WO2023228641A1 - Inverter device and electric compressor comprising same - Google Patents

Inverter device and electric compressor comprising same Download PDF

Info

Publication number
WO2023228641A1
WO2023228641A1 PCT/JP2023/015932 JP2023015932W WO2023228641A1 WO 2023228641 A1 WO2023228641 A1 WO 2023228641A1 JP 2023015932 W JP2023015932 W JP 2023015932W WO 2023228641 A1 WO2023228641 A1 WO 2023228641A1
Authority
WO
WIPO (PCT)
Prior art keywords
common mode
inverter
mode coil
circuit
coil
Prior art date
Application number
PCT/JP2023/015932
Other languages
French (fr)
Japanese (ja)
Inventor
康平 ▲高▼田
浩 吉田
孝次 小林
翔太郎 高橋
Original Assignee
サンデン株式会社
学校法人成蹊学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社, 学校法人成蹊学園 filed Critical サンデン株式会社
Publication of WO2023228641A1 publication Critical patent/WO2023228641A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
  • FIG. 8 shows a common mode equivalent circuit of the electric circuit shown in FIG. 1 of Patent Document 1 mentioned above.
  • Patent Document 1 reduces noise in this path by coupling input and output filters of the inverter, it is impossible to suppress leakage through the heat sink due to the circuit configuration. That is, since there is no impedance in the path of the common mode current (I CMh in FIG. 8) leaking from the switching element to the heat sink (housing), the common mode current flowing out from the inverter cannot be blocked. This is because a bypass capacitor (Y capacitor) is grounded between the common mode coil of the three-phase input section and the rectifier side, so inverter noise flows out through this path.
  • the configuration of Patent Document 1 is simply a combination of an input common mode coil and an output common mode coil.
  • FIG. 9 the circuit of the general motor drive system described in Non-Patent Document 1 is shown in FIG. 9, and the common mode equivalent circuit is shown again on the left side of FIG.
  • the noise path caused by the inverter in the motor drive system shown in FIG. 9 can be considered to be the path shown on the right side of FIG. 10 when an equivalent circuit is created focusing on the common mode.
  • Loop 1 on the right side of Figure 10 is the common mode noise path that flows out from between the motor and the housing and goes around LISN (power impedance stabilization network), and Loop 2 also flows out from the motor, but is the path of common mode noise that flows out from the switching element. This is the route that goes around via the stray capacitance between the cases.
  • LISN power impedance stabilization network
  • Loop1 and Loop2 by inserting a common mode coil into the inverter output line as described above, the impedance of the common mode current path can be increased and suppressed.
  • the common mode noise flowing out from Loop 3 contains many high frequency components, so even if a large common mode filter is installed in the input section, the impedance of the coil will decrease at high frequencies, so it is difficult to suppress the EMI level. It's not easy.
  • Non-Patent Document 1 in the inverter circuit 100, the midpoint of the bypass capacitor 101 of the three-phase output LC filter circuit and the bypass capacitor 102 of the input filter circuit are connected.
  • the circuit configuration is such that the midpoints are directly connected, and an input/output coupling EMI coil is utilized.
  • the common mode equivalent circuit in FIG. 11 becomes as shown in FIG. 12, and all of the noise in Loop1, Loop2, and Loop3 can be suppressed in the vicinity of the switching element that is the source of the leakage.
  • the present invention aims to reduce EMI noise caused by inverter noise in general three-phase inverters (particularly electric compressors) by increasing the size of the input side EMI filter and by increasing the size of input-output bypass capacitors (
  • An inverter device that can efficiently reduce common mode noise flowing from switching elements and motors by increasing the common mode impedance in all paths before and after the noise generation source, rather than by coupling the Y capacitor). and an electric compressor equipped with the same.
  • Another object of the present invention is to achieve miniaturization while maintaining the noise reduction effect by eliminating the need for differential mode capacitors and common mode capacitors (C CM , C DM ) used in Non-Patent Document 1. That's true.
  • the inverter device of the present invention includes a three-phase inverter circuit composed of switching elements, drives a motor by this inverter circuit, and includes an input common mode coil inserted into a single-phase input section of the inverter circuit. and an output side common mode coil inserted into the three-phase output section of the inverter circuit.
  • the circuit does not have a circuit that directly connects the midpoint of the bypass capacitor of the three-phase output LC filter circuit to the midpoint of the bypass capacitor of the input filter circuit, and uses an integrated common mode coil to reduce the common mode current flowing out from the inverter circuit.
  • the path is characterized by having an impedance.
  • the two wires on the positive and negative sides of the input side common mode coil and the three wires on the UVW phase of the output side common mode coil are wound around the core in a pentafilar manner. It is characterized by the presence of
  • the inverter device of the invention of claim 3 is characterized in that the input side common mode coil and the output side common mode coil have the same common mode inductance in the invention of claim 1.
  • the inverter device of the invention of claim 4 is characterized in that the input side common mode coil and the output side common mode coil have different common mode inductances in the invention of claim 1.
  • An electric compressor includes a housing in which a motor is housed, and an inverter accommodating part configured in this housing, and the inverter device of each of the above inventions is housed in the inverter accommodating part, and the housing is It is characterized by being used as a heat sink for switching elements.
  • the electric compressor of the invention according to claim 6 is characterized in that it is mounted on a vehicle in the above invention.
  • a three-phase inverter circuit composed of switching elements is provided, and a motor is driven by this inverter circuit, and an input side common mode coil inserted in a single-phase input section of the inverter circuit and , the output side common mode coil is inserted into the three-phase output part of the inverter circuit, and the input side common mode coil and the output side common mode coil are integrated common mode coils with a common core, thereby eliminating the noise generation source.
  • the input side common mode coil and the output side common mode coil are magnetically coupled, it can be handled with only one core and the number of turns can be reduced.
  • the inverter device is accommodated in the housing as in the inventions of claims 5 and 6, which is extremely advantageous for electric compressors that need to be downsized.
  • this is a source measure that prevents noise from leaking into the housing, it is highly effective in suppressing high frequency noise.
  • the inverter circuit there is no circuit that directly connects the midpoint of the bypass capacitor of the three-phase output LC filter circuit to the midpoint of the bypass capacitor of the input filter circuit, and the integral structure of the common mode coil prevents the flow from flowing out of the inverter circuit. Since the common mode current path has a large impedance, the capacitor that requires a creepage distance can be removed while maintaining the noise reduction effect, making it possible to achieve further miniaturization.
  • an inverter circuit by winding the two wires of the positive and negative poles of the input side common mode coil and the three wires of the UVW phase of the output side common mode coil around the core in a pentafilar manner, an inverter circuit can be created. It becomes possible to effectively magnetically couple the common mode coils on the input side and output side.
  • the input side common mode coil and the output side common mode coil may have the same common mode inductance as in the invention of claim 3, or may have different common mode inductances as in the invention of claim 4.
  • FIG. 1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention. It is a simple common mode equivalent circuit of the electric circuit of FIG. 1.
  • FIG. 2 is a diagram illustrating the structure of common mode coils inserted into the input section and output section of the inverter circuit of the electric compressor shown in FIG. 1.
  • FIG. 5 is a diagram illustrating impedance characteristics of the common mode coil in FIG. 4.
  • FIG. 2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1.
  • FIG. 2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1.
  • FIG. 12 is a simplified common mode equivalent circuit of FIG. 11.
  • an electric compressor (so-called inverter-integrated electric compressor) 1 according to an embodiment of the present invention will be described with reference to FIG.
  • the electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle.
  • the compression mechanism housing section 4 houses, for example, a scroll-type compression mechanism 7 and a motor 8 that drives the compression mechanism 7.
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • a bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4.
  • One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7.
  • a suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven.
  • a low-temperature refrigerant which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
  • the refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
  • the inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 .
  • the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
  • the inverter device 16 includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17. It is composed of a control circuit 36 and the like.
  • each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
  • IGBT insulated gate bipolar transistor
  • each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17.
  • the inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked.
  • the substrate 17 will be fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
  • each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes.
  • each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3.
  • the switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
  • the vehicle is equipped with a high voltage power source 41 consisting of, for example, a high voltage battery, for feeding and driving the motor 8 of the electric compressor 1 and a driving motor (not shown), and a low voltage power source 42 consisting of a normal battery.
  • the inverter device 16 is connected to a high voltage power source 41 and a low voltage power source 42.
  • the housing 2 is electrically connected to the vehicle body B (ground plane).
  • the inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36.
  • the control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
  • CPU microprocessor
  • the switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 to generate a predetermined DC voltage and supplies power to the control circuit 36.
  • the switching power supply device 39 includes a switching transformer including an isolation transformer (coupling transformer) including a primary winding and a secondary winding insulated from the primary winding.
  • the switching power supply device 39 switches the low-voltage power supply 42 to supply power to the control circuit 36, and also connects the low-voltage circuit 63 on the low-voltage power supply 42 side where the primary winding is located and the secondary winding through the switching transformer. It is insulated from the high voltage circuit 64 on the high voltage power supply 41 side where the line is located.
  • the inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
  • the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side.
  • Mode current flows out.
  • the stray capacitance between the motor 8 and the housing 2 and the stray capacitance between the inverter circuit 34 and the housing 2 The noise caused by the common mode current flowing out (common mode noise) becomes dominant.
  • the input side common mode coil 67 is inserted into the single-phase input section (two wires) of the inverter circuit 34, and the input side common mode coil 67 is inserted into the three-phase output section (three wires between the inverter circuit 34 and the motor 8) of the inverter circuit 34.
  • An output side common mode coil 66 is inserted (Fig. 1).
  • the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form a common mode coil 69 having an integral structure. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
  • the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41, and a negative electrode wire (winding: coil) connected to the negative electrode side. ) Consisting of 67L.
  • the output side common mode coil 66 has a U phase line (winding: coil) 66U connected to the U phase of the output of the inverter circuit 34, and a V phase line (winding: coil) 66V connected to the V phase. , W phase wire (winding: coil) 66W connected to W phase.
  • these two wires 67H and 67L on the positive and negative electrode sides, and the three wires 66U, 66V, and 66W on the UVW phase, a total of five wires, are wound in parallel around the core 68 in a pentafilar manner, for example, as shown in FIG. There is. Note that the arrows in FIG. 4 indicate the direction of magnetic flux.
  • FIG. 3 shows a simplified common mode equivalent circuit of the electric circuit of FIG. 1.
  • V CM is the common mode voltage based on the DC input midpoint output by the inverter circuit 34
  • C sm is the stray capacitance between the windings of the motor 8 and the housing 2
  • 3C sh is the voltage between the switching element 18 and the housing 2.
  • the stray capacitance L CM /4 is the inductance (common mode inductance) of each common mode coil 66, 67, and in the embodiment, the inductance of the input side common mode coil 67 and the inductance of the output side common mode coil 66 are the same L CM /4.
  • R LISN /2 is the terminating resistance at the output terminals of LISNs 37 and 38
  • L wi , L wo , R wi , and R wo are the inductance and resistance of the input-side and output-side cables, respectively.
  • the inductances of the common mode coils 66 and 67 are arranged in all the common mode current loops, it is possible to effectively suppress both the input and output common mode currents. That is, due to the integral structure of the common mode coil 69, the path of the common mode current flowing from the inverter circuit 34 to the housing 2 has a large impedance.
  • the common mode coil 69 of the embodiment the five input and output wires 67H, 67L, 66U, 66V, and 66W are magnetically coupled by winding them in parallel around the core 68 in a pentafilar manner. Compared to this, it is possible to reduce the inductance of the common mode coil (common mode inductance) that must be connected to one-fourth.
  • the present invention If the output side common mode coil 66 and the input side common mode coil 67 are magnetically coupled as shown in FIG .
  • L100 in FIG. 5 shows the impedance frequency characteristic when a three-phase common mode coil is inserted only in the output section of the inverter circuit 34
  • L1 shows the impedance frequency characteristic in the case of the common mode coil in FIG. 4. From this figure, it can be seen that both are approximately equal except for high frequencies.
  • FIG. 6 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise.
  • L101 is when no common mode coil is inserted into the output part of the inverter circuit 34
  • L102 is when a three-phase common mode coil is inserted only into the output part of the inverter circuit 34
  • L2 is when the common mode coil 69 in FIG. 4 is used. It shows.
  • FIG. 7 shows the improvement difference: L102-L2.
  • FIG. 7 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Also, L103 is when no common mode coil is inserted into the output part of the inverter circuit 34, L104 is when a three-phase common mode coil is inserted only into the output part of the inverter circuit 34, and L3 is when the common mode coil 69 in FIG. 4 is used. It shows. Further, (b) in FIG. 7 shows the difference: L104-L3.
  • FIGS. 6(b) and 7(b) the larger the value is than 0, the more the noise is improved.
  • FIG. 6(b) in the case of the common mode coil 69 of the embodiment shown in FIG. ing.
  • FIG. 7(b) the noise of the low voltage circuit 63 has also been improved. This is considered to be due to noise improvement in the high voltage circuit 64 and the influence on the low voltage circuit 63 being suppressed.
  • the input side common mode coil 67 inserted into the single-phase input part of the inverter circuit 34 and the output side common mode coil 66 inserted into the three-phase output part of the inverter circuit 45 are provided. Since the input side common mode coil 67 and the output side common mode coil 66 are integrated into the common core 68, the input side and output side of the inverter circuit 45, which is a noise generation source, are magnetically coupled and the impedance is increased. I can do it.
  • the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled, it is possible to use only one core 68, and the number of turns can also be reduced. As a result, the inverter device 16 is accommodated in the inverter accommodating portion 6 of the housing 2, which is extremely advantageous for the electric compressor 1 that needs to be downsized. Furthermore, since this is a source measure to prevent noise from leaking into the housing 2, the effect of suppressing high frequency noise is high.
  • the present invention does not include a circuit that directly connects the midpoint of the bypass capacitor 101 of the three-phase output LC filter circuit and the midpoint of the bypass capacitor 102 of the input filter circuit.
  • the integrated common mode coil 69 has a structure in which the path of the common mode current flowing out from the inverter circuit 34 has a large impedance, so the creepage distance can be reduced while maintaining the noise reduction effect. By eliminating a large number of capacitors, further miniaturization can be achieved.
  • the two wires of the positive and negative poles of the input common mode coil 67 and the three wires of the UVW phase of the output common mode coil 66 are wound in parallel around the core 68 in a pentafilar manner. , the common mode coils on the input side and output side of the inverter circuit 34 can be effectively magnetically coupled.
  • the inductance of the input side common mode coil 67 and the inductance of the output side common mode coil 66 are set to be the same L CM /4, but the invention is not limited to this.
  • the side common mode coils 66 may have different inductances (common mode inductances). That is, in order to increase only the impedance on the input side of the inverter circuit 34, the number of turns of the input side common mode coil 67 may be increased to increase the common mode inductance, or in order to increase only the impedance on the output side.
  • the common mode inductance may be increased by increasing the number of turns of the output side common mode coil 66.
  • a high voltage power supply 41 consisting of a high voltage battery of about 300V DC and a low voltage power supply 42 consisting of a battery of about 12V DC are provided, and the DC voltage (HV15V, HV5V) from this low voltage power supply 42 to the high voltage circuit 64 side is ), but the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
  • the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 and 2 are not limited thereto, and can be applied to various inverter devices that drive the motor. . Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.

Abstract

[Problem] To provide an inverter device that efficiently reduces common mode noise which flows out from a switching element and a motor, and that enables a reduction in size. [Solution] The present invention comprises an input-side common mode coil 67 that is inserted in a monophase input part of an inverter circuit, and an output-side common mode coil 66 that is inserted in a three-phase output part of the inverter circuit 34. The input-side common mode coil 67 and the output-side common mode coil 66 are a common mode coil 69 of an integral structure and of a shared core. In the inverter circuit 34, there is no circuit in which directly joins a bypass capacitor middle point of a three-phase output LC filter circuit and a bypass capacitor middle point of an input filter circuit. There is impedance in the path of common mode current flowing out from the inverter circuit 34 due to the common mode coil 69 of the integral structure.

Description

インバータ装置及びそれを備えた電動圧縮機Inverter device and electric compressor equipped with it
 本発明は、モータを駆動するインバータ装置と、それを備えた電動圧縮機に関するものである。 The present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
 三相インバータ機器のEMIノイズ抑制としては、従来より入力側のEMIフィルタによるノイズ低減を行うことや、インバータ出力線に大型のコモンモードコイルを入れること、或いは、キャパシタと組み合わせたパッシブフィルタ方式とすること等によって、インバータ起因のノイズ低減対策を行っていた。 To suppress EMI noise in three-phase inverter equipment, conventional methods include reducing noise using an EMI filter on the input side, inserting a large common mode coil into the inverter output line, or using a passive filter method in combination with a capacitor. Due to this, measures were taken to reduce noise caused by the inverter.
 また、インバータ機器のノイズにおいては、モータとハウジング(筐体)間、及び、スイッチング素子を冷却するヒートシンク(電動圧縮機では後述する如くハウジングと兼用)から流出するコモンモードノイズが多い。このなかで、モータとハウジング間から流出するノイズにおいては、従来から入力部に大型のコモンモードコイルを入れることや、インバータ出力部にコモンモードコイル、フェライトコアを挿入することでノイズ低減を行ってきた。 In addition, in the noise of inverter equipment, there is a lot of common mode noise that flows out between the motor and the housing and from the heat sink (which also serves as the housing in an electric compressor as described later) that cools the switching element. Among these, noise leaking from between the motor and the housing has traditionally been reduced by inserting a large common mode coil into the input section, and by inserting a common mode coil and ferrite core into the inverter output section. Ta.
 一方で、ヒートシンク経由で流出するノイズについては、民生品等においてはヒートシンクとハウジングを接地しない等の対策が可能であった。 On the other hand, with regard to noise leaking through the heat sink, countermeasures such as not grounding the heat sink and housing have been possible in consumer products.
 ここで、例えば車両搭載型の電動圧縮機においては、小型軽量化が必須事項(振動対策を含め)であり、上記のようなノイズ対策のためにインバータ出力部にコモンモードコイルを入れることや、フェライトコアを付ける等と云った対策を施しにくい上に、スイッチング素子の冷却をヒートシンクではなく電動圧縮機のハウジングで代用し、冷媒で冷却するという方式が採用されるため、スイッチング素子からハウジング(ヒートシンク)を経由して流出するコモンモードノイズについてノイズ源からの流出を抑制する効果的な対策がなかった。 For example, in a vehicle-mounted electric compressor, it is essential to reduce the size and weight (including vibration countermeasures), and to prevent noise as described above, it is necessary to install a common mode coil in the inverter output section. It is difficult to take countermeasures such as attaching a ferrite core, and the switching element is cooled by using the electric compressor housing instead of the heat sink, and cooling with refrigerant is used. ) There have been no effective measures to suppress the common mode noise flowing out from the noise source.
 そこで、従来では例えば、特許文献1や非特許文献1に記載された方法により対策が検討されていた。 Therefore, conventionally, countermeasures have been considered using methods described in Patent Document 1 and Non-Patent Document 1, for example.
特開2005-130575号公報Japanese Patent Application Publication No. 2005-130575
 図8に上記特許文献1の図1の電気回路のコモンモード等価回路を示す。特許文献1はインバータの入出力フィルタを結合させることにより、この経路のノイズ低減を行うものであるが、回路構成上、ヒートシンク経由の流出の抑制は不可能である。即ち、スイッチング素子からヒートシンク(ハウジング)に漏れ出るコモンモード電流(図8のICMh)の経路にインピーダンスを持たないため、インバータから流出するコモンモード電流を阻止できていない。これは、三相入力部のコモンモードコイルにおいて、整流器側との間にバイパスコンデンサ(Yコンデンサ)が接地されているため、この経路を介してインバータノイズが流出するからである。特許文献1の構成は、あくまでも入力のコモンモードコイルと出力のコモンモードコイルを結合させただけのものである。 FIG. 8 shows a common mode equivalent circuit of the electric circuit shown in FIG. 1 of Patent Document 1 mentioned above. Although Patent Document 1 reduces noise in this path by coupling input and output filters of the inverter, it is impossible to suppress leakage through the heat sink due to the circuit configuration. That is, since there is no impedance in the path of the common mode current (I CMh in FIG. 8) leaking from the switching element to the heat sink (housing), the common mode current flowing out from the inverter cannot be blocked. This is because a bypass capacitor (Y capacitor) is grounded between the common mode coil of the three-phase input section and the rectifier side, so inverter noise flows out through this path. The configuration of Patent Document 1 is simply a combination of an input common mode coil and an output common mode coil.
 次に、前記非特許文献1に記載された一般的なモータドライブシステムの回路を図9に示し、図10の左にそのコモンモード等価回路を改めて示す。図9のようなモータドライブシステムのインバータ起因のノイズ経路は、コモンモードに着目して等価回路にすると、図10の右に示す経路が考えられる。ここで、図10の右のLoop1はモータ/筐体間から流出し、LISN(電源インピーダンス安定化回路網)を回り込むコモンモードノイズの経路であり、Loop2は同じくモータから流出するが、スイッチング素子と筐体間の浮遊容量を経由して回り込む経路である。 Next, the circuit of the general motor drive system described in Non-Patent Document 1 is shown in FIG. 9, and the common mode equivalent circuit is shown again on the left side of FIG. The noise path caused by the inverter in the motor drive system shown in FIG. 9 can be considered to be the path shown on the right side of FIG. 10 when an equivalent circuit is created focusing on the common mode. Here, Loop 1 on the right side of Figure 10 is the common mode noise path that flows out from between the motor and the housing and goes around LISN (power impedance stabilization network), and Loop 2 also flows out from the motor, but is the path of common mode noise that flows out from the switching element. This is the route that goes around via the stray capacitance between the cases.
 ここで、このLoop1とLoop2においては、上述のようにインバータ出力線にコモンモードコイルを挿入することで、コモンモード電流経路のインピーダンスを増加させることができ、抑制可能となる。 Here, in Loop1 and Loop2, by inserting a common mode coil into the inverter output line as described above, the impedance of the common mode current path can be increased and suppressed.
 しかしながら、ヒートシンクと筐体が一体化されている電動圧縮機においては、図10の右のLoop3(スイッチング素子から流出し、LISNに戻る経路)のコモンモード電流を抑制するには、入力側に大型のEMIフィルタが必要となる。即ち、全てのコモンモードノイズを効果的に抑制するには、入出力に大型のコモンモードフィルタが必要となってしまい、機器の小型化が必須の電動圧縮機では適用し難い。 However, in an electric compressor where the heat sink and housing are integrated, in order to suppress the common mode current in Loop 3 on the right side of Fig. 10 (path flowing out from the switching element and returning to LISN), it is necessary to install a large An EMI filter is required. That is, in order to effectively suppress all common mode noise, large common mode filters are required for input and output, and this is difficult to apply to electric compressors that require miniaturization of equipment.
 また、Loop3から流出するコモンモードノイズは高周波成分を多く含むため、入力部に大型のコモンモードフィルタを搭載したとしても、高周波ではコイルのインピーダンスが低下してしまうため、EMIレベルを抑制するのは容易ではない。 In addition, the common mode noise flowing out from Loop 3 contains many high frequency components, so even if a large common mode filter is installed in the input section, the impedance of the coil will decrease at high frequencies, so it is difficult to suppress the EMI level. It's not easy.
 このような背景のなか、非特許文献1では図11に示されているように、インバータ回路100において、三相出力のLCフィルタ回路のバイパスコンデンサ101の中点と入力フィルタ回路のバイパスコンデンサ102の中点を直接接合する回路構成とし、入出力結合EMIコイルを活用している。これにより、図11のコモンモード等価回路は図12のようになり、Loop1、Loop2、Loop3全てのノイズにおいて流出源であるスイッチング素子直近において抑制可能となっていた。 Against this background, in Non-Patent Document 1, as shown in FIG. 11, in the inverter circuit 100, the midpoint of the bypass capacitor 101 of the three-phase output LC filter circuit and the bypass capacitor 102 of the input filter circuit are connected. The circuit configuration is such that the midpoints are directly connected, and an input/output coupling EMI coil is utilized. As a result, the common mode equivalent circuit in FIG. 11 becomes as shown in FIG. 12, and all of the noise in Loop1, Loop2, and Loop3 can be suppressed in the vicinity of the switching element that is the source of the leakage.
 本発明は、このような背景を踏まえ、一般的な三相インバータ(特に電動圧縮機)におけるインバータノイズに起因するEMIノイズの低減に関して、入力側EMIフィルタの大型化や、入出力のバイパスコンデンサ(Yコンデンサ)の結合ではなく、ノイズ発生源前後において流出する全ての経路においてコモンモードインピーダンスを増加させることにより、効率的にスイッチング素子及びモータから流出するコモンモードノイズの低減を図ることができるインバータ装置及びそれを備えた電動圧縮機を提供することを目的とする。 With this background in mind, the present invention aims to reduce EMI noise caused by inverter noise in general three-phase inverters (particularly electric compressors) by increasing the size of the input side EMI filter and by increasing the size of input-output bypass capacitors ( An inverter device that can efficiently reduce common mode noise flowing from switching elements and motors by increasing the common mode impedance in all paths before and after the noise generation source, rather than by coupling the Y capacitor). and an electric compressor equipped with the same.
 本発明の目的は、更に非特許文献1にて使用されていたディファレンシャルモードコンデンサ及びコモンモードコンデンサ(CCM、CDM)を不要とすることにより、ノイズ低減効果を維持しつつ、小型化を図ることである。 Another object of the present invention is to achieve miniaturization while maintaining the noise reduction effect by eliminating the need for differential mode capacitors and common mode capacitors (C CM , C DM ) used in Non-Patent Document 1. That's true.
 本発明のインバータ装置は、スイッチング素子より構成された三相のインバータ回路を備え、このインバータ回路によりモータを駆動するものであって、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、入力側コモンモードコイルと出力側コモンモードコイルが、共通コアの一体構造のコモンモードコイルとされていると共に、インバータ回路において、三相出力のLCフィルタ回路のバイパスコンデンサ中点と入力フィルタ回路のバイパスコンデンサ中点を直接接合する回路を有さず、一体構造のコモンモードコイルにより、インバータ回路から流出するコモンモード電流の経路がインピーダンスを有することを特徴とする。 The inverter device of the present invention includes a three-phase inverter circuit composed of switching elements, drives a motor by this inverter circuit, and includes an input common mode coil inserted into a single-phase input section of the inverter circuit. and an output side common mode coil inserted into the three-phase output section of the inverter circuit. The circuit does not have a circuit that directly connects the midpoint of the bypass capacitor of the three-phase output LC filter circuit to the midpoint of the bypass capacitor of the input filter circuit, and uses an integrated common mode coil to reduce the common mode current flowing out from the inverter circuit. The path is characterized by having an impedance.
 請求項2の発明のインバータ装置は、上記発明において入力側コモンモードコイルの正極側と負極側の二線、及び、出力側コモンモードコイルのUVW相の三線はコアに対してペンタファイラ巻きされていることを特徴とする。 In the inverter device of the invention of claim 2, in the above invention, the two wires on the positive and negative sides of the input side common mode coil and the three wires on the UVW phase of the output side common mode coil are wound around the core in a pentafilar manner. It is characterized by the presence of
 請求項3の発明のインバータ装置は、請求項1の発明において入力側コモンモードコイルと出力側コモンモードコイルは、同一のコモンモードインダクタンスを有することを特徴とする。 The inverter device of the invention of claim 3 is characterized in that the input side common mode coil and the output side common mode coil have the same common mode inductance in the invention of claim 1.
 請求項4の発明のインバータ装置は、請求項1の発明において入力側コモンモードコイルと出力側コモンモードコイルは、異なるコモンモードインダクタンスを有することを特徴とする。 The inverter device of the invention of claim 4 is characterized in that the input side common mode coil and the output side common mode coil have different common mode inductances in the invention of claim 1.
 請求項5の発明の電動圧縮機は、モータが収容されるハウジングと、このハウジングに構成されたインバータ収容部を備え、上記各発明のインバータ装置が、インバータ収容部に収容されると共に、ハウジングがスイッチング素子のヒートシンクとされていることを特徴とする。 An electric compressor according to a fifth aspect of the invention includes a housing in which a motor is housed, and an inverter accommodating part configured in this housing, and the inverter device of each of the above inventions is housed in the inverter accommodating part, and the housing is It is characterized by being used as a heat sink for switching elements.
 請求項6の発明の電動圧縮機は、上記発明において車両に搭載されることを特徴とする。 The electric compressor of the invention according to claim 6 is characterized in that it is mounted on a vehicle in the above invention.
 本発明によれば、スイッチング素子より構成された三相のインバータ回路を備え、このインバータ回路によりモータを駆動するものであって、インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、入力側コモンモードコイルと出力側コモンモードコイルを、共通コアの一体構造のコモンモードコイルとすることで、ノイズ発生源であるインバータ回路の入力側と出力側を磁気結合し、ノイズ源前後のインピーダンスを高くできる。 According to the present invention, a three-phase inverter circuit composed of switching elements is provided, and a motor is driven by this inverter circuit, and an input side common mode coil inserted in a single-phase input section of the inverter circuit and , the output side common mode coil is inserted into the three-phase output part of the inverter circuit, and the input side common mode coil and the output side common mode coil are integrated common mode coils with a common core, thereby eliminating the noise generation source. By magnetically coupling the input and output sides of an inverter circuit, the impedance before and after the noise source can be increased.
 これにより、モータとそれが収容されるハウジング間の浮遊容量、及び、インバータ回路のスイッチング素子とハウジング間の浮遊容量を介して流出する全てのコモンモード電流を抑制し、コモンモードノイズの大幅な低減を図ることができるようになる。 This suppresses all common mode current flowing out through the stray capacitance between the motor and the housing that houses it, as well as the stray capacitance between the switching elements of the inverter circuit and the housing, significantly reducing common mode noise. You will be able to aim for
 また、入力側コモンモードコイルと出力側コモンモードコイルを磁気結合させているので、コア一つのみで対応可能であり、ターン数も削減できる。これにより、請求項5や請求項6の発明の如くインバータ装置がハウジングに収容され、小型化が必要な電動圧縮機にとっては極めて優位なこととなる。更に、ノイズをハウジングに漏らさない源流の対策であるので、高周波ノイズの抑制効果が高いものとなる。 In addition, since the input side common mode coil and the output side common mode coil are magnetically coupled, it can be handled with only one core and the number of turns can be reduced. As a result, the inverter device is accommodated in the housing as in the inventions of claims 5 and 6, which is extremely advantageous for electric compressors that need to be downsized. Furthermore, since this is a source measure that prevents noise from leaking into the housing, it is highly effective in suppressing high frequency noise.
 特に、インバータ回路において、三相出力のLCフィルタ回路のバイパスコンデンサ中点と入力フィルタ回路のバイパスコンデンサ中点を直接接合する回路を有さず、一体構造のコモンモードコイルにより、インバータ回路から流出するコモンモード電流の経路が大きなインピーダンスを有することになるので、ノイズ低減効果を維持しつつ、沿面距離を必要とするコンデンサを削除して、更なる小型化を図ることができるようになる。 In particular, in the inverter circuit, there is no circuit that directly connects the midpoint of the bypass capacitor of the three-phase output LC filter circuit to the midpoint of the bypass capacitor of the input filter circuit, and the integral structure of the common mode coil prevents the flow from flowing out of the inverter circuit. Since the common mode current path has a large impedance, the capacitor that requires a creepage distance can be removed while maintaining the noise reduction effect, making it possible to achieve further miniaturization.
 また、請求項2の発明の如く入力側コモンモードコイルの正極側と負極側の二線、及び、出力側コモンモードコイルのUVW相の三線をコアに対してペンタファイラ巻きすることで、インバータ回路の入力側と出力側のコモンモードコイルを効果的に磁気結合することができるようになる。 Moreover, as in the invention of claim 2, by winding the two wires of the positive and negative poles of the input side common mode coil and the three wires of the UVW phase of the output side common mode coil around the core in a pentafilar manner, an inverter circuit can be created. It becomes possible to effectively magnetically couple the common mode coils on the input side and output side.
 尚、入力側コモンモードコイルと出力側コモンモードコイルは、請求項3の発明の如く同一のコモンモードインダクタンスを有するものでもよく、請求項4の発明の如く異なるコモンモードインダクタンスを有するものでもよい。 Note that the input side common mode coil and the output side common mode coil may have the same common mode inductance as in the invention of claim 3, or may have different common mode inductances as in the invention of claim 4.
本発明を適用した一実施例の電動圧縮機の電気回路のブロック図である。1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention; FIG. 本発明の一実施例の電動圧縮機の概略断面図である。1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention. 図1の電気回路の簡易コモンモード等価回路である。It is a simple common mode equivalent circuit of the electric circuit of FIG. 1. 図1の電動圧縮機のインバータ回路の入力部と出力部に挿入したコモンモードコイルの構造を説明する図である。FIG. 2 is a diagram illustrating the structure of common mode coils inserted into the input section and output section of the inverter circuit of the electric compressor shown in FIG. 1. FIG. 図4のコモンモードコイルのインピーダンス特性を説明する図である。5 is a diagram illustrating impedance characteristics of the common mode coil in FIG. 4. FIG. 図1の電動圧縮機における高電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1. FIG. 図1の電動圧縮機における低電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1. FIG. 特許文献1の電気回路の簡易コモンモード等価回路である。This is a simple common mode equivalent circuit of the electric circuit of Patent Document 1. 非特許文献1の一般的なモータドライブシステムの回路図である。2 is a circuit diagram of a general motor drive system of Non-Patent Document 1. FIG. 図9の簡易コモンモード等価回路である。This is a simple common mode equivalent circuit of FIG. 9. 非特許文献1の電気回路のブロック図である。2 is a block diagram of an electric circuit of Non-Patent Document 1. FIG. 図11の簡易コモンモード等価回路である。12 is a simplified common mode equivalent circuit of FIG. 11.
 以下、本発明の実施の形態について、図面に基づいて詳細に説明する。先ず、図2を参照しながら本発明を適用した実施例の電動圧縮機(所謂インバータ一体型電動圧縮機)1について説明する。尚、実施例の電動圧縮機1は、電動車両に搭載される車両用空気調和装置の冷媒回路の一部を構成するものである。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. First, an electric compressor (so-called inverter-integrated electric compressor) 1 according to an embodiment of the present invention will be described with reference to FIG. The electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle.
 (1)電動圧縮機1の構成
 図2において、電動圧縮機1の金属性の筒状ハウジング(筐体)2内は、当該ハウジング2の軸方向に交差する仕切壁3により圧縮機構収容部4とインバータ収容部6とに区画されており、圧縮機構収容部4内に例えばスクロール型の圧縮機構7と、この圧縮機構7を駆動するモータ8が収容されている。
(1) Structure of the electric compressor 1 In FIG. 2, the inside of the metallic cylindrical housing (casing) 2 of the electric compressor 1 is partitioned by a partition wall 3 that intersects in the axial direction of the housing 2. The compression mechanism housing section 4 houses, for example, a scroll-type compression mechanism 7 and a motor 8 that drives the compression mechanism 7.
 この場合、実施例のモータ8はハウジング2に固定されたステータ9と、このステータ9の内側で回転するロータ11から成るIPMSM(Interior Permanent Magnet Synchronous Motor)である。 In this case, the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
 仕切壁3の圧縮機構収容部4側の中心部には軸受部12が形成されており、ロータ11の駆動軸13の一端はこの軸受部12に支持され、駆動軸13の他端は圧縮機構7に連結されている。ハウジング2の圧縮機構収容部4に対応する位置の仕切壁3近傍には吸入口14が形成されており、モータ8のロータ11(駆動軸13)が回転して圧縮機構7が駆動されると、この吸入口14からハウジング2の圧縮機構収容部4内に作動流体である低温の冷媒が流入し、圧縮機構7に吸引されて圧縮される。 A bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4. One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7. A suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven. A low-temperature refrigerant, which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
 そして、この圧縮機構7で圧縮され、高温・高圧となった冷媒は、図示しない吐出口よりハウジング2外の前記冷媒回路に吐出される構成とされている。また、吸入口14から流入した低温の冷媒は、仕切壁3近傍を通ってモータ8の周囲を通過し、圧縮機構7に吸引されることから、仕切壁3も冷却されることになる。 The refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
 そして、この仕切壁3で圧縮機構収容部4と区画されたインバータ収容部6内には、モータ8を駆動制御する本発明のインバータ装置16が収容される。この場合、インバータ装置16は、仕切壁3を貫通する密封端子やリード線を介してモータ8に給電する構成とされている。 The inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 . In this case, the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
 (2)インバータ装置16の構造
 本発明の一実施例のインバータ装置16は、基板17と、この基板17の一面側に配線された6個のスイッチング素子18と、基板17の他面側に配線された制御回路36等から構成されている。各スイッチング素子18は、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。
(2) Structure of the inverter device 16 The inverter device 16 according to one embodiment of the present invention includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17. It is composed of a control circuit 36 and the like. In the embodiment, each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
 この場合、各スイッチング素子18が後述する三相のインバータ回路34を構成するものであり、各スイッチング素子18の端子部22は、基板17に接続されている。そして、このように組み立てられたインバータ装置16は、各スイッチング素子18がある一面側が仕切壁3側となった状態でインバータ収容部6内に収容されて仕切壁3に取り付けられ、カバー23にて塞がれる。この場合、基板17は仕切壁3から起立するボス部24を介して仕切壁3に固定されることになる。 In this case, each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17. The inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked. In this case, the substrate 17 will be fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
 このようにインバータ装置16が仕切壁3に取り付けられた状態で、各スイッチング素子18は仕切壁3に直接若しくは所定の絶縁熱伝導材を介して密着し、ハウジング2の仕切壁3と熱交換関係となる。そして、前述した如く仕切壁3は圧縮機構収容部4内に吸入される冷媒によって冷やされているので、各スイッチング素子18Aは仕切壁3を介して吸入冷媒と熱交換関係となり、仕切壁3の厚みを介して圧縮機構収容部4内に吸入された冷媒によって冷却され、各スイッチング素子18自体は仕切壁3を介して冷媒に放熱するかたちとなる。即ち、ハウジング2(仕切壁3)が各スイッチング素子18のヒートシンクとされている。 With the inverter device 16 attached to the partition wall 3 in this manner, each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes. As described above, since the partition wall 3 is cooled by the refrigerant sucked into the compression mechanism housing section 4, each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3. The switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
 (3)インバータ装置16の回路構成
 次に、図1において本発明のインバータ装置16は、モータ8を運転するためのインバータ回路34と、このインバータ回路34を制御する制御回路36と、LISN37、38と、スイッチング電源装置39と、平滑コンデンサ47等から構成され、これらが前述した基板17上に配線され、前述した如くインバータ収容部6内に収納される。
(3) Circuit configuration of inverter device 16 Next, in FIG. , a switching power supply device 39, a smoothing capacitor 47, and the like, which are wired on the substrate 17 described above and housed in the inverter accommodating portion 6 as described above.
 尚、車両には電動圧縮機1のモータ8や、図示しない走行用のモータに給電して駆動するための例えば高電圧バッテリから成る高電圧電源41と、通常のバッテリから成る低電圧電源42が搭載されており、インバータ装置16は高電圧電源41と低電圧電源42に接続される。また、ハウジング2は車体B(Ground plane)に導通されている。 The vehicle is equipped with a high voltage power source 41 consisting of, for example, a high voltage battery, for feeding and driving the motor 8 of the electric compressor 1 and a driving motor (not shown), and a low voltage power source 42 consisting of a normal battery. The inverter device 16 is connected to a high voltage power source 41 and a low voltage power source 42. Further, the housing 2 is electrically connected to the vehicle body B (ground plane).
 インバータ回路34は、三相ブリッジ接続の前述した6個のスイッチング素子18から構成されており、各スイッチング素子18は制御回路36が有するゲートドライバが生成するゲート駆動信号により制御される。制御回路36はマイクロプロセッサ(CPU)から構成されており、インバータ回路34の各スイッチング素子18をゲートドライバによりスイッチングしてPWM変調を行うことで、高電圧電源41の直流電圧を所定周波数の交流電圧とし、モータ8に供給する。 The inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36. The control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
 スイッチング電源装置39は、低電圧電源42をスイッチングして所定の直流電圧を生成し、制御回路36に給電するためのDC-DCコンバータである。スイッチング電源装置39は、一次巻線と、それとは絶縁された二次巻線から成る絶縁トランス(カップリングトランス)にて構成されたスイッチングトランスから構成されている。そして、スイッチング電源装置39は低電圧電源42をスイッチングして制御回路36に電源を供給すると共に、スイッチングトランスにより、一次巻線が位置する低電圧電源42側の低電圧回路63と、二次巻線が位置する高電圧電源41側の高電圧回路64とを絶縁する。そして、インバータ装置16は上記のように絶縁された高電圧回路64と低電圧回路63が基板17上で近接した状態で構成され、インバータ収容部6内に収容されている。 The switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 to generate a predetermined DC voltage and supplies power to the control circuit 36. The switching power supply device 39 includes a switching transformer including an isolation transformer (coupling transformer) including a primary winding and a secondary winding insulated from the primary winding. The switching power supply device 39 switches the low-voltage power supply 42 to supply power to the control circuit 36, and also connects the low-voltage circuit 63 on the low-voltage power supply 42 side where the primary winding is located and the secondary winding through the switching transformer. It is insulated from the high voltage circuit 64 on the high voltage power supply 41 side where the line is located. The inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
 ここで、前述した如くインバータ回路34を構成するスイッチング素子18のスイッチングに伴うサージ電圧(振動電圧)はモータ8側に伝達するため、電圧変動によりモータ8とハウジング2間の浮遊容量を介してコモンモード電流が流出する。更に、ノイズ発生源であるインバータ回路34とハウジング2間の浮遊容量を介して流出するコモンモード電流もある。 Here, as mentioned above, the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side. Mode current flows out. Furthermore, there is also a common mode current that flows out through the stray capacitance between the inverter circuit 34 and the housing 2, which is a source of noise generation.
 特に、実施例のようにハウジング2がインバータ回路34のスイッチング素子18のヒートシンクとされた電動圧縮機1では、モータ8とハウジング2間の浮遊容量とインバータ回路34とハウジング2間の浮遊容量を介して流出するコモンモード電流によるノイズ(コモンモードノイズ)が支配的となる。 In particular, in the electric compressor 1 in which the housing 2 is used as a heat sink for the switching element 18 of the inverter circuit 34 as in the embodiment, the stray capacitance between the motor 8 and the housing 2 and the stray capacitance between the inverter circuit 34 and the housing 2 The noise caused by the common mode current flowing out (common mode noise) becomes dominant.
 そこで、本発明ではインバータ回路34の単相入力部(二線)に入力側コモンモードコイル67を挿入すると共に、インバータ回路34の三相出力部(インバータ回路34とモータ8の間の三線)に出力側コモンモードコイル66を挿入している(図1)。この場合、図4に示す如く入力側コモンモードコイル67と出力側コモンモードコイル66を、共通の一つのコア68に巻回して一体構造のコモンモードコイル69としている。これにより、入力側コモンモードコイル67と出力側コモンモードコイル66は磁気結合される(Magnetic coupling)。 Therefore, in the present invention, the input side common mode coil 67 is inserted into the single-phase input section (two wires) of the inverter circuit 34, and the input side common mode coil 67 is inserted into the three-phase output section (three wires between the inverter circuit 34 and the motor 8) of the inverter circuit 34. An output side common mode coil 66 is inserted (Fig. 1). In this case, as shown in FIG. 4, the input side common mode coil 67 and the output side common mode coil 66 are wound around one common core 68 to form a common mode coil 69 having an integral structure. Thereby, the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled.
 更に、この実施例の場合、入力側コモンモードコイル67は高電圧電源41の正極側に接続された正極線(巻線:コイル)67Hと、負極側に接続された負極線(巻線:コイル)67Lから成る。また、出力側コモンモードコイル66はインバータ回路34の出力のU相に接続されたU相線(巻線:コイル)66Uと、V相に接続されたV相線(巻線:コイル)66Vと、W相に接続されたW相線(巻線:コイル)66Wから成る。そして、これら正極側と負極側の二線67H、67Lと、UVW相の三線66U、66V、66W、合わせて5線が例えば平行に、図4に示す如くコア68に対してペンタファイラ巻きされている。尚、図4中の矢印は磁束の向きを示す。 Furthermore, in the case of this embodiment, the input side common mode coil 67 has a positive electrode wire (winding: coil) 67H connected to the positive electrode side of the high voltage power supply 41, and a negative electrode wire (winding: coil) connected to the negative electrode side. ) Consisting of 67L. Further, the output side common mode coil 66 has a U phase line (winding: coil) 66U connected to the U phase of the output of the inverter circuit 34, and a V phase line (winding: coil) 66V connected to the V phase. , W phase wire (winding: coil) 66W connected to W phase. Then, these two wires 67H and 67L on the positive and negative electrode sides, and the three wires 66U, 66V, and 66W on the UVW phase, a total of five wires, are wound in parallel around the core 68 in a pentafilar manner, for example, as shown in FIG. There is. Note that the arrows in FIG. 4 indicate the direction of magnetic flux.
 図3に、図1の電気回路の簡易コモンモード等価回路を示す。図中、VCMはインバータ回路34が出力する直流入力中点を基準としたコモンモード電圧、Csmはモータ8の巻線とハウジング2間の浮遊容量、3Cshはスイッチング素子18とハウジング2間の浮遊容量、LCM/4は各コモンモードコイル66、67のインダクタンス(コモンモードインダクタンス)であり、実施例では入力側コモンモードコイル67のインダクタンスと出力側コモンモードコイル66のインダクタンスを同一のLCM/4としている。また、RLISN/2はLISN37、38の出力端子における終端抵抗であり、Lwi、Lwo、Rwi、Rwoはそれぞれ入力側及び出力側ケーブルが有するインダクタンスと抵抗である。 FIG. 3 shows a simplified common mode equivalent circuit of the electric circuit of FIG. 1. In the figure, V CM is the common mode voltage based on the DC input midpoint output by the inverter circuit 34, C sm is the stray capacitance between the windings of the motor 8 and the housing 2, and 3C sh is the voltage between the switching element 18 and the housing 2. The stray capacitance L CM /4 is the inductance (common mode inductance) of each common mode coil 66, 67, and in the embodiment, the inductance of the input side common mode coil 67 and the inductance of the output side common mode coil 66 are the same L CM /4. Further, R LISN /2 is the terminating resistance at the output terminals of LISNs 37 and 38, and L wi , L wo , R wi , and R wo are the inductance and resistance of the input-side and output-side cables, respectively.
 図3に示すように、全てのコモンモード電流ループにコモンモードコイル66、67のインダクタンスが配置されるため、入出力双方のコモンモード電流を効果的に抑制することができる。即ち、一体構造のコモンモードコイル69により、インバータ回路34からハウジング2に流出するコモンモード電流の経路が大きなインピーダンスを有することになる。また、実施例のコモンモードコイル69では、入出力の5線67H、67L、66U、66V、66Wを平行にコア68に対してペンタファイラ巻きすることで磁気結合させているので、通常のEMIフィルタに比して、接続しなければならないコモンモードコイルのインダクタンス(コモンモードインダクタンス)を4分の1に削減することが可能となる。 As shown in FIG. 3, since the inductances of the common mode coils 66 and 67 are arranged in all the common mode current loops, it is possible to effectively suppress both the input and output common mode currents. That is, due to the integral structure of the common mode coil 69, the path of the common mode current flowing from the inverter circuit 34 to the housing 2 has a large impedance. In addition, in the common mode coil 69 of the embodiment, the five input and output wires 67H, 67L, 66U, 66V, and 66W are magnetically coupled by winding them in parallel around the core 68 in a pentafilar manner. Compared to this, it is possible to reduce the inductance of the common mode coil (common mode inductance) that must be connected to one-fourth.
 即ち、通常のEMIフィルタで必要なコモンモードインダクタンスを得るために、入力側のコモンモードコイルと出力側のコモンモードコイルとしてLCMのインダクタンスのものを接続しなければならなかった場合、本発明の如く出力側コモンモードコイル66と入力側コモンモードコイル67を磁気結合させれば、それぞれLCM/4のインダクタンスのものを用いて上記必要なコモンモードインダクタンスを得ることができるようになる。 That is, in order to obtain the necessary common mode inductance with a normal EMI filter, if it is necessary to connect a common mode coil on the input side and a common mode coil on the output side with an inductance of L CM , the present invention If the output side common mode coil 66 and the input side common mode coil 67 are magnetically coupled as shown in FIG .
 図5のL100はインバータ回路34の出力部のみに三相コモンモードコイルを挿入した場合のインピーダンスの周波数特性を示し、L1は図4のコモンモードコイルの場合のインピーダンスの周波数特性を示す。この図より、高周波以外では両者は略等しいことが分かる。 L100 in FIG. 5 shows the impedance frequency characteristic when a three-phase common mode coil is inserted only in the output section of the inverter circuit 34, and L1 shows the impedance frequency characteristic in the case of the common mode coil in FIG. 4. From this figure, it can be seen that both are approximately equal except for high frequencies.
 次に、図6中の(a)は図1の高電圧回路64のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L101はインバータ回路34の出力部にコモンモードコイルを入れない場合、L102はインバータ回路34の出力部のみに三相コモンモードコイルを挿入した場合、L2は図4のコモンモードコイル69の場合を示している。また、図7中の(b)は、改善差違:L102-L2を示している。 Next, (a) in FIG. 6 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Also, L101 is when no common mode coil is inserted into the output part of the inverter circuit 34, L102 is when a three-phase common mode coil is inserted only into the output part of the inverter circuit 34, and L2 is when the common mode coil 69 in FIG. 4 is used. It shows. Further, (b) in FIG. 7 shows the improvement difference: L102-L2.
 図7中の(a)は図1の低電圧回路63のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L103はインバータ回路34の出力部にコモンモードコイルを入れない場合、L104はインバータ回路34の出力部のみに三相コモンモードコイルを挿入した場合、L3は図4のコモンモードコイル69の場合を示している。また、図7中の(b)は、差違:L104-L3を示している。 (a) in FIG. 7 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Also, L103 is when no common mode coil is inserted into the output part of the inverter circuit 34, L104 is when a three-phase common mode coil is inserted only into the output part of the inverter circuit 34, and L3 is when the common mode coil 69 in FIG. 4 is used. It shows. Further, (b) in FIG. 7 shows the difference: L104-L3.
 図6(b)、図7(b)は0より大きい程、ノイズが改善されていることを意味する。図6(b)から明らかな如く、図4の実施例のコモンモードコイル69の場合、入力側コモンモードコイル67と出力側コモンモードコイル66の磁気結合で、高電圧回路64のノイズが改善されている。また、図7(b)から明らかな如く、低電圧回路63のノイズも改善されている。これは高電圧回路64のノイズ改善で、低電圧回路63に及ぼす影響が抑制されたものと考えられる。 In FIGS. 6(b) and 7(b), the larger the value is than 0, the more the noise is improved. As is clear from FIG. 6(b), in the case of the common mode coil 69 of the embodiment shown in FIG. ing. Furthermore, as is clear from FIG. 7(b), the noise of the low voltage circuit 63 has also been improved. This is considered to be due to noise improvement in the high voltage circuit 64 and the influence on the low voltage circuit 63 being suppressed.
 以上のように本発明によれば、インバータ回路34の単相入力部に挿入された入力側コモンモードコイル67と、インバータ回路45の三相出力部に挿入された出力側コモンモードコイル66を設け、入力側コモンモードコイル67と出力側コモンモードコイル66を、共通コア68の一体構造としたので、ノイズ発生源であるインバータ回路45の入力側と出力側を磁気結合し、インピーダンスを高くすることができる。 As described above, according to the present invention, the input side common mode coil 67 inserted into the single-phase input part of the inverter circuit 34 and the output side common mode coil 66 inserted into the three-phase output part of the inverter circuit 45 are provided. Since the input side common mode coil 67 and the output side common mode coil 66 are integrated into the common core 68, the input side and output side of the inverter circuit 45, which is a noise generation source, are magnetically coupled and the impedance is increased. I can do it.
 これにより、モータ8とハウジング2間の浮遊容量、及び、インバータ回路34のスイッチング素子18とハウジング2間の浮遊容量を介して流出する全てのコモンモード電流を抑制し、コモンモードノイズの大幅な低減を図ることができるようになる。 This suppresses all common mode currents flowing out through the stray capacitance between the motor 8 and the housing 2 and the stray capacitance between the switching element 18 of the inverter circuit 34 and the housing 2, and significantly reduces common mode noise. You will be able to aim for
 また、入力側コモンモードコイル67と出力側コモンモードコイル66を磁気結合させているので、コア68が一つのみで対応可能であり、ターン数も削減できる。これにより、インバータ装置16がハウジング2のインバータ収容部6に収容され、小型化が必要な電動圧縮機1にとっては極めて優位なこととなる。更に、ノイズをハウジング2に漏らさない源流の対策であるので、高周波ノイズの抑制効果が高いものとなる。 Furthermore, since the input side common mode coil 67 and the output side common mode coil 66 are magnetically coupled, it is possible to use only one core 68, and the number of turns can also be reduced. As a result, the inverter device 16 is accommodated in the inverter accommodating portion 6 of the housing 2, which is extremely advantageous for the electric compressor 1 that needs to be downsized. Furthermore, since this is a source measure to prevent noise from leaking into the housing 2, the effect of suppressing high frequency noise is high.
 特に、図11の従来例の如くインバータ回路100において、三相出力のLCフィルタ回路のバイパスコンデンサ101の中点と入力フィルタ回路のバイパスコンデンサ102の中点を直接接合する回路を本発明では有さず、且つ、本発明では一体構造のコモンモードコイル69により、インバータ回路34から流出するコモンモード電流の経路が大きなインピーダンスを有する構造としたので、ノイズ低減効果を維持しつつ、沿面距離を必要とする多数のコンデンサを削除して、更なる小型化を図ることができるようになる。 In particular, in the inverter circuit 100 as in the conventional example shown in FIG. 11, the present invention does not include a circuit that directly connects the midpoint of the bypass capacitor 101 of the three-phase output LC filter circuit and the midpoint of the bypass capacitor 102 of the input filter circuit. First, in the present invention, the integrated common mode coil 69 has a structure in which the path of the common mode current flowing out from the inverter circuit 34 has a large impedance, so the creepage distance can be reduced while maintaining the noise reduction effect. By eliminating a large number of capacitors, further miniaturization can be achieved.
 また、実施例では入力側コモンモードコイル67の正極側と負極側の二線、及び、出力側コモンモードコイル66のUVW相の三線を、平行にコア68に対してペンタファイラ巻きしているので、インバータ回路34の入力側と出力側のコモンモードコイルを効果的に磁気結合することができるようになる。 In addition, in the embodiment, the two wires of the positive and negative poles of the input common mode coil 67 and the three wires of the UVW phase of the output common mode coil 66 are wound in parallel around the core 68 in a pentafilar manner. , the common mode coils on the input side and output side of the inverter circuit 34 can be effectively magnetically coupled.
 尚、実施例では入力側コモンモードコイル67のインダクタンスと出力側コモンモードコイル66のインダクタンス(コモンモードインダクタンス)を同一のLCM/4としたが、それに限らず、入力側コモンモードコイル67と出力側コモンモードコイル66が、異なるインダクタンス(コモンモードインダクタンス)を有するようにしてもよい。即ち、インバータ回路34の入力側のインピーダンスのみを増加させるために入力側コモンモードコイル67の巻回数を増やしてコモンモードインダクタンスを増加させてもよく、或いは、出力側のインピーダンスのみを増加させるために出力側コモンモードコイル66の巻回数を増やしてコモンモードインダクタンスを増加させてもよい。 In the embodiment, the inductance of the input side common mode coil 67 and the inductance of the output side common mode coil 66 (common mode inductance) are set to be the same L CM /4, but the invention is not limited to this. The side common mode coils 66 may have different inductances (common mode inductances). That is, in order to increase only the impedance on the input side of the inverter circuit 34, the number of turns of the input side common mode coil 67 may be increased to increase the common mode inductance, or in order to increase only the impedance on the output side. The common mode inductance may be increased by increasing the number of turns of the output side common mode coil 66.
 また、実施例ではDC300V程の高電圧バッテリから成る高電圧電源41と、DC12V程のバッテリから成る低電圧電源42を設け、この低電圧電源42から高電圧回路64側の直流電圧(HV15V、HV5V)を生成する場合で説明したが、それに限らず、高電圧電源41から直接高電圧回路64側の直流電圧(HV15V、HV5V)を生成するようにしてもよい。 In addition, in the embodiment, a high voltage power supply 41 consisting of a high voltage battery of about 300V DC and a low voltage power supply 42 consisting of a battery of about 12V DC are provided, and the DC voltage (HV15V, HV5V) from this low voltage power supply 42 to the high voltage circuit 64 side is ), but the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
 更に、実施例では電動圧縮機のモータを駆動するインバータ装置で本発明を説明したが、請求項1及び請求項2の発明ではそれに限らず、モータを駆動する種々のインバータ装置に適用可能である。更に、実施例で示した具体的な構成や数値はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能である。 Further, in the embodiments, the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 and 2 are not limited thereto, and can be applied to various inverter devices that drive the motor. . Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.
 1 電動圧縮機
 2 ハウジング
 3 仕切壁
 6 インバータ収容部
 8 モータ
 16 インバータ装置
 17 基板
 18 スイッチング素子
 34 インバータ回路
 36 制御回路
 41 高電圧電源
 42 低電圧電源
 66 出力側コモンモードコイル
 66U U相線
 66V V相線
 66W W相線
 67 入力側コモンモードコイル
 67H 正極線
 67L 負極線
 68 コア
 69 コモンモードコイル
1 Electric compressor 2 Housing 3 Partition wall 6 Inverter housing 8 Motor 16 Inverter device 17 Board 18 Switching element 34 Inverter circuit 36 Control circuit 41 High voltage power supply 42 Low voltage power supply 66 Output side common mode coil 66U U phase line 66V V phase Wire 66W W phase line 67 Input side common mode coil 67H Positive electrode line 67L Negative electrode line 68 Core 69 Common mode coil

Claims (6)

  1.  スイッチング素子より構成された三相のインバータ回路を備え、該インバータ回路によりモータを駆動するインバータ装置において、
     前記インバータ回路の単相入力部に挿入された入力側コモンモードコイルと、
     前記インバータ回路の三相出力部に挿入された出力側コモンモードコイルを備え、
     前記入力側コモンモードコイルと前記出力側コモンモードコイルが、共通コアの一体構造のコモンモードコイルとされていると共に、
     前記インバータ回路において、三相出力のLCフィルタ回路のバイパスコンデンサ中点と入力フィルタ回路のバイパスコンデンサ中点を直接接合する回路を有さず、
     前記一体構造のコモンモードコイルにより、前記インバータ回路から流出するコモンモード電流の経路がインピーダンスを有することを特徴とするインバータ装置。
    An inverter device comprising a three-phase inverter circuit configured with switching elements and driving a motor by the inverter circuit,
    an input side common mode coil inserted into the single-phase input section of the inverter circuit;
    comprising an output side common mode coil inserted in the three-phase output part of the inverter circuit,
    The input side common mode coil and the output side common mode coil are integrally structured common mode coils with a common core, and
    The inverter circuit does not have a circuit that directly connects the middle point of the bypass capacitor of the three-phase output LC filter circuit and the middle point of the bypass capacitor of the input filter circuit,
    An inverter device characterized in that a common mode current path flowing out from the inverter circuit has an impedance due to the integrated common mode coil.
  2.  前記入力側コモンモードコイルの正極側と負極側の二線、及び、前記出力側コモンモードコイルのUVW相の三線は前記コアに対してペンタファイラ巻きされていることを特徴とする請求項1に記載のインバータ装置。 According to claim 1, the two wires of the positive and negative poles of the input common mode coil and the three UVW phase wires of the output common mode coil are wound around the core in a pentafilar manner. The inverter device described.
  3.  前記入力側コモンモードコイルと前記出力側コモンモードコイルは、同一のコモンモードインダクタンスを有することを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the input side common mode coil and the output side common mode coil have the same common mode inductance.
  4.  前記入力側コモンモードコイルと前記出力側コモンモードコイルは、異なるコモンモードインダクタンスを有することを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein the input side common mode coil and the output side common mode coil have different common mode inductances.
  5.  前記モータが収容されるハウジングと、該ハウジングに構成されたインバータ収容部を備え、
     前記インバータ装置は、前記インバータ収容部に収容されると共に、前記ハウジングが前記スイッチング素子のヒートシンクとされていることを特徴とする請求項1乃至請求項4のうちの何れかに記載のインバータ装置を備えた電動圧縮機。
    comprising a housing in which the motor is housed, and an inverter housing part configured in the housing,
    The inverter device according to any one of claims 1 to 4, wherein the inverter device is accommodated in the inverter accommodating portion, and the housing serves as a heat sink for the switching element. Equipped with an electric compressor.
  6.  車両に搭載されることを特徴とする請求項5に記載の電動圧縮機。 The electric compressor according to claim 5, wherein the electric compressor is mounted on a vehicle.
PCT/JP2023/015932 2022-05-24 2023-04-21 Inverter device and electric compressor comprising same WO2023228641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084677 2022-05-24
JP2022084677A JP2023172700A (en) 2022-05-24 2022-05-24 Inverter device and motor compressor having the same

Publications (1)

Publication Number Publication Date
WO2023228641A1 true WO2023228641A1 (en) 2023-11-30

Family

ID=88919197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015932 WO2023228641A1 (en) 2022-05-24 2023-04-21 Inverter device and electric compressor comprising same

Country Status (2)

Country Link
JP (1) JP2023172700A (en)
WO (1) WO2023228641A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130575A (en) * 2003-10-22 2005-05-19 Yaskawa Electric Corp Noise filter and motor driving device
WO2011087045A1 (en) * 2010-01-13 2011-07-21 株式会社 東芝 Grid-tie inverter
JP2014082824A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Mechatronic drive apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130575A (en) * 2003-10-22 2005-05-19 Yaskawa Electric Corp Noise filter and motor driving device
WO2011087045A1 (en) * 2010-01-13 2011-07-21 株式会社 東芝 Grid-tie inverter
JP2014082824A (en) * 2012-10-15 2014-05-08 Mitsubishi Electric Corp Mechatronic drive apparatus

Also Published As

Publication number Publication date
JP2023172700A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR101911768B1 (en) Fluid machine
EP2162976B1 (en) Common mode & differential mode filter for variable speed drive
US11025141B2 (en) On-board electric compressor with a motor and noise reducing unit with inverter device having a damping unit reducing Q value of low pass filter circuit
US7161456B2 (en) Systems and methods for driving large capacity AC motors
KR101843375B1 (en) Vehicle inveter device and motor-driven compressor
US10879773B2 (en) On-vehicle motor-driven compressor
KR20180083255A (en) On-board fluid machine
KR20190114830A (en) On-vehicle motor-driven compressor
US10978981B2 (en) Drive apparatus for electric motor and air conditioner
CN116530005A (en) Power conversion device
WO2023228641A1 (en) Inverter device and electric compressor comprising same
JP7454952B2 (en) Noise filters and power converters
JP5443999B2 (en) Common mode and differential mode filters for variable speed drives
JP2012124985A (en) Refrigeration apparatus
WO2023228640A1 (en) Inverter device and electric compressor equipped therewith
WO2023228642A1 (en) Inverter device and electric compressor comprising same
WO2023228639A1 (en) Inverter device and electric compressor provided with same
EP3591829B1 (en) Power conversion device
JP3667962B2 (en) Leakage current suppression circuit
JP2012010500A (en) Refrigerating device
WO2024024355A1 (en) Common mode coil, inverter device, and electric compressor
JP6491761B2 (en) Power conversion circuit
US20230268811A1 (en) Motor-driven compressor
WO2023176281A1 (en) Power conversion apparatus
CN114208007B (en) Circuit body and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811519

Country of ref document: EP

Kind code of ref document: A1