WO2021229632A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021229632A1
WO2021229632A1 PCT/JP2020/018783 JP2020018783W WO2021229632A1 WO 2021229632 A1 WO2021229632 A1 WO 2021229632A1 JP 2020018783 W JP2020018783 W JP 2020018783W WO 2021229632 A1 WO2021229632 A1 WO 2021229632A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
common mode
power conversion
phase
correction amount
Prior art date
Application number
PCT/JP2020/018783
Other languages
French (fr)
Japanese (ja)
Inventor
将幸 大石
友一 坂下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/018783 priority Critical patent/WO2021229632A1/en
Priority to JP2022522093A priority patent/JP7241970B2/en
Publication of WO2021229632A1 publication Critical patent/WO2021229632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This application relates to a power conversion device.
  • the common mode voltage defined by the average value of each output end voltage fluctuates due to the switching of the power device. Further, due to the fluctuation of the common mode voltage, the common mode current flows in the common mode path formed by the power conversion circuit and the loop of stray capacitance to ground.
  • the common mode voltage causes bearing electrolytic corrosion that shortens the life of the device, and the common mode current causes induction failure that causes the peripheral electronic circuits to malfunction.
  • the common mode voltage generated by the power conversion circuit is detected, and the compensation voltage is calculated by the arithmetic circuit composed of active elements such as operational amplifiers and bipolar transistors to obtain the common mode voltage.
  • a common mode filter circuit has been proposed in which a voltage having a compensation waveform of opposite phase is injected and canceled.
  • a capacitor dividing circuit is used to extract and detect a common mode voltage from a three-phase power line
  • an amplifier circuit using a bipolar transistor amplifies the detected voltage
  • a transformer with an injection auxiliary winding is used.
  • a method of injecting a voltage of the opposite phase to the common mode voltage has been proposed.
  • the common mode voltage can be completely canceled by injecting a voltage having a compensation waveform that is out of phase and has the same amplitude with respect to the common mode voltage generated by the power conversion circuit.
  • the present application discloses a technique for solving the above-mentioned problems, and an object thereof is to obtain a common mode filter circuit in which the residual common mode voltage is small even if the environment changes or the component characteristics vary. do.
  • the power conversion device disclosed in the present application is included in a power conversion circuit that converts power between DC and AC by switching the power device on and off, and an AC voltage on the AC side of this power conversion circuit.
  • a compensating voltage generator that generates a common mode compensating voltage for canceling the common mode voltage
  • a compensating voltage injector that superimposes the common mode compensating voltage generated by the compensating voltage generator on the AC voltage, and the common.
  • a power conversion device including a voltage detector for detecting a common mode voltage included in the AC voltage on which a mode compensation voltage is superimposed, and a common mode filter circuit having the mode compensation voltage generator.
  • Drive information including information that can recognize the on state of the power device constituting the conversion circuit is acquired before the timing at which the power device is switched on, and the acquired drive information and the phase correction amount for correcting the phase are obtained.
  • at least one of the amplitude correction amounts for correcting the amplitude is configured to calculate and generate the common mode compensation voltage, and further, each time the drive information changes, it is detected by the voltage detector. It is configured to calculate the common mode compensation voltage by updating at least one of the phase correction amount and the amplitude correction amount so that the common mode voltage is reduced.
  • a power conversion device having a small residual common mode voltage can be obtained even if the environment changes or the component characteristics vary.
  • FIG. It is a block diagram which shows the structure of the power conversion apparatus by Embodiment 1.
  • FIG. It is a circuit diagram for demonstrating the generation principle of the common mode voltage of a power conversion circuit 1. It is a figure which shows the equivalent circuit of a common mode path. It is a diagram for demonstrating the common mode voltage when a phase delay occurs. It is a diagram for demonstrating the common mode voltage when an amplitude error occurs. It is a diagram for demonstrating the operation of the power conversion apparatus according to Embodiment 1.
  • FIG. It is a block diagram which shows an example of the structure of the common mode filter circuit of the power conversion apparatus according to Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the power conversion apparatus by Embodiment 2.
  • FIG. It is a figure for demonstrating the operation of the power conversion apparatus by Embodiment 2.
  • FIG. It is a figure for demonstrating another operation of the power conversion apparatus according to Embodiment 2.
  • FIG. It is a circuit diagram which shows an example of the structure of the power conversion circuit of the power conversion apparatus according to Embodiment 3. It is a circuit diagram which shows another example of the structure of the power conversion circuit of the power conversion apparatus according to Embodiment 3.
  • FIG. 1 is a block diagram showing a configuration of a power conversion device according to the first embodiment.
  • the power conversion device 100 includes a power conversion circuit 1 that converts direct current into alternating current, and a common mode filter circuit 3 that provides a common mode compensation voltage for canceling the common mode voltage.
  • the power conversion circuit 1 includes a capacitance component such as a DC capacitor and a power device which is a switching element.
  • the power conversion device 100 supplies power to the compensation target 2 such as a power system or a load (for example, a motor). Alternatively, it receives power from the compensation target 2.
  • the common mode filter circuit 3 includes a compensation voltage generator 10 that generates a common mode compensation voltage, a compensation voltage injector 104 that injects a common mode compensation voltage and superimposes it on an AC voltage output from the power conversion circuit 1, and a common mode.
  • a voltage detector 101 for detecting a voltage is provided.
  • the compensation voltage generator 10 has a control circuit 102 and an amplifier circuit 103.
  • the power conversion circuit 1 is configured to convert a DC voltage on the input side into an AC voltage and output it by switching the power device on and off.
  • the control circuit 102 acquires the drive information 105 that can recognize the on state of the power device of the power conversion circuit 1.
  • the voltage detector 101 is a method of detecting a common mode voltage using a capacitor voltage divider circuit
  • the compensation voltage injector 104 is a method of injecting a common mode compensation voltage via a three-phase transformer with an auxiliary winding. This method will be described as an example.
  • FIG. 2 is a circuit diagram for explaining the generation principle of the common mode voltage of the power conversion circuit 1 which is a noise source.
  • the power conversion circuit 1 is a three-phase full bridge conversion circuit in which three connections in which the upper arm and the lower arm are connected in series are connected in parallel to a DC power supply, and are used as an AC voltage to be output. The case of three phases will be described as an example.
  • Each arm is composed of a power device T in which a switching element and a diode are connected in antiparallel.
  • the neutral point of the DC capacitor on the input side of the power conversion circuit 1 is set as the ground point.
  • the common mode voltage included in the AC voltage output by the three-phase inverter that is the power conversion circuit 1 is obtained by the average value of each phase output voltage
  • the DC capacitor voltage is Vdc and the number of on-elements of the power device of the upper arm is N.
  • the common mode voltage is expressed as (N / 3-1 / 2) ⁇ Vdc. Therefore, by sending information on the number of on elements N of the upper arm and the DC capacitor voltage Vdc as drive information from the power conversion circuit 1 to the control circuit 102, the control circuit 102 cancels the common mode voltage by the common mode filter circuit 3
  • the common mode compensation voltage to be injected can be calculated immediately.
  • the common mode voltage (N / 3-1 / 2) ⁇ Vdc is calculated in the control circuit 102, the calculation result is output from the amplifier circuit 103, and the auxiliary winding of the transformer of the compensation voltage injector 104 is performed. It is applied to the wire, and a common mode compensating voltage (also simply referred to as a compensating voltage) having the same polarity and amplitude as the common mode voltage is injected into each phase.
  • the reverse polarity of the waveform can be realized by arithmetic processing by the arithmetic circuit 103 or by applying a polarizing transformer to the compensating voltage injector 104.
  • a compensating voltage having the same amplitude can be output with respect to the common mode voltage. ..
  • the above compensation completely cancels the common mode voltage generated by the power conversion circuit 1.
  • an inverting amplifier circuit using an operational amplifier, a non-inverting amplifier circuit, an emitter follower circuit using a bipolar transistor, or the like is used for the amplifier circuit 103, the gain characteristics and phase characteristics of the input / output are practically component-specific. There is frequency dependence.
  • the gain or phase characteristics may change in the operating state due to variations in peripheral components of the amplifier circuit 103 and changes in temperature.
  • the transformer of the compensation voltage injector 104 is affected by the leakage inductance, and the amplitude of the output voltage is lowered with respect to the theoretical value obtained by the turns ratio. Due to these factors, the voltage injected by the compensating voltage injector 104 has a deviation from the common mode voltage generated by the power conversion circuit 1, so that the common mode voltage remains.
  • FIG. 3 is a diagram showing a common mode path by an equivalent circuit.
  • the common mode path can be simulated by an LC series resonant circuit having a voltage source, wiring inductance, and stray capacitance to ground between the power conversion circuit 1 and the common mode filter circuit 3.
  • the common mode voltage included in the output voltage of the power conversion circuit 1 is Vnoise
  • FIG. 4 schematically illustrates Vnoise,-Vfilt, and Vnoise + Vfilt when a phase delay occurs.
  • the larger the phase delay amount t1 Tph_delay, the wider the time width of the step voltage of Vnoise + Vfilt, and the larger the effective value of the remaining common mode voltage.
  • the voltage vibration amplitude generated in the LC series resonant circuit shown in FIG. 3 becomes large.
  • the width of the voltage step generated by the phase delay is sufficiently small for the carrier period and increases only the common mode voltage of the high frequency component with respect to the carrier frequency.
  • FIG. 5 schematically shows Vnoise, -Vfilt, and Vnoise + Vfilt when an amplitude error occurs.
  • the sum of the voltages of the power conversion circuit 1 and the common mode filter circuit 3 Vnoise + Vfilt does not become zero, has a time width from the change of the common mode voltage to the next change, and is determined by the amount of amplitude error.
  • a step voltage of voltage amplitude is generated. Since this step voltage includes low frequency components such as carrier frequency components, it becomes a residual factor of not only high frequency but also low frequency common mode voltage.
  • the output voltage command of the common mode filter circuit 3 is given by KN ⁇ Kp ⁇ Vdc.
  • KN is (N / 3-1 / 2) described above, and is changed step by step at the timing when the N value changes, that is, at the timing when the common mode voltage changes.
  • Kp is an amplitude error correction term (also referred to as an amplitude correction amount).
  • phase correction will be described. Adjust the timing to change the KN so that the timing of the change in the common mode compensation voltage actually injected matches the change timing of the common mode voltage included in the AC voltage output from the power conversion circuit 1, that is, phase correction. do.
  • the control circuit 102 Based on the drive information 105, the control circuit 102 actually switches the N value in the power conversion circuit 1, that is, the timing tbefore ( ⁇ 0s) before the time when the on state of the power device constituting the power conversion circuit 1 is switched.
  • Get N value Nf1 with.
  • Arbitrary delay can be given by setting Nf2 to the N value that changes with a delay of the phase correction amount T delay that is arbitrarily set for the change of the acquired N value of Nf1, and the phase can be adjusted freely. It is possible.
  • Nf1 acquired at the timing before tbefore is delayed by the arbitrarily set Tdelay, and Nf2 is set to set KN.
  • the output voltage command KN ⁇ Kp ⁇ Vdc which is the compensation voltage injected by the compensation voltage injector 104, is calculated, this compensation voltage is injected from the compensation voltage injector 104, and the compensation voltage is output from the power conversion circuit 1.
  • superimpose on voltage When the common mode voltage on which the compensation voltage is superimposed is detected by the voltage detector 101, a waveform as shown in the lowermost stage of FIG. 6 is detected. That is, voltage vibration occurs when KN changes.
  • the Tdelay is changed, the voltage vibration amplitude detected by the voltage detector 101 changes.
  • the optimum T delay can be obtained by searching for a T delay in which the voltage vibration amplitude detected by the voltage detector 101 is minimized while changing the phase correction amount T delay.
  • the phase delay amount Tph_delay from the common mode voltage generated in the power conversion circuit 1 of the common mode compensation voltage injected by the compensation voltage injector 104 is minimized to the compensation target 2. It is possible to suppress the high frequency common mode voltage in the supplied AC voltage.
  • the mountain climbing method can be used as an example of the method for determining T delay.
  • the maximum value Vpp_t0 of the voltage vibration amplitude detected by the voltage detector 101 when the N value changes at time t0 and the common mode voltage changes and then the N value changes at time t1 and the common mode voltage Compare the maximum value Vpp_t1 of the voltage vibration amplitude when is changed, and update the T delay by increasing or decreasing the value ⁇ T delay smaller than the T delay so that the maximum value of the voltage vibration amplitude continues to decrease.
  • the Tdelay is changed by ⁇ Tdelay with the same polarity as the previous time, and if the maximum value of the voltage vibration amplitude increases, the Tdelay is changed by ⁇ Tdelay with the opposite polarity from the previous time.
  • the N value changes that is, every time the drive information changes and the common mode voltage changes
  • the T delay is updated and continuously changing, so that the T delay value settles near the optimum value.
  • the value of ⁇ T delay does not have to be a fixed value, and the value may be changed according to the situation of the optimum value search.
  • the phase delay amount is minimized even if the optimum phase correction amount changes due to changes in the surrounding environment. Can be transformed into. As a result, it becomes possible to reduce the residual amount of the high frequency component of the common mode voltage.
  • the T delay is always changed by ⁇ T delay, but if the maximum value of the voltage vibration amplitude after updating the T delay becomes the predetermined value Vppmin or less, the T delay may be fixed. In this case, it is determined whether the maximum value of the voltage vibration amplitude is Vppmin or less each time the N value changes, and if it becomes larger than Vppmin, the T delay is changed again by ⁇ T delay so that the maximum value of the voltage vibration amplitude becomes Vppmin or less. It should be.
  • Kp is an amplitude correction amount for correcting the amplitude error of the common mode compensation voltage, and is also referred to as gain Kp.
  • the gain of the amplifier circuit 103 changes and an amplitude error of the common mode compensation voltage occurs, as shown in the diagram at the bottom of FIG. 6, the N value changes to cause the common mode.
  • the amplitude deviation remains even after the voltage vibration convergence that occurs when the voltage changes. Therefore, the gain Kp is updated to update the amplitude of the compensation voltage so as to reduce the amplitude deviation after the voltage vibration converges.
  • the common mode voltage value V_t3 immediately before the N value changes from 0 to 1 and the common mode voltage changes, and then immediately before the N value changes from 1 to 2 and the common mode voltage changes. Compare the common mode voltage value V_t4 of, and increase or decrease Kp by ⁇ Kp so that the common mode voltage value at the latest time continues to decrease. If the common mode voltage value decreases due to the update of Kp, Kp is changed by ⁇ Kp with the same polarity as the previous time, and if the common mode voltage value increases due to the update of Kp, Kp is changed by ⁇ Kp with the opposite polarity from the previous time.
  • ⁇ Kp does not have to be a fixed value, and may be switched depending on the situation of the optimum value search. Even if the optimum gain (amplitude correction amount) changes due to the influence of the surrounding environment, the optimum value can be updated in real time. As a result, it becomes possible to suppress the low frequency component of the common mode voltage.
  • the compensation voltage is calculated in advance by acquiring the switching drive information from the power conversion circuit 1 in advance and restoring the common mode voltage by the compensation voltage generator 10 in the common mode filter circuit 3. can. Therefore, it can be expected that the characteristics of the high frequency compensation characteristics will be improved as compared with the conventional method in which the compensation voltage is calculated after the common mode voltage is detected.
  • Kp and Tdelay were optimized using the mountain climbing method, but the optimization method is not limited to this, and a constant optimization method using machine learning represented by a neural network can be applied.
  • FIG. 7 can be considered as an example of the control circuit 102.
  • the control circuit 102 includes an AD converter 201, a digital arithmetic unit 202, and a DA converter 203.
  • the AD converter 201 converts the analog signal obtained from the voltage detector 101 into a digital signal, performs arithmetic processing of the compensation waveform with the digital arithmetic apparatus 202 incorporating the amplitude correction and phase correction algorithms described above, and performs DA conversion.
  • the compensation waveform is output to the amplifier circuit 103 by the device 203. Kp and Tdelay can be easily realized by updating the values of variables in the digital arithmetic unit 202, and can be implemented without increasing the circuit scale.
  • FPGA Field Program Gate Array
  • ASIC Application Specific Integrated Circuit
  • the control circuit 102 can switch the gain (amplitude correction amount) and the phase correction amount, and holds the gain (amplitude correction amount), the phase correction amount, the voltage vibration amplitude of the common mode voltage, and the steady value after the vibration convergence. If there is a function to compare with the value, it may be mounted only in the analog circuit or in combination with the digital circuit and the analog circuit.
  • the communication signal of the drive information 105 from the power conversion circuit 1 to the control circuit 102 may be an analog signal or a digital signal.
  • This signal includes the number of on elements N of the upper arm of the power conversion circuit as drive information 105.
  • the number N of on-elements of the upper arm here means that the gate of the switching element as a power device in the power conversion circuit is on, and the feedback diode as a power device is currented during the dead time period. Including the state of flowing. Whether the current flows through the elements of the upper arm or the lower arm during the dead time is determined by the polarity of the output current.
  • the drive information 105 may include the number of gate-on signals, the dead time, and the current polarity of each phase, and N may be calculated in the control circuit 102. That is, the drive information 105 needs to include at least information that can recognize the on state of the power device constituting the power conversion circuit 1.
  • the amplifier circuit 103 is assumed to be an inverting amplifier circuit and a non-inverting amplifier circuit using an operational amplifier, an emitter follower circuit using a bipolar transistor, or a circuit in which both are combined according to the compensation band and the injection power. This is not the case if there is a function to amplify the signal. It is desirable that the drive information 105 also includes a Vdc signal from the viewpoint of initial responsiveness, but by updating the gain constant, it is possible to create a pseudo state in which Vdc is reflected in the gain value. Therefore, it may be omitted.
  • the control circuit 102 shown in FIG. 1 is assumed to be designed exclusively for the common mode filter circuit 3, but is not limited to the control circuit 102, and is not limited to the control circuit 102.
  • the control circuit 102 of the circuit 3 may be built in.
  • FIG. 8 is a block diagram showing the configuration of the power conversion device 100 according to the second embodiment.
  • the second embodiment a method for improving the common mode voltage compensation characteristic in all frequency ranges by freely setting the amplitude correction amount and the phase correction amount in an arbitrary frequency band will be described.
  • the common mode filter circuit 3 the optimum gain Kp and the optimum phase correction amount T delay differ depending on the frequency band.
  • the gain and phase delay amount in the low frequency region and the high frequency region are generally very different. Therefore, the frequency band that compensates for the common mode voltage is divided into n, and Kp and T delay suitable for each frequency band are set and controlled.
  • the gain characteristics and the phase characteristics when the frequency band to be compensated is divided into three and the Kp optimization processing is not performed and the optimization processing is performed will be described with reference to FIGS. 8 and 9.
  • the common mode voltage KN ⁇ Kp ⁇ Vdc is restored by using the drive information 105 obtained from the power conversion circuit 1.
  • the restored common mode voltage is divided into each of the three frequency bands as the common mode voltage in the frequency bands f1 to f4 to be compensated.
  • the restored common mode voltage KN ⁇ Kp ⁇ Vdc is divided by applying the filters Filt1, Filt2, and Filt3 limited to the frequency bands f1 to f2, f2 to f3, and f3 to f4, respectively, in the output filter 302.
  • f1, f2, f3, and f4 can be set arbitrarily, it is desirable to provide them at a point where the phase or gain characteristics change by a certain amount. In FIG.
  • the output filter 302 is arranged between the control circuit 102 and the amplifier circuit 103, but the output filter 302 may be arranged in the control circuit 102 or between the amplifier circuit 103 and the compensation voltage injector 104. good.
  • the Tdelay and Kp update algorithms described in Embodiment 1 are executed to update Tdelay1 and Kp1, Tdelay2 and Kp2, and Tdelay3 and Kp3. By synthesizing the compensation waveforms for each frequency band, the waveform of the common mode compensation voltage can be obtained.
  • the detection waveform is also divided into three frequency bands f1 to f2, f2 to f3, and f3 to f4 by using an input filter 301 that limits the frequency band with respect to the voltage waveform detected by the voltage detector 101.
  • the detection waveform of each frequency band is obtained.
  • the input filter 301 is arranged between the voltage detector 101 and the control circuit 102, but the input filter 301 may be arranged in the control circuit 102.
  • the common mode voltage of each frequency band is described so as to minimize the voltage vibration amplitude or the deviation of the amplitude when the N value changes and the common mode voltage changes in each frequency band.
  • the common mode voltage of multiple frequency bands is selectively reduced.
  • the power source of the power conversion circuit 1 is a three-phase diode rectifier circuit
  • the negative potential of the power conversion circuit fluctuates with a frequency component three times the system frequency (150 Hz or 180 Hz), so that the carrier A low frequency common mode voltage is generated with respect to the frequency.
  • the common mode voltage of the low frequency component it becomes a problem to increase the capacity of the amplifier circuit 103 or the size of the transformer in order to magnetize the transformer of the compensation voltage injector 104.
  • the component three times the system frequency since it has a large impedance due to the stray capacitance on the common mode path, it is difficult to contribute to the increase of the common mode current, and it may be excluded from the compensation target.
  • the deviation amount of the target common mode voltage should be completely reduced to zero. Allow a certain amount of width and lower the gain by freely selecting the compensation level.
  • the amplifier circuit 103, the compensating voltage injector 104, and the voltage detector 101 do not need the characteristics in the low frequency region, so that the size of the common mode filter circuit 3 can be prevented from increasing.
  • the number of divisions of the frequency band shown in FIGS. 9 and 10 is set to 3, but the number of divisions is not limited to this, and a plurality of divisions (n ⁇ 2) can be freely set. Further, the phase and gain division frequency ranges may be set individually.
  • Embodiment 3 In the first embodiment and the second embodiment, as the power conversion circuit 1, the power conversion circuit that outputs three-phase alternating current by the three-phase full bridge conversion circuit having the upper and lower arms shown in FIG. 2 has been described as an example. However, the technique disclosed in the present application is not limited to this, as long as it is a power conversion circuit in which a common mode voltage is generated in a power conversion circuit that converts a DC voltage into an AC voltage by switching the power device on and off. It is applicable not only to a full bridge circuit or a power conversion circuit that outputs a three-phase alternating current. In the third embodiment, a method of compensating for the common mode voltage when the power conversion circuit 1 is not a three-phase full bridge conversion circuit will be described.
  • N_phase N_phase is an integer of 2 or more
  • the common mode voltage is calculated by the average value of each phase output terminal voltage and can be described as (N / N_phase-1 / 2) ⁇ Vdc.
  • N indicates the number of on elements of the upper arm, and the relational expression of 0 ⁇ N ⁇ N_phase is established.
  • N_phase is an integer of 2 or more
  • N_phase is an integer of 2 or more
  • the output terminal voltage of + 1 / 2Vdc is obtained by turning on the power devices T1 and T2, 0 by turning on the power devices T2 and T3, and -1 / 2Vdc by turning on the power devices T3 and T4. Therefore, the output terminal voltage can be calculated using the gate signal information.
  • the output terminal voltage of any 1-phase 3-level conversion circuit can be calculated by (N 1 / 2-1 / 2) ⁇ Vdc.
  • N l is an integer of 0 ⁇ N l ⁇ 2, and is determined by the switching pattern of the conversion circuit. Therefore, it is obtained by giving the gate information to the control device 102.
  • the common mode voltage is It can be calculated with.
  • an arbitrary one-phase M-level conversion circuit is assumed.
  • the M-level conversion circuit is equipped with M-1 DC capacitors and controls the output terminal voltage by turning on the desired power device.
  • the output terminal voltage can be calculated as (N 1 / (M-1) -1 / 2) ⁇ Vdc.
  • the common mode voltage is It can be calculated with. Since the common mode voltage changes at the timing when N l of any one phase changes, By performing phase correction or gain correction (amplitude correction) for KN according to the change in N l , the residual amount of common mode voltage can be reduced by the same algorithm as in the first and second embodiments. ..
  • the technique disclosed in the present application can be applied to a multi-level conversion circuit having a single-phase, three-phase, and more phase number.
  • the diode clamp type multi-level conversion circuit has been shown and described, but this is not the case as long as the common mode voltage can be calculated from the drive information.
  • a multi-level conversion circuit in which a full-bridge conversion circuit and a unit conversion circuit having a DC capacitor are connected in multiple series a multi-level conversion circuit in which a half-bridge conversion circuit and a unit conversion circuit having a DC capacitor are connected in multiple series, and a multi-level conversion circuit having different capacities.
  • the technique disclosed in the present application can also be applied to a multi-level conversion circuit using a gradation method in which conversion circuits are connected in multiple series.
  • the power conversion circuit 1 has been described with the operation of using the DC side as an input and the AC side as an output, but the operation of converting AC to DC is also disclosed in the present application. The technology is applicable.
  • the compensating voltage generator acquires the drive information including the information that can recognize the on state of the power device constituting the power conversion circuit before the timing when the power device is switched on, and the acquired drive information and the acquired drive information. It is configured to calculate and generate a common mode compensation voltage using at least one of the phase correction amount that corrects the phase and the amplitude correction amount that corrects the amplitude, and further, the voltage is generated each time the drive information changes. If at least one of the phase correction amount and the amplitude correction amount is configured to be updated so that the common mode voltage detected by the detector is reduced, the effects described in the first and second embodiments can be obtained. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A compensation voltage generator (10) generates a common mode compensation voltage for canceling a common mode voltage included in AC voltage on the AC side of a power conversion circuit (1) for performing power conversion between DC and AC. The compensation voltage generator (10) is configured so as to obtain, before a timing at which the power device is switched to on, drive information including information by which the on-state of a power device of the power conversion circuit (1) can be acknowledged and calculate and generate the common mode compensation voltage using the obtained drive information and at least one of a phase correction amount for correcting a phase and an amplitude correction amount for correcting an amplitude. The compensation voltage generator (10) is further configured so as to update at least one of the phase correction amount and the amplitude correction amount so that the detected common mode voltage decreases each time when the drive information changes.

Description

電力変換装置Power converter
 本願は、電力変換装置に関する。 This application relates to a power conversion device.
 近年、電力変換装置に用いられる電力変換回路には、自己消弧形のパワーデバイスをオン・オフスイッチングさせ、出力電圧の平均値を制御することで任意波形を生成する方式が一般的に使用されている。電力変換回路は、パワーデバイスのスイッチングに起因して各出力端電圧の平均値で定義されるコモンモード電圧が変動する。また、このコモンモード電圧の変動に起因して電力変換回路と対地間浮遊容量のループで形成されるコモンモード経路にコモンモード電流が流れる。誘導機駆動システムにおいてコモンモード電圧は装置寿命低下を招く軸受電食の要因となり、コモンモード電流は周辺の電子回路を誤動作させる誘導障害の要因となる。 In recent years, in the power conversion circuit used in a power conversion device, a method of generating an arbitrary waveform by switching on and off a self-extinguishing power device and controlling the average value of the output voltage is generally used. ing. In the power conversion circuit, the common mode voltage defined by the average value of each output end voltage fluctuates due to the switching of the power device. Further, due to the fluctuation of the common mode voltage, the common mode current flows in the common mode path formed by the power conversion circuit and the loop of stray capacitance to ground. In the induction machine drive system, the common mode voltage causes bearing electrolytic corrosion that shortens the life of the device, and the common mode current causes induction failure that causes the peripheral electronic circuits to malfunction.
 このコモンモード電圧による問題を改善するために、電力変換回路の発生するコモンモード電圧を検出し、オペアンプ、バイポーラトランジスタなどの能動素子から構成される演算回路で補償電圧を演算し、コモンモード電圧に対し逆相の補償波形の電圧を注入し相殺するコモンモードフィルタ回路が提案されている。例えば非特許文献1では、コンデンサ分圧回路を用いて三相の電力線からコモンモード電圧を抽出して検出し、バイポーラトランジスタを用いた増幅回路で検出電圧を増幅し、注入補助巻き線付きのトランスを用いてコモンモード電圧に対して逆相の電圧を注入する方式が提案されている。電力変換回路の発生するコモンモード電圧に対し、逆相かつ振幅が同じ補償波形の電圧を注入することで原理的にはコモンモード電圧を完全に打ち消すことができる。 In order to improve the problem caused by this common mode voltage, the common mode voltage generated by the power conversion circuit is detected, and the compensation voltage is calculated by the arithmetic circuit composed of active elements such as operational amplifiers and bipolar transistors to obtain the common mode voltage. On the other hand, a common mode filter circuit has been proposed in which a voltage having a compensation waveform of opposite phase is injected and canceled. For example, in Non-Patent Document 1, a capacitor dividing circuit is used to extract and detect a common mode voltage from a three-phase power line, an amplifier circuit using a bipolar transistor amplifies the detected voltage, and a transformer with an injection auxiliary winding is used. A method of injecting a voltage of the opposite phase to the common mode voltage has been proposed. In principle, the common mode voltage can be completely canceled by injecting a voltage having a compensation waveform that is out of phase and has the same amplitude with respect to the common mode voltage generated by the power conversion circuit.
 しかし、検出回路、注入回路、増幅回路を構成する部品に存在する固有の周波数特性あるいは回路の実装状況によって決定される寄生成分の影響により入出力に位相遅延が発生するため、コモンモードフィルタ回路には完全な逆相成分を注入できずコモンモード電圧が残留してしまい、また、ある周波数帯のコモンモード電圧は増幅してしまう。さらに、演算回路を構成する抵抗、容量、に加え注入回路のトランスの磁性材料は温度変化、部品バラツキなどで特性が変化するため、所望のゲインが得られずコモンモード電圧が残留してしまうことが課題となっていた。 However, since a phase delay occurs in the input and output due to the influence of the parasitic component determined by the unique frequency characteristics existing in the components constituting the detection circuit, injection circuit, and amplifier circuit or the mounting condition of the circuit, it is used in the common mode filter circuit. Cannot inject a perfect reverse phase component, the common mode voltage remains, and the common mode voltage in a certain frequency band is amplified. Furthermore, in addition to the resistance and capacitance that make up the arithmetic circuit, the characteristics of the magnetic material of the transformer of the injection circuit change due to temperature changes, component variations, etc., so the desired gain cannot be obtained and the common mode voltage remains. Was an issue.
 本願は、上記の問題点を解決するための技術を開示するものであり、環境の変化あるいは部品特性のばらつきがあっても、コモンモード電圧の残留が少ないコモンモードフィルタ回路を得ることを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and an object thereof is to obtain a common mode filter circuit in which the residual common mode voltage is small even if the environment changes or the component characteristics vary. do.
 本願に開示される電力変換装置は、パワーデバイスをオン・オフしてスイッチングすることにより直流と交流との間で電力変換する電力変換回路、および、この電力変換回路の交流側の交流電圧に含まれるコモンモード電圧を打ち消すためのコモンモード補償電圧を発生する補償電圧発生器と、この補償電圧発生器で発生された前記コモンモード補償電圧を前記交流電圧に重畳させる補償電圧注入器と、前記コモンモード補償電圧が重畳された前記交流電圧に含まれるコモンモード電圧を検出する電圧検出器と、を有するコモンモードフィルタ回路、を備えた電力変換装置であって、前記補償電圧発生器は、前記電力変換回路を構成するパワーデバイスのオンの状態を認知できる情報を含む駆動情報を、前記パワーデバイスがオンに切り替わるタイミングよりも前に取得し、取得した前記駆動情報と、位相を補正する位相補正量および振幅を補正する振幅補正量の少なくとも一方と、を用いて前記コモンモード補償電圧を演算して発生させるよう構成されており、さらに、前記駆動情報が変化する毎に、前記電圧検出器により検出されるコモンモード電圧が減少するように、前記位相補正量および前記振幅補正量の少なくとも一方を更新して前記コモンモード補償電圧を演算するよう構成されているものである。 The power conversion device disclosed in the present application is included in a power conversion circuit that converts power between DC and AC by switching the power device on and off, and an AC voltage on the AC side of this power conversion circuit. A compensating voltage generator that generates a common mode compensating voltage for canceling the common mode voltage, a compensating voltage injector that superimposes the common mode compensating voltage generated by the compensating voltage generator on the AC voltage, and the common. A power conversion device including a voltage detector for detecting a common mode voltage included in the AC voltage on which a mode compensation voltage is superimposed, and a common mode filter circuit having the mode compensation voltage generator. Drive information including information that can recognize the on state of the power device constituting the conversion circuit is acquired before the timing at which the power device is switched on, and the acquired drive information and the phase correction amount for correcting the phase are obtained. And at least one of the amplitude correction amounts for correcting the amplitude, is configured to calculate and generate the common mode compensation voltage, and further, each time the drive information changes, it is detected by the voltage detector. It is configured to calculate the common mode compensation voltage by updating at least one of the phase correction amount and the amplitude correction amount so that the common mode voltage is reduced.
 本願に開示される電力変換装置によれば、環境の変化あるいは部品特性のばらつきがあっても、コモンモード電圧の残留が少ない電力変換装置が得られる。 According to the power conversion device disclosed in the present application, a power conversion device having a small residual common mode voltage can be obtained even if the environment changes or the component characteristics vary.
実施の形態1による電力変換装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion apparatus by Embodiment 1. FIG. 電力変換回路1のコモンモード電圧の発生原理を説明するための回路図である。It is a circuit diagram for demonstrating the generation principle of the common mode voltage of a power conversion circuit 1. コモンモード経路の等価回路を示す図である。It is a figure which shows the equivalent circuit of a common mode path. 位相遅延が発生した場合のコモンモード電圧を説明するための線図である。It is a diagram for demonstrating the common mode voltage when a phase delay occurs. 振幅誤差が発生した場合のコモンモード電圧を説明するための線図である。It is a diagram for demonstrating the common mode voltage when an amplitude error occurs. 実施の形態1による電力変換装置の動作を説明するための線図である。It is a diagram for demonstrating the operation of the power conversion apparatus according to Embodiment 1. FIG. 実施の形態1による電力変換装置のコモンモードフィルタ回路の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the common mode filter circuit of the power conversion apparatus according to Embodiment 1. FIG. 実施の形態2による電力変換装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power conversion apparatus by Embodiment 2. FIG. 実施の形態2による電力変換装置の動作を説明するための図である。It is a figure for demonstrating the operation of the power conversion apparatus by Embodiment 2. FIG. 実施の形態2による電力変換装置の別の動作を説明するための図である。It is a figure for demonstrating another operation of the power conversion apparatus according to Embodiment 2. FIG. 実施の形態3による電力変換装置の電力変換回路の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the power conversion circuit of the power conversion apparatus according to Embodiment 3. 実施の形態3による電力変換装置の電力変換回路の構成の他の例を示す回路図である。It is a circuit diagram which shows another example of the structure of the power conversion circuit of the power conversion apparatus according to Embodiment 3.
 以下、各実施の形態による電力変換装置について、図面を参照しながら説明する。図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。 Hereinafter, the power conversion device according to each embodiment will be described with reference to the drawings. In the drawings, those having the same reference numerals are the same or equivalent thereof, and are common to all the texts of the embodiments described below.
実施の形態1.
 図1は、実施の形態1による電力変換装置の構成を示すブロック図である。電力変換装置100は、直流を交流に変換する電力変換回路1と、コモンモード電圧を打ち消すためのコモンモード補償電圧を与えるコモンモードフィルタ回路3とを備えている。電力変換回路1は、直流コンデンサなどの容量成分とスイッチング素子であるパワーデバイスを備える。電力変換装置100は、電力系統あるいは負荷(例えばモータ)などの補償対象2に電力を供給する。あるいは補償対象2から電力を受け取る。コモンモードフィルタ回路3は、コモンモード補償電圧を発生する補償電圧発生器10、コモンモード補償電圧を注入して電力変換回路1から出力される交流電圧に重畳する補償電圧注入器104、およびコモンモード電圧を検出する電圧検出器101を備えている。補償電圧発生器10は、制御回路102と増幅回路103とを有する。電力変換回路1は、パワーデバイスをオン・オフしてスイッチングすることにより、入力側の直流電圧を交流電圧に変換して出力する構成になっている。制御回路102は、電力変換回路1のパワーデバイスのオンの状態を認知できる駆動情報105を取得する。以下では、電圧検出器101としては、コンデンサ分圧回路を用いてコモンモード電圧を検出する方式、補償電圧注入器104としては、補助巻き線付きの三相トランスを介してコモンモード補償電圧を注入する方式、を例に説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a power conversion device according to the first embodiment. The power conversion device 100 includes a power conversion circuit 1 that converts direct current into alternating current, and a common mode filter circuit 3 that provides a common mode compensation voltage for canceling the common mode voltage. The power conversion circuit 1 includes a capacitance component such as a DC capacitor and a power device which is a switching element. The power conversion device 100 supplies power to the compensation target 2 such as a power system or a load (for example, a motor). Alternatively, it receives power from the compensation target 2. The common mode filter circuit 3 includes a compensation voltage generator 10 that generates a common mode compensation voltage, a compensation voltage injector 104 that injects a common mode compensation voltage and superimposes it on an AC voltage output from the power conversion circuit 1, and a common mode. A voltage detector 101 for detecting a voltage is provided. The compensation voltage generator 10 has a control circuit 102 and an amplifier circuit 103. The power conversion circuit 1 is configured to convert a DC voltage on the input side into an AC voltage and output it by switching the power device on and off. The control circuit 102 acquires the drive information 105 that can recognize the on state of the power device of the power conversion circuit 1. In the following, the voltage detector 101 is a method of detecting a common mode voltage using a capacitor voltage divider circuit, and the compensation voltage injector 104 is a method of injecting a common mode compensation voltage via a three-phase transformer with an auxiliary winding. This method will be described as an example.
 図2は、ノイズ源となる電力変換回路1のコモンモード電圧の発生原理を説明するための回路図である。ここでは、電力変換回路1が、上アーム、下アームが直列に接続された接続体が、直流電源に対して3つ並列に接続された三相フルブリッジ変換回路であり、出力する交流電圧として3相の場合を例に説明する。それぞれのアームは、スイッチング素子とダイオードが逆並列に接続されたパワーデバイスTで構成されている。また、説明の簡単化のために、図2では電力変換回路1の入力側の直流コンデンサの中性点をグランド点とする。電力変換回路1である三相インバータの出力する交流電圧に含まれるコモンモード電圧は各相出力電圧の平均値で求められるため、直流コンデンサ電圧をVdc、上アームのパワーデバイスのオン素子数をN、とした場合にはコモンモード電圧は(N/3-1/2)×Vdcで表現される。したがって、駆動情報として上アームのオン素子数Nと直流コンデンサ電圧Vdcの情報を電力変換回路1から制御回路102へ送ることで、制御回路102は、コモンモード電圧を打ち消すためにコモンモードフィルタ回路3が注入するべきコモンモード補償電圧を即時に演算できる。 FIG. 2 is a circuit diagram for explaining the generation principle of the common mode voltage of the power conversion circuit 1 which is a noise source. Here, the power conversion circuit 1 is a three-phase full bridge conversion circuit in which three connections in which the upper arm and the lower arm are connected in series are connected in parallel to a DC power supply, and are used as an AC voltage to be output. The case of three phases will be described as an example. Each arm is composed of a power device T in which a switching element and a diode are connected in antiparallel. Further, for simplification of the explanation, in FIG. 2, the neutral point of the DC capacitor on the input side of the power conversion circuit 1 is set as the ground point. Since the common mode voltage included in the AC voltage output by the three-phase inverter that is the power conversion circuit 1 is obtained by the average value of each phase output voltage, the DC capacitor voltage is Vdc and the number of on-elements of the power device of the upper arm is N. ,, The common mode voltage is expressed as (N / 3-1 / 2) × Vdc. Therefore, by sending information on the number of on elements N of the upper arm and the DC capacitor voltage Vdc as drive information from the power conversion circuit 1 to the control circuit 102, the control circuit 102 cancels the common mode voltage by the common mode filter circuit 3 The common mode compensation voltage to be injected can be calculated immediately.
 具体的には、コモンモード電圧(N/3-1/2)×Vdcを、制御回路102内で演算し、その演算結果を増幅回路103から出力して補償電圧注入器104のトランスの補助巻き線に印加し、各相にコモンモード電圧と逆極性かつ同振幅のコモンモード補償電圧(単に補償電圧とも称する)を注入する。波形の逆極性化は演算回路103による演算処理もしくは補償電圧注入器104に加極性トランスを適用することで実現できる。また、演算回路103の演算ゲインと補償電圧注入器104のトランスの補助巻き線と電力線の巻き数比で決まるゲイン積を1とすることで、コモンモード電圧に対し同振幅の補償電圧を出力できる。原理的には、上記の補償により電力変換回路1が発生するコモンモード電圧は完全に打ち消される。しかし、増幅回路103にはオペアンプを用いた反転増幅回路、非反転増幅回路、もしくはバイポーラトランジスタを用いたエミッタフォロワ回路などが用いられるため、実用上入出力のゲイン特性と位相特性には部品固有の周波数依存性がある。また、増幅回路103の周辺部品のバラツキ、温度変化によりゲインあるいは位相特性が運転状態で変化することもある。また、補償電圧注入器104のトランスは漏れインダクタンスの影響を受け、巻き数比で得られる理論値に対し出力電圧の振幅が低下する。これらの要因で、補償電圧注入器104で注入する電圧は電力変換回路1が発生するコモンモード電圧に対し偏差が発生するため、コモンモード電圧が残留してしまう。 Specifically, the common mode voltage (N / 3-1 / 2) × Vdc is calculated in the control circuit 102, the calculation result is output from the amplifier circuit 103, and the auxiliary winding of the transformer of the compensation voltage injector 104 is performed. It is applied to the wire, and a common mode compensating voltage (also simply referred to as a compensating voltage) having the same polarity and amplitude as the common mode voltage is injected into each phase. The reverse polarity of the waveform can be realized by arithmetic processing by the arithmetic circuit 103 or by applying a polarizing transformer to the compensating voltage injector 104. Further, by setting the gain product determined by the calculated gain of the arithmetic circuit 103 and the turns ratio of the auxiliary winding of the transformer of the compensating voltage injector 104 and the power wire to 1, a compensating voltage having the same amplitude can be output with respect to the common mode voltage. .. In principle, the above compensation completely cancels the common mode voltage generated by the power conversion circuit 1. However, since an inverting amplifier circuit using an operational amplifier, a non-inverting amplifier circuit, an emitter follower circuit using a bipolar transistor, or the like is used for the amplifier circuit 103, the gain characteristics and phase characteristics of the input / output are practically component-specific. There is frequency dependence. In addition, the gain or phase characteristics may change in the operating state due to variations in peripheral components of the amplifier circuit 103 and changes in temperature. Further, the transformer of the compensation voltage injector 104 is affected by the leakage inductance, and the amplitude of the output voltage is lowered with respect to the theoretical value obtained by the turns ratio. Due to these factors, the voltage injected by the compensating voltage injector 104 has a deviation from the common mode voltage generated by the power conversion circuit 1, so that the common mode voltage remains.
 図3は、コモンモード経路を等価回路により示した図である。図3に示すように、コモンモード経路は、電力変換回路1とコモンモードフィルタ回路3との電圧源、配線インダクタンス、対地浮遊容量のLC直列共振回路で模擬することができる。電力変換回路1の出力電圧に含まれるコモンモード電圧をVnoise、コモンモードフィルタ回路3が注入する補償電圧をVfiltとする。コモンモードフィルタ回路3が所望の補償電圧に対し振幅誤差も位相遅延もなければVnoise+Vfilt =0となって、補償対象2のコモンモード電圧は完全に打ち消される。しかし、位相遅延が発生した場合には、Vnoise+Vfilt は零とならず、スイッチングの度に振幅1/3Vdcのステップ電圧が発生する。 FIG. 3 is a diagram showing a common mode path by an equivalent circuit. As shown in FIG. 3, the common mode path can be simulated by an LC series resonant circuit having a voltage source, wiring inductance, and stray capacitance to ground between the power conversion circuit 1 and the common mode filter circuit 3. The common mode voltage included in the output voltage of the power conversion circuit 1 is Vnoise, and the compensation voltage injected by the common mode filter circuit 3 is Vfilt. If the common mode filter circuit 3 has no amplitude error or phase delay with respect to the desired compensation voltage, Vnoise + Vfilt = 0, and the common mode voltage of the compensation target 2 is completely canceled. However, when a phase delay occurs, Vnoise + Vfilt does not become zero, and a step voltage with an amplitude of 1/3 Vdc is generated each time switching is performed.
 図4に位相遅延が発生した場合におけるVnoise、- Vfilt 、Vnoise+Vfilt を模式的に図示する。位相遅延量t1=Tph_delayが大きければ大きいほどVnoise+Vfiltのステップ電圧の時間幅が広がり、残留するコモンモード電圧の実効値は大きくなる。その結果として、図3に示すLC直列共振回路に発生する電圧振動振幅は大きくなる。位相遅延で発生する電圧ステップの幅はキャリア周期に対しては十分小さく、キャリア周波数に対し高い周波数成分のコモンモード電圧のみを増大させる。 FIG. 4 schematically illustrates Vnoise,-Vfilt, and Vnoise + Vfilt when a phase delay occurs. The larger the phase delay amount t1 = Tph_delay, the wider the time width of the step voltage of Vnoise + Vfilt, and the larger the effective value of the remaining common mode voltage. As a result, the voltage vibration amplitude generated in the LC series resonant circuit shown in FIG. 3 becomes large. The width of the voltage step generated by the phase delay is sufficiently small for the carrier period and increases only the common mode voltage of the high frequency component with respect to the carrier frequency.
 図5に振幅誤差が発生した場合におけるVnoise、-Vfilt、Vnoise+Vfiltを模式的に図示する。電力変換回路1とコモンモードフィルタ回路3の電圧の和Vnoise+Vfiltは零とならず、コモンモード電圧が変化してから次に変化するまでの時間幅を持ち、かつ振幅誤差量で決定される電圧振幅のステップ電圧が発生する。このステップ電圧はキャリア周波数成分などの低周波成分を含むため、高周波だけでなく低周波のコモンモード電圧の残留要因となる。以下では、コモンモード補償電圧の位相と振幅を動的に切り替えることで高周波成分と低周波成分のコモンモード電圧を独立に抑制し、周囲環境の変化の影響を抑制する方法を説明する。 FIG. 5 schematically shows Vnoise, -Vfilt, and Vnoise + Vfilt when an amplitude error occurs. The sum of the voltages of the power conversion circuit 1 and the common mode filter circuit 3 Vnoise + Vfilt does not become zero, has a time width from the change of the common mode voltage to the next change, and is determined by the amount of amplitude error. A step voltage of voltage amplitude is generated. Since this step voltage includes low frequency components such as carrier frequency components, it becomes a residual factor of not only high frequency but also low frequency common mode voltage. In the following, a method of independently suppressing the common mode voltage of the high frequency component and the low frequency component by dynamically switching the phase and amplitude of the common mode compensation voltage and suppressing the influence of changes in the surrounding environment will be described.
 図6を用いて、具体的なコモンモード電圧の低減方法を述べる。コモンモードフィルタ回路3の出力電圧指令をKN×Kp×Vdcで与える。KNの値は前述の(N/3-1/2)であり、N値が変化するタイミング、すなわちコモンモード電圧の変化のタイミングでステップ的に変化させる。また、Kpは振幅誤差の補正項(振幅補正量とも称する)である。まず、位相補正について説明する。実際に注入されるコモンモード補償電圧の変化のタイミングが、電力変換回路1から出力される交流電圧に含まれるコモンモード電圧の変化タイミングに合うように、KNを変化させるタイミングを調整、すなわち位相補正する。制御回路102は駆動情報105を基に、実際に電力変換回路1内でN値が切り替わる、すなわち電力変換回路1を構成するパワーデバイスのオン状態が切り替わる時刻からtbefore(≧0s)だけ前のタイミングでN値=Nf1を取得する。取得したNf1のN値の変化に対し、任意に設定する位相補正量Tdelayだけ遅れて変化するN値をNf2とすることで任意の遅延を与えることが可能となり、自由に位相を調整することが可能である。ここでKN=(Nf2)/3 - 1/2で与えることでKNの変化とコモンモード電圧の変化のタイミングを合わせることが可能となる。 A specific method for reducing the common mode voltage will be described with reference to FIG. The output voltage command of the common mode filter circuit 3 is given by KN × Kp × Vdc. The value of KN is (N / 3-1 / 2) described above, and is changed step by step at the timing when the N value changes, that is, at the timing when the common mode voltage changes. Kp is an amplitude error correction term (also referred to as an amplitude correction amount). First, phase correction will be described. Adjust the timing to change the KN so that the timing of the change in the common mode compensation voltage actually injected matches the change timing of the common mode voltage included in the AC voltage output from the power conversion circuit 1, that is, phase correction. do. Based on the drive information 105, the control circuit 102 actually switches the N value in the power conversion circuit 1, that is, the timing tbefore (≧ 0s) before the time when the on state of the power device constituting the power conversion circuit 1 is switched. Get N value = Nf1 with. Arbitrary delay can be given by setting Nf2 to the N value that changes with a delay of the phase correction amount T delay that is arbitrarily set for the change of the acquired N value of Nf1, and the phase can be adjusted freely. It is possible. Here, by giving KN = (Nf2) / 3-1 / 2, it is possible to match the timing of the change of KN and the change of common mode voltage.
 具体的には、図6に示すように、tbeforeだけ前のタイミングで取得したNf1に対して、任意に設定したTdelayだけ遅らせてNf2を設定してKNを設定する。次に、補償電圧注入器104で注入される補償電圧である出力電圧指令KN×Kp×Vdcを演算し、補償電圧注入器104からこの補償電圧を注入して、電力変換回路1から出力される電圧に重畳する。この補償電圧が重畳されたコモンモード電圧を電圧検出器101で検出すると、図6の最下段で示すような波形が検出される。すなわち、KNが変化するときに電圧振動が発生する。Tdelayを変化させると、電圧検出器101で検出されるこの電圧振動振幅が変化する。したがって、位相補正量Tdelayを変化させながら、電圧検出器101で検出される電圧振動振幅が極小となるTdelayを探索することにより、最適なTdelayを求めることができる。Tdelayを最適化することで、補償電圧注入器104で注入されるコモンモード補償電圧の、電力変換回路1で発生しているコモンモード電圧からの位相遅延量Tph_delay を最小化して、補償対象2へ供給する交流電圧における高周波のコモンモード電圧を抑制することができる。 Specifically, as shown in FIG. 6, Nf1 acquired at the timing before tbefore is delayed by the arbitrarily set Tdelay, and Nf2 is set to set KN. Next, the output voltage command KN × Kp × Vdc, which is the compensation voltage injected by the compensation voltage injector 104, is calculated, this compensation voltage is injected from the compensation voltage injector 104, and the compensation voltage is output from the power conversion circuit 1. Superimpose on voltage. When the common mode voltage on which the compensation voltage is superimposed is detected by the voltage detector 101, a waveform as shown in the lowermost stage of FIG. 6 is detected. That is, voltage vibration occurs when KN changes. When the Tdelay is changed, the voltage vibration amplitude detected by the voltage detector 101 changes. Therefore, the optimum T delay can be obtained by searching for a T delay in which the voltage vibration amplitude detected by the voltage detector 101 is minimized while changing the phase correction amount T delay. By optimizing the Tdelay, the phase delay amount Tph_delay from the common mode voltage generated in the power conversion circuit 1 of the common mode compensation voltage injected by the compensation voltage injector 104 is minimized to the compensation target 2. It is possible to suppress the high frequency common mode voltage in the supplied AC voltage.
 ここで、Tdelayを決定する手法の一例として、山登り法を用いることができる。例えば、時刻t0にN値が変化してコモンモード電圧が変化した際に電圧検出器101で検出される電圧振動振幅の最大値Vpp_t0と、次に時刻t1にN値が変化してコモンモード電圧が変化した際の電圧振動振幅の最大値Vpp_t1を比較して、電圧振動振幅の最大値が下がり続けるようにTdelayをTdelayよりも小さな値ΔTdelay分だけ増減させて更新する。Tdelayの更新により電圧振動振幅の最大値が減少すれば前回と同極性でΔTdelayだけTdelayを変化させ、電圧振動振幅の最大値が増加すれば前回と逆極性でΔTdelayだけTdelayを変化させる。このように、N値が変化する毎に、すなわち駆動情報が変化してコモンモード電圧が変化する毎に、Tdelayを更新して変化し続けることで、Tdelayの値が最適値近傍に落ち着くことになる。なお、ΔTdelayの値は固定値である必要はなく、最適値探索の状況に応じて値を変更してよい。このように、N値が変化してコモンモード電圧が変化する毎に、Tdelayの最適値を探索し続けることで、周囲環境の変化によって最適な位相補正量が変化しても位相遅延量を最小化することができる。その結果としてコモンモード電圧の高周波成分の残留量を低減することが可能となる。 Here, the mountain climbing method can be used as an example of the method for determining T delay. For example, the maximum value Vpp_t0 of the voltage vibration amplitude detected by the voltage detector 101 when the N value changes at time t0 and the common mode voltage changes, and then the N value changes at time t1 and the common mode voltage Compare the maximum value Vpp_t1 of the voltage vibration amplitude when is changed, and update the T delay by increasing or decreasing the value ΔT delay smaller than the T delay so that the maximum value of the voltage vibration amplitude continues to decrease. If the maximum value of the voltage vibration amplitude decreases due to the update of Tdelay, the Tdelay is changed by ΔTdelay with the same polarity as the previous time, and if the maximum value of the voltage vibration amplitude increases, the Tdelay is changed by ΔTdelay with the opposite polarity from the previous time. In this way, every time the N value changes, that is, every time the drive information changes and the common mode voltage changes, the T delay is updated and continuously changing, so that the T delay value settles near the optimum value. Become. The value of ΔT delay does not have to be a fixed value, and the value may be changed according to the situation of the optimum value search. In this way, by continuing to search for the optimum value of Tdelay each time the N value changes and the common mode voltage changes, the phase delay amount is minimized even if the optimum phase correction amount changes due to changes in the surrounding environment. Can be transformed into. As a result, it becomes possible to reduce the residual amount of the high frequency component of the common mode voltage.
 上記では、Tdelayを常にΔTdelayだけ変化させるようにしたが、Tdelayを更新した後の電圧振動振幅の最大値があらかじめ決めた値Vppmin以下になれば、Tdelayを固定してもよい。この場合、N値が変化する毎に電圧振動振幅の最大値がVppmin以下かどうか判定し、Vppminより大きくなれば、再びTdelayをΔTdelayだけ変化させて電圧振動振幅の最大値がVppmin以下となるようにすればよい。 In the above, the T delay is always changed by ΔT delay, but if the maximum value of the voltage vibration amplitude after updating the T delay becomes the predetermined value Vppmin or less, the T delay may be fixed. In this case, it is determined whether the maximum value of the voltage vibration amplitude is Vppmin or less each time the N value changes, and if it becomes larger than Vppmin, the T delay is changed again by ΔT delay so that the maximum value of the voltage vibration amplitude becomes Vppmin or less. It should be.
 次に振幅誤差の低減方法について説明する。Kpは、コモンモード補償電圧の振幅の誤差を補正するための振幅補正量であり、ゲインKpとも称する。上述の通り、増幅回路103のゲインなどが変化してコモンモード補償電圧の振幅誤差が発生した場合には、図6の最下段の線図で示すように、N値が変化することによりコモンモード電圧が変化した時に発生する電圧振動収束後にも振幅の偏差が残る。したがって、電圧振動収束後の振幅の偏差を低減する様にゲインKpを更新して補償電圧の振幅を更新する。具体的には、例えばN値が0から1に変化してコモンモード電圧が変化する直前のコモンモード電圧値V_t3と、次にN値が1から2に変化してコモンモード電圧が変化する直前のコモンモード電圧値V_t4を比較し、最新の時刻のコモンモード電圧値が下がり続けるようにKpをΔKp分だけ増減させる。Kpの更新によりコモンモード電圧値が減少すれば前回と同極性でΔKpだけKpを変化させ、Kpの更新によりコモンモード電圧値が増加すれば前回と逆極性でΔKpだけKpを変化させる。なお、ΔKpの値は固定値である必要はなく、最適値探索の状況に応じて切り替えてもよい。周辺環境の影響で最適なゲイン(振幅補正量)が変化してもリアルタイムに最適値を更新することができる。その結果として、コモンモード電圧の低周波成分を抑制することが可能となる。 Next, the method of reducing the amplitude error will be explained. Kp is an amplitude correction amount for correcting the amplitude error of the common mode compensation voltage, and is also referred to as gain Kp. As described above, when the gain of the amplifier circuit 103 changes and an amplitude error of the common mode compensation voltage occurs, as shown in the diagram at the bottom of FIG. 6, the N value changes to cause the common mode. The amplitude deviation remains even after the voltage vibration convergence that occurs when the voltage changes. Therefore, the gain Kp is updated to update the amplitude of the compensation voltage so as to reduce the amplitude deviation after the voltage vibration converges. Specifically, for example, the common mode voltage value V_t3 immediately before the N value changes from 0 to 1 and the common mode voltage changes, and then immediately before the N value changes from 1 to 2 and the common mode voltage changes. Compare the common mode voltage value V_t4 of, and increase or decrease Kp by ΔKp so that the common mode voltage value at the latest time continues to decrease. If the common mode voltage value decreases due to the update of Kp, Kp is changed by ΔKp with the same polarity as the previous time, and if the common mode voltage value increases due to the update of Kp, Kp is changed by ΔKp with the opposite polarity from the previous time. The value of ΔKp does not have to be a fixed value, and may be switched depending on the situation of the optimum value search. Even if the optimum gain (amplitude correction amount) changes due to the influence of the surrounding environment, the optimum value can be updated in real time. As a result, it becomes possible to suppress the low frequency component of the common mode voltage.
 以上では、コモンモード電圧変動時に発生する偏差を低減するアルゴリズムを用いてKpを最適化する方法を説明した。ゲインKpを最適化できていればコモンモード電圧のステップ変動を完全に打ち消すことができるため、低周波成分だけではなく、ステップ変動により発生する高周波成分の抑制にも効果を持つ。したがって、Kpの最適化に、上記のTdelayの最適化に用いた、コモンモード電圧の変動時に発生する電圧振動振幅の最大値を低減するアルゴリズム用いてもよい。 Above, we have explained how to optimize Kp using an algorithm that reduces the deviation that occurs when the common mode voltage fluctuates. If the gain Kp can be optimized, the step fluctuation of the common mode voltage can be completely canceled, so that it is effective not only in suppressing the low frequency component but also in suppressing the high frequency component generated by the step fluctuation. Therefore, for the optimization of Kp, the algorithm used for the optimization of T delay described above, which reduces the maximum value of the voltage vibration amplitude generated when the common mode voltage fluctuates, may be used.
 以上説明したように、位相補正量および振幅補正量をそれぞれ改善していくことで、低周波成分も高周波成分もコモンモード電圧補償特性の改善が可能となる。本制御方式は、電力変換回路1からのスイッチングの駆動情報を事前に取得して、コモンモードフィルタ回路3内の補償電圧発生器10でコモンモード電圧を復元することで、事前に補償電圧を演算できる。このため、コモンモード電圧検出後に補償電圧の演算を行っていた従来の方式に対し、高周波の補償特性に対して特性改善が期待できる。なお、上記では山登り法を用いてKpとTdelayを最適化したが、最適化する手法はこの限りではなく、ニューラルネットワークを代表とした機械学習を用いた定数最適化手法が適用できる。 As explained above, by improving the phase correction amount and the amplitude correction amount, it is possible to improve the common mode voltage compensation characteristics for both the low frequency component and the high frequency component. In this control method, the compensation voltage is calculated in advance by acquiring the switching drive information from the power conversion circuit 1 in advance and restoring the common mode voltage by the compensation voltage generator 10 in the common mode filter circuit 3. can. Therefore, it can be expected that the characteristics of the high frequency compensation characteristics will be improved as compared with the conventional method in which the compensation voltage is calculated after the common mode voltage is detected. In the above, Kp and Tdelay were optimized using the mountain climbing method, but the optimization method is not limited to this, and a constant optimization method using machine learning represented by a neural network can be applied.
 ここでは、コモンモード電圧の振幅と位相を共に補正した場合について説明したが、必要に応じて一方のみを使ってもよい。またコモンモード電圧の残留量が、所望の範囲に収まっている場合には、一定期間、振幅と位相の更新アルゴリズムを停止させてもよい。 Here, the case where both the amplitude and the phase of the common mode voltage are corrected has been described, but if necessary, only one of them may be used. Further, if the residual amount of the common mode voltage is within a desired range, the amplitude and phase update algorithm may be stopped for a certain period of time.
 制御回路102の一例として図7が考えられる。制御回路102はAD変換器201、デジタル演算装置202、DA変換器203により構成される。AD変換器201は電圧検出器101から得られるアナログ信号をデジタル信号に変換し、上記で説明した振幅補正と位相補正のアルゴリズムを組み込んだデジタル演算装置202で補償波形の演算処理を行い、DA変換器203で補償波形を増幅回路103に出力する。KpおよびTdelayは、デジタル演算装置202内の変数の値を更新することで容易に実現でき、回路規模の増大なく実装することが出来る。なお、デジタル演算装置202には並列処理による高速な演算処理が可能なFPGA(Field Program Gate Array)あるいはASIC(Application Specific Integrated Circuit)等の使用が望ましいが、要求される補償帯域に応じて、逐次処理の制御装置であるDSP(Digital Signal Processor)あるいはマイクロコンピュータを用いてもよい。なお、制御回路102はゲイン(振幅補正量)、位相補正量を切り替え可能で、ゲイン(振幅補正量)、位相補正量、コモンモード電圧の電圧振動振幅と振動収束後の定常値をホールドし前回値と比較する機能があれば、アナログ回路のみ、もしくはデジタル回路とアナログ回路を組み合わせて実装してもよい。 FIG. 7 can be considered as an example of the control circuit 102. The control circuit 102 includes an AD converter 201, a digital arithmetic unit 202, and a DA converter 203. The AD converter 201 converts the analog signal obtained from the voltage detector 101 into a digital signal, performs arithmetic processing of the compensation waveform with the digital arithmetic apparatus 202 incorporating the amplitude correction and phase correction algorithms described above, and performs DA conversion. The compensation waveform is output to the amplifier circuit 103 by the device 203. Kp and Tdelay can be easily realized by updating the values of variables in the digital arithmetic unit 202, and can be implemented without increasing the circuit scale. It is desirable to use FPGA (Field Program Gate Array) or ASIC (Application Specific Integrated Circuit), which can perform high-speed arithmetic processing by parallel processing, for the digital arithmetic unit 202, but sequentially according to the required compensation band. A DSP (Digital Signal Processor) or a microcomputer, which is a processing control device, may be used. The control circuit 102 can switch the gain (amplitude correction amount) and the phase correction amount, and holds the gain (amplitude correction amount), the phase correction amount, the voltage vibration amplitude of the common mode voltage, and the steady value after the vibration convergence. If there is a function to compare with the value, it may be mounted only in the analog circuit or in combination with the digital circuit and the analog circuit.
 また、電力変換回路1から制御回路102への駆動情報105の通信の信号は、アナログ信号でもデジタル信号でもよい。この信号には、駆動情報105として電力変換回路の上アームのオン素子数Nを含む。なお、ここでの上アームのオン素子数Nとは、電力変換回路内のパワーデバイスとしてのスイッチング素子のゲートがオンしている状態に加え、デッドタイム期間中にパワーデバイスとしての帰還ダイオードを電流が流れる状態を含む。デッドタイム中に上アームと下アームの素子どちらに電流が流れるかは、出力電流の極性によって決定される。したがって、駆動情報105にゲートオン信号の数と、デッドタイム時間と、各相の電流極性を具備し、制御回路102の中でNを演算してもよい。つまり、駆動情報105は、少なくとも、電力変換回路1を構成するパワーデバイスのオンの状態を認知できる情報を含んでいる必要がある。増幅回路103には、補償帯域と注入電力に合わせてオペアンプを用いた反転増幅回路と非反転増幅回路、バイポーラトランジスタを用いたエミッタフォロワ回路、もしくはその双方を組み合わせた回路を想定しているが、信号を増幅する機能があればその限りではない。なお、駆動情報105には初期応答性の観点からVdcの信号も含まれることが望ましいが、ゲイン定数を更新していくことでゲイン値にVdcが反映された状態を疑似的に作ることが可能であるため省略してもよい。 Further, the communication signal of the drive information 105 from the power conversion circuit 1 to the control circuit 102 may be an analog signal or a digital signal. This signal includes the number of on elements N of the upper arm of the power conversion circuit as drive information 105. The number N of on-elements of the upper arm here means that the gate of the switching element as a power device in the power conversion circuit is on, and the feedback diode as a power device is currented during the dead time period. Including the state of flowing. Whether the current flows through the elements of the upper arm or the lower arm during the dead time is determined by the polarity of the output current. Therefore, the drive information 105 may include the number of gate-on signals, the dead time, and the current polarity of each phase, and N may be calculated in the control circuit 102. That is, the drive information 105 needs to include at least information that can recognize the on state of the power device constituting the power conversion circuit 1. The amplifier circuit 103 is assumed to be an inverting amplifier circuit and a non-inverting amplifier circuit using an operational amplifier, an emitter follower circuit using a bipolar transistor, or a circuit in which both are combined according to the compensation band and the injection power. This is not the case if there is a function to amplify the signal. It is desirable that the drive information 105 also includes a Vdc signal from the viewpoint of initial responsiveness, but by updating the gain constant, it is possible to create a pseudo state in which Vdc is reflected in the gain value. Therefore, it may be omitted.
 図1の中に示す制御回路102は、コモンモードフィルタ回路3のために専用設計されていることを想定しているが、それに限るものではなく電力変換回路1の中の制御装置にコモンモードフィルタ回路3の制御回路102を内蔵してもよい。 The control circuit 102 shown in FIG. 1 is assumed to be designed exclusively for the common mode filter circuit 3, but is not limited to the control circuit 102, and is not limited to the control circuit 102. The control circuit 102 of the circuit 3 may be built in.
実施の形態2.
 図8は、実施の形態2による電力変換装置100の構成を示すブロック図である。実施の形態2では、振幅補正量と位相補正量を任意の周波数帯域において自由に設定することで、全ての周波数域のコモンモード電圧補償特性を改善する方式を説明する。コモンモードフィルタ回路3においては、周波数帯域によって、最適ゲインKpおよび最適位相補正量Tdelayは異なる。オペアンプを使用する場合には、一般的には、低周波域と高周波域におけるゲインおよび位相遅延量は大きく異なる。そこで、コモンモード電圧を補償する周波数帯域をn分割し、それぞれの周波数帯域に適したKpとTdelayを設定して制御する。
Embodiment 2.
FIG. 8 is a block diagram showing the configuration of the power conversion device 100 according to the second embodiment. In the second embodiment, a method for improving the common mode voltage compensation characteristic in all frequency ranges by freely setting the amplitude correction amount and the phase correction amount in an arbitrary frequency band will be described. In the common mode filter circuit 3, the optimum gain Kp and the optimum phase correction amount T delay differ depending on the frequency band. When an operational amplifier is used, the gain and phase delay amount in the low frequency region and the high frequency region are generally very different. Therefore, the frequency band that compensates for the common mode voltage is divided into n, and Kp and T delay suitable for each frequency band are set and controlled.
 例として、補償する周波数帯域を3分割し、Kpの最適化処理が無い場合と最適化処理を行った場合のゲイン特性と位相特性について、図8および図9を参照して説明する。実施の形態1と同様に、制御回路102において、電力変換回路1から得られる駆動情報105を用いて、コモンモード電圧KN×Kp×Vdcを復元する。復元したコモンモード電圧を、補償する周波数帯域f1~f4におけるコモンモード電圧として、3つに分割された周波数帯域それぞれに分割する。このため、復元したコモンモード電圧KN×Kp×Vdcに、出力フィルタ302において、それぞれ周波数帯域f1~f2、f2~f3、f3~f4に制限されたフィルタFilt1、Filt2、Filt3をかけて、分割された周波数帯域ごとに、KN1×Kp1×Vdc、KN2×Kp2×Vdc、KN3×Kp3×Vdcとして復元する。f1、f2、f3、f4は任意に設定可能であるが、位相もしくはゲイン特性が一定量変化する点に設けることが望ましい。図8では、出力フィルタ302は制御回路102と増幅回路103の間に配置しているが、出力フィルタ302は制御回路102内、あるいは増幅回路103と補償電圧注入器104の間に配置してもよい。それぞれの周波数帯域に対して、実施の形態1で説明したTdelayおよび Kpの更新アルゴリズムを実行して、Tdelay1とKp1、Tdelay2とKp2、およびTdelay3とKp3を更新する。各周波数帯域別の補償波形を合成することでコモンモード補償電圧の波形が得られる。 As an example, the gain characteristics and the phase characteristics when the frequency band to be compensated is divided into three and the Kp optimization processing is not performed and the optimization processing is performed will be described with reference to FIGS. 8 and 9. Similar to the first embodiment, in the control circuit 102, the common mode voltage KN × Kp × Vdc is restored by using the drive information 105 obtained from the power conversion circuit 1. The restored common mode voltage is divided into each of the three frequency bands as the common mode voltage in the frequency bands f1 to f4 to be compensated. Therefore, the restored common mode voltage KN × Kp × Vdc is divided by applying the filters Filt1, Filt2, and Filt3 limited to the frequency bands f1 to f2, f2 to f3, and f3 to f4, respectively, in the output filter 302. Restore as KN1 x Kp1 x Vdc, KN2 x Kp2 x Vdc, KN3 x Kp3 x Vdc for each frequency band. Although f1, f2, f3, and f4 can be set arbitrarily, it is desirable to provide them at a point where the phase or gain characteristics change by a certain amount. In FIG. 8, the output filter 302 is arranged between the control circuit 102 and the amplifier circuit 103, but the output filter 302 may be arranged in the control circuit 102 or between the amplifier circuit 103 and the compensation voltage injector 104. good. For each frequency band, the Tdelay and Kp update algorithms described in Embodiment 1 are executed to update Tdelay1 and Kp1, Tdelay2 and Kp2, and Tdelay3 and Kp3. By synthesizing the compensation waveforms for each frequency band, the waveform of the common mode compensation voltage can be obtained.
 検出波形に関しても、電圧検出器101で検出された電圧波形に対し周波数帯域を制限する入力フィルタ301を用いることで、3つの周波数帯域f1~f2、f2~f3、f3~f4における成分に分割して、各周波数帯域の検出波形を求める。図8では、入力フィルタ301は電圧検出器101と制御回路102の間に配置しているが、入力フィルタ301は制御回路102内に配置してもよい。各周波数帯域において、N値が変化してコモンモード電圧が変化したときの電圧振動振幅あるいは振幅の偏差を最小化するよう、それぞれの周波数帯域のコモンモード電圧に対して、実施の形態1で説明したTdelayおよび Kpの更新アルゴリズムを実行して、Tdelay1とKp1、Tdelay 2とKp2、およびTdelay3とKp3を更新する。これにより、コモンモード補償電圧の各周波数帯域の成分におけるTdelayと Kpの最適化を図ることが出来る。このようにして、オペアンプおよび部品の周波数特性の変化による影響を抑制し、電力変換回路1が発生するコモンモード電圧に対し、低周波から高周波まで振幅が等しく、かつ逆相の補償電圧波形を出力することが可能となる。 The detection waveform is also divided into three frequency bands f1 to f2, f2 to f3, and f3 to f4 by using an input filter 301 that limits the frequency band with respect to the voltage waveform detected by the voltage detector 101. The detection waveform of each frequency band is obtained. In FIG. 8, the input filter 301 is arranged between the voltage detector 101 and the control circuit 102, but the input filter 301 may be arranged in the control circuit 102. In the first embodiment, the common mode voltage of each frequency band is described so as to minimize the voltage vibration amplitude or the deviation of the amplitude when the N value changes and the common mode voltage changes in each frequency band. Execute the updated Tdelay and Kp update algorithms to update Tdelay1 and Kp1, Tdelay2 and Kp2, and Tdelay3 and Kp3. This makes it possible to optimize T delay and Kp in each frequency band component of the common mode compensation voltage. In this way, the influence of changes in the frequency characteristics of the operational amplifier and components is suppressed, and the compensation voltage waveform with the same amplitude from low frequency to high frequency and the opposite phase is output with respect to the common mode voltage generated by the power conversion circuit 1. It becomes possible to do.
 複数の周波数帯域のコモンモード電圧を選択的に低減することも想定できる。例えば、電力変換回路1の電力源を三相ダイオード整流回路とした場合には、系統周波数の3倍(150Hzまたは180Hz)の周波数成分で電力変換回路の負側電位が変動するため、それによってキャリア周波数に対し低周波のコモンモード電圧が発生する。しかし、低周波成分のコモンモード電圧を補償しようとすると補償電圧注入器104のトランスを磁化するために増幅回路103の大容量化あるいはトランスの大型化が課題となる。また、系統周波数の3倍成分に関しては、コモンモード経路上の浮遊容量により大きなインピーダンスを持つためコモンモード電流の増大に寄与しにくく、補償対象から外して良い場合がある。 It can be assumed that the common mode voltage of multiple frequency bands is selectively reduced. For example, when the power source of the power conversion circuit 1 is a three-phase diode rectifier circuit, the negative potential of the power conversion circuit fluctuates with a frequency component three times the system frequency (150 Hz or 180 Hz), so that the carrier A low frequency common mode voltage is generated with respect to the frequency. However, in order to compensate for the common mode voltage of the low frequency component, it becomes a problem to increase the capacity of the amplifier circuit 103 or the size of the transformer in order to magnetize the transformer of the compensation voltage injector 104. Further, regarding the component three times the system frequency, since it has a large impedance due to the stray capacitance on the common mode path, it is difficult to contribute to the increase of the common mode current, and it may be excluded from the compensation target.
 そこで特定の周波数域を選択的に補償する手法を説明する。一例として周波数帯域を低い周波数から順にf1~f2、f2~f3、f3~f4に3分割した場合について、図10を参照して説明する。f2~f3およびf3~f4の周波数帯域は補償し、系統周波数の3倍(150Hzまたは180Hz)の周波数を含むf1~f2の周波数帯域はKp1を0、すなわち補償電圧の振幅を0として補償しない。f1~f2は、例えば、ここで補償する周波数帯域f2~f3、f3~f4においても、完全にコモンモード電圧を落とす必要のない場合には目標とするコモンモード電圧の偏差量を完全に零にせず一定量の幅を許容し、補償レベルを自由に選択することでゲインを下げる。その結果、例えば、増幅回路103、補償電圧注入器104および電圧検出器101について、低周波数領域の特性が不要となるため、コモンモードフィルタ回路3の大型化を防止することが出来る。 Therefore, a method for selectively compensating for a specific frequency range will be explained. As an example, a case where the frequency band is divided into f1 to f2, f2 to f3, and f3 to f4 in order from the lowest frequency will be described with reference to FIG. The frequency bands f2 to f3 and f3 to f4 are compensated, and the frequency bands f1 to f2 including frequencies three times the system frequency (150 Hz or 180 Hz) do not compensate for Kp1 as 0, that is, the amplitude of the compensation voltage as 0. For f1 to f2, for example, even in the frequency bands f2 to f3 and f3 to f4 compensated here, if it is not necessary to completely reduce the common mode voltage, the deviation amount of the target common mode voltage should be completely reduced to zero. Allow a certain amount of width and lower the gain by freely selecting the compensation level. As a result, for example, the amplifier circuit 103, the compensating voltage injector 104, and the voltage detector 101 do not need the characteristics in the low frequency region, so that the size of the common mode filter circuit 3 can be prevented from increasing.
 説明の便宜上、図9と図10に示す周波数帯域の分割数は3としたが、この限りではなく自由に複数の分割数(n≧2)を設定できる。また位相とゲインの分割周波数域を個別に設定してもよい。 For convenience of explanation, the number of divisions of the frequency band shown in FIGS. 9 and 10 is set to 3, but the number of divisions is not limited to this, and a plurality of divisions (n ≧ 2) can be freely set. Further, the phase and gain division frequency ranges may be set individually.
実施の形態3.
 実施の形態1および実施の形態2では、電力変換回路1として、図2に示した、上下アームを有する三相フルブリッジ変換回路により三相交流を出力する電力変換回路を例に説明した。しかし、本願が開示する技術は、これに限らず、パワーデバイスをオン・オフしてスイッチングすることにより直流電圧を交流電圧に変換する電力変換回路において、コモンモード電圧が生じる電力変換回路であれば、フルブリッジ回路あるいは三相交流を出力する電力変換回路に限らず適用可能である。本実施の形態3では、電力変換回路1が三相フルブリッジ変換回路でない場合における、コモンモード電圧の補償方法を述べる。
Embodiment 3.
In the first embodiment and the second embodiment, as the power conversion circuit 1, the power conversion circuit that outputs three-phase alternating current by the three-phase full bridge conversion circuit having the upper and lower arms shown in FIG. 2 has been described as an example. However, the technique disclosed in the present application is not limited to this, as long as it is a power conversion circuit in which a common mode voltage is generated in a power conversion circuit that converts a DC voltage into an AC voltage by switching the power device on and off. It is applicable not only to a full bridge circuit or a power conversion circuit that outputs a three-phase alternating current. In the third embodiment, a method of compensating for the common mode voltage when the power conversion circuit 1 is not a three-phase full bridge conversion circuit will be described.
 まず、電力変換回路1として、図11に示す、共通のコンデンサにN_phase(N_phaseは2以上の整数)個の上下アーム対が接続されたN_phase相変換回路を考える。コモンモード電圧は、各相出力端子電圧の平均値で算出され、(N/N_phase-1/2)×Vdcとして記述できる。なお、Nは上アームのオン素子数を示し、0≦N≦N_phaseという関係式が成り立つ。KN=(N/N_phase-1/2)としてNの変化に応じて、KNに対して位相補正を行う、もしくはゲインKp補正を行うことで、実施の形態1、2と同様のアルゴリズムでコモンモード電圧の残留量を低減できる。したがって、本願で開示する技術は、単相、あるいは三相、あるいはそれ以上の相数を持つフルブリッジ変換回路に適用できる。 First, as the power conversion circuit 1, consider an N_phase phase conversion circuit in which N_phase (N_phase is an integer of 2 or more) upper and lower arm pairs are connected to a common capacitor shown in FIG. The common mode voltage is calculated by the average value of each phase output terminal voltage and can be described as (N / N_phase-1 / 2) × Vdc. Note that N indicates the number of on elements of the upper arm, and the relational expression of 0 ≦ N ≦ N_phase is established. By setting KN = (N / N_phase-1 / 2) and performing phase correction or gain Kp correction on KN according to the change in N, the common mode is performed by the same algorithm as in the first and second embodiments. The residual amount of voltage can be reduced. Therefore, the technique disclosed in the present application can be applied to a full bridge conversion circuit having a single-phase, three-phase, or more phase number.
 ここで、電力変換回路1に複数のステップ電圧を出力可能なマルチレベル変換回路を考える。例として、図12に示す、ダイオードクランプ方式の三相3レベル変換回路について説明する。3つのステップ電圧の出力端子電圧を出力するN_phase相3レベル変換回路は、N_phase(N_phaseは2以上の整数)個の3レベル変換器が共通に接続された2つの直流コンデンサの接続をパワーデバイスにより切り替えることで、各相の出力端子電圧を制御する。説明を簡単にするため、図12のN_phase相を1相とする、1相出力の3レベル変換回路を考える。パワーデバイスT1、T2をオンすることで+1/2Vdc、パワーデバイスT2、T3をオンすることで0、パワーデバイスT3、T4をオンすることで-1/2Vdcの出力端子電圧を得る。したがって、ゲート信号情報を用いて出力端子電圧を算出可能である。任意の1相3レベル変換回路の出力端子電圧は(N1/2-1/2)×Vdcで算出できる。ここで、Nlは0≦Nl≦2の整数であり、変換回路のスイッチングパターンで決まるため、ゲート情報を制御装置102に与えることで求められる。またコモンモード電圧は、
Figure JPOXMLDOC01-appb-M000001
で算出可能である。同様に任意の1相のMレベル変換回路を想定する。Mレベル変換回路はM-1個の直流コンデンサを備え、所望のパワーデバイスをオンすることで、出力端子電圧を制御する。出力端子電圧は(N1/(M-1)-1/2)×Vdcと算出できる。このとき、コモンモード電圧は
Figure JPOXMLDOC01-appb-M000002
で算出可能である。任意の1相のNlが変化するタイミングでコモンモード電圧は変化するため、
Figure JPOXMLDOC01-appb-M000003
としてNlの変化に応じて、KNに対して位相補正を行う、もしくはゲイン補正(振幅補正)を行うことで、実施の形態1、2と同様のアルゴリズムでコモンモード電圧の残留量を低減できる。
Here, consider a multi-level conversion circuit capable of outputting a plurality of step voltages to the power conversion circuit 1. As an example, a diode clamp type three-phase three-level conversion circuit shown in FIG. 12 will be described. Output terminal of three step voltage The N_phase three-level conversion circuit that outputs the voltage connects two DC capacitors in which N_phase (N_phase is an integer of 2 or more) three-level converters are commonly connected by a power device. By switching, the output terminal voltage of each phase is controlled. For the sake of simplicity, consider a one-phase output three-level conversion circuit in which the N_phase phase in FIG. 12 is one phase. The output terminal voltage of + 1 / 2Vdc is obtained by turning on the power devices T1 and T2, 0 by turning on the power devices T2 and T3, and -1 / 2Vdc by turning on the power devices T3 and T4. Therefore, the output terminal voltage can be calculated using the gate signal information. The output terminal voltage of any 1-phase 3-level conversion circuit can be calculated by (N 1 / 2-1 / 2) × Vdc. Here, N l is an integer of 0 ≤ N l ≤ 2, and is determined by the switching pattern of the conversion circuit. Therefore, it is obtained by giving the gate information to the control device 102. Also, the common mode voltage is
Figure JPOXMLDOC01-appb-M000001
It can be calculated with. Similarly, an arbitrary one-phase M-level conversion circuit is assumed. The M-level conversion circuit is equipped with M-1 DC capacitors and controls the output terminal voltage by turning on the desired power device. The output terminal voltage can be calculated as (N 1 / (M-1) -1 / 2) × Vdc. At this time, the common mode voltage is
Figure JPOXMLDOC01-appb-M000002
It can be calculated with. Since the common mode voltage changes at the timing when N l of any one phase changes,
Figure JPOXMLDOC01-appb-M000003
By performing phase correction or gain correction (amplitude correction) for KN according to the change in N l , the residual amount of common mode voltage can be reduced by the same algorithm as in the first and second embodiments. ..
 以上のように、本願が開示する技術は、単相、三相、およびそれ以上の相数を持つマルチレベル変換回路に適用できる。上記では、ダイオードクランプ方式のマルチレベル変換回路を示して説明を行ったが、駆動情報によりコモンモード電圧が算出できれば、その限りではない。例えば、フルブリッジ変換回路と直流コンデンサを備える単位変換回路を多直列接続したマルチレベル変換回路、ハーフブリッジ変換回路と直流コンデンサを備える単位変換回路を多直列接続したマルチレベル変換回路、異なる容量を持つ変換回路を多直列接続した階調方式を用いたマルチレベル変換回路などにも本願で開示する技術は適用できる。 As described above, the technique disclosed in the present application can be applied to a multi-level conversion circuit having a single-phase, three-phase, and more phase number. In the above, the diode clamp type multi-level conversion circuit has been shown and described, but this is not the case as long as the common mode voltage can be calculated from the drive information. For example, a multi-level conversion circuit in which a full-bridge conversion circuit and a unit conversion circuit having a DC capacitor are connected in multiple series, a multi-level conversion circuit in which a half-bridge conversion circuit and a unit conversion circuit having a DC capacitor are connected in multiple series, and a multi-level conversion circuit having different capacities. The technique disclosed in the present application can also be applied to a multi-level conversion circuit using a gradation method in which conversion circuits are connected in multiple series.
また、以上の各実施の形態では、電力変換回路1が、直流側を入力とし、交流側を出力とする動作で説明したが、交流から直流に変換する動作であっても、本願で開示する技術は適用できる。 Further, in each of the above embodiments, the power conversion circuit 1 has been described with the operation of using the DC side as an input and the AC side as an output, but the operation of converting AC to DC is also disclosed in the present application. The technology is applicable.
 すなわち、補償電圧発生器が、電力変換回路を構成するパワーデバイスのオンの状態を認知できる情報を含む駆動情報を、パワーデバイスがオンに切り替わるタイミングよりも前に取得し、取得した駆動情報と、位相を補正する位相補正量および振幅を補正する振幅補正量の少なくとも一方と、を用いてコモンモード補償電圧を演算して発生させるよう構成されており、さらに、駆動情報が変化する毎に、電圧検出器により検出されるコモンモード電圧が減少するように、位相補正量および振幅補正量の少なくとも一方を更新するよう構成されていれば、実施の形態1および実施の形態2で説明した効果を奏することができる。 That is, the compensating voltage generator acquires the drive information including the information that can recognize the on state of the power device constituting the power conversion circuit before the timing when the power device is switched on, and the acquired drive information and the acquired drive information. It is configured to calculate and generate a common mode compensation voltage using at least one of the phase correction amount that corrects the phase and the amplitude correction amount that corrects the amplitude, and further, the voltage is generated each time the drive information changes. If at least one of the phase correction amount and the amplitude correction amount is configured to be updated so that the common mode voltage detected by the detector is reduced, the effects described in the first and second embodiments can be obtained. be able to.
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although various exemplary embodiments and examples are described in the present application, the various features, embodiments, and functions described in one or more embodiments are of particular embodiments. It is not limited to application, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
1 電力変換回路、3 コモンモードフィルタ回路、10 補償電圧発生器、101 電圧検出器、104 補償電圧注入器、105 駆動情報、T、T1、T2、T3、T4 パワーデバイス 1 Power conversion circuit, 3 Common mode filter circuit, 10 Compensated voltage generator, 101 Voltage detector, 104 Compensated voltage injector, 105 Drive information, T, T1, T2, T3, T4 Power device

Claims (7)

  1.  パワーデバイスをオン・オフしてスイッチングすることにより直流と交流との間で電力変換する電力変換回路、および、この電力変換回路の交流側の交流電圧に含まれるコモンモード電圧を打ち消すためのコモンモード補償電圧を発生する補償電圧発生器と、この補償電圧発生器で発生された前記コモンモード補償電圧を前記交流電圧に重畳させる補償電圧注入器と、前記コモンモード補償電圧が重畳された前記交流電圧に含まれるコモンモード電圧を検出する電圧検出器と、を有するコモンモードフィルタ回路、を備えた電力変換装置であって、
    前記補償電圧発生器は、
    前記電力変換回路を構成するパワーデバイスのオンの状態を認知できる情報を含む駆動情報を、前記パワーデバイスがオンに切り替わるタイミングよりも前に取得し、取得した前記駆動情報と、位相を補正する位相補正量および振幅を補正する振幅補正量の少なくとも一方と、を用いて前記コモンモード補償電圧を演算して発生させるよう構成されており、
    さらに、前記駆動情報が変化する毎に、前記電圧検出器により検出されるコモンモード電圧が減少するように、前記位相補正量および前記振幅補正量の少なくとも一方を更新して前記コモンモード補償電圧を演算するよう構成されている電力変換装置。
    A power conversion circuit that converts power between DC and AC by switching the power device on and off, and a common mode for canceling the common mode voltage included in the AC voltage on the AC side of this power conversion circuit. A compensation voltage generator that generates a compensation voltage, a compensation voltage injector that superimposes the common mode compensation voltage generated by the compensation voltage generator on the AC voltage, and the AC voltage on which the common mode compensation voltage is superimposed. A power converter comprising a voltage detector for detecting a common mode voltage included in the above and a common mode filter circuit having.
    The compensation voltage generator is
    Drive information including information that can recognize the on state of the power device constituting the power conversion circuit is acquired before the timing at which the power device is switched on, and the acquired drive information and the phase for correcting the phase are obtained. It is configured to calculate and generate the common mode compensation voltage using at least one of the correction amount and the amplitude correction amount for correcting the amplitude.
    Further, at least one of the phase correction amount and the amplitude correction amount is updated to reduce the common mode compensation voltage so that the common mode voltage detected by the voltage detector decreases each time the drive information changes. A power converter configured to compute.
  2.  前記電力変換回路は、三相フルブリッジ変換回路または三相3レベル変換回路である請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the power conversion circuit is a three-phase full bridge conversion circuit or a three-phase three-level conversion circuit.
  3.  前記補償電圧発生器は、山登り法を用いて、前記電圧検出器により検出されるコモンモード電圧が減少するよう前記位相補正量および前記振幅補正量の少なくとも一方を更新する請求項1または2に記載の電力変換装置。 The compensation voltage generator according to claim 1 or 2, wherein the compensating voltage generator updates at least one of the phase correction amount and the amplitude correction amount so that the common mode voltage detected by the voltage detector is reduced by using a mountain climbing method. Power converter.
  4.  前記補償電圧発生器は、機械学習を用いて、前記電圧検出器により検出されるコモンモード電圧が減少するよう前記位相補正量および前記振幅補正量の少なくとも一方を更新するよう構成されている請求項1または2に記載の電力変換装置。 The claimed voltage generator is configured to use machine learning to update at least one of the phase correction amount and the amplitude correction amount so that the common mode voltage detected by the voltage detector is reduced. The power conversion device according to 1 or 2.
  5.  前記補償電圧発生器は、発生する前記コモンモード補償電圧を、複数の周波数帯域に分割して、分割した周波数帯域ごとに、前記位相補正量および前記振幅補正量の少なくとも一方を更新するよう構成されている請求項1から4のいずれか1項に記載の電力変換装置。 The compensation voltage generator is configured to divide the generated common mode compensation voltage into a plurality of frequency bands and update at least one of the phase correction amount and the amplitude correction amount for each divided frequency band. The power conversion device according to any one of claims 1 to 4.
  6.  前記補償電圧発生器は、前記複数の周波数帯域のうち一部の周波数帯域の前記コモンモード補償電圧の振幅を0とする請求項5に記載の電力変換装置。 The power conversion device according to claim 5, wherein the compensation voltage generator has an amplitude of the common mode compensation voltage of a part of the plurality of frequency bands as 0.
  7.  前記補償電圧発生器は、前記電圧検出器により検出されるコモンモード電圧が、予め定めた値以上のときにのみ、前記位相補正量および前記振幅補正量の少なくとも一方を更新するよう構成されている請求項1から6のいずれか1項に記載の電力変換装置。 The compensation voltage generator is configured to update at least one of the phase correction amount and the amplitude correction amount only when the common mode voltage detected by the voltage detector is equal to or higher than a predetermined value. The power conversion device according to any one of claims 1 to 6.
PCT/JP2020/018783 2020-05-11 2020-05-11 Power conversion device WO2021229632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/018783 WO2021229632A1 (en) 2020-05-11 2020-05-11 Power conversion device
JP2022522093A JP7241970B2 (en) 2020-05-11 2020-05-11 power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018783 WO2021229632A1 (en) 2020-05-11 2020-05-11 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021229632A1 true WO2021229632A1 (en) 2021-11-18

Family

ID=78525976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018783 WO2021229632A1 (en) 2020-05-11 2020-05-11 Power conversion device

Country Status (2)

Country Link
JP (1) JP7241970B2 (en)
WO (1) WO2021229632A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233837A (en) * 1995-12-21 1997-09-05 Mitsubishi Electric Corp Inverter device, leakage preventing device and leakage preventing method for inverter driving load
JPH1094244A (en) * 1996-09-18 1998-04-10 Okayama Univ Active common-mode canceler
JPH1169629A (en) * 1997-08-21 1999-03-09 Nissin Electric Co Ltd Control method for active filter
JP2001245477A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Power converter
JP2004357421A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Noise suppresser
JP2005094918A (en) * 2003-09-17 2005-04-07 Fuji Electric Holdings Co Ltd Noise reduction circuit for power conversion apparatus
JP2013145940A (en) * 2012-01-13 2013-07-25 Nec Network Products Ltd Noise suppression circuit and noise suppression method
WO2017077939A1 (en) * 2015-11-06 2017-05-11 国立大学法人北海道大学 Power conversion device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642646B2 (en) * 2005-12-12 2011-03-02 三菱電機株式会社 Lens unit and imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233837A (en) * 1995-12-21 1997-09-05 Mitsubishi Electric Corp Inverter device, leakage preventing device and leakage preventing method for inverter driving load
JPH1094244A (en) * 1996-09-18 1998-04-10 Okayama Univ Active common-mode canceler
JPH1169629A (en) * 1997-08-21 1999-03-09 Nissin Electric Co Ltd Control method for active filter
JP2001245477A (en) * 2000-02-28 2001-09-07 Mitsubishi Electric Corp Power converter
JP2004357421A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Noise suppresser
JP2005094918A (en) * 2003-09-17 2005-04-07 Fuji Electric Holdings Co Ltd Noise reduction circuit for power conversion apparatus
JP2013145940A (en) * 2012-01-13 2013-07-25 Nec Network Products Ltd Noise suppression circuit and noise suppression method
WO2017077939A1 (en) * 2015-11-06 2017-05-11 国立大学法人北海道大学 Power conversion device

Also Published As

Publication number Publication date
JP7241970B2 (en) 2023-03-17
JPWO2021229632A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
Saleem et al. Resonance damping for an LCL filter type grid-connected inverter with active disturbance rejection control under grid impedance uncertainty
US9343993B2 (en) DC/AC converter and method of controlling a DC/AC converter
EP0595319A2 (en) PWM inverter control system and method
US9843266B2 (en) Method for damping resonant component of common-mode current of multi-phase power converter
JP2013247725A (en) Electric power conversion system
EP3667906B1 (en) Flying capacitor voltage control in an amplifier
WO2021229632A1 (en) Power conversion device
JP7299130B2 (en) high frequency power circuit
JP6158125B2 (en) Power converter
JPH09172783A (en) Npc inverter
JPWO2014033804A1 (en) Switching control circuit and switching power supply device
JP2013055797A (en) Noise reduction device and power conversion device having the same
KR20190084304A (en) Control method of power supply and power supply
US10972031B2 (en) Active stabilization of DC link in motor drive systems
US9806598B2 (en) Active filtering system
Trinh et al. Novel control strategy for a UPQC under distorted source and nonlinear load conditions
Moon et al. Design of a state-space controller employing a deadbeat state observer for ups inverters
CN110995205B (en) Dynamic clock frequency adjusting circuit applied to charge pump feedback loop
JP6150946B2 (en) Electric vehicle control device
Tumbelaka et al. Application of a shunt active power filter to compensate multiple non-linear loads
US9742286B2 (en) Method of controlling a DC/AC converter
KR101652196B1 (en) Apparatus for feedback linearization control
JP2014187742A (en) Inverter device
JP2001352764A (en) Inverter controller
US10985713B2 (en) Power amplifier with a tracking power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022522093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935339

Country of ref document: EP

Kind code of ref document: A1