び4組のフィル
タコンデンサ12〜15の名称・用途・機能は、図1で
既述の第1実施例回路の場合と同じであるから、これら
の説明は省略する。この第2実施例回路は、4組のフィ
ルタコンデンサ12〜15と、零相リアクトル11の鉄
心に2次巻線21を巻付けてこの2次巻線21を短絡抵
抗22で短絡することで構成した第2ローパスフィルタ
回路20を、整流器2と平滑コンデンサ3との間に挿入
しているのが、前述した図1の第1実施例回路と異なっ
ているところである。主回路部分の配線インダクタンス
とフィルタコンデンサの静電容量とで共振現象を生じる
と、ローパスフィルタ回路の特性が低下する。そこで零
相リアクトル11の鉄心に設けた2次巻線21を抵抗値
がRなる短絡抵抗22で短絡することにより、共振現象
を減衰させてローパスフィルタ回路の特性低下の防止を
図っている。図5は図4の第2実施例回路に記載の第2
ローパスフィルタ回路20の等価回路を表した等価回路
図であって、零相リアクトル11がLなる値のインダク
タンスとなるが、これの2次巻線は抵抗値がRの短絡抵
抗で短絡されている。且つ前記インダクタンスLの前後
にC1 とC2 なる静電容量のフィルタコンデンサがあっ
てローパスフィルタ回路を形成している。尚、18は直
流中間回路の正極側線路又は負極側線路であり、19は
アース回路である。図6は本発明の第3実施例を表した
主回路接続図であるが、この第3実施例回路に記載の第
1電力変換器としての整流器2,平滑コンデンサ3,第
2電力変換器としてのインバータ4とこれを構成するフ
ィードバックダイオード4Dとゲート駆動回路4GとI
GBT4T,誘導電動機5,零相リアクトル11,4組
のフィルタコンデンサ12〜15,及び2次巻線21の
名称・用途・機能は、図4で既述の第2実施例回路の場
合と同じであるから、これらの説明は省略する。この第
3実施例回路は、2次巻線21に短絡抵抗22を接続す
る代わりに電流検出器31を接続するのが異なった点で
あって、この電流検出器31を含めた第3ローパスフィ
ルタ回路30を整流器2と平滑コンデンサ3との間に挿
入する。ここで電流検出器31のインピーダンスを適切
な値に選定すれば、前述した図2の第2実施例回路の場
合と同様に共振現象の発生を抑制できる。更に例えばA
点で接地事故を生じると、直流中間回路の正極側線路電
流と負極側線路電流とに差を生じて、零相リアクトル1
1の2次巻線21にはこの差電流に対応した電流が流れ
る。電流検出器31がこの2次巻線電流を検出し、この
2次巻線電流が予め設定した値を越えれば、地絡検出器
32が動作して当該電圧形インバータに接地事故が発生
したことを警報する。図7は図6の第3実施例回路の地
絡検出動作を表したタイムチャートであって、図7は
電流検出器31が検出する2次巻線21に流れる地絡電
流IL の変化、図7は地絡検出器32の動作、をそれ
ぞれが表している。地絡電流IL がT時点で地絡設定値
を越えれば地絡事故発生を警報する。
FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention. A rectifier 2, a smoothing capacitor 3, and a second power converter as a first power converter described in the first embodiment circuit. Inverter 4 as a power converter, feedback diode 4D, gate drive circuit 4G and IGBT 4 constituting the inverter 4
The name, application, and function of T and the induction motor 5 are the same as in the case of the conventional example circuit described above with reference to FIG. In the first embodiment circuit of FIG. 1, the first low pass filter circuit 10 is inserted between the rectifier 2 and the smoothing capacitor 3 of the DC intermediate circuit. The first low-pass filter circuit 10 includes a zero-phase reactor 11 in which a positive-side line and a negative-side line of a DC intermediate circuit are collectively passed through a hole provided in the center of a doughnut-shaped iron core, Filter capacitors 12 and 13 connected to the positive side line and the negative side line on the rectifier 2 side of the zero-phase reactor 11, and to the positive side line and the negative side line on the smoothing capacitor 3 side of the zero-phase reactor 11. The filter capacitors 14 and 15 are formed, and the other ends of these filter capacitors 12 to 15 are connected to a ground circuit. In the zero-phase reactor 11 shown in the figure, the positive-side line and the negative-side line pass through the center hole of the iron core, so each of them forms a coil with one turn. It goes without saying that the side line may be wound around the iron core a plurality of times, and the negative side line may be wound around the same iron core the same number of times. Furthermore, if a material having a good saturation characteristic (for example, a ferrite core) is used as the iron core, the effect of suppressing the leakage current I E is improved. FIG. 2 is a current path display diagram showing a path through which a leak current flows through the floating electrostatic capacitance in the circuit of the first embodiment shown in FIG. In FIG. 2, the leakage current I E
Shows a case of flowing to the ground through the positive electrode side line of the DC intermediate circuit and the floating capacitance 6 by a chain line. As described above, the IGBT 4T that constitutes the inverter 4 repeats the high-speed switching operation, so that the voltage having a large change rate is repeatedly applied to the floating capacitance 6 at high speed.
This leakage current I E is a high frequency component current. Therefore, the low-pass filter is effective in suppressing the high-frequency leakage current I E. Therefore, the leakage current I E is suppressed by inserting the first low-pass filter circuit 10 in the DC intermediate circuit. FIG. 3 is an equivalent circuit diagram showing an equivalent circuit of the first low-pass filter circuit 10 described in the circuit of the first embodiment of FIG. 1, in which the zero-phase reactor 11 becomes an inductance of a value L, and before and after this inductance L. To C 1 and C 2
There is a filter capacitor having an electrostatic capacitance of Reference numeral 18 is a positive side line or negative side line of the DC intermediate circuit, and 19 is an earth circuit. FIG. 4 is a main circuit connection diagram showing a second embodiment of the present invention. As the first power converter described in the second embodiment circuit, a rectifier 2, a smoothing capacitor 3, and a second power converter. Inverter 4, a feedback diode 4D, a gate drive circuit 4G and an IGBT 4T that constitute the inverter 4,
The names, applications, and functions of the induction motor 5, the zero-phase reactor 11, and the four sets of filter capacitors 12 to 15 are the same as those in the first embodiment circuit described above with reference to FIG. To do. This second embodiment circuit is configured by winding a secondary winding 21 around the iron core of the zero-phase reactor 11 with four sets of filter capacitors 12 to 15 and short-circuiting the secondary winding 21 with a short-circuit resistor 22. The second low-pass filter circuit 20 is inserted between the rectifier 2 and the smoothing capacitor 3, which is different from the circuit of the first embodiment shown in FIG. When a resonance phenomenon occurs due to the wiring inductance of the main circuit portion and the capacitance of the filter capacitor, the characteristics of the low pass filter circuit deteriorate. Therefore, the secondary winding 21 provided on the iron core of the zero-phase reactor 11 is short-circuited by the short-circuit resistor 22 having a resistance value R to attenuate the resonance phenomenon and prevent the characteristics of the low-pass filter circuit from being deteriorated. FIG. 5 shows a second embodiment described in the second embodiment circuit of FIG.
FIG. 3 is an equivalent circuit diagram showing an equivalent circuit of the low-pass filter circuit 20, in which the zero-phase reactor 11 has an inductance of L, but its secondary winding is short-circuited by a short-circuit resistor having a resistance value of R. . Further, before and after the inductance L, there are filter capacitors having electrostatic capacitances C 1 and C 2 to form a low pass filter circuit. Reference numeral 18 is a positive side line or negative side line of the DC intermediate circuit, and 19 is an earth circuit. FIG. 6 is a main circuit connection diagram showing a third embodiment of the present invention. As a first power converter described in the third embodiment circuit, a rectifier 2, a smoothing capacitor 3, and a second power converter. Inverter 4 and the feedback diode 4D and gate drive circuits 4G and I
The names, applications, and functions of the GBT 4T, the induction motor 5, the zero-phase reactor 11, the four sets of filter capacitors 12 to 15, and the secondary winding 21 are the same as those in the second embodiment circuit described above with reference to FIG. Therefore, these explanations are omitted. The circuit of the third embodiment is different in that a current detector 31 is connected to the secondary winding 21 instead of the short-circuit resistor 22, and a third low-pass filter including the current detector 31 is different. The circuit 30 is inserted between the rectifier 2 and the smoothing capacitor 3. Here, if the impedance of the current detector 31 is selected to be an appropriate value, the occurrence of the resonance phenomenon can be suppressed as in the case of the circuit of the second embodiment of FIG. 2 described above. Further, for example, A
When a ground fault occurs at a point, a difference occurs between the positive-side line current and the negative-side line current of the DC intermediate circuit, and the zero-phase reactor 1
A current corresponding to this difference current flows through the secondary winding 21 of No.1. The current detector 31 detects the secondary winding current, and if the secondary winding current exceeds a preset value, the ground fault detector 32 operates and a ground fault occurs in the voltage source inverter. To warn. FIG. 7 is a time chart showing the ground fault detection operation of the circuit of the third embodiment of FIG. 6, and FIG. 7 shows the change of the ground fault current I L flowing in the secondary winding 21 detected by the current detector 31. FIG. 7 shows the operation of the ground fault detector 32, respectively. If the ground fault current I L exceeds the ground fault set value at time T, a warning of a ground fault accident is issued.

【発明の効果】この発明によれば、電圧形インバータの
直流中間回路に零相リアクトルとコンデンサとで構成し
たローパスフィルタ回路を挿入することにより、第2電
力変換器が構成するスイッチング回路が動作して直流電
力を交流電力に変換する際に、浮遊静電容量を介して高
周波の漏れ電流が交流電源側へ流出するのを阻止するか
ら、この交流電源に接続している機器が前記漏れ電流で
悪影響を受けるのを防止できる。本発明による前記のロ
ーパスフィルタ回路は直流中間回路に1組を設置するの
みであり、交流電源の各相毎にノイズフィルタを設置し
ていた従来の装置に比べて、部品点数を大幅に低減でき
るので、当該電圧形インバータを小形にすることができ
るし、価格も抑制できる効果が得られる。更に零相リア
クトルに2次巻線を設け、この2次巻線を適切な値の抵
抗で短絡すれば、回路インダクタンスとフィルタコンデ
ンサとによる共振現象の発生を抑制するので、共振によ
りローパスフィルタ回路の効果が低下するのを防止する
ことができるし、前記の2次巻線を抵抗で短絡する代わ
りに電流検出器を接続すれば、共振発生の抑制と同時
に、当該電圧形インバータの接地事故を検出することも
できる効果が得られる。
According to the present invention, by inserting the low-pass filter circuit composed of the zero-phase reactor and the capacitor into the DC intermediate circuit of the voltage source inverter, the switching circuit composed of the second power converter operates. When converting direct current power to alternating current power by using the leakage current of high frequency through stray capacitance to prevent leakage current to the alternating current power source side, the equipment connected to this alternating current power source It can be prevented from being adversely affected. The low-pass filter circuit according to the present invention has only one set installed in the DC intermediate circuit, and the number of parts can be greatly reduced as compared with the conventional device in which the noise filter is installed for each phase of the AC power supply. Therefore, the voltage-type inverter can be downsized and the price can be suppressed. Further, if a secondary winding is provided in the zero-phase reactor and the secondary winding is short-circuited with a resistor having an appropriate value, the occurrence of a resonance phenomenon due to the circuit inductance and the filter capacitor is suppressed. The effect can be prevented from decreasing, and if a current detector is connected instead of short-circuiting the secondary winding with a resistor, resonance generation can be suppressed and at the same time ground fault of the voltage source inverter can be detected. The effect that can also be obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表した主回路接続図FIG. 1 is a main circuit connection diagram showing a first embodiment of the present invention.

【図2】図1に図示の第1実施例回路で浮遊静電容量を
介して漏れ電流が流れる経路を表した電流経路表示図
FIG. 2 is a current path display diagram showing a path through which a leakage current flows via a floating electrostatic capacitance in the circuit of the first embodiment shown in FIG.

【図3】図1の第1実施例回路に記載の第1ローパスフ
ィルタ回路の等価回路を表した等価回路図
FIG. 3 is an equivalent circuit diagram showing an equivalent circuit of a first low pass filter circuit described in the first embodiment circuit of FIG.

【図4】本発明の第2実施例を表した主回路接続図FIG. 4 is a main circuit connection diagram showing a second embodiment of the present invention.

【図5】図4の第2実施例回路に記載の第2ローパスフ
ィルタ回路の等価回路を表した等価回路図
5 is an equivalent circuit diagram showing an equivalent circuit of a second low pass filter circuit described in the second embodiment circuit of FIG.

【図6】本発明の第3実施例を表した主回路接続図FIG. 6 is a main circuit connection diagram showing a third embodiment of the present invention.

【図7】図6の第3実施例回路の地絡検出動作を表した
タイムチャート
7 is a time chart showing the ground fault detection operation of the circuit of the third embodiment of FIG.

【図8】電圧形インバータの従来例を示した主回路接続
FIG. 8 is a main circuit connection diagram showing a conventional example of a voltage source inverter.

【符号の説明】[Explanation of symbols]

2 第1電力変換器としての整流器 3 平滑コンデンサ 4 第2電力変換器としてのインバータ 4D フィードバックダイオード 4G ゲート駆動回路 4T 自己消弧形半導体スイッチ素子としてのIG
BT 5 誘導電動機 6 浮遊静電容量 10 第1ローパスフィルタ回路 11 零相リアクトル 12〜15 フィルタコンデンサ 18 正極側又は負極側線路 19 アース回路 20 第2ローパスフィルタ回路 21 2次巻線 22 短絡抵抗 30 第3ローパスフィルタ回路 31 電流検出器 32 地絡検出器
2 Rectifier as first power converter 3 Smoothing capacitor 4 Inverter as second power converter 4D Feedback diode 4G Gate drive circuit 4T IG as self-extinguishing semiconductor switch element
BT 5 induction motor 6 stray capacitance 10 first low-pass filter circuit 11 zero-phase reactor 12 to 15 filter capacitor 18 positive or negative side line 19 earth circuit 20 second low-pass filter circuit 21 secondary winding 22 short-circuit resistance 30th 3 Low-pass filter circuit 31 Current detector 32 Ground fault detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】交流電源に接続して直流中間回路へ直流電
力を出力する第1電力変換器と、この直流中間回路に接
続して所望の電圧と周波数の交流電力を出力する自己消
弧形半導体スイッチ素子を構成要素にした第2電力変換
器、及び前記直流中間回路に接続した平滑コンデンサと
で構成している電圧形インバータにおいて、 零相リアクトルとコンデンサとでなる第1ローパスフィ
ルタ回路を、前記第1電力変換器の直流側と前記平滑コ
ンデンサとの間に挿入することを特徴とする電圧形イン
バータのノイズフィルタ。
1. A first power converter connected to an AC power source to output DC power to a DC intermediate circuit, and a self-extinguishing type connected to this DC intermediate circuit to output AC power of a desired voltage and frequency. In a voltage source inverter composed of a second power converter having a semiconductor switch element as a component and a smoothing capacitor connected to the DC intermediate circuit, a first low-pass filter circuit composed of a zero-phase reactor and a capacitor is provided. A noise filter for a voltage source inverter, which is inserted between the DC side of the first power converter and the smoothing capacitor.
【請求項2】交流電源に接続して直流中間回路へ直流電
力を出力する第1電力変換器と、この直流中間回路に接
続して所望の電圧と周波数の交流電力を出力する自己消
弧形半導体スイッチ素子を構成要素にした第2電力変換
器、及び前記直流中間回路に接続した平滑コンデンサと
で構成している電圧形インバータにおいて、 零相リアクトルとこの零相リアクトルに設けた2次巻線
とこの2次巻線を短絡する抵抗,及びコンデンサとでな
る第2ローパスフィルタ回路を、前記第1電力変換器の
直流側と前記平滑コンデンサとの間に挿入することを特
徴とする電圧形インバータのノイズフィルタ。
2. A first power converter connected to an AC power source to output DC power to a DC intermediate circuit, and a self-extinguishing type connected to this DC intermediate circuit to output AC power of a desired voltage and frequency. In a voltage source inverter including a second power converter having a semiconductor switch element as a component and a smoothing capacitor connected to the DC intermediate circuit, a zero-phase reactor and a secondary winding provided in the zero-phase reactor A voltage source inverter characterized in that a second low-pass filter circuit consisting of a resistor for short-circuiting the secondary winding and a capacitor is inserted between the DC side of the first power converter and the smoothing capacitor. Noise filter.
【請求項3】交流電源に接続して直流中間回路へ直流電
力を出力する第1電力変換器と、この直流中間回路に接
続して所望の電圧と周波数の交流電力を出力する自己消
弧形半導体スイッチ素子を構成要素にした第2電力変換
器、及び前記直流中間回路に接続した平滑コンデンサと
で構成している電圧形インバータにおいて、 零相リアクトルとこの零相リアクトルに設けた2次巻線
とこの2次巻線に流れる電流を検出する電流検出器,及
びコンデンサとでなる第3ローパスフィルタ回路を、前
期第1電力変換器の直流側と前記平滑コンデンサとの間
に挿入し、前記電流検出器で検出する前記2次巻線の電
流が所定値を越えれば地絡事故と判定する地絡検出器を
備えることを特徴とする電圧形インバータのノイズフィ
ルタ。
3. A first power converter connected to an AC power source to output DC power to a DC intermediate circuit, and a self-extinguishing type connected to the DC intermediate circuit to output AC power of a desired voltage and frequency. In a voltage source inverter including a second power converter having a semiconductor switch element as a component and a smoothing capacitor connected to the DC intermediate circuit, a zero-phase reactor and a secondary winding provided in the zero-phase reactor And a current detector for detecting the current flowing through the secondary winding, and a third low-pass filter circuit, which is composed of a capacitor, are inserted between the DC side of the first power converter and the smoothing capacitor, and the current A noise filter for a voltage source inverter, comprising: a ground fault detector that determines a ground fault if the current of the secondary winding detected by the detector exceeds a predetermined value.
JP7039474A 1995-02-28 1995-02-28 Noise filter for voltage type inverter Pending JPH08237936A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7039474A JPH08237936A (en) 1995-02-28 1995-02-28 Noise filter for voltage type inverter
GB9603817A GB2310553A (en) 1995-02-28 1996-02-22 Noise filter for inverter
DE1996107201 DE19607201A1 (en) 1995-02-28 1996-02-26 Anti-HF-noise filter for voltage source inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039474A JPH08237936A (en) 1995-02-28 1995-02-28 Noise filter for voltage type inverter

Publications (1)

Publication Number Publication Date
JPH08237936A true JPH08237936A (en) 1996-09-13

Family

ID=12554070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039474A Pending JPH08237936A (en) 1995-02-28 1995-02-28 Noise filter for voltage type inverter

Country Status (3)

Country Link
JP (1) JPH08237936A (en)
DE (1) DE19607201A1 (en)
GB (1) GB2310553A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165438A (en) * 2000-11-28 2002-06-07 Meidensha Corp High-frequency power supply for welding seam welded steel pipe
JP2007215366A (en) * 2006-02-13 2007-08-23 Hitachi Industrial Equipment Systems Co Ltd Electric power conversion system
WO2009037782A1 (en) * 2007-09-21 2009-03-26 Mitsubishi Electric Corporation Power converting device for electric vehicle
JP2010104200A (en) * 2008-10-27 2010-05-06 Mitsubishi Electric Corp Lift control device
JP2010120769A (en) * 2008-11-21 2010-06-03 Sinfonia Technology Co Ltd Conveying system for article to be conveyed
CN103941103A (en) * 2014-05-09 2014-07-23 北京航天爱威电子技术有限公司 Device and method for measuring inductance value of electric reactor in active power filter
WO2021229908A1 (en) * 2020-05-12 2021-11-18 日立Astemo株式会社 Filter device and power conversion device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288915B1 (en) * 1997-12-23 2001-09-11 Asea Brown Boveri Ag Converter circuit arrangement having a DC intermediate circuit
DE19850853A1 (en) * 1998-11-04 2000-05-18 Vacuumschmelze Gmbh Frequency converter with damped DC link
JP5427429B2 (en) * 2009-02-10 2014-02-26 三菱重工業株式会社 Inverter device and inverter-integrated electric compressor
GB2547716B (en) 2016-02-29 2018-06-06 General Electric Technology Gmbh An electrical assembly
DE102017110608A1 (en) 2017-05-16 2018-11-22 Valeo Siemens Eautomotive Germany Gmbh inverter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1303083A (en) * 1970-04-22 1973-01-17
GB1535741A (en) * 1975-12-03 1978-12-13 Ni I Postoyan Toka Ac Converter apparatus
DE2922144A1 (en) * 1979-05-31 1980-12-04 Messer Griesheim Gmbh DEVICE FOR DC AND / OR AC ARC WELDING WITH AN INVERTER
JPS6059978A (en) * 1983-09-12 1985-04-06 Toshiba Corp Air conditioner
US4597039A (en) * 1983-09-22 1986-06-24 Solar Refining, Inc. Switched capacitor induction motor drive
GB8714755D0 (en) * 1987-06-24 1987-07-29 Gen Electric Filter
US4888675A (en) * 1987-08-26 1989-12-19 Harris Corporation Switching power supply filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165438A (en) * 2000-11-28 2002-06-07 Meidensha Corp High-frequency power supply for welding seam welded steel pipe
JP2007215366A (en) * 2006-02-13 2007-08-23 Hitachi Industrial Equipment Systems Co Ltd Electric power conversion system
WO2009037782A1 (en) * 2007-09-21 2009-03-26 Mitsubishi Electric Corporation Power converting device for electric vehicle
JP4540743B2 (en) * 2007-09-21 2010-09-08 三菱電機株式会社 Electric vehicle power converter
JPWO2009037782A1 (en) * 2007-09-21 2011-01-06 三菱電機株式会社 Electric vehicle power converter
US8345453B2 (en) 2007-09-21 2013-01-01 Mitsubishi Electric Corporation Power conversion apparatus for electric vehicle
JP2010104200A (en) * 2008-10-27 2010-05-06 Mitsubishi Electric Corp Lift control device
JP2010120769A (en) * 2008-11-21 2010-06-03 Sinfonia Technology Co Ltd Conveying system for article to be conveyed
CN103941103A (en) * 2014-05-09 2014-07-23 北京航天爱威电子技术有限公司 Device and method for measuring inductance value of electric reactor in active power filter
WO2021229908A1 (en) * 2020-05-12 2021-11-18 日立Astemo株式会社 Filter device and power conversion device

Also Published As

Publication number Publication date
GB9603817D0 (en) 1996-04-24
DE19607201A1 (en) 1996-08-29
GB2310553A (en) 1997-08-27

Similar Documents

Publication Publication Date Title
RU2222092C2 (en) Conversion circuit device with intermediate ac circuit
Chen et al. A novel inverter-output passive filter for reducing both differential-and common-mode $ dv/dt $ at the motor terminals in PWM drive systems
JP3044650B2 (en) Power converter noise reduction device
US6459597B1 (en) Electric power conversion apparatus with noise reduction device
JP2011120440A (en) Power conversion apparatus
US4519022A (en) Ripple reduction circuit for an inverter
KR100319932B1 (en) Overvoltage prevention device of motor
JPH08237936A (en) Noise filter for voltage type inverter
US6583598B2 (en) Damping of resonant peaks in an electric motor which is operated using a converter with an intermediate voltage circuit, by means of matched impedance to ground at the motor star point, and a corresponding electric motor
JP3912096B2 (en) Noise reduction device for power converter
JP2009296798A (en) Power conversion apparatus
JP4835930B2 (en) Inverter device provided with ground fault detection means
JPH10210649A (en) Voltage-type inverter device
JP3254971B2 (en) Motor drive device using inverter
JP5386891B2 (en) Power converter
JP3661737B2 (en) Voltage type inverter
JP2003235269A (en) Noise reducing apparatus for power converter
WO2010082553A1 (en) Power converter equipped with output filter
JP2002051570A (en) Noise reduction device of converter
JPH07123350B2 (en) Inverter device
JP3620617B2 (en) Series resonant inverter grounding circuit
Schmitt et al. Active damping of common-mode oscillations in electric drive systems using direct current control
JPH1023745A (en) Power converter
JP6636219B1 (en) Power converter
JP2005094918A (en) Noise reduction circuit for power conversion apparatus