EP2831989B1 - Rectifier circuit with current injection - Google Patents

Rectifier circuit with current injection Download PDF

Info

Publication number
EP2831989B1
EP2831989B1 EP13707141.1A EP13707141A EP2831989B1 EP 2831989 B1 EP2831989 B1 EP 2831989B1 EP 13707141 A EP13707141 A EP 13707141A EP 2831989 B1 EP2831989 B1 EP 2831989B1
Authority
EP
European Patent Office
Prior art keywords
pole
connection
rectifier
circuit
centre point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13707141.1A
Other languages
German (de)
French (fr)
Other versions
EP2831989A2 (en
Inventor
Michael Hartmann
Rudolf Fehringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Power Drives GmbH
Original Assignee
Schneider Electric Power Drives GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Power Drives GmbH filed Critical Schneider Electric Power Drives GmbH
Publication of EP2831989A2 publication Critical patent/EP2831989A2/en
Application granted granted Critical
Publication of EP2831989B1 publication Critical patent/EP2831989B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a rectifier circuit with a three-phase six-pulse rectifier arrangement of rectifying valves, preferably a bridge rectifier circuit of diodes, the rectifier arrangement having a three-phase mains-side input and a DC-side output, and at least one of three phases at the mains-side input with a first pole connection a three-pole circuit for deriving an injection current is connected into the three-pole circuit, according to the preamble of claim 1.
  • the present invention further relates to a method for impressing control currents in a DC-side output of a rectifier circuit with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a three-pole bridge rectifier circuit of diodes, with an injection current of at least one of the three phases at a network-side input of the Rectifier circuit is branched off, according to the preamble of claim 18.
  • hybrid rectifier circuits In modern power electronics, a large number of different embodiments of passive, active and mixed forms, so-called hybrid rectifier circuits, are known.
  • the various rectifier circuits essentially provide a DC voltage that is as constant as possible at the output of the rectifier circuit from mains-side, sinusoidal voltages at the input.
  • a frequently used rectifier arrangement is the three-phase (six-pulse) bridge rectifier arrangement (B6 circuit) of rectifier diodes known from the prior art, especially in power electronics after the bridge arrangement (the so-called DC side of the rectifier circuit) a rectified voltage is generated.
  • inductances (chokes) on the DC voltage side are often connected between the rectifier output of the diode bridge and the output capacitor.
  • the rectifier current is passed through a choke connected to an output capacitor in parallel with the output in order to reduce distortions in the mains currents, and to reduce the curve of the To smooth the rectifier current and to provide a constant output voltage at the output or the output capacitor.
  • the line-side current curve of a rectifier circuit with switching elements, inductances and / or capacitances, even in operation with a passive (ohmic) load or another electronic circuit on the DC voltage side, is conventionally not sinusoidal.
  • the non-sinusoidal currents cause unwanted line-side voltage or current distortions due to their harmonic content and the phase shift compared to the network fundamental. These network perturbations should not be neglected, particularly in the case of higher-power rectifier circuits.
  • TDDi Total Harmonic Distortion of currents
  • total harmonic distortion of the currents whereby the maximum distortion of the mains currents and mains voltages by standards (e.g. IEC61000-3-2) is specified.
  • the current forms of the rectifier circuit can be influenced by adding or deriving currents, the so-called injection currents.
  • currents are additionally impressed by additionally arranged switching elements, preferably in the currentless phases of the diode bridge currents.
  • the current required for this is essentially three times the frequency of the network frequency, which means that this type of current injection to improve the network perturbations generated by the rectifier circuit is referred to in the literature as third harmonic current injection .
  • the best-known representative of such a rectifier system and state of the art is the so-called Minnesota Rectifier .
  • the rectifier structure known in the art as Minnesota Rectifier uses an injection of a current with a third harmonic of the mains frequency simultaneously into all three phases of the AC connection of the rectifier circuit in order to achieve approximately sinusoidal mains currents of the rectifier circuit.
  • those current gaps are filled which, due to the blocking effect of the rectifier arrangement, would not carry any current at the mains-side input.
  • the injection current With a suitable choice of the injection current, the distortion of the mains currents can be avoided as far as possible and a better THDi can be achieved.
  • the circuit of the Minnesota Rectifier shows the main disadvantage that the currents required for this are impressed in all three phases at the same time and low-frequency loaded feed-in transformers have to be used which, due to the low-frequency load with the third harmonic of the mains frequency, have both a large volume and a large weight exhibit.
  • the injection current is generated by two step-up converter stages arranged on the DC voltage side. This allows a Regulated output voltage, which is filtered by a sufficiently large output capacitor, can be made available.
  • two diodes are inserted into the primary power flow of the rectifier circuit, which results in a considerable reduction in efficiency, especially in the high power range.
  • Claim 1 relates to a rectifier circuit with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a bridge rectifier circuit of diodes, with a load, the rectifier arrangement having a three-phase mains-side input and a DC-side output comprising three switching elements and a three-pole circuit, and each phase of the mains-side input can each be switched on with a switching element to a first pole connection of the three-pole circuit for diverting an injection current into the three-pole circuit, and a second and third pole connection of the three-pole circuit are each connected to an output line of the DC-side output for control currents.
  • the three-pole circuit is designed as a control circuit for active, independent control of at least two of the three currents given by control currents and injection current for generating sinusoidal rectifier input currents and controllable semiconductor valves, preferably IGBTs, for active control of at least two of the three currents provided by control currents and Injection current has given three currents, and a choke is arranged on one of the output lines of the DC-side output between the second pole connection and the load or between the third pole connection and the load at the DC-side output, and the load at the DC-side output is a time-variable load, wherein the control circuit for supplying the injection current is designed only in that phase which remains currentless due to the operation of the six-pulse rectifier arrangement.
  • the circuit according to the invention has a three-pole circuit for impressing injection currents.
  • Each individual phase of the network can be connected to the three-pole circuit by means of a switching element, whereby the so-called injection current is taken from the network and added to the rectifier currents as a control current.
  • the circuit according to the invention enables operation with variable loads at the DC-side output of the rectifier circuit, since the control currents from the three-pole circuit with the aid of controllable semiconductor valves as active components for active regulation in the three-pole circuit can be regulated depending on the load.
  • Passive components such as resistors, capacitors or inductors, as they are used in conventional circuit topologies of rectifier circuits using the injection principle, are not sufficiently suitable for this purpose.
  • Controllable semiconductor valves in the form of IGBTs with anti-parallel freewheeling diodes are preferably provided as active components, but any type of switchable valve that can be used to control the switching states (e.g. MOSFETs, GTOs, ).
  • MOSFETs MOSFETs
  • GTOs GTOs
  • controllable semiconductor valves is used to represent all controllable switching elements.
  • a DC-side choke in combination with a sufficiently large output capacitor to obtain rectified, constant output voltages without impairing the function of the rectifier circuit and without causing high network distortions.
  • the entire power of the rectifier circuit is fed through the choke at the output on the DC side.
  • a voltage with alternating components that is produced by the rectifier arrangement can drop across the choke, with a rectified voltage remaining at the output and being able to be fed to the load.
  • conventional rectifier circuits with a choke and output capacitor can be easily expanded by means of the three-pole circuit.
  • the second and third pole connection of the three-pole circuit are each connected to one of the two output lines of the DC-side output via a second and third inductance, and the choke is provided between the second or third pole connection and the load is.
  • a differential voltage across the inductances forms the basis for regulating the control currents and the injection current.
  • the respective currents that is to say the control currents and / or the injection current, are set by modulating the active components in the three-pole circuit.
  • the switching processes for modulating currents by means of active components are known per se in power electronics.
  • the currents are smoothed by the inductances at the connections of the three-pole circuit and pulse-shaped currents can be avoided in the output on the DC side.
  • expensive filter capacitors with large capacitance values are saved, which would absorb the pulse-shaped currents resulting from the switching process of the active components in a conventional manner.
  • the throttle on The output on the DC side carries both the rectifier currents and the applied control currents and ensures continuous progression of the output variables.
  • the first pole connection is connected to the switching elements via a first inductance, the three inductances being implemented by means of a 3-leg choke.
  • the implementation of the three inductors by means of a conventional 3-leg choke represents a particularly space-saving, inexpensive and easy-to-implement variant, with each leg winding of the 3-leg choke forming an inductance.
  • the two output lines are connected to an output capacitor at the output on the DC side.
  • This output capacitor essentially serves to maintain a constant output voltage in interaction with the choke, with an existing alternating component in the voltage loop between choke and output capacitor at the choke, and the output capacitor maintaining a constant, rectified output voltage.
  • An output capacitor parallel to the output connection of the rectifier circuit is required, among other things, for the downstream operation of power electronic circuits such as a three-phase inverter stage.
  • each of the three phases is connected to a filter capacitor at the input on the network side, the filter capacitors being connected together in a star shape at a star point. It is also provided that the three-pole circuit is connected to the network-side input via at least one discharge capacitor. The diverting capacitor of the three-pole circuit, in combination with the star-shaped filter capacitors, forms an advantageous current path to divert currents caused by high-frequency switching processes in the three-pole circuit.
  • the three-pole circuit comprises three converter systems with controllable semiconductor valves and / or a bidirectional switch, the first pole connection of the three-pole circuit on a first converter system and the second pole connection of the three-pole circuit on a second converter system Circuit, as well as the third pole connection of the three-pole circuit is provided on a third converter system, and a connection to a branch point, a common center point of the three-pole circuit, is provided from all three converter systems.
  • the three converter systems are used to impress the two control currents and the injection current with appropriate control.
  • Each of the converter systems provides a degree of freedom for regulating the three flows, namely the two control flows and the injection flow.
  • the degrees of freedom can be used to regulate the control currents.
  • the first converter system is provided as a 3-level bridge branch
  • the second and third converter systems being provided as half-bridges
  • the three converter systems being implemented by means of three parallel-connected branches with electronic components are occupied
  • the first pole connection of the three-pole circuit being implemented on a first branch
  • the second and third pole connections being implemented on a third branch
  • each of the branches having a center connection around which center connections the components of the branches are symmetrically arranged, with a first midpoint connection of the first branch is connected to a second midpoint connection of the second branch via a bidirectional switch, and the second midpoint connection is conductively connected directly to a third midpoint connection of the third branch, the third midpoint point connection is provided as the center point of the three-pole circuit.
  • the first converter system is designed as a 3-level bridge branch known per se, and can be provided unidirectionally or bidirectionally, as will be explained below.
  • the converter systems two and three consist of two half bridges, but can also be designed as a three-stage or multi-stage bridge branch.
  • the first pole connection is provided on the first branch and the injection current flows into the first midpoint connection and thus into the three-pole circuit.
  • the three branches connected in parallel in this way together represent the three converter systems as bridge structures, with which bridge structures the control currents and the injection current can be regulated.
  • the three-pole circuit comprises two converter systems with controllable semiconductor valves, preferably arranged in a bridge structure, the second pole connection of the three-pole circuit on a second converter system and the third pole connection of the three-pole circuit is provided, and a connection to a branch point, a common center point, is provided by both converter systems, and the center point to the first pole connection connected is.
  • the first converter system is omitted and the first pole of the three-pole circuit is conductively connected directly to the center point of the two remaining converter systems.
  • the second and third converter systems are provided as half-bridges, the two converter systems being designed by means of two branches connected in parallel, and the first pole connection of the three-pole circuit being connected to a second branch, and to one third branch of the second and third pole connection are executed, and each of the branches has a center connection, around which center connection the components of the branches are symmetrically arranged, and a second center connection of the second branch is conductively connected directly to a third center connection of the third branch, wherein the third center point connection is provided as the center point of the three-pole circuit.
  • no first branch is provided, which is connected by means of a switch, but only an embodiment with two half bridges as converter systems, whereby two degrees of freedom are available for regulating the voltage and current variables of the bridge structures.
  • the direct connection of the first pole of the three-pole circuit with the center point of the three-pole circuit and thus also of the two converter systems defines the potential at this point and both the two control currents and the injection current can be regulated with the two remaining converter systems.
  • a further preferred embodiment provides that two buffer capacitors are connected in series on the second branch, the second center connection being arranged between the two buffer capacitors.
  • two bridge valves preferably diodes
  • Such an arrangement of diodes means a unidirectional design of the first converter system.
  • a unidirectional design of the first converter system allows current to be carried only in one direction due to the diodes, which defines the transfer of energy from the network to the three-pole circuit.
  • the two bridge valves are designed as controllable semiconductor valves, preferably IGBTs.
  • Such an arrangement of controllable semiconductor valves instead of diodes means a bidirectional design of the first converter system.
  • a bidirectional design of the first converter system allows, with suitable regulation of the three converter systems, to minimize the voltage across the buffer capacitors, since the currents required in the three-pole circuit is no longer limited by the flow direction of the bridge valves of the first converter system. This allows the maximum voltage of the buffer capacitors to be advantageously reduced.
  • the four controllable semiconductor valves are connected in series on the third branch, the center point of the three-pole circuit being arranged in the connection between two series-connected pairs of the controllable semiconductor valves, and the second pole connection between the controllable semiconductor valves of the first pair is provided, and the third pole connection is provided between the controllable semiconductor valves of the second pair.
  • the control currents flow into the output lines on the DC side at these pole connections.
  • the respective control currents can now be regulated through the two half bridges by suitable control of the controllable semiconductor valves.
  • the voltages of the buffer capacitors used are decisive for the voltage ratios at the second and third pole connection and therefore also decisive for the ripple current occurring in the inductances.
  • the second center point connection is connected to the first pole connection via a voltage source.
  • the second midpoint connection is directly connected to the midpoint.
  • the center point of the converter systems can be connected to the first pole connection via a voltage source. With the help of an increase or decrease in potential through the voltage source, the currents of the three-pole circuit can be regulated without distortion even with small potential differences, such as occur in principle with the direct connection of the first pole connection to the center of the converter systems.
  • the second and third converter systems of the three-pole circuit are designed with bidirectional 3-level bridge branches known per se, preferably two so-called three-level neutral-point-clamped converters (3L-NPC),
  • the 3-level bridge branches are arranged symmetrically around a midpoint branch connected in parallel to the 3-level bridge branches, and the midpoint branch is designed as two buffer capacitors connected in series, and the midpoint is provided between the two buffer capacitors, and a neutral connection of the 3-level Bridge branch is connected to the center point and the first pole connection, as well as an AC voltage connection of the 3-level bridge branch as the second pole connection and the third pole connection of the three-pole circuit are provided.
  • the use of two 3-level bridge branches represents a particularly advantageous embodiment of the invention, since the first converter system is not required in this embodiment and thereby the efficiency of the entire rectifier system can be increased and the control currents can also be generated as distortion-free as possible.
  • the embodiment described provides a bidirectional three-pole circuit.
  • the three-pole circuit with the first pole connection is connected to one side of two injection capacitors, which connection forms the center of the three-pole circuit, the other two sides of the injection capacitors being connected via a voltage source and Form connection points, each starting from the connection points a current loop with a buffer capacitor and a pair of controllable semiconductor valves being provided, and the second pole connection and the third pole connection being provided between the two controllable semiconductor valves of a pair.
  • the regulation of the control currents is still carried out by suitable control of the two half bridges. If the amplitude of the voltages of the additional voltage source is high enough, this design allows the two control currents to be routed largely without distortion.
  • Claim 18 relates to a method for impressing control currents in a DC-side output of a rectifier circuit comprising three switching elements and a three-pole circuit according to claim 1 with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a three-pole bridge rectifier circuit of diodes, with a load, wherein a Injection current of at least one of the three phases is branched off at a network-side input of the rectifier circuit.
  • the injection current is fed to a first pole connection of the three-pole circuit, and an active, independent regulation of at least two of the three currents given by control currents and injection current for generating sinusoidal rectifier input currents with the help of active components, preferably controllable semiconductor valves, in the three-pole Switching takes place, whereby the injection current is only fed into the phase that remains de-energized due to the operation of the six-pulse rectifier arrangement, and a control current is added to the rectifier currents on two DC-side output lines of the DC-side output via a second and third pole connection of the three-pole circuit , and one of the rectifier currents with the control current supplied to it through one between the second pole connection and the load or between the third pole connection and the load at the output on the DC side is performed.
  • active components preferably controllable semiconductor valves
  • the inductor current is composed of the rectified current and control currents.
  • the choke in combination with the output capacitor smooths the output current and provides a constant output voltage.
  • the injection current is only fed into the phase that would remain currentless due to the operation of the six-pulse rectifier arrangement and, with appropriate control, enables the generation of sinusoidal rectifier input currents in phase with the mains voltages, which lowers the mains perturbations of the rectifier structure. Since the additionally introduced three-pole circuit processes only a fraction of the energy of the entire rectifier circuit, a substantially better overall efficiency can be achieved in comparison to conventional low-reaction, active rectifier circuits.
  • the method according to the invention offers the possibility of expanding existing conventional rectifier circuits and, with the expansion, operating them on the network with little reaction. It is also possible to operate a variable load at the output on the DC side by regulating the control currents, depending on the load, with known control of the active components.
  • the injection current and / or the control currents are passed through at least two of three inductors, provided on at least two of the three pole connections for smoothing and controlling the currents, through differential voltages across the inductors, and by means of regulation the third stream is set from two of the three streams.
  • the method according to the invention it is possible to operate rectifier circuits with low network distortions.
  • the supplied control currents and the injection current are initially smoothed by the inductances without receiving pulse-shaped currents from the rectifier arrangement at the output.
  • Large capacitances for filtering the pulses of the rectifying currents and any injection currents that are usual in rectifier circuits of this type are avoided.
  • the differential voltage across the inductances is the basis for conducting currents through the inductances and thus in and out of the three-pole circuit. The sum of the currents at the pole connections of the three-pole circuit of the rectifier circuit according to the invention results in zero.
  • High-frequency switching operations of the active components in the three-pole circuit result, in particular when all three currents are regulated at the pole connections, in high-frequency movements of a midpoint voltage of the three-pole circuit.
  • An additional high-frequency current path can be provided by using additional bypass capacitors. In the present embodiment, however, it is provided that two of the three currents at the pole connections are regulated with the aid of active components in the three-pole circuit, the third current being zero due to the current sum.
  • a midpoint voltage is measured between the midpoint of the three-pole circuit and a neutral point and an average value of the midpoint voltage is regulated with one of the converter systems.
  • the measurement and filtering of the midpoint voltage whereby the midpoint voltage is measured in relation to the neutral point (ground) of the network, allows the active regulation of this potential, which has advantages when generating the control currents and the injection current, since this potential controls the control currents or co-determines the injection flow.
  • the potential difference in particular that between the center point and the DC-side output lines and the mains-side input, is regulated with the aid of the active components in the three-pole circuit.
  • Another preferred embodiment of the invention provides that the first buffer capacitor voltage on the buffer capacitor is regulated to be greater than a voltage of the positive output line against a neutral point, and a second buffer capacitor voltage on the buffer capacitor is regulated to be lower than a voltage of the negative output line against the neutral point.
  • the buffer capacitor voltages determine the differential voltages at the inductances of the pole connections when the controllable semiconductor valves are switched.
  • the mean value of the midpoint voltage is regulated by means of the controllable semiconductor valves. According to a preferred embodiment of the invention it is provided that the mean value of the midpoint voltage is regulated to zero.
  • the mean value of the midpoint voltage should be used.
  • the mean value of the midpoint voltage can be regulated by means of the active components in the three-pole circuit. The methods for controlling the active components or changing their switching states are known per se.
  • the midpoint voltage is regulated on average to zero in relation to the neutral point of the network, the amounts of the respective voltages on the buffer capacitors must be larger or smaller than those on the DC output lines opposite this midpoint can be impressed accordingly.
  • a first buffer capacitor voltage on the buffer capacitor is minimized and a second buffer capacitor voltage on the buffer capacitor is minimized, the midpoint voltage being regulated to the negative half the value of an injection voltage, and the injection voltage between the first pole connection and the Neutral point is applied.
  • the voltages of the two buffer capacitors are minimized, with the midpoint voltage having to be regulated opposite to the voltage occurring at the first pole connection of the three-pole circuit against the neutral point.
  • a bidirectional design of the first converter stage is necessary, since the current and voltage of this converter system are not in phase in this embodiment.
  • rectifier circuits according to claim 11 or 17 that the potential of the midpoint voltage is increased or decreased with respect to one of the two output lines with the aid of the regulation of the voltage source. This is provided in order to obtain sufficiently large potential differences for regulating the control currents at the pole connections. This ensures that the control currents and the injection current are routed without distortion, which subsequently leads to distortion-free input currents of the rectifier circuit.
  • the Fig. 1 shows a known rectifier circuit with a rectifier arrangement 1 of semiconductor valves 2, a (six-pulse) bridge rectifier arrangement with diodes, and with a DC-side choke 7.
  • the rectifier circuit comprises a line-side input 3 and a DC-side output 4, with phases U, at line-side input 3. V, W are executed, and at the DC-side output 4 a positive output line P DC and a negative output line N DC .
  • a rectified voltage U rec is applied to the rectifier arrangement 1, a constant output voltage U 0 being produced at the output.
  • a neutral point N the ground potential of the network, is shown on the network side.
  • a load 6 shown as a variable resistor, is connected to the output lines P DC, N DC, which loads a time-variable power P o (t).
  • an output capacitor C 0 is usually provided at the output 4 on the DC side between the output lines P DC , N DC.
  • the load 6 is not shown in the other figures, since the connection is at the same point in each case as in FIG Figure 1 he follows.
  • the load 6 can also be a further electronic circuit, for example a further current converter, the rectifier circuit shown then being used as a so-called rectifier with a voltage intermediate circuit.
  • the entire power of the load 6 is transported via the choke 7 from the mains to the rectifier output, the half-waves of the output voltage typical for the illustrated three-phase diode bridge with semiconductor valves 2 being smoothed by a choke 7 in combination with an output capacitor C 0.
  • the rectifier circuit shown has a design which is disadvantageous with regard to network perturbations.
  • the rectifier circuit has, depending on the dimensioning of the arranged choke 7, more or less pulse-shaped input currents with currentless gaps at the network-side input 3 and therefore cause undesirable network perturbations, whereby a possibly required THDi of the input currents can usually not be achieved.
  • the rectifier circuit according to the invention with a rectifier arrangement 1 also has a three-pole circuit 5.
  • the three-pole circuit 5 has a first pole connection A, a second pole connection B and a third pole connection C.
  • the first pole connection A can be switched on with switching elements S 1 , S 2 , S 3 at least to one phase U, V, W at the line-side connection.
  • the second pole connection B is connected to the positive output line P DC , to be precise even before the choke 7 establishes the connection to the load 6.
  • the third pole connection C is connected to the negative output line N DC .
  • FIG 2 a rectifier circuit according to the invention with a first converter system 9, a second converter system 10 and a third converter system 11 is shown.
  • the three-pole circuit 5 is constructed with converter systems 9, 10, 11, the first converter system 9 being connected to the pole connection A, a second converter system 10, a third converter system 11, and a center point M.
  • the second converter system 10 is connected to the pole connection B and the center point M, the third converter system 11 being connected to the pole connection C and the center point M.
  • At least two of the converter systems 9, 10, 11 have controllable semiconductor valves S cp + , S cp- , S cn + , S cn- for the active regulation of control currents i cp , i cn and / or an injection current i h3 .
  • the first converter system 9 is designed as a unidirectional or bidirectional 3-level bridge branch, the second and third converter systems 10, 11 being designed as half bridges.
  • FIG 3 a rectifier circuit 1 according to the invention with a second converter system 10 and a third converter system 11 is shown.
  • a first converter system 9 is not provided, but the first pole connection A is connected directly to the center point M.
  • the converter systems 10, 11 have controllable semiconductor valves S cp + , S cp-, S cn + , S cn- for the active regulation of control currents i cp , i Cn and / or an injection current i h3 .
  • the switching elements S 1 , S 2 , S 3 each have a phase U, V, W connected to the pole connection A of the three-pole circuit 5, a current path being made available for the one injection current i h3 .
  • Control currents i cp , i cn flow via the pole connections B, C to the output 4 on the DC side.
  • the injection of the injection current i h3 prevents network distortion.
  • the injection current required for sinusoidal input currents is composed as in the Figures 4a to 4e can be seen from sections of the desired sinusoidal input currents and has as in the Figure 4d shown approximately triangular course.
  • the three-pole circuit 5 according to the preferred embodiment of a rectifier circuit according to the invention Figure 4 uses a unidirectional 3-level bridge branch consisting of the two rectifier diodes D h3 + and D h3- on a first branch Z 1 and a bidirectional switch S h3 from a first midpoint connection M 1 to a second midpoint connection M 2 , to implement the first converter system 9 the diodes D h3 + , D h3- connect the first center point connection M 1 to the positive and negative connections of the buffer capacitors C CP , C CN , which buffer capacitors are provided on the second branch Z 2 .
  • the bidirectional switch S h3 connects the first center point connection M 1 to the second center point connection M 2 by switching on the bidirectional switch S h3 and thus also to the center point M of the three-pole circuit 5 via a conductive connection.
  • the second converter system 10 and the third converter system 11 are provided by two half bridges with the four controllable semiconductor valves S cp + , S cp-, S cn + , S cn- , the positive and negative connections of the two half bridges with the buffer capacitors C CP , C CN are connected.
  • the semiconductor valves S cp + , S cp-, S cn + , S cn- are provided on a third branch Z3.
  • controllable semiconductor valves S cp + , S cp-, S cn + , S cn- are possible in particular with a so-called "3-level topology" of IGBTs with freewheeling diodes which is available on the market and can therefore be implemented cheaply, with a center point M is also provided.
  • the buffer capacitors C CP , C CN are both part of the 3-level bridge arm of the first converter system 9 and the half bridges of the second and third converter systems 9, 10.
  • the pole connections B and C of the three-pole circuit are each provided between a first pair S cp + , S cp- and a second pair S cn + , S cn- of controllable semiconductor valves.
  • the currents i h3 , i cp , i cn can be regulated by suitable control of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- of the two half bridges and the 3-level bridge branch.
  • the filter capacitors C F are arranged in a star shape around a star point M CF.
  • the star point M CF is also connected to a discharge capacitor C BF with a center point M of the three-pole circuit 5.
  • This connection of the mains-side input 3 to a discharge capacitor C BF via the filter capacitors C F allows high-frequency fault currents i f , arising from the high-frequency switching operations in the three-pole circuit 5, to flow away, which is particularly advantageous when all three currents i h3 , i cp , and i cn of the three-pole circuit 5 are regulated with a specially designed controller.
  • the connection of the Diverting capacitor C BF is not, however, viewed as a further, fourth pole connection of the three-pole circuit 5, since the diverted fault currents i f are high-frequency and comparatively small compared to the currents in the pole connections A, B, C.
  • Each of the pole connections A, B, C is according to a preferred embodiment in Figure 4 connected to an inductance L h3 , L cp , L cn , which are used to carry the two control currents i cp , i cn and the injection current i h3 .
  • L h3 , L cp , L cn which are used to carry the two control currents i cp , i cn and the injection current i h3 .
  • the Figure 4a shows the current curve of the phases U, V, W at the input 3 on the network side.
  • the phase currents i u , i v , i w are phase-shifted according to a three-phase network.
  • the Figure 4b shows the rectified voltage U rec which is applied between the two output lines P DC , N DC after the rectifier arrangement 1.
  • the rectified voltage U rec has sinusoidal peaks in addition to an output voltage U 0.
  • a constant output voltage U 0 is achieved.
  • the Figure 4c shows the course of a positive rectifier current i p , which results from a suitable supply of a control current i cp to the positive output line P DC of the bridge rectifier.
  • the sine peaks shown correspond to the respective sections of the sinusoidal input currents i u , i v , i w .
  • injection current i h3 is shown, which corresponds to the triangular components of the network currents i u , i v , i w.
  • this injection current i h3 is fed to the three-pole circuit 5.
  • the inductor current i L is in Figure 4f shown and has a constant output current i 0 which is fed directly to the load 6, and a superimposed alternating component which results from the voltage difference between the rectifier output voltage U rec and the approximately constant output voltage U 0 .
  • the course of the required control currents i cp , i cn is in the Figures 4g and 4h
  • the control currents i cp , i cn are preferably shown in FIG Figure 4g and Figure 4h to regulate.
  • a second and third converter system 9, 10 of the three-pole circuit 5 can be provided.
  • the first converter system 9 is connected by a direct connection to the pole connection A via the center point M.
  • the second and third converter system 10, 11 is, as already in Figure 4 described, advantageously carried out by half bridges with controllable semiconductor valves S cp + , S cp-, S cn + , S cn- and buffer capacitors.
  • the direct connection of the center point M to the pole connection A of the three-pole circuit 5 defines the potential of the center point M and does not show any high-frequency voltage jumps.
  • the two control currents i cp , i cn are regulated by suitable control of the controllable semiconductor valves of the two half bridges and, the injection current i h3 resulting from the current sum of zero of the three-pole circuit 5.
  • a connection of the three-pole circuit 5 by means of discharge capacitor C BF back to the network is according to the embodiment of the rectifier circuit according to FIG Fig. 3 not provided.
  • bidirectional switch S h3 of a unidirectional 3-level bridge arm of the first converter system 9 of a three-pole circuit 5 is shown, in which two IGBTs connected against one another with anti-parallel freewheeling diodes are used, although other switch elements such as MOSFETs can also be used as an alternative.
  • This design of bidirectional switches S h3 is known per se, but is to be illustrated here in conjunction with the rectifier circuit according to the invention, with the regulation of a midpoint voltage U MN in conjunction with the bidirectional switch S h3 with the rectifier circuit according to the invention and the method according to the invention for impressing control currents should be explained.
  • the midpoint voltage U MN influences the generation of the differential voltages U L3 , U Lp , U Ln across the inductances L h3 , L cp , L cn in order to regulate the control currents and / or the injection current.
  • the first differential voltage U L3 results from the first inductance L h3 etc.
  • An injection voltage U h3 results from the potential of the first pole connection A with respect to the network, i.e. with respect to the neutral point N.
  • first converter system 9 can be designed with a unidirectional 3-level bridge branch for the first two control methods, a bidirectional execution of the 3-level bridge branch of the first converter system 9 is absolutely necessary for the third control method.
  • FIG 6 a preferred embodiment of the three-pole circuit 5 with a bidirectional 3-level bridge branch in the first converter system 9 is shown.
  • active controllable semiconductor components S h3 + , S h3- for example as in Figure 6 shown by IGBTs with anti-parallel freewheeling diodes.
  • currents can also be impressed in phase opposition to the injection voltage U h3 at the first pole connection A of the three-pole circuit 5.
  • the Figure 7 shows an embodiment of the rectifier circuit according to the invention, wherein the first converter system 9 is replaced by a direct connection of the first pole connection A to the center point M of the three-pole circuit 5, and both the second converter system 10 and the third converter system 11 are implemented by a 3-level bridge branch is, where in Figure 7 the known three-level neutral-point-clamped converter 3L-NPC is designed, where generic bridge branches can also be used.
  • the two 3-level bridge branches are each arranged symmetrically around a midpoint branch Zm, the midpoint branch being connected to the DC voltage connections of the 3-level bridge branches.
  • the midpoint branch Z m is provided with buffer capacitors C CP , C CN and can be connected directly to the midpoint M of the midpoint branch Z m with the network-side input 3 via the switching elements S 1 , S 2 , S 3.
  • a neutral connection N 8 of the 3-level bridge branches is connected to the center point M and the first pole connection A.
  • An alternating voltage connection AC 8 of the 3L-NPC is connected to the pole connections B, C via the inductances L CP , L CN.
  • control currents i cp , i cn are regulated by suitable control of the semiconductor valves S cp + , S cp-, S cn + , S cn- of the 3-level bridge branches, the injection current i h3 being obtained automatically. Since the center point M is connected directly to the network phases U, V, W via the switches S1, S2, S3, there is no need to regulate the medium voltage U MN . Since the control currents i cn , i cp have both positive and negative signs with an always positive or negative voltage level at the center point M, bidirectional bridge structures must be used in the two converter systems 10, 11.
  • the Figure 8 shows a further embodiment of the three-pole circuit 5, a voltage source U x being additionally provided on the branch of the injection current i h3.
  • the control currents i cp , i cn are regulated by suitable activation of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- of the converter systems 10, 11, the injection current i h3 being obtained automatically.
  • the voltage source U x impresses a time-variable voltage in the branch between the pole connection A and the midpoint M of the three-pole circuit, which increases or reduces the midpoint voltage U MN and enables the control currents i cp , i cn to be routed with little distortion .
  • FIG Figure 9 a further embodiment of a three-pole circuit 5 with voltage source U x is shown, which is provided between the second and third converter systems 10, 11 of the three-pole circuit, the voltage source U x according to FIG Figure 9 is a DC voltage source.
  • the voltage source U x is a DC voltage source.
  • two injection capacitors C h3p, C h3n are provided, their connection to the pole connection A of the three-pole circuit 5 is connected.
  • the control currents i cp , i cn are regulated by suitable activation of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- , the injection current i h3 automatically resulting from the current sum zero.
  • the additionally inserted voltage source U x advantageously lowers the negative potential of the second converter system 10 or increases the potential of the positive terminal of the third converter system 11, which subsequently enables the two control currents i cn , i cp to be routed largely without distortion.

Description

GEBIET DER ERFINDUNGFIELD OF THE INVENTION

Die vorliegende Erfindung bezieht sich auf eine Gleichrichterschaltung mit einer dreiphasigen sechs-pulsigen Gleichrichtanordnung von Gleichrichtventilen, vorzugsweise eine Brückengleichrichterschaltung von Dioden, wobei die Gleichrichtanordnung einen dreiphasigen netzseitigen Eingang und einen gleichstromseitigen Ausgang aufweist, und zumindest eine von drei Phasen am netzseitigen Eingang mit einem ersten Polanschluss einer dreipoligen Schaltung zum Ableiten eines Injektionsstromes in die dreipolige Schaltung verbunden ist, gemäß dem Oberbegriff von Anspruch 1.The present invention relates to a rectifier circuit with a three-phase six-pulse rectifier arrangement of rectifying valves, preferably a bridge rectifier circuit of diodes, the rectifier arrangement having a three-phase mains-side input and a DC-side output, and at least one of three phases at the mains-side input with a first pole connection a three-pole circuit for deriving an injection current is connected into the three-pole circuit, according to the preamble of claim 1.

Die vorliegende Erfindung bezieht sich weiters auf ein Verfahren zum Einprägen von Steuerströmen in einen gleichstromseitigen Ausgang einer Gleichrichterschaltung mit einer dreiphasigen sechs-pulsigen Gleichrichtanordnung von Halbleiterventilen, vorzugsweise eine dreipolige Brückengleichrichterschaltung von Dioden, wobei ein Injektionsstrom von zumindest einer der drei Phasen an einem netzseitigen Eingang der Gleichrichterschaltung abgezweigt wird, gemäß dem Oberbegriff von Anspruch 18.The present invention further relates to a method for impressing control currents in a DC-side output of a rectifier circuit with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a three-pole bridge rectifier circuit of diodes, with an injection current of at least one of the three phases at a network-side input of the Rectifier circuit is branched off, according to the preamble of claim 18.

STAND DER TECHNIKSTATE OF THE ART

In der modernen Leistungselektronik sind eine Vielzahl an unterschiedlichen Ausführungsformen von passiven, aktiven und Mischformen, sogenannten hybriden Gleichrichterschaltungen bekannt. Die diversen Gleichrichterschaltungen stellen im Wesentlichen aus netzseitigen, sinusförmigen Spannungen am Eingang eine möglichst konstante Gleichspannung am Ausgang der Gleichrichterschaltung bereit. Eine häufig verwendete Gleichrichtanordnung stellt die aus dem Stand der Technik, insbesondere in der Leistungselektronik, bekannte dreiphasige (Sechspuls-) Brückengleichrichtanordnung (B6 Schaltung) von Gleichrichterdioden dar. Dabei wird aus einem dreiphasigen Drehstromnetz (die sogenannte Wechselstromseite der Gleichrichterschaltung) mittels einer Brückenanordnung von Dioden nach der Brückenanordnung (die sogenannte Gleichstromseite der Gleichrichterschaltung) eine gleichgerichtete Spannung erzeugt.In modern power electronics, a large number of different embodiments of passive, active and mixed forms, so-called hybrid rectifier circuits, are known. The various rectifier circuits essentially provide a DC voltage that is as constant as possible at the output of the rectifier circuit from mains-side, sinusoidal voltages at the input. A frequently used rectifier arrangement is the three-phase (six-pulse) bridge rectifier arrangement (B6 circuit) of rectifier diodes known from the prior art, especially in power electronics after the bridge arrangement (the so-called DC side of the rectifier circuit) a rectified voltage is generated.

Zur Reduzierung der durch die Gleichrichterschaltung entstehenden pulsförmigen Ströme am wechselspannungsseitigen Eingang des Gleichrichters und zur Glättung der Gleichrichterausgangsspannung bzw. des Gleichrichterausgangsstromes werden oft gleichspannungsseitig Induktivitäten (Drosseln) zwischen Gleichrichterausgang der Diodenbrücke und Ausgangskondensator geschalten. Bei gattungsgemäßen Gleichrichterschaltungen wird der Gleichrichterstrom durch eine Drossel, verbunden mit einem Ausgangskondensator parallel zum Ausgang, geführt, um Verzerrungen in den Netzströmen zu reduzieren, und den Verlauf des Gleichrichterstroms zu glätten und eine konstante Ausgangsspannung am Ausgang bzw. dem Ausgangskondensator zur Verfügung zu stellen.To reduce the pulse-shaped currents generated by the rectifier circuit at the input of the rectifier on the AC voltage side and to smooth the rectifier output voltage or the rectifier output current, inductances (chokes) on the DC voltage side are often connected between the rectifier output of the diode bridge and the output capacitor. In the case of rectifier circuits of the generic type, the rectifier current is passed through a choke connected to an output capacitor in parallel with the output in order to reduce distortions in the mains currents, and to reduce the curve of the To smooth the rectifier current and to provide a constant output voltage at the output or the output capacitor.

Der netzseitige Stromverlauf einer Gleichrichterschaltung mit Schaltelementen, Induktivitäten und/oder Kapazitäten, auch im Betrieb mit passiver (ohmscher) Last oder einer weiteren elektronischen Schaltung an der Gleichspannungsseite, ist dabei in herkömmlicher Weise nicht sinusförmig. Die nicht-sinusförmigen Ströme verursachen infolge ihres Oberschwingungsgehalts und der Phasenverschiebung gegenüber der Netzgrundschwingung unerwünschte netzseitige Spannungs- bzw. Stromverzerrungen. Insbesondere bei Gleichrichterschaltungen höherer Leistung sind diese Netzrückwirkungen nicht zu vernachlässigen. Es gilt einen Pegel der summierten Leistung aller Oberschwingungen im Verhältnis zur Leistung der Grundschwingung einzuhalten (THDi, steht für "Total Harmonic Distortion of currents" bzw. "gesamte harmonische Verzerrung der Ströme"), wobei die maximalen Verzerrungen der Netzströme und Netzspannungen durch Normen (z.B. IEC61000-3-2) vorgegeben ist.The line-side current curve of a rectifier circuit with switching elements, inductances and / or capacitances, even in operation with a passive (ohmic) load or another electronic circuit on the DC voltage side, is conventionally not sinusoidal. The non-sinusoidal currents cause unwanted line-side voltage or current distortions due to their harmonic content and the phase shift compared to the network fundamental. These network perturbations should not be neglected, particularly in the case of higher-power rectifier circuits. It is necessary to maintain a level of the total power of all harmonics in relation to the power of the fundamental (THDi, stands for "Total Harmonic Distortion of currents" or "total harmonic distortion of the currents"), whereby the maximum distortion of the mains currents and mains voltages by standards ( e.g. IEC61000-3-2) is specified.

Aus dem Stand der Technik ist bekannt, dass die Stromformen der Gleichrichterschaltung durch Hinzufügen bzw. Ableiten von Strömen, den sogenannten Injektionsströmen, beeinflusst werden können. Dabei werden durch zusätzlich angeordnete Schaltelemente Ströme vorzugsweise in den stromlosen Phasen der Diodenbrückenströme zusätzlich eingeprägt. Der dazu benötigte Strom besitzt im Wesentlichen eine zur Netzfrequenz dreifache Frequenz wodurch diese Art der Strominjektion zur Verbesserung der durch die Gleichrichterschaltung erzeugenden Netzrückwirkungen in der Literatur mit third harmonic current injection bezeichnet wird. Als bekanntester Vertreter solch eines Gleichrichtersystems und Stand der Technik sei hier der sogenannte Minnesota Rectifier genannt.It is known from the prior art that the current forms of the rectifier circuit can be influenced by adding or deriving currents, the so-called injection currents. In this case, currents are additionally impressed by additionally arranged switching elements, preferably in the currentless phases of the diode bridge currents. The current required for this is essentially three times the frequency of the network frequency, which means that this type of current injection to improve the network perturbations generated by the rectifier circuit is referred to in the literature as third harmonic current injection . The best-known representative of such a rectifier system and state of the art is the so-called Minnesota Rectifier .

Die im Stand der Technik als Minnesota Rectifier bekannte Gleichrichterstruktur verwendet eine Injektion eines Stromes mit einer dritten harmonischen der Netzfrequenz simultan in alle drei Phasen des Wechselstromanschlusses der Gleichrichterschaltung um annähernd sinusförmige Netzströme der Gleichrichterschaltung zu erreichen. Es werden dadurch jene Stromlücken gefüllt, welche aufgrund der sperrenden Wirkung der Gleichrichtanordnung am netzseitigen Eingang keinen Strom führen würden. Durch geeignete Wahl des Injektionsstromes kann die Verzerrung der Netzströme somit weitestgehend vermieden und somit ein besseres THDi erreicht werden. The rectifier structure known in the art as Minnesota Rectifier uses an injection of a current with a third harmonic of the mains frequency simultaneously into all three phases of the AC connection of the rectifier circuit in order to achieve approximately sinusoidal mains currents of the rectifier circuit. As a result, those current gaps are filled which, due to the blocking effect of the rectifier arrangement, would not carry any current at the mains-side input. With a suitable choice of the injection current, the distortion of the mains currents can be avoided as far as possible and a better THDi can be achieved.

Die Schaltung des Minnesota Rectifiers zeigt den wesentlichen Nachteil, dass die dazu notwendigen Ströme in alle drei Phasen gleichzeitig eingeprägt werden und dabei niederfrequent belastete Einspeisetransformatoren verwendet werden müssen welche aufgrund der niederfrequenten Belastung mit der dritten harmonischen der Netzfrequenz sowohl ein großes Volumen als auch ein großes Gewicht aufweisen. Die Erzeugung des Injektionsstromes wird bei der Schaltung des Minnesota Rectifiers durch zwei, gleichspannungsseitig angeordneten Hochsetzstellerstufen bewerkstelligt. Dadurch kann eine geregelte Ausgangsspannung, welche durch einen hinreichend großen Ausgangskondensator gefiltert ist, zur Verfügung gestellt werden. Durch die Anwendung der Hochsetzsteller auf der DC-Seite des Gleichrichters werden jedoch zwei Dioden in den primären Leistungsfluss der Gleichrichterschaltung eingefügt, was insbesondere im Bereich hoher Leistungen eine beträchtliche Reduzierung des Wirkungsgrades zur Folge hat. Eine selektive Einprägung des benötigten Injektionsstromes nur in diejenige wechselspannungsseitige Phase, welche im klassischen 6-puls Gleichrichterbetrieb stromlos bleiben würde ist möglich, benötigt jedoch zusätzliche aktive Schalter zur Auswahl der jeweiligen Phase. Dazu muss der Injektionsstrom des Gleichrichterschaltung jedoch angepasst werden. Solch ein Betrieb ist jedoch mit der Topologie des Minnesota Rectifiers nicht möglich. Eine vergleichbare Ausführung wurde in der Publikation " A Novel Three-Phase PFC Rectifier Using a Harmonie Current Injection Method" von Jun-Ichi Itoh et al. beschrieben.The circuit of the Minnesota Rectifier shows the main disadvantage that the currents required for this are impressed in all three phases at the same time and low-frequency loaded feed-in transformers have to be used which, due to the low-frequency load with the third harmonic of the mains frequency, have both a large volume and a large weight exhibit. When switching the Minnesota Rectifier, the injection current is generated by two step-up converter stages arranged on the DC voltage side. This allows a Regulated output voltage, which is filtered by a sufficiently large output capacitor, can be made available. By using the step-up converter on the DC side of the rectifier, however, two diodes are inserted into the primary power flow of the rectifier circuit, which results in a considerable reduction in efficiency, especially in the high power range. A selective injection of the required injection current only in that phase on the AC voltage side which would remain currentless in classic 6-pulse rectifier operation is possible, but requires additional active switches to select the respective phase. To do this, however, the injection current of the rectifier circuit must be adapted. However, such an operation is not possible with the topology of the Minnesota Rectifier. A comparable version was published in the publication " A Novel Three-Phase PFC Rectifier Using a Harmonie Current Injection Method "by Jun-Ichi Itoh et al. described.

Andere aus dem Stand der Technik bekannte Gleichrichterschaltungen, welche das Konzept der third harmonic injection verwenden, können nur parallel zur Last der Gleichrichterschaltung und ohne Verwendung der gleichspannungsseitigen Drossel bzw. ohne der Verwendung eines nennenswerten Ausgangskondensators betrieben werden. Bei solch bestehenden Schaltungen wird, um annähernd sinusförmigen Strom zu erhalten, sowohl die pulsierende Ausgangsspannung des Brückengleichrichters als auch eine Konstantleistungslast, also eine Last die unabhängig von der zur Verfügung gestellten Spannungen die benötigte Leistung aufnimmt, benötigt. Gleichrichterschaltungen mit technisch vorteilhafter Drossel und Kapazität am gleichstromseitigen Ausgang können daher nicht verwendet werden können. Für den Betrieb von vielen leistungselektronischen Schaltungen ist eine hinreichend gute Glättung und Stützung der Ausgangsspannung und daher ein hinreichend großer Ausgangskondensator unerlässlich. Topologien dieser Art können daher in solchen Anwendungen nicht eingesetzt werden. Weitere Topologien sind etwa in der Publikation " A New Circuit Design and Control to Reduce Input Harmonic Current for a Three-phase AC Machine Drive System having a very small DC-link Capacitor" der Autoren Hyunjae Yoo et al. beschrieben.Other rectifier circuits known from the prior art, which use the concept of third harmonic injection, can only be operated in parallel with the load of the rectifier circuit and without the use of the choke on the DC voltage side or without the use of a noteworthy output capacitor. In such existing circuits, in order to obtain approximately sinusoidal current, both the pulsating output voltage of the bridge rectifier and a constant power load, i.e. a load that consumes the required power independently of the voltages available, are required. Rectifier circuits with a technically advantageous choke and capacitance at the DC output cannot therefore be used. For the operation of many power electronic circuits, a sufficiently good smoothing and support of the output voltage and therefore a sufficiently large output capacitor is essential. Topologies of this type can therefore not be used in such applications. Further topologies can be found in the publication " A New Circuit Design and Control to Reduce Input Harmonic Current for a Three-phase AC Machine Drive System having a very small DC-link Capacitor "by the authors Hyunjae Yoo et al. described.

Weitere Gleichrichterschaltungen wurden in der US 5,784,269 A , EP 1 953 907 A1 , US 2004/160789 A1 sowie in der Publikation " A New Approach to Improve Power Factor and Reduce Harmonics in a Three Phase Diode Rectifier Type Utility Interface" der Autoren Kim S. et al. beschrieben.Further rectifier circuits were in the U.S. 5,784,269 A , EP 1 953 907 A1 , US 2004/160789 A1 as well as in the publication " A New Approach to Improve Power Factor and Reduce Harmonics in a Three Phase Diode Rectifier Type Utility Interface "by the authors Kim S. et al. described.

Eine wesentliche, möglichst optimale Gleichrichtung bei gleichzeitiger Vermeidung der Netzverzerrungen ist also bei im Stand der Technik bekannten Gleichrichterschaltungen mit Strominjektion nicht gegeben.An essential, optimally possible rectification with simultaneous avoidance of network distortions is therefore not given in the case of rectifier circuits with current injection known in the prior art.

AUFGABE DER ERFINDUNGOBJECT OF THE INVENTION

Es ist daher das Ziel dieser Erfindung diese Nachteile zu vermeiden und eine Gleichrichterschaltung mit Strominjektion sowie ein Verfahren zum Einprägen von Steuerströmen in jener Weise zu verbessern, dass geringe Netzrückwirkungen der Gleichrichterschaltung auftreten, wobei dabei ein möglichst sinusförmiger Eingangsstrom in Phase mit den jeweiligen Netzspannungen vorliegen soll, keine großen magnetische Bauelemente an der Wechselspannungsseite der Gleichrichterschaltung benötigt werden, pulsförmige Injektion des Steuerstroms an den Ausgang der Gleichrichterschaltung vermieden wird, keine großen wechselspannungs- bzw. gleichspannungsseitigen angeordneten Filterkondensatoren benötigt werden, und der Wirkungsgrad der Gleichrichterschaltung verbessert wird.It is therefore the aim of this invention to avoid these disadvantages and to improve a rectifier circuit with current injection as well as a method for impressing control currents in such a way that the rectifier circuit has low network perturbations, with an input current that is as sinusoidal as possible in phase with the respective network voltages , no large magnetic components are required on the AC voltage side of the rectifier circuit, pulse-shaped injection of the control current at the output of the rectifier circuit is avoided, no large AC voltage or DC voltage side arranged filter capacitors are required, and the efficiency of the rectifier circuit is improved.

DARSTELLUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Diese Ziele werden durch die Merkmale von Anspruch 1 und Anspruch 18 erreicht.These objects are achieved by the features of claim 1 and claim 18.

Anspruch 1 bezieht sich auf eine Gleichrichterschaltung mit einer dreiphasigen sechs-pulsigen Gleichrichtanordnung von Halbleiterventilen, vorzugsweise einer Brückengleichrichterschaltung von Dioden, mit einer Last, wobei die Gleichrichtanordnung einen dreiphasigen netzseitigen Eingang und einen drei Schaltelemente und eine dreipolige Schaltung umfassenden gleichstromseitigen Ausgang aufweist, und jede Phase des netzseitigen Eingangs jeweils mit einem Schaltelement zu einem ersten Polanschluss der dreipoligen Schaltung zum Ableiten eines Injektionsstromes in die dreipolige Schaltung zuschaltbar ist, und ein zweiter und dritter Polanschluss der dreipoligen Schaltung jeweils mit einer Ausgangsleitung des gleichstromseitigen Ausganges für Steuerströme verbunden ist. Erfindungsgemäß ist vorgesehen, dass die dreipolige Schaltung als Regelungsschaltung zur aktiven, voneinander unabhängigen Regelung von zumindest zwei der durch Steuerströme und Injektionsstrom gegebenen drei Ströme zur Erzeugung sinusförmiger Gleichrichtereingangsströme ausgelegt ist und steuerbare Halbleiterventile, vorzugsweise IGBTs, zur aktiven Regelung von zumindest zwei der durch Steuerströme und Injektionsstrom gegebenen drei Ströme aufweist, sowie eine Drossel an einer der Ausgangsleitungen des gleichstromseitigen Ausganges zwischen dem zweiten Polanschluss und der Last oder zwischen dem dritten Polanschluss und der Last am gleichstromseitigen Ausgang angeordnet ist, und die Last am gleichstromseitigen Ausgang eine zeitlich veränderliche Last ist, wobei die Regelungsschaltung zur Zuführung des Injektionsstroms nur in diejenige Phase, die aufgrund des Betriebes der sechs-pulsigen Gleichrichtanordnung stromlos bleibt, ausgelegt ist.Claim 1 relates to a rectifier circuit with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a bridge rectifier circuit of diodes, with a load, the rectifier arrangement having a three-phase mains-side input and a DC-side output comprising three switching elements and a three-pole circuit, and each phase of the mains-side input can each be switched on with a switching element to a first pole connection of the three-pole circuit for diverting an injection current into the three-pole circuit, and a second and third pole connection of the three-pole circuit are each connected to an output line of the DC-side output for control currents. According to the invention it is provided that the three-pole circuit is designed as a control circuit for active, independent control of at least two of the three currents given by control currents and injection current for generating sinusoidal rectifier input currents and controllable semiconductor valves, preferably IGBTs, for active control of at least two of the three currents provided by control currents and Injection current has given three currents, and a choke is arranged on one of the output lines of the DC-side output between the second pole connection and the load or between the third pole connection and the load at the DC-side output, and the load at the DC-side output is a time-variable load, wherein the control circuit for supplying the injection current is designed only in that phase which remains currentless due to the operation of the six-pulse rectifier arrangement.

Die erfindungsgemäße Schaltung weist neben der bekannten Gleichrichtanordnung eine dreipolige Schaltung zum Einprägen von Injektionsströmen auf. Jede einzelne Phase des Netzes kann mittels Schaltelement mit der dreipoligen Schaltung verbunden werden, wobei dabei der sogenannte Injektionsstrom vom Netz entnommen wird und den Gleichrichterströmen als Steuerstrom hinzugefügt wird. Die erfindungsgemäße Schaltung ermöglicht den Betrieb mit veränderlichen Lasten am gleichstromseitigen Ausgang der Gleichrichterschaltung, da die Steuerströme aus der dreipoligen Schaltung mithilfe von steuerbaren Halbleiterventilen als aktive Bauelemente zur aktiven Regelung in der dreipoligen Schaltung je nach Last geregelt werden können. Passive Bauelemente wie Widerstände, Kondensatoren oder Induktivitäten, wie sie in herkömmlichen Schaltungstopologien von Gleichrichterschaltungen unter der Verwendung des Injektionsprinzips eingesetzt werden, sind dazu nicht in ausreichender Form geeignet. Als aktive Bauelemente sind vorzugsweise steuerbare Halbleiterventile in Form von IGBTs mit antiparallelen Freilaufdioden vorgesehen, wobei jedoch jegliche Art von abschaltbaren Ventilen, welche zur Steuerung der Schaltzustände (z.Bsp. MOSFETs, GTOs,...) verwendet werden können. In der Beschreibung der vorliegenden Erfindung wird der Begriff steuerbare Halbleiterventile stellvertretend für alle steuerbaren Schaltelemente verwendet.In addition to the known rectifier arrangement, the circuit according to the invention has a three-pole circuit for impressing injection currents. Each individual phase of the network can be connected to the three-pole circuit by means of a switching element, whereby the so-called injection current is taken from the network and added to the rectifier currents as a control current. The circuit according to the invention enables operation with variable loads at the DC-side output of the rectifier circuit, since the control currents from the three-pole circuit with the aid of controllable semiconductor valves as active components for active regulation in the three-pole circuit can be regulated depending on the load. Passive components such as resistors, capacitors or inductors, as they are used in conventional circuit topologies of rectifier circuits using the injection principle, are not sufficiently suitable for this purpose. Controllable semiconductor valves in the form of IGBTs with anti-parallel freewheeling diodes are preferably provided as active components, but any type of switchable valve that can be used to control the switching states (e.g. MOSFETs, GTOs, ...). In the description of the present invention, the term controllable semiconductor valves is used to represent all controllable switching elements.

Auch die Verwendung einer gleichstromseitigen Drossel in Kombination mit einem hinreichend großen Ausgangskondensator zum Erhalt gleichgerichteter, konstanter Ausgangsspannungen ist möglich, ohne dabei die Funktion der Gleichrichterschaltung zu beeinträchtigen und hohe Netzverzerrungen zu erhalten. Die gesamte Leistung der Gleichrichterschaltung wird dabei am gleichstromseitigen Ausgang durch die Drossel geführt. Eine durch die Gleichrichtanordnung entstehende Spannung mit wechselförmigen Anteilen kann an der Drossel abfallen, wobei eine gleichgerichtete Spannung am Ausgang verbleibt und der Last zugeführt werden kann. Insbesondere können herkömmliche Gleichrichterschaltungen mit Drossel und Ausgangskondensator mittels der dreipoligen Schaltung einfach erweitert werden.It is also possible to use a DC-side choke in combination with a sufficiently large output capacitor to obtain rectified, constant output voltages without impairing the function of the rectifier circuit and without causing high network distortions. The entire power of the rectifier circuit is fed through the choke at the output on the DC side. A voltage with alternating components that is produced by the rectifier arrangement can drop across the choke, with a rectified voltage remaining at the output and being able to be fed to the load. In particular, conventional rectifier circuits with a choke and output capacitor can be easily expanded by means of the three-pole circuit.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der zweite und dritte Polanschluss der dreipoligen Schaltung jeweils über eine zweite und dritte Induktivität mit einer der beiden Ausgangsleitungen des gleichstromseitigen Ausganges verbunden ist, und zwischen dem zweiten oder dritten Polanschluss und der Last die Drossel vorgesehen ist.According to a further preferred embodiment of the invention, it is provided that the second and third pole connection of the three-pole circuit are each connected to one of the two output lines of the DC-side output via a second and third inductance, and the choke is provided between the second or third pole connection and the load is.

Eine Differenzspannung an den Induktivitäten bildet die Basis für die Regelung der Steuerströme und des Injektionsstroms. Die jeweiligen Ströme, also die Steuerströme und/oder der Injektionstrom, werden durch Modulation der aktiven Bauelemente in der dreipoligen Schaltung eingestellt. Die Schaltvorgänge zur Modulation von Strömen mittels aktiver Bauelemente sind in der Leistungselektronik an sich bekannt. Durch die Induktivitäten an den Anschlüssen der dreipoligen Schaltung werden die Ströme geglättet und eine Einprägung von pulsförmigen Strömen in den gleichstromseitigen Ausgang kann vermieden werden. Dadurch werden mitunter teure Filterkondensatoren mit großen Kapazitätswerten gespart, die die pulsförmigen Ströme entstehend durch den Schaltvorgang der aktiven Bauelemente in herkömmlicher Weise aufnehmen würden. Die Drossel am gleichstromseitigen Ausgang führt sowohl die Gleichrichterströme als auch die eingeprägten Steuerströme und sorgt für kontinuierliche Verläufe der Ausgangsgrößen.A differential voltage across the inductances forms the basis for regulating the control currents and the injection current. The respective currents, that is to say the control currents and / or the injection current, are set by modulating the active components in the three-pole circuit. The switching processes for modulating currents by means of active components are known per se in power electronics. The currents are smoothed by the inductances at the connections of the three-pole circuit and pulse-shaped currents can be avoided in the output on the DC side. As a result, expensive filter capacitors with large capacitance values are saved, which would absorb the pulse-shaped currents resulting from the switching process of the active components in a conventional manner. The throttle on The output on the DC side carries both the rectifier currents and the applied control currents and ensures continuous progression of the output variables.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass über eine erste Induktivität der erste Polanschluss mit den Schaltelementen verbunden ist, wobei die drei Induktivitäten mittels 3-Schenkel-Drossel ausgeführt sind. Die Ausführung der drei Induktivitäten mittels einer herkömmlichen 3-Schenkel-Drossel stellt eine besonders platzsparende, günstige und einfach zu implementierende Variante dar, wobei jede Schenkelwicklung der 3-Schenkel-Drossel eine Induktivität bildet.In a further preferred embodiment of the invention it is provided that the first pole connection is connected to the switching elements via a first inductance, the three inductances being implemented by means of a 3-leg choke. The implementation of the three inductors by means of a conventional 3-leg choke represents a particularly space-saving, inexpensive and easy-to-implement variant, with each leg winding of the 3-leg choke forming an inductance.

Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Gleichrichterschaltung ist vorgesehen, dass die beiden Ausgangsleitungen am gleichstromseitigen Ausgang mit einem Ausgangskondensator verbunden sind. Dieser Ausgangskondensator dient im Wesentlichen zum Erhalt einer konstanten Ausgangsspannung in Zusammenspiel mit der Drossel, wobei ein vorhandener wechselförmiger Anteil in der Spannungsschleife zwischen Drossel und Ausgangskondensator an der Drossel abfällt, und der Ausgangskondensator eine konstante, gleichgerichtete Ausgangsspannung hält. Ein Ausgangskondensator parallel zum Ausgangsanschluss der Gleichrichterschaltung wird unter anderem auch durch den nachgeschalteten Betrieb von leistungselektronischen Schaltungen wie z.B. einer dreiphasigen Inverterstufe benötigt.According to a further embodiment of the rectifier circuit according to the invention, it is provided that the two output lines are connected to an output capacitor at the output on the DC side. This output capacitor essentially serves to maintain a constant output voltage in interaction with the choke, with an existing alternating component in the voltage loop between choke and output capacitor at the choke, and the output capacitor maintaining a constant, rectified output voltage. An output capacitor parallel to the output connection of the rectifier circuit is required, among other things, for the downstream operation of power electronic circuits such as a three-phase inverter stage.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass jede der drei Phasen am netzseitigen Eingang jeweils mit einem Filterkondensator verbunden ist, wobei die Filterkondensatoren sternförmig in einem Sternpunkt zusammengeschaltet sind. Des Weiteren ist vorgesehen, dass die dreipolige Schaltung über zumindest einen Ableitkondensator mit dem netzseitigen Eingang verbunden ist. Der Ableitkondensator der dreipoligen Schaltung bildet in Kombination mit den sternförmig angeordneten Filterkondensatoren einen vorteilhaften Strompfad um Ströme, entstehend durch hochfrequente Schaltvorgänge in der dreipoligen Schaltung, abzuleiten.In a further preferred embodiment of the invention, it is provided that each of the three phases is connected to a filter capacitor at the input on the network side, the filter capacitors being connected together in a star shape at a star point. It is also provided that the three-pole circuit is connected to the network-side input via at least one discharge capacitor. The diverting capacitor of the three-pole circuit, in combination with the star-shaped filter capacitors, forms an advantageous current path to divert currents caused by high-frequency switching processes in the three-pole circuit.

Des Weiteren ist gemäß einer weiteren bevorzugten Ausführungsform der Erfindung vorgesehen, dass die dreipolige Schaltung drei Konvertersysteme mit steuerbaren Halbleiterventilen und/oder einem bidirektionalem Schalter umfasst, wobei an einem ersten Konvertersystem der erste Polanschluss der dreipoligen Schaltung, an einem zweiten Konvertersystem der zweite Polanschluss der dreipoligen Schaltung, sowie an einem dritten Konvertersystem der dritte Polanschluss der dreipoligen Schaltung vorgesehen ist, und von allen drei Konvertersystemen eine Verbindung zu einem Verzweigungspunkt, einem gemeinsamen Mittelpunkt der dreipoligen Schaltung, vorgesehen ist.Furthermore, according to a further preferred embodiment of the invention, it is provided that the three-pole circuit comprises three converter systems with controllable semiconductor valves and / or a bidirectional switch, the first pole connection of the three-pole circuit on a first converter system and the second pole connection of the three-pole circuit on a second converter system Circuit, as well as the third pole connection of the three-pole circuit is provided on a third converter system, and a connection to a branch point, a common center point of the three-pole circuit, is provided from all three converter systems.

Die drei Konvertersysteme werden verwendet um bei entsprechender Regelung die beiden Steuerströme und den Injektionsstrom einzuprägen. Jedes der Konvertersysteme stellt einen Freiheitsgrad für die Regelung der drei Ströme, nämlich den beiden Steuerströmen und dem Injektionsstrom, zur Verfügung. Mittels der vorteilhaften Ausführung von steuerbaren Halbliterventilen und/oder eines bidirektionalen Schalters in einer Brückenstruktur können die Freiheitsgrade dazu genutzt werden die Steuerströme zu regeln.The three converter systems are used to impress the two control currents and the injection current with appropriate control. Each of the converter systems provides a degree of freedom for regulating the three flows, namely the two control flows and the injection flow. By means of the advantageous design of controllable half-liter valves and / or a bidirectional switch in a bridge structure, the degrees of freedom can be used to regulate the control currents.

Des Weiteren ist gemäß einer bevorzugten Ausführungsform der Erfindung vorgesehen, dass das erste Konvertersystem als 3-Level Brückenzweig vorgesehen ist, wobei das zweite und dritte Konvertersystem als Halbbrücke vorgesehen sind, und die drei Konvertersysteme mittels dreier parallel geschalteter Zweige ausgeführt sind, die mit elektronischen Bauelementen besetzt sind, wobei an einem ersten Zweig der erste Polanschluss der dreipoligen Schaltung ausgeführt ist, und an einem dritten Zweig der zweite und dritte Polanschluss ausgeführt sind, und jeder der Zweige einen Mittelpunktanschluss aufweist, um welche Mittelpunktanschlüsse die Bauelemente der Zweige symmetrisch angeordnet sind, wobei ein erster Mittelpunktanschluss des ersten Zweigs über einen bidirektionalen Schalter mit einem zweiten Mittelpunktanschluss des zweiten Zweigs verbunden ist, und der zweite Mittelpunktanschluss direkt mit einem dritten Mittelpunktanschluss des dritten Zweigs leitend verbunden ist, wobei der dritte Mittelpunktanschluss als Mittelpunkt der dreipoligen Schaltung vorgesehen ist. Das erste Konvertersystem ist als an sich bekannter 3-Level Brückenzweig ausgeführt, und kann unidirektional oder bidirektional vorgesehen sein, wie im Weiteren erläutert werden wird. Die Konvertersysteme zwei und drei, bestehen aus zwei Halbbrücken können jedoch auch als drei- oder mehrstufigen Brückenzweig ausgeführt sein.Furthermore, according to a preferred embodiment of the invention, it is provided that the first converter system is provided as a 3-level bridge branch, the second and third converter systems being provided as half-bridges, and the three converter systems being implemented by means of three parallel-connected branches with electronic components are occupied, the first pole connection of the three-pole circuit being implemented on a first branch, and the second and third pole connections being implemented on a third branch, and each of the branches having a center connection around which center connections the components of the branches are symmetrically arranged, with a first midpoint connection of the first branch is connected to a second midpoint connection of the second branch via a bidirectional switch, and the second midpoint connection is conductively connected directly to a third midpoint connection of the third branch, the third midpoint point connection is provided as the center point of the three-pole circuit. The first converter system is designed as a 3-level bridge branch known per se, and can be provided unidirectionally or bidirectionally, as will be explained below. The converter systems two and three consist of two half bridges, but can also be designed as a three-stage or multi-stage bridge branch.

Am ersten Zweig ist der erste Polanschluss vorgesehen und der Injektionsstrom fließt in den ersten Mittelpunktanschluss und damit in die dreipolige Schaltung zu. Die drei derartig parallel geschalteten Zweige stellen gemeinsam die drei Konvertersysteme als Brückenstrukturen dar, mit welchen Brückenstrukturen die Steuerströme und der Injektionsstrom geregelt werden können.The first pole connection is provided on the first branch and the injection current flows into the first midpoint connection and thus into the three-pole circuit. The three branches connected in parallel in this way together represent the three converter systems as bridge structures, with which bridge structures the control currents and the injection current can be regulated.

Alternativ ist gemäß einer weiteren bevorzugten Ausführungsform der Erfindung vorgesehen, dass die dreipolige Schaltung zwei Konvertersysteme mit steuerbaren Halbleiterventilen, vorzugsweise angeordnet in einer Brückenstruktur, umfasst, wobei an einem zweiten Konvertersystem der zweite Polanschluss der dreipoligen Schaltung, sowie an einem dritten Konvertersystem der dritte Polanschluss der dreipoligen Schaltung vorgesehen ist, und von beiden Konvertersystemen eine Verbindung zu einem Verzweigungspunkt, einem gemeinsamen Mittelpunkt, vorgesehen ist, und der Mittelpunkt mit dem ersten Polanschluss verbunden ist. Gemäß dieser alternativen Ausführungsform der Erfindung wird das erste Konvertersystem weggelassen und der erste Pol der dreipoligen Schaltung wird direkt mit dem Mittelpunkt der beiden verbleibenden Konvertersysteme leitend verbunden.Alternatively, according to a further preferred embodiment of the invention, it is provided that the three-pole circuit comprises two converter systems with controllable semiconductor valves, preferably arranged in a bridge structure, the second pole connection of the three-pole circuit on a second converter system and the third pole connection of the three-pole circuit is provided, and a connection to a branch point, a common center point, is provided by both converter systems, and the center point to the first pole connection connected is. According to this alternative embodiment of the invention, the first converter system is omitted and the first pole of the three-pole circuit is conductively connected directly to the center point of the two remaining converter systems.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das zweite und dritte Konvertersystem als Halbbrücke vorgesehen sind, wobei die zwei Konvertersysteme mittels zweier parallel geschalteter Zweige ausgeführt sind, und mit einem zweiten Zweig der erste Polanschluss der dreipoligen Schaltung verbunden ist, und an einem dritten Zweig der zweite und dritte Polanschluss ausgeführt sind, und jeder der Zweige einen Mittelpunktanschluss aufweist, um welche Mittelpunktanschlüsse die Bauelemente der Zweige symmetrisch angeordnet sind, und ein zweiter Mittelpunktanschluss des zweiten Zweigs direkt mit einem dritten Mittelpunktanschluss des dritten Zweigs leitend verbunden ist, wobei der dritte Mittelpunktanschluss als Mittelpunkt der dreipoligen Schaltung vorgesehen ist. Gemäß dieser Ausführungsform der dreipoligen Schaltung ist kein erster Zweig vorgesehen, der mittels Schalter verbunden ist, sondern nur eine Ausführungsform mit zwei Halbbrücken als Konvertersysteme, womit zwei Freiheitsgrade zur Regelung der Spannungs- und Stromgrößen der Brückenstrukturen vorhanden sind. Die direkte Verbindung des ersten Pols der dreipoligen Schaltung mit dem Mittelpunkt der dreipoligen Schaltung und damit auch der beiden Konvertersysteme definiert das Potential an ebendiesem Punkt und sowohl die beiden Steuerströme als auch der Injektionsstrom können mit den zwei verbleibenden Konvertersystemen geregelt werden.According to a further preferred embodiment of the invention it is provided that the second and third converter systems are provided as half-bridges, the two converter systems being designed by means of two branches connected in parallel, and the first pole connection of the three-pole circuit being connected to a second branch, and to one third branch of the second and third pole connection are executed, and each of the branches has a center connection, around which center connection the components of the branches are symmetrically arranged, and a second center connection of the second branch is conductively connected directly to a third center connection of the third branch, wherein the third center point connection is provided as the center point of the three-pole circuit. According to this embodiment of the three-pole circuit, no first branch is provided, which is connected by means of a switch, but only an embodiment with two half bridges as converter systems, whereby two degrees of freedom are available for regulating the voltage and current variables of the bridge structures. The direct connection of the first pole of the three-pole circuit with the center point of the three-pole circuit and thus also of the two converter systems defines the potential at this point and both the two control currents and the injection current can be regulated with the two remaining converter systems.

Zur Bauteilbestückung der Zweige ist gemäß einer weiteren bevorzugten Ausführungsform vorgesehen, dass am zweiten Zweig zwei Pufferkondensatoren in Serie geschaltet sind, wobei der zweite Mittelpunktanschluss zwischen den beiden Pufferkondensatoren angeordnet ist. Des Weiteren ist gemäß einer bevorzugten Ausführungsform vorgesehen, dass im ersten Zweig zwei Brückenventile, vorzugsweise Dioden, in Serie mit derselben Durchlassrichtung geschaltet sind, wobei der erste Mittelpunktanschluss zwischen den beiden Brückenventilen angeordnet ist. Eine derartige Anordnung von Dioden bedeutet eine unidirektionale Ausführung des ersten Konvertersystems. Eine unidirektionale Ausführung des ersten Konvertersystems erlaubt eine Stromführung aufgrund der Dioden nur in eine Richtung, womit ein Energietransfer vom Netz in die dreipolige Schaltung festgelegt ist. Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die beiden Brückenventile als steuerbare Halbleiterventile, vorzugsweise IGBTs, ausgeführt sind. Eine derartige Anordnung von steuerbaren Halbleiterventilen anstatt von Dioden bedeutet eine bidirektionale Ausführung des ersten Konvertersystems. Eine bidirektionale Ausführung des ersten Konvertersystems erlaubt es, bei geeigneter Regelung der drei Konvertersysteme die Spannung an den Pufferkondensatoren zu minimieren, da die benötigten Ströme in der dreipoligen Schaltung nun nicht mehr durch die Flussrichtung der Brückenventile des ersten Konvertersystems begrenzt ist. Dadurch kann die maximale Spannung der Pufferkondensatoren vorteilhaft reduziert werden.To equip the branches with components, a further preferred embodiment provides that two buffer capacitors are connected in series on the second branch, the second center connection being arranged between the two buffer capacitors. Furthermore, it is provided according to a preferred embodiment that two bridge valves, preferably diodes, are connected in series with the same flow direction in the first branch, the first midpoint connection being arranged between the two bridge valves. Such an arrangement of diodes means a unidirectional design of the first converter system. A unidirectional design of the first converter system allows current to be carried only in one direction due to the diodes, which defines the transfer of energy from the network to the three-pole circuit. According to a further preferred embodiment it is provided that the two bridge valves are designed as controllable semiconductor valves, preferably IGBTs. Such an arrangement of controllable semiconductor valves instead of diodes means a bidirectional design of the first converter system. A bidirectional design of the first converter system allows, with suitable regulation of the three converter systems, to minimize the voltage across the buffer capacitors, since the currents required in the three-pole circuit is no longer limited by the flow direction of the bridge valves of the first converter system. This allows the maximum voltage of the buffer capacitors to be advantageously reduced.

Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass am dritten Zweig die vier steuerbaren Halbleiterventile in Serie geschaltet vorgesehen sind, wobei der Mittelpunkt der dreipoligen Schaltung in der Verbindung zwischen zwei seriell geschalteten Paaren der steuerbaren Halbleiterventile angeordnet ist, und der zweite Polanschluss zwischen den steuerbaren Halbleiterventilen des ersten Paars vorgesehen ist, und der dritte Polanschluss zwischen den steuerbaren Halbleiterventilen des zweiten Paars vorgesehen ist. An diesen Polanschlüssen fließen die Steuerströme in die gleichstromseitigen Ausgangsleitungen. Die jeweiligen Steuerströme können nun durch die beiden Halbbrücken durch geeignete Ansteuerung der steuerbaren Halbleiterventile reguliert werden. Die Spannungen der verwendeten Pufferkondensatoren sind dabei maßgeblich für die Spannungsverhältnisse am zweiten und dritten Polanschluss und daher auch maßgeblich für den auftretenden Rippelstrom in den Induktivitäten.According to a further preferred embodiment it is provided that the four controllable semiconductor valves are connected in series on the third branch, the center point of the three-pole circuit being arranged in the connection between two series-connected pairs of the controllable semiconductor valves, and the second pole connection between the controllable semiconductor valves of the first pair is provided, and the third pole connection is provided between the controllable semiconductor valves of the second pair. The control currents flow into the output lines on the DC side at these pole connections. The respective control currents can now be regulated through the two half bridges by suitable control of the controllable semiconductor valves. The voltages of the buffer capacitors used are decisive for the voltage ratios at the second and third pole connection and therefore also decisive for the ripple current occurring in the inductances.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der zweite Mittelpunktanschluss über eine Spannungsquelle mit dem ersten Polanschluss verbunden ist. Der zweite Mittelpunktanschluss ist direkt verbunden mit dem Mittelpunkt. Um das Potential des Mittelpunktes der dreipoligen Schaltung dynamisch erhöhen bzw. erniedrigen zu können, kann der Mittelpunkt der Konvertersysteme über eine Spannungsquelle mit dem ersten Polanschluss verbunden werden. Mithilfe einer Potentialerhöhung bzw. -erniedrigung durch die Spannungsquelle können die Ströme der dreipoligen Schaltung auch bei geringen Potentialdifferenzen, wie sie prinzipbedingt bei der direkten Verbindung des ersten Polanschlusses mit dem Mittelpunkt der Konvertersysteme auftreten, ohne Verzerrungen geregelt werden.According to a further preferred embodiment of the invention it is provided that the second center point connection is connected to the first pole connection via a voltage source. The second midpoint connection is directly connected to the midpoint. In order to be able to dynamically increase or decrease the potential of the center point of the three-pole circuit, the center point of the converter systems can be connected to the first pole connection via a voltage source. With the help of an increase or decrease in potential through the voltage source, the currents of the three-pole circuit can be regulated without distortion even with small potential differences, such as occur in principle with the direct connection of the first pole connection to the center of the converter systems.

In einer weiteren Ausführungsform der erfindungsgemäßen Gleichrichterschaltung ist vorgesehen, dass das zweite und dritte Konvertersystem der dreipoligen Schaltung mit an sich bekannten bidirektionalen 3-Level Brückenzweigen ausgeführt ist, vorzugsweise zwei sogenannte Three-Level Neutral-Point-Clamped-Converters (3L-NPC), wobei die 3-Level Brückenzweige symmetrisch um einen zu den 3-Level Brückenzweigen parallel geschalteten Mittelpunktzweig angeordnet sind, und der Mittelpunktzweig als zwei in Serie geschaltete Pufferkondensatoren ausgeführt ist, sowie der Mittelpunkt zwischen den beiden Pufferkondensatoren vorgesehen ist, und ein Neutralanschluss des 3-Level Brückenzweigs mit dem Mittelpunkt und dem ersten Polanschluss verbunden ist, sowie ein Wechselspannungsanschluss des 3-Level Brückenzweigs als der zweite Polanschluss und der dritte Polanschluss der dreipoligen Schaltung vorgesehen sind. Die Verwendung zweier 3-Level Brückenzweige stellt eine besonders vorteilhafte Ausführung der Erfindung dar, da das erste Konvertersystem in dieser Ausführungsform nicht benötigt wird und dadurch der Wirkungsgrad des gesamten Gleichrichtersystems erhöht werden kann und außerdem die Steuerströme möglichst verzerrungsfrei generiert werden können. Die Regelung der Steuerströme kann durch an sich bekannte Ansteuerung der steuerbaren Halbleiterventile der 3-Level Brückenzweig bewerkstelligt werden und der Injektionsstrom ergibt sich dabei durch den Umstand icp=ih3+icn. Die beschriebene Ausführungsform stellt eine bidirektionale dreipolige Schaltung zur Verfügung.In a further embodiment of the rectifier circuit according to the invention, it is provided that the second and third converter systems of the three-pole circuit are designed with bidirectional 3-level bridge branches known per se, preferably two so-called three-level neutral-point-clamped converters (3L-NPC), The 3-level bridge branches are arranged symmetrically around a midpoint branch connected in parallel to the 3-level bridge branches, and the midpoint branch is designed as two buffer capacitors connected in series, and the midpoint is provided between the two buffer capacitors, and a neutral connection of the 3-level Bridge branch is connected to the center point and the first pole connection, as well as an AC voltage connection of the 3-level bridge branch as the second pole connection and the third pole connection of the three-pole circuit are provided. The use of two 3-level bridge branches represents a particularly advantageous embodiment of the invention, since the first converter system is not required in this embodiment and thereby the efficiency of the entire rectifier system can be increased and the control currents can also be generated as distortion-free as possible. The regulation of the control currents can be achieved by activating the controllable semiconductor valves of the 3-level bridge arm, which is known per se, and the injection current results from the fact i cp = i h3 + i cn . The embodiment described provides a bidirectional three-pole circuit.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die dreipolige Schaltung mit dem ersten Polanschluss jeweils mit einer Seite von zwei Injektionskondensatoren verbunden ist, welche Verbindung den Mittelpunkt der dreipoligen Schaltung bildet, wobei die beiden anderen Seiten der Injektionskondensatoren über eine Spannungsquelle verbunden sind und Anschlusspunkte bilden, wobei jeweils von den Anschlusspunkten ausgehend eine Stromschleife mit je einem Pufferkondensator und jeweils ein Paar von steuerbaren Halbleiterventilen vorgesehen ist, und zwischen den jeweils zwei steuerbaren Halbleiterventilen eines Paares der zweite Polanschluss und der dritte Polanschluss vorgesehen ist. Die Regelung der Steuerströme erfolgt nach wie vor durch geeignete Ansteuerung der beiden Halbbrücken. Bei genügend hoher Amplitude der Spannungen der zusätzlichen Spannungsquelle können durch diese Ausführung die beiden Steuerströme weitestgehend verzerrungsfrei geführt werden.According to a further preferred embodiment of the invention it is provided that the three-pole circuit with the first pole connection is connected to one side of two injection capacitors, which connection forms the center of the three-pole circuit, the other two sides of the injection capacitors being connected via a voltage source and Form connection points, each starting from the connection points a current loop with a buffer capacitor and a pair of controllable semiconductor valves being provided, and the second pole connection and the third pole connection being provided between the two controllable semiconductor valves of a pair. The regulation of the control currents is still carried out by suitable control of the two half bridges. If the amplitude of the voltages of the additional voltage source is high enough, this design allows the two control currents to be routed largely without distortion.

Anspruch 18 bezieht sich auf ein Verfahren zum Einprägen von Steuerströmen in einen drei Schaltelemente und eine dreipolige Schaltung umfassenden gleichstromseitigen Ausgang einer Gleichrichterschaltung gemäß Anspruch 1 mit einer dreiphasigen sechs-pulsigen Gleichrichtanordnung von Halbleiterventilen, vorzugsweise eine dreipolige Brückengleichrichterschaltung von Dioden, mit einer Last, wobei ein Injektionsstrom von zumindest einer der drei Phasen an einem netzseitigen Eingang der Gleichrichterschaltung abgezweigt wird. Erfindungsgemäß ist vorgesehen, dass der Injektionsstrom einem ersten Polanschluss der dreipoligen Schaltung zugeführt wird, und eine aktive, voneinander unabhängige Regelung von zumindest zwei der durch Steuerströme und Injektionsstrom gegebenen drei Ströme zur Erzeugung sinusförmiger Gleichrichtereingangsströme mithilfe von aktiven Bauelementen, vorzugsweise steuerbaren Halbleiterventilen, in der dreipoligen Schaltung erfolgt, wobei die Zuführung des Injektionsstroms nur in diejenige Phase erfolgt, die aufgrund des Betriebes der sechs-pulsigen Gleichrichtanordnung stromlos bleibt, sowie den Gleichrichterströmen an zwei gleichstromseitigen Ausgangsleitungen des gleichstromseitigen Ausganges jeweils ein Steuerstrom über einen zweiten und dritten Polanschluss der dreipoligen Schaltung hinzugefügt wird, und einer der Gleichrichterströme mit dem ihm jeweils zugeführten Steuerstrom durch eine zwischen dem zweiten Polanschluss und der Last oder zwischen dem dritten Polanschluss und der Last am gleichstromseitigen Ausgang angeordnete Drossel geführt wird. Der Drosselstrom setzt sich aus von der Gleichrichtanordnung gleichgerichteten Strom und Steuerströmen zusammen. Die Drossel in Kombination mit dem Ausgangskondensator glättet den Ausgangsstrom und stellt eine konstante Ausgangsspannung zur Verfügung. Die Zuführung des Injektionsstromes erfolgt nur in diejenige Phase die aufgrund des Betriebes der sechs-pulsigen Gleichrichtanordnung stromlos bleiben würden und ermöglicht bei entsprechender Regelung die Erzeugung von sinusförmigen Gleichrichtereingangsströmen in Phase mit den Netzspannungen was die Netzrückwirkungen der Gleichrichterstruktur erniedrigt. Da die zusätzlich eingebrachte dreipolige Schaltung nur einen Bruchteil der Energie der gesamten Gleichrichterschaltung bearbeitet, kann im Wesentlichen ein besserer Gesamtwirkungsgrad im Vergleich zu herkömmlichen rückwirkungsarmen, aktiven Gleichrichterschaltungen erzielt werden. Insbesondere bietet das erfindungsgemäße Verfahren die Möglichkeit, bestehende herkömmliche Gleichrichterschaltungen zu erweitern und diese mit der Erweiterung rückwirkungsarm am Netz zu betreiben. Ebenso ist es möglich, eine variable Last am gleichstromseitigen Ausgang zu betreiben, indem die Steuerströme je nach Last mit an sich bekannter Ansteuerung der aktiven Bauelemente geregelt werden.Claim 18 relates to a method for impressing control currents in a DC-side output of a rectifier circuit comprising three switching elements and a three-pole circuit according to claim 1 with a three-phase six-pulse rectifier arrangement of semiconductor valves, preferably a three-pole bridge rectifier circuit of diodes, with a load, wherein a Injection current of at least one of the three phases is branched off at a network-side input of the rectifier circuit. According to the invention it is provided that the injection current is fed to a first pole connection of the three-pole circuit, and an active, independent regulation of at least two of the three currents given by control currents and injection current for generating sinusoidal rectifier input currents with the help of active components, preferably controllable semiconductor valves, in the three-pole Switching takes place, whereby the injection current is only fed into the phase that remains de-energized due to the operation of the six-pulse rectifier arrangement, and a control current is added to the rectifier currents on two DC-side output lines of the DC-side output via a second and third pole connection of the three-pole circuit , and one of the rectifier currents with the control current supplied to it through one between the second pole connection and the load or between the third pole connection and the load at the output on the DC side is performed. The inductor current is composed of the rectified current and control currents. The choke in combination with the output capacitor smooths the output current and provides a constant output voltage. The injection current is only fed into the phase that would remain currentless due to the operation of the six-pulse rectifier arrangement and, with appropriate control, enables the generation of sinusoidal rectifier input currents in phase with the mains voltages, which lowers the mains perturbations of the rectifier structure. Since the additionally introduced three-pole circuit processes only a fraction of the energy of the entire rectifier circuit, a substantially better overall efficiency can be achieved in comparison to conventional low-reaction, active rectifier circuits. In particular, the method according to the invention offers the possibility of expanding existing conventional rectifier circuits and, with the expansion, operating them on the network with little reaction. It is also possible to operate a variable load at the output on the DC side by regulating the control currents, depending on the load, with known control of the active components.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der Injektionsstrom und/oder die Steuerströme durch zumindest zwei von drei Induktivitäten, vorgesehen an zumindest zwei der drei Polanschlüsse zur Glättung und Steuerung der Ströme, durch Differenzspannungen über den Induktivitäten geführt werden, sowie mittels Regelung von zwei der drei Ströme der dritte Strom eingestellt wird.According to a further preferred embodiment of the invention it is provided that the injection current and / or the control currents are passed through at least two of three inductors, provided on at least two of the three pole connections for smoothing and controlling the currents, through differential voltages across the inductors, and by means of regulation the third stream is set from two of the three streams.

Mit dem erfindungsgemäßen Verfahren ist es möglich Gleichrichterschaltungen mit geringen Netzverzerrungen zu betreiben. Die zugeführten Steuerströme sowie der Injektionsstrom werden zunächst von den Induktivitäten geglättet, ohne dabei pulsförmige Ströme von der Gleichrichtanordnung am Ausgang zu erhalten. In gattungsgemäßen Gleichrichterschaltungen übliche, große Kapazitäten zur Filterung der Pulse der Gleichrichtströme sowie eventueller Injektionsströme werden dabei vermieden. Des Weiteren ist die Differenzspannung über den Induktivitäten die Basis, um Ströme durch die Induktivitäten zu führen und damit in die dreipolige Schaltung bzw. aus dieser zu führen. Die Stromsumme der Ströme an den Polanschlüssen der dreipoligen Schaltung der erfindungsgemäßen Gleichrichterschaltung ergibt sich zu null. Hochfrequente Schaltvorgänge der aktiven Bauelemente in der dreipoligen Schaltung resultieren, insbesondere wenn alle drei Ströme an den Polanschlüssen geregelt werden, in hochfrequenten Bewegungen einer Mittelpunktspannung der dreipoligen Schaltung. Durch Verwenden zusätzlicher Ableitkondensatoren kann ein zusätzlicher hochfrequenter Strompfad bereitgestellt werden. Bei der gegenständlichen Ausführungsform ist allerdings vorgesehen, dass zwei der drei Ströme an den Polanschlüssen mithilfe aktiver Bauelemente in der dreipoligen Schaltung geregelt werden, wobei sich der dritte Strom aufgrund der Stromsumme null ergibt.With the method according to the invention, it is possible to operate rectifier circuits with low network distortions. The supplied control currents and the injection current are initially smoothed by the inductances without receiving pulse-shaped currents from the rectifier arrangement at the output. Large capacitances for filtering the pulses of the rectifying currents and any injection currents that are usual in rectifier circuits of this type are avoided. Furthermore, the differential voltage across the inductances is the basis for conducting currents through the inductances and thus in and out of the three-pole circuit. The sum of the currents at the pole connections of the three-pole circuit of the rectifier circuit according to the invention results in zero. High-frequency switching operations of the active components in the three-pole circuit result, in particular when all three currents are regulated at the pole connections, in high-frequency movements of a midpoint voltage of the three-pole circuit. An additional high-frequency current path can be provided by using additional bypass capacitors. In the present embodiment, however, it is provided that two of the three currents at the pole connections are regulated with the aid of active components in the three-pole circuit, the third current being zero due to the current sum.

Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass eine Mittelpunktspannung zwischen dem Mittelpunkt der dreipoligen Schaltung und einem Neutralpunkt gemessen wird und ein Mittelwert der Mittelpunktspannung mit einem der Konvertersysteme geregelt wird. Die Messung und Filterung der Mittelpunktspannung, wobei die Mittelpunktspannung in Bezug auf den Neutralpunkt (Masse) des Netzes gemessen wird, erlaubt die aktive Regelung dieses Potentials, was Vorteile bei der Generierung der Steuerströme und des Injektionsstromes mit sich bringt, da dieses Potential die Steuerströme bzw. den Injektionsstrom mitbestimmt. Dabei wird die Potentialdifferenz, insbesondere jene zwischen dem Mittelpunkt und dem gleichstromseitigen Ausgangsleitungen und dem netzseitigem Eingang, mithilfe der aktiven Bauelemente in der dreipoligen Schaltung geregelt.According to a further preferred embodiment of the method according to the invention, it is provided that a midpoint voltage is measured between the midpoint of the three-pole circuit and a neutral point and an average value of the midpoint voltage is regulated with one of the converter systems. The measurement and filtering of the midpoint voltage, whereby the midpoint voltage is measured in relation to the neutral point (ground) of the network, allows the active regulation of this potential, which has advantages when generating the control currents and the injection current, since this potential controls the control currents or co-determines the injection flow. The potential difference, in particular that between the center point and the DC-side output lines and the mains-side input, is regulated with the aid of the active components in the three-pole circuit.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die erste Pufferkondensatorspannung am Pufferkondensator größer geregelt wird als eine Spannung der positiven Ausgangsleitung gegen einen Neutralpunkt, und eine zweite Pufferkondensatorspannung am Pufferkondensator kleiner geregelt wird als eine Spannung der negativen Ausgangsleitung gegen den Neutralpunkt. Die Pufferkondensatorspannungen bestimmen beim Schalten der steuerbaren Halbleiterventile die Differenzspannungen an den Induktivitäten der Polanschlüsse.Another preferred embodiment of the invention provides that the first buffer capacitor voltage on the buffer capacitor is regulated to be greater than a voltage of the positive output line against a neutral point, and a second buffer capacitor voltage on the buffer capacitor is regulated to be lower than a voltage of the negative output line against the neutral point. The buffer capacitor voltages determine the differential voltages at the inductances of the pole connections when the controllable semiconductor valves are switched.

Gemäß einer weiteren bevorzugten Ausführungsform ist vorgesehen, dass die Regelung des Mittelwerts der Mittelpunktspannung mittels der steuerbaren Halbleiterventile erfolgt. Gemäß einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass der Mittelwert der Mittelpunktspannung auf null geregelt wird.According to a further preferred embodiment, it is provided that the mean value of the midpoint voltage is regulated by means of the controllable semiconductor valves. According to a preferred embodiment of the invention it is provided that the mean value of the midpoint voltage is regulated to zero.

Aufgrund des Umstandes, dass sich die Summe aller drei Ströme der dreipoligen Schaltung zwingend zu null ergeben müssen, ist es ausreichend, wenn nur zwei Konvertersysteme zur Regelung der Steuerströme und des Injektionsstromes verwendet werden, da sich der dritte Strom zwingend ergibt. Dadurch kann in vorteilhafter Weise das übrig bleibende Konvertersystem verwendet werden, um die Mittelpunktsspannung im Mittel zu regeln. Wegen der zeitlichen Modulation, also Schaltung, der steuerbaren Halbleiterventile ist der Mittelwert der Mittelpunktspannung heranzuziehen. Der Mittelwert der Mittelpunktspannung kann mittels der aktiven Bauelemente in der dreipoligen Schaltung geregelt werden. Die Methoden zur Ansteuerung der aktiven Bauelemente bzw. Änderung deren Schaltzuständen ist dabei an sich bekannt. Wird die Mittelpunktspannung im Mittel auf null im Bezug auf den Neutralpunkt des Netzes geregelt, müssen die Beträge der jeweiligen Spannungen an den Pufferkondensatoren größer bzw. kleiner sein als jene an den gleichstromseitigen Ausgangsleitungen gegenüber diesem Mittelpunkt entsprechend eingeprägt werden können. Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass eine erste Pufferkondensatorspannung am Pufferkondensator minimiert wird, und eine zweite Pufferkondensatorspannung am Pufferkondensator minimiert wird, wobei die Mittelpunktspannung auf den negativen halben Wert einer Injektionsspannung geregelt wird, und die Injektionsspannung zwischen dem ersten Polanschluss und dem Neutralpunkt anliegt. Die Spannungen der beiden Pufferkondensatoren werden dabei minimiert, wobei die Mittelpunktspannung gegengleich zur am ersten Polanschluss der dreipoligen Schaltung auftretenden Spannung gegen den Neutralpunkt, geregelt werden muss. Dazu ist jedoch eine bidirektionale Ausführung der ersten Konverterstufe nach Anspruch 15 notwendig, da Strom und Spannung dieses Konvertersystens bei dieser Ausführungsform nicht in Phase sind.Due to the fact that the sum of all three currents of the three-pole circuit must necessarily be zero, it is sufficient if only two converter systems are used to regulate the control currents and the injection current, since the third current is mandatory. As a result, the remaining converter system can advantageously be used to regulate the midpoint voltage on average. Because of the time modulation, i.e. switching, of the controllable semiconductor valves, the mean value of the midpoint voltage should be used. The mean value of the midpoint voltage can be regulated by means of the active components in the three-pole circuit. The methods for controlling the active components or changing their switching states are known per se. If the midpoint voltage is regulated on average to zero in relation to the neutral point of the network, the amounts of the respective voltages on the buffer capacitors must be larger or smaller than those on the DC output lines opposite this midpoint can be impressed accordingly. According to a further embodiment of the method according to the invention it is provided that a first buffer capacitor voltage on the buffer capacitor is minimized and a second buffer capacitor voltage on the buffer capacitor is minimized, the midpoint voltage being regulated to the negative half the value of an injection voltage, and the injection voltage between the first pole connection and the Neutral point is applied. The voltages of the two buffer capacitors are minimized, with the midpoint voltage having to be regulated opposite to the voltage occurring at the first pole connection of the three-pole circuit against the neutral point. For this, however, a bidirectional design of the first converter stage is necessary, since the current and voltage of this converter system are not in phase in this embodiment.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist für Gleichrichterschaltungen nach Anspruch 11 oder 17 vorgesehen, dass mithilfe der Regelung der Spannungsquelle das Potential der Mittelpunktspannung gegenüber einer der beiden Ausgangsleitungen erhöht bzw. erniedrigt wird. Dies ist vorgesehen, um ausreichend große Potentialdifferenzen zur Regelung der Steuerströme an den Polanschlüssen zu erhalten. Dadurch kann ein verzerrungsfreies Führen der Steuerströme und des Injektionsstromes sichergestellt werden, was in weiterer Folge zu verzerrungsfreien Eingangsströmen der Gleichrichterschaltung führt.In a further preferred embodiment of the method according to the invention it is provided for rectifier circuits according to claim 11 or 17 that the potential of the midpoint voltage is increased or decreased with respect to one of the two output lines with the aid of the regulation of the voltage source. This is provided in order to obtain sufficiently large potential differences for regulating the control currents at the pole connections. This ensures that the control currents and the injection current are routed without distortion, which subsequently leads to distortion-free input currents of the rectifier circuit.

KURZE BESCHREIBUNG DER FIGURENBRIEF DESCRIPTION OF THE FIGURES

Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen mithilfe der beiliegenden Zeichnungen näher erläutert. Es zeigen hierbei die

Fig. 1
eine herkömmliche Ausführungsform einer Gleichrichterschaltung mit Drossel,
Fig. 2
eine bevorzugte Ausführungsform einer erfindungsgemäßen Gleichrichterschaltung mit drei Konvertersystemen,
Fig. 3
eine bevorzugte Ausführungsform einer erfindungsgemäßen Gleichrichterschaltung mit zwei Konvertersystemen,
Fig. 4
eine bevorzugte Ausführunsgform einer erfindungsgemäßen Gleichrichterschaltung mit Drossel,
Fig. 4a
den Verlauf der dreiphasigen Netzströme am netzseitigen Eingang der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4b
den Verlauf einer Ausgangsspannung sowie einer gleichgerichteten Spannung am gleichstromseitigen Ausgang einer erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4c
den Verlauf eines positiven Gleichrichterstroms der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4d
den Verlauf eines Injektionsstroms der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4e
den Verlauf eines negativen Gleichrichterstroms der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4f
den Verlauf eines Drosselstroms einer erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4g
den Verlauf eines Steuerstroms einer erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 4h
den Verlauf eines Steuerstroms einer erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4,
Fig. 5
eine Ausführungsform der dreipoligen Schaltung der erfindungsgemäßen Gleichrichterschaltung mit Drossel,
Fig. 6
eine weitere bevorzugte Ausführungsform einer erfindungsgemäßen Gleichrichterschaltung mit Drossel,
Fig. 6a
den Verlauf des Mittelwerts einer Mittelpunktspannung der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 6 bei erfindungsgemäßer Einprägung eines Steuerstroms,
Fig. 7
eine weitere bevorzugte Ausführungsform einer erfindungsgemäßen Gleichrichterschaltung mit Drossel,
Fig. 8
eine weitere Ausführungsform der dreipoligen Schaltung der erfindungsgemäßen Gleichrichterschaltung mit Drossel, sowie
Fig. 9
eine weitere Ausführungsform der dreipoligen Schaltung der erfindungsgemäßen Gleichrichterschaltung mit Drossel.
The invention is explained in more detail below on the basis of exemplary embodiments with the aid of the accompanying drawings. It shows here the
Fig. 1
a conventional embodiment of a rectifier circuit with a choke,
Fig. 2
a preferred embodiment of a rectifier circuit according to the invention with three converter systems,
Fig. 3
a preferred embodiment of a rectifier circuit according to the invention with two converter systems,
Fig. 4
a preferred embodiment of a rectifier circuit according to the invention with a choke,
Figure 4a
the course of the three-phase line currents at the line-side input of the rectifier circuit according to the invention Figure 4 ,
Figure 4b
the profile of an output voltage and a rectified voltage at the DC-side output of a rectifier circuit according to the invention according to Figure 4 ,
Figure 4c
the course of a positive rectifier current of the rectifier circuit according to the invention according to Figure 4 ,
Figure 4d
the course of an injection current of the rectifier circuit according to the invention according to Figure 4 ,
Figure 4e
the course of a negative rectifier current of the rectifier circuit according to the invention according to Figure 4 ,
Fig. 4f
the course of a choke current of a rectifier circuit according to the invention according to Figure 4 ,
Fig. 4g
the course of a control current of a rectifier circuit according to the invention according to Figure 4 ,
Fig. 4h
the course of a control current of a rectifier circuit according to the invention according to Figure 4 ,
Fig. 5
an embodiment of the three-pole circuit of the rectifier circuit according to the invention with a choke,
Fig. 6
another preferred embodiment of a rectifier circuit according to the invention with a choke,
Figure 6a
the course of the mean value of a midpoint voltage of the rectifier circuit according to the invention according to Figure 6 when a control current is impressed according to the invention,
Fig. 7
another preferred embodiment of a rectifier circuit according to the invention with a choke,
Fig. 8
a further embodiment of the three-pole circuit of the rectifier circuit according to the invention with a choke, as well as
Fig. 9
a further embodiment of the three-pole circuit of the rectifier circuit according to the invention with a choke.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Die Fig. 1 zeigt eine bekannte Gleichrichterschaltung mit einer Gleichrichtanordnung 1 von Halbleiterventilen 2, eine (Sechspuls-) Brückengleichrichtanordnung mit Dioden, sowie mit einer gleichstromseitigen Drossel 7. Die Gleichrichterschaltung umfasst einen netzseitigen Eingang 3 und einen gleichstromseitigen Ausgang 4, wobei am netzseitigen Eingang 3 die Phasen U,V,W ausgeführt sind, und am gleichstromseitigen Ausgang 4 eine positive Ausgangsleitung PDC und eine negative Ausgangsleitung NDC. An der Gleichrichtanordnung 1 liegt eine gleichgerichtete Spannung Urec an, wobei am Ausgang eine konstante Ausgangsspannung U0 entsteht.The Fig. 1 shows a known rectifier circuit with a rectifier arrangement 1 of semiconductor valves 2, a (six-pulse) bridge rectifier arrangement with diodes, and with a DC-side choke 7. The rectifier circuit comprises a line-side input 3 and a DC-side output 4, with phases U, at line-side input 3. V, W are executed, and at the DC-side output 4 a positive output line P DC and a negative output line N DC . A rectified voltage U rec is applied to the rectifier arrangement 1, a constant output voltage U 0 being produced at the output.

In der Figur 1 ist netzseitig ein Neutralpunkt N, das Massen-Potential des Netzes, dargestellt. Am gleichstromseitigen Ausgang 4 ist mit den Ausgangsleitungen PDC, NDC eine Last 6, dargestellt als variabler Widerstand, verbunden, die eine zeitlich veränderliche Leistung Po(t) aufnimmt. Des Weiteren ist am gleichstromseitigen Ausgang 4 zwischen den Ausgangsleitungen PDC,NDC üblicherweise ein Ausgangskondensator C0 vorgesehen. Die Last 6 wird in den weiteren Figuren nicht dargestellt, da der Anschluss an der jeweiligen selben Stelle wie in Figur 1 erfolgt. Die Last 6 kann auch eine weitere elektronische Schaltung, etwa ein weiterer Stromumrichter, sein, wobei die dargestellte Gleichrichterschaltung dann als sogenannter Gleichrichter mit Spannungszwischenkreis verwendet wird. Die gesamte Leistung der Last 6 wird über die Drossel 7 vom Netz zum Gleichrichterausgang transportiert, wobei die für die dargestellte dreiphasige Diodenbrücke mit Halbleiterventilen 2 typischen Halbwellen der Ausgangsspannung durch eine Drossel 7 in Kombination mit einem Ausgangskondensator C0 geglättet wird.In the Figure 1 a neutral point N, the ground potential of the network, is shown on the network side. At the output 4 on the DC side , a load 6, shown as a variable resistor, is connected to the output lines P DC, N DC, which loads a time-variable power P o (t). Furthermore, an output capacitor C 0 is usually provided at the output 4 on the DC side between the output lines P DC , N DC. The load 6 is not shown in the other figures, since the connection is at the same point in each case as in FIG Figure 1 he follows. The load 6 can also be a further electronic circuit, for example a further current converter, the rectifier circuit shown then being used as a so-called rectifier with a voltage intermediate circuit. The entire power of the load 6 is transported via the choke 7 from the mains to the rectifier output, the half-waves of the output voltage typical for the illustrated three-phase diode bridge with semiconductor valves 2 being smoothed by a choke 7 in combination with an output capacitor C 0.

Die in Figur 1 dargestellte Gleichrichterschaltung weist jedoch eine bezüglich Netzrückwirkungen nachteilige Ausführung auf. Die Gleichrichterschaltung weist, je nach Dimensionierung der angeordneten Drossel 7, mehr oder weniger pulsförmige Eingangsströme mit stromlosen Lücken am netzseitigen Eingang 3 und verursachen daher unerwünschte Netzrückwirkungen wobei ein etwaig geforderter THDi der Eingangsströme meist nicht erreicht werden kann.In the Figure 1 However, the rectifier circuit shown has a design which is disadvantageous with regard to network perturbations. The rectifier circuit has, depending on the dimensioning of the arranged choke 7, more or less pulse-shaped input currents with currentless gaps at the network-side input 3 and therefore cause undesirable network perturbations, whereby a possibly required THDi of the input currents can usually not be achieved.

Um das THDi zu verbessern, ist eine erfindungsgemäße Gleichrichterschaltung gemäß Figur 2 und Figur 3 vorgesehen. Die erfindungsgemäße Gleichrichterschaltung mit einer Gleichrichtanordnung 1 weist zusätzlich eine dreipolige Schaltung 5 auf. Die dreipolige Schaltung 5 weist einen ersten Polanschluss A, einen zweiten Polanschluss B und einen dritten Polanschluss C auf. Der erste Polanschluss A ist mit Schaltelementen S1,S2,S3 zumindest zu je einer Phase U,V,W am netzseitigen Anschluss zuschaltbar. Der zweite Polanschluss B ist mit der positiven Ausgangsleitung PDC verbunden, und zwar noch bevor die Drossel 7 die Verbindung zur Last 6 herstellt. Der dritte Polanschluss C ist mit der negativen Ausgangsleitung NDC verbunden.In order to improve the THDi, a rectifier circuit according to the invention is shown in FIG Figure 2 and Figure 3 intended. The rectifier circuit according to the invention with a rectifier arrangement 1 also has a three-pole circuit 5. The three-pole circuit 5 has a first pole connection A, a second pole connection B and a third pole connection C. The first pole connection A can be switched on with switching elements S 1 , S 2 , S 3 at least to one phase U, V, W at the line-side connection. The second pole connection B is connected to the positive output line P DC , to be precise even before the choke 7 establishes the connection to the load 6. The third pole connection C is connected to the negative output line N DC .

In Figur 2 ist eine erfindungsgemäße Gleichrichterschaltung mit einem ersten Konvertersystem 9, einem zweiten Konvertersystem 10 und einem dritten Konvertersystem 11 dargestellt. Die dreipolige Schaltung 5 ist mit Konvertersystemen 9,10,11 aufgebaut, wobei das erste Konvertersystem 9 mit dem Polanschluss A, einem zweiten Konvertersystem 10, einem dritten Konvertersystem 11, und einem Mittelpunkt M, verbunden ist. Das zweite Konvertersystem 10 ist mit dem Polanschluss B und dem Mittelpunkt M verbunden, wobei das dritte Konvertersystem 11 mit dem Polanschluss C und dem Mittelpunkt M verbunden ist. Zumindest zwei der Konvertersysteme 9,10,11 weisen steuerbare Halbleiterventile Scp+,Scp-,Scn+,Scn- zur aktiven Regelung von Steuerströmen icp,icn und/oder eines Injketionsstroms ih3 auf. Das erste Konvertersystem 9 ist als unidirektionaler oder bidirektionaler 3-Level Brückenzweig ausgeführt, wobei das zweite und dritte Konvertersystem 10,11 als Halbbrücken ausgeführt sind.In Figure 2 a rectifier circuit according to the invention with a first converter system 9, a second converter system 10 and a third converter system 11 is shown. The three-pole circuit 5 is constructed with converter systems 9, 10, 11, the first converter system 9 being connected to the pole connection A, a second converter system 10, a third converter system 11, and a center point M. The second converter system 10 is connected to the pole connection B and the center point M, the third converter system 11 being connected to the pole connection C and the center point M. At least two of the converter systems 9, 10, 11 have controllable semiconductor valves S cp + , S cp- , S cn + , S cn- for the active regulation of control currents i cp , i cn and / or an injection current i h3 . The first converter system 9 is designed as a unidirectional or bidirectional 3-level bridge branch, the second and third converter systems 10, 11 being designed as half bridges.

In Figur 3 ist eine erfindungsgemäße Gleichrichterschaltung 1 mit einem zweiten Konvertersystem 10 und einem dritten Konvertersystem 11 dargestellt. Ein erstes Konvertersystem 9 ist nicht vorgesehen, sondern der erste Polanschluss A ist direkt mit dem Mittelpunkt M verbunden. Die Konvertersystem 10,11 weisen steuerbare Halbleiterventile Scp+,Scp-,Scn+,Scn- zur aktiven Regelung von Steuerströmen icp,iCn und/oder eines Injketionsstroms ih3 auf.In Figure 3 a rectifier circuit 1 according to the invention with a second converter system 10 and a third converter system 11 is shown. A first converter system 9 is not provided, but the first pole connection A is connected directly to the center point M. The converter systems 10, 11 have controllable semiconductor valves S cp + , S cp-, S cn + , S cn- for the active regulation of control currents i cp , i Cn and / or an injection current i h3 .

Mit den Schaltelementen S1,S2,S3 wird jeweils eine Phase U,V,W mit dem Polanschluss A der dreipoligen Schaltung 5 verbunden, wobei ein Strompfad für die einen Injektionsstrom ih3 zur Verfügung gestellt wird. Über die Polanschlüsse B,C fließen Steuerströme icp,icn an den gleichstromseitigen Ausgang 4. Am netzseitigen Eingang 3 werden durch die Einprägung des Injektionsstroms ih3 Netzverzerrung vermieden. Der für sinusförmige Eingangsströme erforderliche Injektionsstrom setzt sich wie in den Figuren 4a bis 4e ersichtlich aus Abschnitten der gewünschten sinusförmigen Eingangsströmen zusammen und weist wie in der Figur 4d dargestellt annähernd dreiecksförmigen Verlauf auf.The switching elements S 1 , S 2 , S 3 each have a phase U, V, W connected to the pole connection A of the three-pole circuit 5, a current path being made available for the one injection current i h3 . Control currents i cp , i cn flow via the pole connections B, C to the output 4 on the DC side. At the input 3 on the network side, the injection of the injection current i h3 prevents network distortion. The injection current required for sinusoidal input currents is composed as in the Figures 4a to 4e can be seen from sections of the desired sinusoidal input currents and has as in the Figure 4d shown approximately triangular course.

Die dreipolige Schaltung 5 gemäß der bevorzugten Ausführungsform einer erfindungsgemäßen Gleichrichterschaltung nach Figur 4 verwendet zur Implementierung des ersten Konvertersystems 9 einen unidirektionalen 3-Level Brückenzweig bestehend aus den beiden Gleichrichterdioden Dh3+ und Dh3- auf einem ersten Zweig Z1 und einem bidirektionalen Schalter Sh3 von einem ersten Mittelpunktanschluss M1 zu einem zweiten Mittelpunktanschluss M2, wobei die Dioden Dh3+,Dh3- den ersten Mittelpunktanschluss M1 mit den positiven und negativen Anschlüssen der Pufferkondensatoren CCP,CCN verbinden, welche Pufferkondensatoren am zweiten Zweig Z2 vorgesehen sind. Durch den bidirektionalen Schalter Sh3 wird der erste Mittelpunktanschluss M1 durch einschalten des bidirektionalen Schalters Sh3 mit dem zweiten Mittelpunktanschluss M2 und damit über eine leitende Verbindung auch mit dem Mittelpunkt M der dreipoligen Schaltung 5 verbunden. Das zweite Konvertersystem 10 sowie das dritte Konvertersystem 11 sind durch zwei Halbbrücken mit den vier steuerbaren Halbleiterventilen Scp+,Scp-,Scn+,Scn- vorgesehen wobei die positiven, und negativen Anschlüsse der beiden Halbbrücken mit den Pufferkondensatoren CCP,CCN verbunden sind. Die Halbleiterventile Scp+,Scp-,Scn+,Scn- sind an einem dritten Zweig Z3 vorgesehen. Die Ausführung einer derartigen Verschaltung von steuerbaren Halbleiterventilen Scp+,Scp-,Scn+,Scn- ist insbesondere mit einer bekannten, am Markt erhältlichen und damit günstig zu realisierenden sogenannten "3-Level-Topologie" von IGBTs mit Freilaufdioden möglich, wobei dabei auch ein Mittelpunkt M vorgesehen ist. Die Pufferkondensatoren CCP,CCN sind sowohl Bestandteil des 3-Level Brückenzweigs des ersten Konvertersystems 9, als auch der Halbbrücken des zweiten und dritten Konvertersystems 9,10. Die Polanschlüssen B und C der dreipoligen Schaltung sind zwischen jeweils einem ersten Paar Scp+,Scp- und einem zweiten Paar Scn+,Scn- von steuerbaren Halbleiterventilen vorgesehen. Durch geeignete Ansteuerung der steuerbaren Halbleiterventile Scp+,Scp-,Scn+,Scn-der beiden Halbbrücken und des 3-Level Brückenzweiges können die Ströme ih3,icp,icn geregelt werden.The three-pole circuit 5 according to the preferred embodiment of a rectifier circuit according to the invention Figure 4 uses a unidirectional 3-level bridge branch consisting of the two rectifier diodes D h3 + and D h3- on a first branch Z 1 and a bidirectional switch S h3 from a first midpoint connection M 1 to a second midpoint connection M 2 , to implement the first converter system 9 the diodes D h3 + , D h3- connect the first center point connection M 1 to the positive and negative connections of the buffer capacitors C CP , C CN , which buffer capacitors are provided on the second branch Z 2 . The bidirectional switch S h3 connects the first center point connection M 1 to the second center point connection M 2 by switching on the bidirectional switch S h3 and thus also to the center point M of the three-pole circuit 5 via a conductive connection. The second converter system 10 and the third converter system 11 are provided by two half bridges with the four controllable semiconductor valves S cp + , S cp-, S cn + , S cn- , the positive and negative connections of the two half bridges with the buffer capacitors C CP , C CN are connected. The semiconductor valves S cp + , S cp-, S cn + , S cn- are provided on a third branch Z3. The implementation of such an interconnection of controllable semiconductor valves S cp + , S cp-, S cn + , S cn- is possible in particular with a so-called "3-level topology" of IGBTs with freewheeling diodes which is available on the market and can therefore be implemented cheaply, with a center point M is also provided. The buffer capacitors C CP , C CN are both part of the 3-level bridge arm of the first converter system 9 and the half bridges of the second and third converter systems 9, 10. The pole connections B and C of the three-pole circuit are each provided between a first pair S cp + , S cp- and a second pair S cn + , S cn- of controllable semiconductor valves. The currents i h3 , i cp , i cn can be regulated by suitable control of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- of the two half bridges and the 3-level bridge branch.

Des Weiteren weist die bevorzugte Ausführungsform der erfindungsgemäßen Gleichrichterschaltung gemäß Figur 4 am netzseitigen Eingang 3 mit den Phasen U,V,W verbundene, sternförmig angeordnete Filterkondensatoren CF auf. Die Filterkondensatoren CF sind sternförmig um einen Sternpunkt MCF angeordnet. Der Sternpunkt MCF ist weiters mit einem Ableitkondensator CBF mit einem Mittelpunkt M der dreipoligen Schaltung 5 verbunden. Diese Verbindung des netzseitigen Eingangs 3 mit einem Ableitkondensator CBF über die Filterkondensatoren CF, erlaubt hochfrequente Fehlerströme if, entstehend durch die hochfrequenten Schaltvorgänge in der dreipoligen Schaltung 5, abfließen zu lassen, was insbesondere Vorteile aufweist, wenn alle drei Ströme ih3, icp, und icn der dreipoligen Schaltung 5 mit eigens ausgeführten Regler geregelt werden. Der Anschluss des Ableitkondensator CBF wird jedoch nicht als weiterer, vierter Polanschluss der dreipoligen Schaltung 5 angesehen, da die abgeleiteten Fehlerströme if hochfrequent und vergleichsweise klein gegenüber den Strömen in den Polanschlüssen A,B,C sind.Furthermore, the preferred embodiment of the rectifier circuit according to the invention according to FIG Figure 4 at the mains input 3 with the phases U, V, W connected, star-shaped arranged filter capacitors C F. The filter capacitors C F are arranged in a star shape around a star point M CF. The star point M CF is also connected to a discharge capacitor C BF with a center point M of the three-pole circuit 5. This connection of the mains-side input 3 to a discharge capacitor C BF via the filter capacitors C F allows high-frequency fault currents i f , arising from the high-frequency switching operations in the three-pole circuit 5, to flow away, which is particularly advantageous when all three currents i h3 , i cp , and i cn of the three-pole circuit 5 are regulated with a specially designed controller. The connection of the Diverting capacitor C BF is not, however, viewed as a further, fourth pole connection of the three-pole circuit 5, since the diverted fault currents i f are high-frequency and comparatively small compared to the currents in the pole connections A, B, C.

Jeder der Polanschlüsse A,B,C ist gemäß einer bevorzugten Ausführungsform in Figur 4 mit einer Induktivität Lh3,Lcp,Lcn verbunden, welche zum Führen der beiden Steuerströme icp, icn und des Injektionsstromes ih3 verwendet werden. Es werden auf diese Weise mindestens zwei der drei Ströme ih3,icp,icn geregelt, wobei sich der dritte Strom aufgrund der zwingenden Stromsumme null ergibt.Each of the pole connections A, B, C is according to a preferred embodiment in Figure 4 connected to an inductance L h3 , L cp , L cn , which are used to carry the two control currents i cp , i cn and the injection current i h3 . In this way, at least two of the three currents i h3 , i cp , i cn are regulated, the third current being zero due to the mandatory current sum.

Die Figur 4a zeigt den Stromverlauf der Phasen U,V,W am netzseitigen Eingang 3. Die Phasenströme iu,iv,iw sind entsprechend eines Drehstromnetzes phasenverschoben.The Figure 4a shows the current curve of the phases U, V, W at the input 3 on the network side. The phase currents i u , i v , i w are phase-shifted according to a three-phase network.

Die Fig. 4b zeigt zunächst die gleichgerichtete Spannung Urec die zwischen den beiden Ausgangsleitungen PDC,NDC nach der Gleichrichtanordnung 1 anliegt. Die gleichgerichtete Spannung Urec weist zusätzlich zu einer Ausgangsspannung U0 sinusförmige Kuppen auf. Durch Filterung der gleichgerichteten Spannung Urec mit der Drossel 7 und dem Ausgangskondensator C0 wird eine konstante Ausgangsspannung U0 erreicht.The Figure 4b shows the rectified voltage U rec which is applied between the two output lines P DC , N DC after the rectifier arrangement 1. The rectified voltage U rec has sinusoidal peaks in addition to an output voltage U 0. By filtering the rectified voltage U rec with the choke 7 and the output capacitor C 0 , a constant output voltage U 0 is achieved.

Die Figur 4c zeigt den Verlauf eines positiven Gleichrichterstroms ip, der sich durch geeignete Zuführung eines Steuerstromes icp in die positive Ausgangsleitung PDC des Brückengleichrichters, ergibt. Die dargestellten Sinuskuppen entsprechen den jeweiligen Ausschnitten der sinusförmigen Eingangsströme iu,iv,iw.The Figure 4c shows the course of a positive rectifier current i p , which results from a suitable supply of a control current i cp to the positive output line P DC of the bridge rectifier. The sine peaks shown correspond to the respective sections of the sinusoidal input currents i u , i v , i w .

In Figur 4d ist der Injektionsstrom ih3 dargestellt, welcher den dreiecksförmigen Anteilen der Netzströme iu,iv,iw entspricht. Mit der erfindungsgemäßen Gleichrichterschaltung wird dieser Injektionsstrom ih3 der dreipoligen Schaltung 5 zugeführt.In Figure 4d the injection current i h3 is shown, which corresponds to the triangular components of the network currents i u , i v , i w. With the rectifier circuit according to the invention, this injection current i h3 is fed to the three-pole circuit 5.

Der Drosselstrom iL ist in Figur 4f dargestellt und besitzt einen konstanten Ausgangsstrom i0 welcher direkt der Last 6 zugeführt wird, und einen überlagerten Wechselanteil, der sich aufgrund der Spannungsdifferenz der Gleichrichterausgangsspannung Urec und der annähernd konstanten Ausgangsspannung U0 ergibt. Der Verlauf der benötigten Steuerströme icp, icn ist in den Figuren 4g und 4h dargestellt Die Steuerströme icp, icn sind vorzugsweise gemäß der Figur 4g und Figur 4h zu regeln.The inductor current i L is in Figure 4f shown and has a constant output current i 0 which is fed directly to the load 6, and a superimposed alternating component which results from the voltage difference between the rectifier output voltage U rec and the approximately constant output voltage U 0 . The course of the required control currents i cp , i cn is in the Figures 4g and 4h The control currents i cp , i cn are preferably shown in FIG Figure 4g and Figure 4h to regulate.

Gemäß einer weiteren Ausführungsform können ein zweites und drittes Konvertersystem 9,10 der dreipoligen Schaltung 5 vorgesehen sein. Das erste Konvertersystem 9 ist durch eine direkte Verbindung mit dem Polanschluss A über den Mittelpunkt M verbunden. Das zweite und dritte Konvertersystem 10,11 wird, wie bereits in Figur 4 beschrieben, vorteilhaft durch Halbbrücken mit steuerbaren Halbleiterventilen Scp+,Scp-,Scn+,Scn- und Pufferkondensatoren ausgeführt. Durch die direkte Verbindung des Mittelpunktes M mit dem Polanschluss A der dreipoligen Schaltung 5 ist das Potential des Mittelpunktes M definiert und zeigt keine hochfrequenten Spannungssprünge. Dabei werden die beiden Steuerströme icp,icn durch geeignete Ansteuerung der steuerbaren Halbleiterventile der beiden Halbbrücken und geregelt, wobei sich der Injektionsstrom ih3 aufgrund der Stromsumme von null der dreipoligen Schaltung 5 ergibt. Eine Verbindung der dreipoligen Schaltung 5 mittels Ableitkondensators CBF zurück zum Netz ist gemäß der Ausführungsform der Gleichrichterschaltung nach Fig. 3 nicht vorgesehen.According to a further embodiment, a second and third converter system 9, 10 of the three-pole circuit 5 can be provided. The first converter system 9 is connected by a direct connection to the pole connection A via the center point M. The second and third converter system 10, 11 is, as already in Figure 4 described, advantageously carried out by half bridges with controllable semiconductor valves S cp + , S cp-, S cn + , S cn- and buffer capacitors. The direct connection of the center point M to the pole connection A of the three-pole circuit 5 defines the potential of the center point M and does not show any high-frequency voltage jumps. The two control currents i cp , i cn are regulated by suitable control of the controllable semiconductor valves of the two half bridges and, the injection current i h3 resulting from the current sum of zero of the three-pole circuit 5. A connection of the three-pole circuit 5 by means of discharge capacitor C BF back to the network is according to the embodiment of the rectifier circuit according to FIG Fig. 3 not provided.

In Figur 5 ist eine vorteilhafte Ausführungsform der drei Induktivitäten Lh3,Lcp,Lcn mit einer Drei-Schenkel-Drossel angedeutet, wobei die Wicklungssinne mit Punkten an den einzelnen Drosseln eingetragen wird, was vorteilhaft eine wesentliche Reduzierung des Bauvolumens und Gewichts der magnetischen Bauelemente und somit des gesamten erfindungsgemäßen Gleichrichtersystems zur Folge hat.In Figure 5 an advantageous embodiment of the three inductors L h3 , L cp , L cn with a three-leg choke is indicated, the direction of the winding being entered with points on the individual chokes, which advantageously results in a significant reduction in the structural volume and weight of the magnetic components and thus of the entire rectifier system according to the invention.

Des Weiteren ist in der Figur 5 eine Ausführungsform des bidirektionalen Schalters Sh3 eines unidirektionalen 3-Level Brückenzweigs des ersten Konvertersystems 9 einer dreipoligen Schaltung 5 dargestellt, bei der zwei gegeneinander geschaltete IGBTs mit antiparallelen Freilaufdioden verwendet werden, wobei alternativ auch andere Schalterelemente wie zum Beispiel MOSFETs verwendet werden können. Diese Ausführung von bidirektionalen Schaltern Sh3 ist an sich bekannt, soll jedoch hier im Zusammenspiel mit der erfindungsgemäßen Gleichrichterschaltung illustriert werden, wobei in Zusammenschau des bidirektionalen Schalters Sh3 mit der erfindungsgemäßen Gleichrichterschaltung sowie dem erfindungsgemäßen Verfahren zum Einprägen von Steuerströmen die Regelung einer Mittelpunktspannung UMN erklärt werden soll.Furthermore, in the Figure 5 An embodiment of the bidirectional switch S h3 of a unidirectional 3-level bridge arm of the first converter system 9 of a three-pole circuit 5 is shown, in which two IGBTs connected against one another with anti-parallel freewheeling diodes are used, although other switch elements such as MOSFETs can also be used as an alternative. This design of bidirectional switches S h3 is known per se, but is to be illustrated here in conjunction with the rectifier circuit according to the invention, with the regulation of a midpoint voltage U MN in conjunction with the bidirectional switch S h3 with the rectifier circuit according to the invention and the method according to the invention for impressing control currents should be explained.

Die Mittelpunktspannung UMN, dargestellt in Figur 5 und Figur 6, beieinflusst die Erzeugung der Differenzspannungen UL3,ULp,ULn über den Induktivitäten Lh3,Lcp,Lcn um die Steuerströme und/oder den Injektionsstrom zu regeln. Die erste Differenzspannung UL3 ergibt sich über der ersten Induktivität Lh3 usw. Eine Injektionsspannung Uh3 ergibt sich aus dem Potential des ersten Polanschlusses A gegenüber dem Netz, also gegenüber dem Neutralpunkt N.The midpoint voltage U MN , shown in Figure 5 and Figure 6 , influences the generation of the differential voltages U L3 , U Lp , U Ln across the inductances L h3 , L cp , L cn in order to regulate the control currents and / or the injection current. The first differential voltage U L3 results from the first inductance L h3 etc. An injection voltage U h3 results from the potential of the first pole connection A with respect to the network, i.e. with respect to the neutral point N.

Im Folgenden seien zusammengefasst Möglichkeiten zum Regeln der erfindungsgemäßen Einprägung von Steuerströmen aufgeführt:

  • -) Es werden alle drei Ströme ih3,icp,icn simultan mit drei Konvertersystemen 9,10,11 auf einen gewünschten Verlauf geregelt. Eine Regelung der Mittelpunktspannung UMN ist dabei nicht möglich, da alle Freiheitsgrade der erfindungsgemäßen Gleichrichterschaltung bereits zur Regelung verwendet werden. Bei eventuell auftretenden Regelfehlern treten Potentialsprünge der Mittelpunktspannung UMN in Erscheinung die vorteilhaft durch eine Ausführung mit Ableitkondensator CBF eingefangen werden können.
  • -) Es werden jeweils nur zwei der drei Ströme ih3,icp,icn mit den jeweiligen Konvertersystemen 9,10,11 geregelt, wobei z.B. das Konvertersystem 9 den Injektionsstrom ih3 und das Konvertersystem 10 den Steuerstrom icp regelt. Aufgrund des prinzipgedingten Umstandes, dass die Stromsumme der dreipoligen Schaltung null ist, wird das dritte Konvertersystem 11 vorteilhaft dazu verwendet um den Mittelwert der Mittelpunktspannung UMN zu regeln.
  • -) Gemäß einer weiteren bevorzugten Ausführungsform ist eine Minimierung der Pufferkondensatorspannungen Ucp,Ucn möglich, indem der Mittelwert der Mittelpunktspannung UMN gegengleich zur am ersten Polanschluss A der dreipoligen Schaltung 5 auftretenden Injektionsspannung Uh3 geregelt wird. Es werden wieder jeweils nur zwei der drei Ströme ih3,icp,icn mit den jeweiligen Konvertersystemen 9,10,11 geregelt, wobei z.B. das Konvertersystem 11 den Injektionsstrom ih3 und das Konvertersystem 9 den Steuerstrom icp regelt, wobei das dritte Konvertersystem 10 dann zur Regelung des Mittelwertes der Mittelpunktspannung UMN herangezogen wird. Beispielhaft ist in Figur 6a solch eine, gegengleich zur Spannung am ersten Polanschluss A der dreipoligen Schaltung 6 geregelter Mittelwert der Mittelpunktspannung UMN eingezeichnet, wobei in Figur 6a nur die über eine Schaltperiode der Halbleiterventile Scp+,Scp-,Scn+,SCn-,Sh3,Sh3+,Sh3- gemittelte Mittelpunktspannung, dargestellt ist.
Options for regulating the injection of control currents according to the invention are summarized below:
  • -) All three currents i h3 , i cp , i cn are regulated simultaneously with three converter systems 9, 10, 11 to a desired course. A regulation of the midpoint voltage U MN is not possible, since all degrees of freedom of the rectifier circuit according to the invention are already used for regulation. If control errors occur, potential jumps in the midpoint voltage U MN appear, which can advantageously be captured by a design with a discharge capacitor C BF.
  • -) Only two of the three currents i h3 , i cp , i cn are regulated with the respective converter systems 9, 10, 11, with the converter system 9 regulating the injection current i h3 and the converter system 10 regulating the control current i cp , for example. Due to the fact that the current sum of the three-pole circuit is zero, the third converter system 11 is advantageously used to regulate the mean value of the midpoint voltage U MN.
  • According to a further preferred embodiment, the buffer capacitor voltages U cp , U cn can be minimized by regulating the mean value of the midpoint voltage U MN in opposition to the injection voltage U h3 occurring at the first pole connection A of the three-pole circuit 5. Again, only two of the three currents i h3 , i cp , i cn are regulated with the respective converter systems 9, 10, 11, the converter system 11 regulating the injection current i h3 and the converter system 9 regulating the control current i cp , with the third Converter system 10 is then used to regulate the mean value of the midpoint voltage U MN . An example is in Figure 6a such a regulated mean value of the midpoint voltage U MN , which is opposite to the voltage at the first pole connection A of the three-pole circuit 6, is shown in FIG Figure 6a only the midpoint voltage averaged over a switching period of the semiconductor valves S cp + , S cp-, S cn + , S Cn- , S h3 , S h3 + , S h3- is shown.

Während für die ersten beiden Regelungsverfahren das erste Konvertersystem 9 mit einem unidirektionalen 3-Level Brückenzweig ausgeführt werden kann, ist für das dritte Regelungsverfahren eine bidirektionale Ausführung des 3-Level Brückenzweigs des ersten Konvertersystems 9 unbedingt erforderlich.While the first converter system 9 can be designed with a unidirectional 3-level bridge branch for the first two control methods, a bidirectional execution of the 3-level bridge branch of the first converter system 9 is absolutely necessary for the third control method.

In Figur 6 ist eine bevorzugte Ausführungsform der dreipoligen Schaltung 5 mit bidirektionalem 3-Level Brückenzweig im ersten Konvertersystem 9 dargestellt. Dabei werden die Gleichrichterdioden Dh3+,Dh3- am ersten Zweig Z1, wie in Figur 4 dargestellt, durch aktive steuerbare Halbleiterbauelemente Sh3+,Sh3-, z.B. wie in Figur 6 dargestellt durch IGBTs mit antiparallelen Freilaufdioden, ersetzt. Dadurch können Ströme auch gegenphasig zur Injektionsspannung Uh3 am ersten Polanschluss A der dreipoligen Schaltung 5 eingeprägt werden.In Figure 6 a preferred embodiment of the three-pole circuit 5 with a bidirectional 3-level bridge branch in the first converter system 9 is shown. The rectifier diodes D h3 + , D h3- on the first branch Z 1 , as in FIG Figure 4 shown, by active controllable semiconductor components S h3 + , S h3-, for example as in Figure 6 shown by IGBTs with anti-parallel freewheeling diodes. As a result, currents can also be impressed in phase opposition to the injection voltage U h3 at the first pole connection A of the three-pole circuit 5.

Die Figur 7 zeigt eine Ausführungsform der erfindungsgemäßen Gleichrichterschaltung, wobei das erste Konvertersystem 9 durch eine direkte Verbindung des ersten Polanschlusses A mit dem Mittelpunkt M der dreipoligen Schaltung 5 ersetzt wird, und sowohl das zweite Konvertersystem 10 als auch das dritte Konvertersystem 11 durch einen 3-Level Brückenzweig ausgeführt ist, wobei in Figur 7 der an sich bekannte Three-Level Neutral-Point-Clamped-Converter 3L-NPC ausgeführt ist, wpbei auch gattungsgleiche Brückenzweige eingesetzt werden können. Die beiden 3-Level Brückenzweige sind jeweils symmetrisch um einen Mittelpunktzweig Zm angeordnet, wobei der Mittelpunktzweig mit den Gleichspannungsanschlüssen der 3-Level Brückenzweige verbunden ist. Der Mittelpunktzweig Zm ist mit Pufferkondensatoren CCP,CCN vorgesehen, und über die Schaltelemente S1,S2,S3 direkt an den Mittelpunkt M des Mittelpunktzweiges Zm mit dem netzseitigen Eingang 3 zuschaltbar verbunden. Ein Neutralanschluss N8 der 3-Level Brückenzweige ist dabei mit dem Mittelpunkt M und dem ersten Polanschluss A verbunden. Ein Wechselspannungsanschluss AC8 des 3L-NPCs ist über die Induktivitäten LCP,LCN jeweils mit den Polanschlüssen B,C verbunden. In dieser Ausführung werden die Steuerströme icp,icn durch geeignete Ansteuerung der Halbleiterventile Scp+,Scp-,Scn+,Scn- der 3-Level Brückenzweige geregelt, wobei sich der Injektionsstrom ih3 automatisch ergibt. Da der Mittelpunkt M direkt über die Schalter S1,S2,S3 mit den Netzphasen U,V,W verbunden ist erübrigt sich eine Regelung der Mittelspannung UMN. Da die Steuerströme icn,icp sowohl positives als auch negatives Vorzeichen bei stets positivem bzw. negativem Spannungsniveau am Mittelpunkt M aufweisen, müssen bidirektionale Brückenstrukturen in den beiden Konvertersystemen 10,11 verwendet werden.The Figure 7 shows an embodiment of the rectifier circuit according to the invention, wherein the first converter system 9 is replaced by a direct connection of the first pole connection A to the center point M of the three-pole circuit 5, and both the second converter system 10 and the third converter system 11 are implemented by a 3-level bridge branch is, where in Figure 7 the known three-level neutral-point-clamped converter 3L-NPC is designed, where generic bridge branches can also be used. The two 3-level bridge branches are each arranged symmetrically around a midpoint branch Zm, the midpoint branch being connected to the DC voltage connections of the 3-level bridge branches. The midpoint branch Z m is provided with buffer capacitors C CP , C CN and can be connected directly to the midpoint M of the midpoint branch Z m with the network-side input 3 via the switching elements S 1 , S 2 , S 3. A neutral connection N 8 of the 3-level bridge branches is connected to the center point M and the first pole connection A. An alternating voltage connection AC 8 of the 3L-NPC is connected to the pole connections B, C via the inductances L CP , L CN. In this embodiment, the control currents i cp , i cn are regulated by suitable control of the semiconductor valves S cp + , S cp-, S cn + , S cn- of the 3-level bridge branches, the injection current i h3 being obtained automatically. Since the center point M is connected directly to the network phases U, V, W via the switches S1, S2, S3, there is no need to regulate the medium voltage U MN . Since the control currents i cn , i cp have both positive and negative signs with an always positive or negative voltage level at the center point M, bidirectional bridge structures must be used in the two converter systems 10, 11.

Die Figur 8 zeigt eine weitere Ausführungsform der dreipoligen Schaltung 5, wobei am Stromzweig des Injektionsstromes ih3 zusätzlich eine Spannungsquelle Ux vorgesehen ist. Die Steuerströme icp,icn werden dabei durch geeignete Ansteuerung der steuerbaren Halbleiterventile Scp+,Scp-,Scn+,Scn- der Konvertersysteme 10,11 geregelt, wobei sich der Injektionsstrom ih3 automatisch ergibt. Die Spannungsquelle Ux prägt erfindungsgemäß im Zweig zwischen dem Polanschluss A und dem Mittelpunkt M der dreipoligen Schaltung eine zeitlich veränderliche Spannung ein, die eine Erhöhung bzw. Reduzierung der Mittelpunktspannung UMN zur Folge hat und eine verzerrungsarme Führung der Steuerströme icp, icn ermöglichen.The Figure 8 shows a further embodiment of the three-pole circuit 5, a voltage source U x being additionally provided on the branch of the injection current i h3. The control currents i cp , i cn are regulated by suitable activation of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- of the converter systems 10, 11, the injection current i h3 being obtained automatically. According to the invention, the voltage source U x impresses a time-variable voltage in the branch between the pole connection A and the midpoint M of the three-pole circuit, which increases or reduces the midpoint voltage U MN and enables the control currents i cp , i cn to be routed with little distortion .

In Figur 9 ist eine weitere Ausführungsform einer dreipoligen Schaltung 5 mit Spannungsquelle Ux dargestellt, welche zwischen dem zweiten und dritten Konvertersystem 10,11 der dreipoligen Schaltung vorgesehen ist, wobei es sich bei der Spannungsquelle Ux gemäß Figur 9 um eine Gleichspannungsquelle handelt. Parallel zur Spannungsquelle sind zwei Injektionskondensatoren Ch3p,Ch3n vorgesehen, deren Verbindung mit dem Polanschluss A der dreipoligen Schaltung 5 verbunden ist. Die Steuerströme icp,icn werden dabei durch geeignete Ansteuerung der steuerbaren Halbleiterventile Scp+,Scp-,Scn+,Scn- geregelt, wobei sich der Injektionsstrom ih3 aufgrund der Stromsumme null automatisch ergibt. Durch die zusätzlich eingefügte Spannungsquelle Ux wird das negative Potential des zweiten Konvertersystems 10 vorteilhaft erniedrigt bzw. das Potential des positiven Anschlusses des dritten Konvertersystems 11 vorteilhaft angehoben was in weiterer Folge eine weitestgehend verzerrungsfreie Führung der beiden Steuerströme icn,icp ermöglicht.In Figure 9 a further embodiment of a three-pole circuit 5 with voltage source U x is shown, which is provided between the second and third converter systems 10, 11 of the three-pole circuit, the voltage source U x according to FIG Figure 9 is a DC voltage source. In parallel to the voltage source, two injection capacitors C h3p, C h3n are provided, their connection to the pole connection A of the three-pole circuit 5 is connected. The control currents i cp , i cn are regulated by suitable activation of the controllable semiconductor valves S cp + , S cp-, S cn + , S cn- , the injection current i h3 automatically resulting from the current sum zero. The additionally inserted voltage source U x advantageously lowers the negative potential of the second converter system 10 or increases the potential of the positive terminal of the third converter system 11, which subsequently enables the two control currents i cn , i cp to be routed largely without distortion.

Es ist damit unmittelbar ersichtlich, dass eine Gleichrichterschaltung mit Strominjektion sowie ein Verfahren zum Einprägen von Steuerströmen in jener Weise verbessert wurde, dass geringe Netzrückwirkungen der Gleichrichterschaltung auftreten, wobei dabei ein möglichst sinusförmiger Eingangsstrom in Phase mit den jeweiligen Netzspannungen vorliegen soll, keine großen magnetische Bauelemente an der Wechselspannungsseite der Gleichrichterschaltung benötigt werden, pulsförmige Injektion des Steuerstroms an den Ausgang der Gleichrichterschaltung vermieden wird, keine großen wechselspannungs- bzw. gleichspannungsseitigen angeordneten Filterkondensatoren benötigt werden, und der Wirkungsgrad der Gleichrichterschaltung verbessert wird.It is thus immediately apparent that a rectifier circuit with current injection and a method for impressing control currents have been improved in such a way that the rectifier circuit has low network perturbations, with an input current that is as sinusoidal as possible in phase with the respective network voltages, no large magnetic components are required on the AC voltage side of the rectifier circuit, pulse-shaped injection of the control current at the output of the rectifier circuit is avoided, no large AC voltage or DC voltage side arranged filter capacitors are required, and the efficiency of the rectifier circuit is improved.

Bezugszeichenliste:List of reference symbols:

11
GleichrichtanordnungRectifier arrangement
22
HalbleiterventilSemiconductor valve
33
netzseitiger Eingangmains-side input
44th
gleichstromseitiger AusgangDC-side output
55
dreipolige Schaltungthree-pole circuit
66th
Lastload
77th
Drosselthrottle
AA.
erster Polanschlussfirst pole connection
AC8AC8
WechselspannungsanschlussAC voltage connection
BB.
zweiter Polanschlusssecond pole connection
CC.
dritter Polanschlussthird pole connection
C0C0
AusgangskondensatorOutput capacitor
CBFCBF
AbleitkondensatorBypass capacitor
CFCF
FilterkondensatorFilter capacitor
CcpCcp
PufferkondensatorBuffer capacitor
CcnCcn
PufferkondensatorBuffer capacitor
Ch3pCh3p
InjektionskondensatorInjection capacitor
Ch3nCh3n
InjektionskondensatorInjection capacitor
Dh3+Qh3 +
BrückenventilBridge valve
Dh3-Qh3-
BrückenventilBridge valve
ih3ih3
InjektionsstromInjection current
icnicn
SteuerstromControl current
icpicp
SteuerstromControl current
iLiL
DrosselstromChoke current
ipip
positiver Gleichrichterstrompositive rectifier current
inin
negativer Gleichrichterstromnegative rectifier current
ifif
FehlerstromFault current
iuiu
PhasentsromPhase current
iviv
PhasenstromPhase current
iwiw
PhasenstromPhase current
Lh3Bh3
erste Induktivitätfirst inductance
LcpLcp
zweite Induktivitätsecond inductance
LcnLcn
dritte Induktivitätthird inductance
M1M1
erster Mittelpunktanschlussfirst midpoint connection
M2M2
zweiter Mittelpunktanschlusssecond midpoint connection
M3M3
dritter Mittelpunktanschlussthird midpoint connection
MM.
MittelpunktFocus
MCFMCF
SternpunktStar point
MpMp
AnschlusspunktConnection point
MnMn
AnschlusspunktConnection point
NN
NeutralpunktNeutral point
N8N8
NeutralanschlussNeutral connection
NDcNDc
negative Ausgangsleitungnegative output lead
PDCPDC
positive Ausgangsleitungpositive output lead
P0(t)P0 (t)
zeitlich veränderliche Leistungperformance that varies over time
S1S1
SchaltelementSwitching element
S2S2
SchaltelementSwitching element
S3S3
SchaltelementSwitching element
Scp+Scp +
steuerbares Halbleiterventilcontrollable semiconductor valve
Scp-Scp-
steuerbares Halbleiterventilcontrollable semiconductor valve
Scn+Scn +
steuerbares Halbleiterventilcontrollable semiconductor valve
Scn-Scn-
steuerbares Halbleiterventilcontrollable semiconductor valve
Sh3+Nh3 +
steuerbares Halbleiterventilcontrollable semiconductor valve
Sh3-Nh3-
steuerbares Halbleiterventilcontrollable semiconductor valve
Sh3Nh3
bidirektionaler Schalterbidirectional switch
UU
Phasephase
UxUx
SpannungsquelleVoltage source
U0U0
AusgangsspannungOutput voltage
UrecUrec
gleichgerichtete Spannungrectified voltage
ULpULp
erste Differenzspannungfirst differential voltage
ULnULn
zweite Differenzspannungsecond differential voltage
UL3UL3
dritte Differenzspannungthird differential voltage
Uh3Uh3
InjektionsspannungInjection voltage
UcpUcp
PufferkondensatorspannungBuffer capacitor voltage
UcnUcn
PufferkondensatorspannungBuffer capacitor voltage
UMNUMN
Mittelpunkts spannungCenter stress
VV.
Phasephase
WW.
Phasephase
Z1Z1
erster Zweigfirst branch
Z2Z2
zweiter Zweigsecond branch
Z3Z3
dritter Zweigthird branch
ZmZm
MittelpunktzweigMidpoint branch

Claims (25)

  1. Rectifier circuit having a three-phase, six-pulse rectifier arrangement (1) of semiconductor valves (2), preferably a bridge rectifier circuit of diodes, with a load (6), wherein the rectifier arrangement (1) has a three-phase mains-side input (3) and a DC-side output (4) comprising three switching elements (S1, S2, S3) and a three-pole circuit (5), and each phase (U, V, W) of the mains-side input (3) can be respectively connected to a switching element (S1, S2, S3) to form a first pole connection (A) of the three-pole circuit (5) for diverting an injection current (ih3) into the three-pole circuit (5), and a second and third pole connection (B, C) of the three-pole circuit (5) is respectively connected to an output line (PDC, NDC) of the DC-side output (4) for control currents (icp, icn), wherein the three-pole circuit (5) is configured as a regulating circuit for actively regulating, independently of one another, at least two of the three currents (icp, icn, ih3) given by control currents (icp, icn) and injection current (ih3) so as to generate sinusoidal rectifier input currents and has controllable semiconductor valves (Scp+, Sep-, Sen+, Scn-), preferably IGBTs, for actively regulating two of the three currents (icp, icn, ih3) given by control currents (icp, icn) and injection current (ih3), and a choke (7) is arranged on one of the output lines (PDC, NDC) of the DC-side output (4) between the second pole connection (B) and the load (6) or between the third pole connection (C) and the load (6) on the DC-side output (4), and the load (6) on the DC-side output (4) is a time-variable load (6), wherein the regulating circuit is configured to supply the injection current only in the phase that remains currentless due to operation of the six-pulse rectifier arrangement.
  2. Rectifier circuit according to claim 1, wherein the second and third pole connection (B, C) of the three-pole circuit (5) is respectively connected to one of the two output lines (PDC, NDC) of the DC-side output (4) via a second and third inductor (Lcp, Lcn).
  3. Rectifier circuit according to claim 2, wherein the first pole connection (A) is connected to the switching elements (S1, S2, S3) via a first inductor (Lh3), wherein the three inductors (Lh3, Lcp, Lcn)are formed by a three-leg choke.
  4. Rectifier circuit according to any one of claims 1 to 3, wherein the two output lines (PDC, NDC) on the DC-side output (4) are connected to an output capacitor (C0).
  5. Rectifier circuit according to any one of claims 1 to 4, wherein each of the three phases (U, V, W) on the mains-side input (3) is respectively connected to a filter capacitor (CF), wherein the filter capacitors (CF) are star-connected together at a star point (MCF).
  6. Rectifier circuit according to any one of claims 1 to 5, wherein the three-pole circuit (5) is connected to the mains-side input (3) via at least one bypass capacitor (CBF).
  7. Rectifier circuit according to any one of claims 1 to 6, wherein the three-pole circuit comprises three converter systems (9, 10, 11) with controllable semiconductor valves (Sep+, Sep-, Sen+, Sen-) and/or a bidirectional switch (Sh3) , preferably arranged in a bridge structure, wherein the first pole connection (A) of the three-pole circuit (5) is provided on a first converter system (9), the second pole connection (B) of the three-pole circuit (5) is provided on a second converter system (10), and the third pole connection (C) of the three-pole circuit (5) is provided on a third converter system (11), and a connection to a branching point, a common centre point (M) of the three-pole circuit (5), is provided from all three converter systems (9, 10, 11).
  8. Rectifier circuit according to claim 7, wherein the first converter system (9) is provided as a three-level bridge branch, wherein the second and third converter system (10, 11) are provided as a half-bridge, and the three converter systems (9, 10, 11) are formed by three parallel-connected branches (Z1, Z2, Z3) equipped with electronic components, wherein the first pole connection (A) of the three-pole circuit (5) is formed on a first branch (Z1), and the second and third pole connection (B, C) are formed on a third branch (Z3), and each of the branches (Z1, Z2, Z3) has a centre point connection (M1, M2, M3), around which centre point connections (M1, M2, M3) the components of the branches (Z1, Z2, Z3) are symmetrically arranged, wherein a first centre point connection (M1) of the first branch (Z1) is connected to a second centre point connection (M2) of the second branch (Z2) via a bidirectional switch (Sh3), and the second centre point connection (M2) is conductively connected directly to a third centre point connection (M3) of the third branch (Z3), wherein the third centre point connection (M3) is provided as the centre point (M) of the three-pole circuit (5).
  9. Rectifier circuit according to any one of claims 1 to 6, wherein the three-pole circuit comprises two converter systems (10, 11) with controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-), preferably arranged in a bridge structure, wherein the second pole connection (B) of the three-pole circuit (5) is provided on a second converter system (10), and the third pole connection (C) of the three-pole circuit (5) is provided on a third converter system (11), and a connection to a branching point, a common centre point (M) of the three-pole circuit (5), is provided from both converter systems (10, 11), and the centre point (M) is connected to the first pole connection (A).
  10. Rectifier circuit according to claim 9, wherein the second and third converter system (10, 11) are provided as a half-bridge, wherein the two converter systems (10, 11) are formed by two parallel-connected branches (Z2, Z3), and the first pole connection (A) of the three-pole circuit (5) is connected to a second branch (Z2), and the second and third pole connection (A, B) are formed on a third branch (Z3), and each of the branches (Z2, Z3) has a centre point connection (M2, M3), around which centre point connections (M2, M3) the components of the branches (Z2, Z3) are symmetrically arranged, and a second centre point connection (M2) of the second branch (Z2) is conductively connected directly to a third centre point connection (M3) of the third branch (Z3), wherein the third centre point connection (M3) is provided as the centre point (M) of the three-pole circuit (5).
  11. Rectifier circuit according to claim 10, wherein the second centre point connection (M2) is connected to the first pole connection (A) via a voltage source (Ux).
  12. Rectifier circuit according to claim 8, wherein two bridge valves (Dh3+, Dh3-), preferably diodes, are connected in series with the same conducting direction in the first branch (Z1), wherein the first centre point connection (M1) is arranged between the two bridge valves (Dh3+, Dh3-).
  13. Rectifier circuit according to claim 8 or 10, wherein two buffer capacitors (CCP, CCN) are connected in series on the second branch (Z2), wherein the second centre point connection (M2) is arranged between the two buffer capacitors (CCP, CCN).
  14. Rectifier circuit according to any one of claims 8 or 10, wherein the four controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-)are provided on the third branch (Z3) in a manner connected in series, wherein the centre point (M) of the three-pole circuit (5) is arranged in the connection between two series-connected pairs of the controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-), and the second pole connection (B) is provided between the controllable semiconductor valves (Scp+, Scp-) of the first pair, and the third pole connection (C) is provided between the controllable semiconductor valves (Scn+, Scn-)of the second pair.
  15. Rectifier circuit according to claim 12, wherein the two bridge valves (Dh3+, Dh3-) are configured as controllable semiconductor valves (Sh3+, Sh3-), preferably IGBTs.
  16. Rectifier circuit according to claim 9, wherein the second and third converter system (10, 11) of the three-pole circuit (5) are formed with bidirectional three-level bridge branches which are known per se, preferably two so-called three-level neutral-point-clamped converters (3L-NPCs), wherein the three-level bridge branches are arranged symmetrically around a centre point branch (Zm) connected in parallel with the three-level bridge branches, and the centre point branch (Zm) is configured as two series-connected buffer capacitors (CCP, CCN), and the centre point (M) is provided between the two buffer capacitors (CCP, CCN), and a neutral connection (N3) of the three-level bridge branch is connected to the centre point (M) and to the first pole connection (A), and an AC voltage connection (AC8) of the three-level bridge branch are provided respectively as the second pole connection (B) and the third pole connection (C) of the three-pole circuit (5).
  17. Rectifier circuit according to claim 9, wherein the three-pole circuit (5) is connected by the first pole connection (A) respectively to one side of two injection capacitors (Ch3p, Ch3n), which connection forms the centre point (M) of the three-pole circuit (5), wherein the two other sides of the injection capacitors (Ch3p, Ch3n) are connected via a voltage source (Ux) and form connection points (MP, MN), wherein, starting from each of the connection points (MP, MN), a current loop is provided which in each case has a buffer capacitor (CCP, CCN) and a pair of controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-), and the second pole connection (B) and the third pole connection (C) is provided between the respective two controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-)of a pair.
  18. Method for impressing control currents (icp, icn) in a DC-side output (4), which comprises three switching elements (S1, S2, S3) and a three-pole circuit (5), of a rectifier circuit according to claim 1 having a three-phase, six-pulse rectifier arrangement (1) of semiconductor valves (2), preferably a three-pole bridge rectifier circuit of diodes, with a load (6), wherein an injection current (ih3) is branched off from at least one of the three phases (U, V, W) on a mains-side input (3) of the rectifier circuit, characterized in that the injection current (ih3) is supplied to a first pole connection (A) of the three-pole circuit (5), and at least two of the three currents (icp, icn, ih3) given by control currents (icp, icn) and injection current (ih3) are actively regulated independently of one another by means of active components, preferably controllable semiconductor valves (Scp+, Scp-, Sen+, Scn-), in the three-pole circuit (5) so as to generate sinusoidal rectifier input currents, wherein the injection current is supplied only in the phase that remains currentless due to operation of the six-pulse rectifier arrangement, and a control current (icn, icp) is respectively added to the rectifier currents (ip, in) on two DC-side output lines (PDC, NDC) of the DC-side output (4) via a second and third pole connection (B, C) of the three-pole circuit (5), and one of the rectifier currents (ip, in) with the control current (icn, icp) respectively supplied thereto is guided through a choke (7) arranged between the second pole connection (B) and the load (6) or between the third pole connection (C) and the load (6) on the DC-side output (4).
  19. Method for impressing control currents (icn, icp) according to claim 18, characterized in that the injection current (ih3) and/or the control currents (icp, icn) are guided through at least two of three inductors (Lh3, Lcp, Lcn), provided on at least two of the three pole connections (A, B, C) for smoothing and controlling the currents (ih3, icn, icn), by differential voltages (UL3, ULn, ULp) across the inductors (Lh3, Lcp, Lcn), and the third current (ih3, icn, icp) is set by regulating two of the three currents (ih3, icn, icp).
  20. Method for impressing control currents (icn, icp) according to any one of claims 18 to 19 using a rectifier circuit according to any one of claims 7, 8 or 12 to 17, characterized in that a centre point voltage (UMN) is measured between the centre point (M) of the three-pole circuit (5) and a neutral point (N), and a mean value of the centre point voltage (UMN) is regulated using one of the converter systems (9, 10, 11).
  21. Method for impressing control currents (icn, icp) according to claim 20, characterized in that the mean value of the centre point voltage (UMN) is regulated to zero.
  22. Method for impressing control currents (icn, icp) according to claim 20 or 21 using a rectifier circuit according to any one of claims 13 to 17, characterized in that a first buffer capacitor voltage (UCP) across the buffer capacitor (CCP) is regulated to be greater than a voltage of the positive output line (PDC) against a neutral point (N), and a second buffer capacitor voltage (UCN) across the buffer capacitor (CCN) is regulated to be lower than a voltage of the negative output line (NDC) against the neutral point (N).
  23. Method for impressing control currents (icn, icp) according to any one of claims 20 to 22, characterized in that the regulation of the mean value of the centre point voltage (UMN) takes place by means of the controllable semiconductor valves (Scp+, Scp-, Scn+, Scn-).
  24. Method for impressing control currents (icn, icp) according to claim 19 to 23 using a rectifier circuit according to claim 15, characterized in that a first buffer capacitor voltage (UCP) across the buffer capacitor (CCP) is minimized, and a second buffer capacitor voltage (UCN) across the buffer capacitor (CCN) is minimized, wherein the centre point voltage (UMN) is regulated to the negative half-value of an injection voltage (Uh3) , and the injection voltage (Uh3) is applied between the first pole connection (A) and the neutral point (N) .
  25. Method for impressing control currents (icn, icp) according to any one of claims 19 to 24 using a rectifier circuit according to claim 11 or 17, characterized in that the potential of the centre point voltage (UMN) relative to one of the two output lines (PDC, NDC) is increased or reduced through the regulation of the voltage source (Ux).
EP13707141.1A 2012-03-30 2013-02-22 Rectifier circuit with current injection Active EP2831989B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA387/2012A AT512752B1 (en) 2012-03-30 2012-03-30 Rectifier circuit with current injection
PCT/EP2013/053532 WO2013143793A2 (en) 2012-03-30 2013-02-22 Rectifier circuit with current injection

Publications (2)

Publication Number Publication Date
EP2831989A2 EP2831989A2 (en) 2015-02-04
EP2831989B1 true EP2831989B1 (en) 2021-05-05

Family

ID=47780042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13707141.1A Active EP2831989B1 (en) 2012-03-30 2013-02-22 Rectifier circuit with current injection

Country Status (7)

Country Link
US (1) US9444362B2 (en)
EP (1) EP2831989B1 (en)
JP (1) JP6204970B2 (en)
CN (1) CN104221263B (en)
AT (1) AT512752B1 (en)
ES (1) ES2881689T3 (en)
WO (1) WO2013143793A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT516643B1 (en) * 2014-12-18 2018-02-15 Schneider Electric Power Drives Gmbh Rectifier circuit
US9614429B2 (en) 2015-08-18 2017-04-04 Abb Schweiz Ag System for converting AC electrical power to DC electrical power and methods
RU2633966C1 (en) * 2016-11-30 2017-10-20 Юрий Борисович Соколов Power supply from multi-phase alternating current network with correction of harmonic oscillations
IL249862B (en) 2016-12-29 2022-02-01 A B Power Ltd Regulated power supply
CN107482756B (en) * 2017-08-29 2018-05-11 湖南大学 A kind of high instantaneous energy converting power source in island and its method of supplying power to
NL2021926B1 (en) * 2018-11-02 2020-05-14 Prodrive Tech Bv Electrical power converter
NL2022950B1 (en) * 2019-04-15 2020-10-22 Prodrive Tech Bv Electrical Converter
WO2021061085A1 (en) 2019-09-23 2021-04-01 Seabourne Solutions, Llc Power generator
CN111416535B (en) * 2020-04-24 2023-06-16 三峡大学 Three-mode mixed single-phase five-level rectifier
US11601042B2 (en) 2020-05-14 2023-03-07 Delta Electronics, Inc. Multi-phase AC/DC converter
DE102020116889A1 (en) 2020-06-26 2021-12-30 ACD Antriebstechnik GmbH Three-phase boost converter with PFC
CN112636614A (en) * 2020-12-16 2021-04-09 哈尔滨理工大学 Novel three-level Delta-type connection rectifier

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1328904A1 (en) * 1986-03-24 1987-08-07 Московский энергетический институт Three-rhase controllable ac-to-dc voltage converter
JPH0789742B2 (en) * 1987-02-18 1995-09-27 三菱電機株式会社 Power converter
JPH08289561A (en) * 1995-02-14 1996-11-01 Toshiba Corp Power converter
DE19533556C1 (en) * 1995-09-11 1996-12-12 Siemens Ag Three=phase rectifier circuit esp. for high frequency x=ray generators
CA2184663A1 (en) * 1996-09-03 1998-03-04 John C. Salmon Harmonic correction of 3-phase rectifiers and converters
US6046915A (en) * 1997-02-21 2000-04-04 Lucent Technologies Inc. Phase selection circuit for three phase power converter and method of operation thereof
US5784269A (en) 1997-02-21 1998-07-21 Lucent Technologies, Inc. Three phase high power factor converter using phase selection circuit
DE10027575A1 (en) * 1999-09-02 2001-04-05 Abb Patent Gmbh ARCP multi-point converter with potential-variable intermediate capacities
TW591870B (en) * 2003-02-18 2004-06-11 Delta Electronics Inc Integrated converter with three-phase power factor correction
CN2648674Y (en) * 2003-06-20 2004-10-13 智邦科技股份有限公司 Electric injector
GB0325067D0 (en) * 2003-10-27 2003-12-03 Goodrich Actuation Systems Ltd Multi-pulse converter circuits
US7495410B2 (en) * 2007-01-30 2009-02-24 Rockwell Automation Technologies, Inc. Systems and methods for improved motor drive power factor control
US7768805B2 (en) * 2007-03-09 2010-08-03 General Electric Company Clean input UPS with fast rectifier control and improved battery life
FR2922382B1 (en) * 2007-10-16 2010-02-05 Converteam Sas BIDIRECTIONAL CURRENT CONVERTER
JP2009112172A (en) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd Three-phase rectifier
CN102130572B (en) * 2011-04-28 2012-12-05 重庆大学 Three-phase rectifier bridge direct-current side parallel connection type active power filter

Also Published As

Publication number Publication date
JP6204970B2 (en) 2017-09-27
CN104221263B (en) 2017-07-28
US9444362B2 (en) 2016-09-13
US20150029771A1 (en) 2015-01-29
WO2013143793A3 (en) 2014-04-03
ES2881689T3 (en) 2021-11-30
AT512752B1 (en) 2018-02-15
AT512752A1 (en) 2013-10-15
WO2013143793A2 (en) 2013-10-03
EP2831989A2 (en) 2015-02-04
CN104221263A (en) 2014-12-17
JP2015511809A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
EP2831989B1 (en) Rectifier circuit with current injection
EP3183809B1 (en) Mains-coupled inverter, inverter arrangement, and operating method for an inverter arrangement
DE102007008765A1 (en) Improved power converter with reduced common mode voltage
DE10108766A1 (en) Pulse width modulation controlled power conversion unit
WO2013120784A2 (en) Grid feed apparatus, energy feed system and method for operating a grid feed apparatus
EP2678933A2 (en) Method for producing an output voltage at a moduler multilevel converter and assembly for performing the method
EP2992595A1 (en) Converter assembly having multi-step converters connected in parallel and method for controlling said multi-step converters
AT516643B1 (en) Rectifier circuit
EP3327912A1 (en) Hysteresis control of an output current of a power converter
AT512488A1 (en) RECTIFIER CIRCUIT WITH THROTTLE
EP2985896B1 (en) System for increasing the network-side power factor of three phase ec motors
CH704553B1 (en) Three-phase hybrid AC / DC converter, and method for its control.
AT514654B1 (en) Rectifier circuit with current injection
EP0743744A2 (en) Current converter
EP3513475B1 (en) Installation for transmitting electrical power comprising a filter unit
CH713573B1 (en) Magnetic choke, converter section and converter.
EP3300242B1 (en) Regulation of a three-level inverter
CH715005B1 (en) Device for converting a DC voltage that varies within wide limits into a multi-phase AC voltage with variable frequency and amplitude.
AT523974B1 (en) DC-DC converter and converter arrangement with a DC-DC converter
WO2016050720A1 (en) Hybrid m2c diode rectifier
DE19848728B4 (en) Converter device for a DC machine
DE102020214265A1 (en) Device for low-common-mode conversion of alternating voltage
DE102021108996A1 (en) circuit arrangement
CH713723A2 (en) Modular multilevel power converter.
DE102018203167A1 (en) DC converter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140909

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02M 7/487 20070101ALI20201113BHEP

Ipc: H02M 7/06 20060101ALI20201113BHEP

Ipc: H02M 1/42 20070101AFI20201113BHEP

INTG Intention to grant announced

Effective date: 20201204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1391078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015695

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2881689

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015695

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220222

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230126

Year of fee payment: 11

Ref country code: ES

Payment date: 20230301

Year of fee payment: 11

Ref country code: AT

Payment date: 20230201

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230207

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240207

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 12