WO2021161945A1 - Power source stabilization device - Google Patents

Power source stabilization device Download PDF

Info

Publication number
WO2021161945A1
WO2021161945A1 PCT/JP2021/004496 JP2021004496W WO2021161945A1 WO 2021161945 A1 WO2021161945 A1 WO 2021161945A1 JP 2021004496 W JP2021004496 W JP 2021004496W WO 2021161945 A1 WO2021161945 A1 WO 2021161945A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
power supply
control
secondary winding
Prior art date
Application number
PCT/JP2021/004496
Other languages
French (fr)
Japanese (ja)
Inventor
蛭間 淳之
祐輝 久保
悟司 小笠原
宗佑 鈴木
Original Assignee
株式会社デンソー
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020021067A external-priority patent/JP7492227B2/en
Application filed by 株式会社デンソー, 国立大学法人北海道大学 filed Critical 株式会社デンソー
Publication of WO2021161945A1 publication Critical patent/WO2021161945A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a power supply stabilizer.
  • the DC reactor device disclosed in Patent Document 1 includes a DC reactor main winding, a DC reactor auxiliary winding that is magnetically coupled to the DC reactor main winding via a DC reactor core, a voltage source, and a control means. And.
  • the DC reactor main winding is connected between the rectifier circuit that rectifies the AC power supply and the smoothing capacitor on the load side.
  • the voltage source is connected to the DC reactor auxiliary winding to generate an arbitrary voltage waveform.
  • the control means controls the voltage source so as to suppress the magnetic saturation of the DC reactor and compensate for the DC ripple.
  • the DC reactor device of the embodiment corresponding to claim 2 of Patent Document 1 detects a DC primary winding current detection circuit that detects a DC current on the DC primary winding side and a DC current on the DC secondary winding side. It has a DC secondary winding current detection circuit.
  • the magnetic saturation suppression control unit of the control unit calculates the difference between the primary winding current detection value and the secondary winding current detection value. Since this configuration requires two current sensors, there is a problem that the device becomes large.
  • An object of the present disclosure is to provide a power supply stabilizing device capable of simplifying the configuration of a current sensor and reducing the size of the device.
  • the power supply stabilizer of the present disclosure is arranged in series between a DC distribution line and a power load in a DC system that supplies power from a DC power source to a power load via a DC distribution line, and is applied to the power load from the DC power source. It stabilizes the DC voltage that is applied.
  • This power supply stabilizer includes a current transformer, a current sensor, and a control power supply.
  • Current transformers include transformer cores, primary windings and secondary windings.
  • the primary winding is connected in series between the DC distribution line and the power load and penetrates the transformer core.
  • the secondary winding is wound around the transcore for N 1 turns, which is a predetermined number of turns, and is magnetically coupled to the primary winding via the transcore.
  • the current sensor has a sensor core through which the primary winding penetrates.
  • the secondary winding for the sensor connected in series with the secondary winding is wound around the sensor core in the same number of N 1 turns as the predetermined number of turns.
  • the control power supply calculates the voltage control term and the current control term.
  • the voltage control term is used to cancel the ripple voltage of the DC voltage.
  • the current control term is used to inject a canceling current into the secondary winding so as to cancel the DC current component that generates a DC magnetomotive force in the primary winding among the primary currents flowing in the primary winding. Then, the control power supply applies an output voltage to the secondary winding by operating the output voltage generation circuit based on the voltage command value obtained by adding the voltage control term and the current control term.
  • the current sensor detects the difference between the magnetomotive force due to the primary current flowing in the primary winding and the magnetomotive force due to the canceling current flowing in the secondary winding for the sensor.
  • the control power supply calculates the current control term so that the difference in the magnetomotive force approaches zero.
  • one current sensor detects the difference between the magnetomotive force due to the primary current and the magnetomotive force due to the canceling current, and the control circuit calculates the current control term based on the difference in the magnetomotive force. .. Therefore, the number of current sensors can be reduced and the device can be downsized as compared with the conventional technique of Patent Document 1 which requires two current sensors.
  • FIG. 1 is a schematic configuration diagram of a DC system including a power supply stabilizer according to an embodiment.
  • FIG. 2 is a diagram of a voltage control block and a current control block of a control circuit.
  • FIG. 3 is a frequency characteristic diagram of the HPF of the voltage control block and the LPF of the current control block.
  • FIG. 4 is a configuration diagram of a current sensor according to an embodiment.
  • FIG. 5 is a block diagram of the current sensor of another embodiment.
  • FIG. 6 is a voltage control block diagram of another embodiment.
  • the power supply stabilizing device 20 is in series between the DC distribution line 12 and the power load 70 in the DC system 90 that supplies power from the DC power supply 11 to the power load 70 via the DC distribution line 12. Placed in.
  • the shared voltage of the DC power supply 11 by the power supply stabilizing device 20 can be reduced, and the device capacity can be reduced.
  • the power load 70 has a reactor component and a capacitance component, and an LC resonance circuit is formed.
  • a harmonic current is generated at the power load 70, this may act as an excitation source and cause LC resonance.
  • resonance may be excited due to load fluctuation or the like.
  • the DC voltage Vb fluctuates greatly due to the impedance drop of the DC distribution wire 12, or an excessive resonance current flows, causing an overvoltage or an overcurrent. Therefore, in order to prevent such an event, it is required to stabilize the DC voltage Vb in the DC system 90.
  • the power supply stabilizing device 20 of the present embodiment includes a current transformer 30, a current sensor 40, a control power supply 50, and the like.
  • the power supply stabilizing device 20 compensates for the voltage ripple component of the DC voltage Vb by the output voltage Vout generated by the control power supply 50, and cancels the DC current component of the primary current Iaux. In this way, the power supply stabilizing device 20 stabilizes the DC voltage Vb applied from the DC power supply 11 to the power load 70.
  • the DC voltage Vb is detected by a voltage sensor or the like and is acquired by the control circuit 60 of the control power supply 50.
  • the current transformer 30 includes a primary winding 31 and a secondary winding 32.
  • the primary winding 31 is connected in series between the DC distribution line 12 and the power load 70.
  • the secondary winding 32 is connected to the control power supply 50 and magnetically couples with the primary winding 31 via the transformer core 33.
  • the number of turns of the primary winding 31 is one turn, and the number of turns of the secondary winding 32 is N 1 turn.
  • the value of the number of turns N 1 turn of the secondary winding 32 can be arbitrarily set according to the DC voltage Vb of the DC power supply 11 and the current capacity and withstand voltage of the control power supply 50.
  • a primary current Iaux containing both a DC current component and a ripple current component flows through the primary winding 31 which is a path from the DC power supply 11 to the power load 70.
  • the primary current Iaux generates a magnetic flux in the transformer core 33.
  • the dimension of the transformer core 33 is determined by the density of the magnetic flux.
  • the direct current component of the primary current Iaux increases the magnetic flux density of the transcore 33 and acts in the direction of increasing the dimensions. Therefore, the current injected into the secondary winding 32 by the output voltage Vout of the control power supply 50 in order to reduce the size of the current transformer 30 and cancel the DC current component of the primary winding 31 is referred to as an offset current Ict.
  • the current sensor 40 detects the detected current Iss represented by "Iux-N 1 Ict" and notifies the control circuit 60 of it.
  • the detailed configuration of the current sensor 40 will be described later with reference to FIG. 4, and the difference from the current detection configuration of the prior art will be described first.
  • two current sensors are used: a current sensor that detects the primary current Iux flowing through the primary winding 31 and a current sensor that detects the canceling current Ict flowing through the secondary winding 32.
  • a value obtained by multiplying the canceling current Ict by the number of turns N 1 turn of the secondary winding 32 multiplied by the primary current Iaux is detected by one current sensor 40.
  • the value obtained by multiplying the current by the number of turns is the magnetomotive force (unit: [AT (ampere-turn)]).
  • the primary value obtained by multiplying the number of turns one turn of the current Iaux the primary winding 31 is magnetomotive force Iaux [AT], offset current value obtained by multiplying the number of turns N 1 turns of the secondary winding 32 to Ict magnetomotive force N 1 Ict [AT].
  • the current sensor 40 of the present embodiment directly detects the difference in the magnetomotive force and outputs the difference to the control power supply 50.
  • the control power supply 50 includes an operating power supply 51, an output voltage generation circuit 52, and a control circuit 60.
  • the operating power supply 51 may be configured by a dedicated DC power supply as shown in FIG.
  • the DC voltage Vb of the DC power supply 11 may be used by being connected to the distribution line branched from the DC distribution line 12.
  • the output voltage generation circuit 52 operates in accordance with a command from the control circuit 60 to generate an output voltage Vout applied to the secondary winding 32.
  • the output voltage generation circuit 52 is composed of a high-speed PWM-controlled single-phase inverter.
  • the single-phase inverter can be realized, for example, according to the half-bridge circuit described in FIG. 10 of Patent Document 1 or the full-bridge circuit described in FIG. By switching the plurality of switching elements constituting the bridge circuit by PWM control, the power supply voltage Einv of the operating power supply 51 is converted to generate the output voltage Vout.
  • the control circuit 60 calculates a duty ratio D for PWM control of the output voltage generation circuit 52 based on the DC voltage Vb, the power supply voltage Einv of the operating power supply 51, the output voltage Vout, and the detection current Isns of the current sensor 40. ..
  • FIG. 2 shows the arithmetic configuration of the control circuit 60.
  • the control circuit 60 includes a voltage control block 61, a current control block 62, an adder 63 and a divider 64.
  • the voltage control block 61 calculates a voltage control term V * _v for generating an output voltage Vout that cancels the voltage ripple of the DC voltage Vb.
  • the voltage control block 61 having a feedback control configuration shown in FIG. 2 includes a high-pass filter (in the figure and hereinafter “HPF”) 611, a deviation calculator 612, and a voltage controller 613. HPF611 cuts the DC component in the DC voltage Vb including the ripple voltage and extracts the ripple voltage component Vout *.
  • the deviation calculator 612 calculates the voltage deviation between the ripple voltage component Vout * and the output voltage Vout.
  • the voltage controller 613 calculates the voltage control term V * _v by multiplying the voltage deviation by the proportional control gain Kpv.
  • the voltage control term V * _v may be calculated by the proportional integral control which is the proportional control plus the integral control. The illustration of the integration control block is omitted.
  • the current control block 62 calculates the current control term V * _i for controlling the DC current component of the current transformer 30.
  • the current control block 62 shown in FIG. 2 includes a low-pass filter (in the figure and hereinafter “LPF”) 621, a deviation calculator 622, and a current controller 623.
  • the detected current after filtering Isns_LPF is "Ict * -N 1 Ict", that is, the DC current component of the primary current Iux. It corresponds to the difference between the magnetomotive force due to Ict * and the magnetomotive force due to the canceling current Ict.
  • the deviation calculator 622 calculates the current deviation between the detected current Isns_LPF after filtering and the target value 0.
  • the current controller 623 calculates the current control term V * _i by multiplying the current deviation by the proportional control gain Kpi.
  • the gain Kpi includes a coefficient of the resistance dimension that converts the value of the current dimension into the voltage dimension.
  • the current control term V * _i may be calculated by the proportional integral control which is the proportional control plus the integral control. The illustration of the integration control block is omitted.
  • the adder 63 adds the voltage control term V * _v and the current control term V * _i to calculate the voltage command value Vinv * of the output voltage generation circuit 52.
  • the divider 64 calculates the duty ratio D of the output voltage generation circuit 52 by dividing the voltage command value Vinv * by the power supply voltage Einv of the operating power supply 51. When the output voltage generation circuit 52 operates by PWM control based on the duty ratio D, the output voltage Vout is applied to the secondary winding 32 of the current transformer 30.
  • the current control term V * _i of the voltage command value Vinv * is reflected in the output voltage Vout, so that a magnetic flux component that superimposes the canceling current Ict on the secondary winding 32 is supplied. Therefore, the canceling current Ict flowing in the secondary winding 32 cancels the DC magnetic flux component generated in the primary winding 31 of the current transformer 30. Therefore, the magnetic path cross-sectional area of the current transformer 30 can be reduced, and the current transformer 30 can be miniaturized.
  • control response of the current control block 62 is faster than the control response of the voltage control block 61, the magnetic flux in the current transformer 30 is always controlled to zero, so that the output voltage Vout cannot be appropriately generated. .. That is, control interference between the ripple voltage cancellation and the DC magnetic flux control occurs. Therefore, control interference is prevented by configuring the control response of the voltage control block 61 to be faster than the control response of the current control block 62.
  • the cutoff frequency fcoL of the LPF621 of the current control block 62 is set lower than the cutoff frequency fcoH of the HPF611 of the voltage control block 61.
  • the control response of the voltage control block 61 can be made faster than the control response of the current control block 62. Is.
  • the primary winding 31 penetrates the ring-shaped transformer core 33, and the secondary winding 32 of N 1 turn is wound around the current transformer 30.
  • the number of turns of the primary winding 31 penetrating the transformer core 33 is one turn.
  • the secondary winding 32 is connected to the control power supply 50.
  • the primary winding 31 penetrates the ring-shaped sensor core 43, and the same number of turns as the secondary winding 32 of the current transformer 30, that is, the sensor secondary winding 42 of N 1 turn is wound. There is. The number of turns of the primary winding 31 penetrating the sensor core 43 is one turn.
  • the sensor secondary winding 42 is connected in series with the secondary winding 32.
  • a canceling current Ict flows through the secondary winding 32 and the sensor secondary winding 42 in a direction that cancels the magnetic flux created by the primary current Iaux.
  • the sensor core 43 has a difference (Iaux-N 1) between the magnetomotive force due to the primary current Iaux flowing in the primary winding 31 of one turn and the magnetomotive force due to the canceling current Ict flowing in the secondary winding 32 of N 1 turn.
  • a magnetic flux proportional to Ict) is generated.
  • a hall sensor 45 for detecting the amount of magnetic flux of the sensor core 43 is incorporated in the cross section of the sensor core 43.
  • the amplifier (“AMP” in the figure) 46 amplifies the amount of magnetic flux detected by the Hall sensor 45.
  • the current sensor 40 illustrated in FIG. 4 is of a magnetic equilibrium type, and the amplified magnetic flux amount is applied to the N 2 turn feedback winding 47 wound around the sensor core 43.
  • the detection voltage Vdcct of the shunt resistor 48 connected to the feedback winding 47 is input to the control power supply 50.
  • the detected voltage Vdcct is expressed by the following equation. Vdcct ⁇ (Iaux-N 1 Ict) / N 2
  • the current sensor 40 of the present embodiment does not detect the primary current Iux itself and the canceling current Ict itself, but rather the primary winding 31 penetrating the sensor core 43 and the sensor wound around the sensor core 43. The difference in the magnetomotive force of the current flowing through the secondary winding 42 is detected. Therefore, the comparison operation in the current control block 62 can be directly realized.
  • Patent Document 1 Japanese Patent No. 376,745
  • the primary winding current detection value detected by the DC primary winding current detection circuit and the DC secondary winding current detection value are detected.
  • the difference from the secondary winding current detection value detected by the secondary winding current detection circuit is calculated.
  • the voltage source generates a voltage waveform based on the voltage command data based on this difference, so that the magnetic saturation of the iron core (trans core) is suppressed.
  • Patent Document 1 Since the configuration of Patent Document 1 requires two current sensors, there is a problem that the device becomes large.
  • one current sensor 40 detects the difference between the magnetomotive force due to the primary current Iaux and the magnetomotive force due to the canceling current Ict, and the control circuit 60 detects the difference between the magnetomotive forces and the current control term V based on the difference in the magnetomotive forces. * Calculate _i. Therefore, the number of current sensors can be reduced and the device can be miniaturized.
  • Japanese Patent Application Laid-Open No. 2018-74668 discloses a technique for imparting a resistive impedance to the secondary winding of a current transformer and stabilizing the voltage of a DC distribution system due to a negative resistance.
  • the AC / DC converter connected to the secondary winding is merely controlled so as to have a constant resistance characteristic, and the vibration component of the electric power is sufficiently controlled. Cannot be compensated.
  • a capacitor for removing the DC component of the primary winding current and a tertiary winding for canceling the DC magnetic flux component are provided. While reducing the DC component contributes to the miniaturization of the transcore size, there is a problem that the device becomes larger when a capacitor for removing the DC component and a tertiary winding are added.
  • the ripple voltage component Vout * of the DC voltage Vb is detected, and the winding voltage of the current transformer 30 is controlled so as to cancel the ripple voltage component Vout *. Therefore, the compensation characteristic of the ripple voltage component Vout * can be improved without adding a capacitor or a tertiary winding as in the reference.
  • the location where the voltage Vb of the DC power supply 11 is detected is not limited to "between the DC distribution line 12 and the current transformer 30" illustrated in FIG. 1, but “between the current transformer 30 and the power load 70". It may be. That is, the voltage across the power load 70 may be detected.
  • the configuration of the current sensor 40 is not limited to the magnetic equilibrium type illustrated in FIG. 4, and may be an open-loop Hall element type as shown in FIG. In the open loop type, the output of the Hall element 45 amplified by the amplifier 46 is input to the control power supply 50.
  • the configuration of the voltage control block 61 of the control circuit 60 is not limited to the configuration in which the output voltage Vout is fed back to the ripple voltage component Vout * obtained by processing the DC voltage Vb with the HPF611.
  • the voltage control term V * _v may be calculated by multiplying the ripple voltage component Vout * by the gain Kffv.
  • the LPF 621 may be provided after the deviation calculator 622 with respect to the configuration of FIG. It is equivalent if LPF621 is configured in the current control loop. Further, the averaging process may be performed instead of the filter process by LPF621.
  • control circuits and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
  • the control circuit and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control circuit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

A power source stabilization device (20) positioned in series between a DC power source (11) and a power load (70). A current transformer (30) includes a primary winding (31) and a secondary winding (32). A control power source (50): calculates a voltage control item for offsetting ripple voltage of the DC voltage (Vb), and a current control item for injecting an offset current (Ict) to the secondary winding (32) so as to offset a DC current component that generates DC magnetomotive force in the primary winding (31); and causes an output voltage generation circuit (52) to operate on the basis of a voltage command value obtained by adding the voltage control item and the current control item, thereby applying an output voltage (Vout) to the secondary winding (32). A current sensor (40) detects the differential between the magnetomotive force caused by primary current (Iaux) flowing to the primary winding (31) and the magnetomotive force caused by the offset current (Ict) flowing to the sensor secondary winding. The control power source (50) calculates the current control item so as to bring the differential between the magnetomotive forces close to 0.

Description

電源安定化装置Power stabilizer 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年2月11日に出願された特許出願番号2020-021067号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2020-021067 filed on February 11, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、電源安定化装置に関する。 This disclosure relates to a power supply stabilizer.
 従来、電源から直流システムに供給される直流電圧のリップル成分を補償し、直流電圧を安定化させる装置が知られている。例えば特許文献1に開示された直流リアクトル装置は、直流リアクトル主巻線と、直流リアクトル鉄心を介して直流リアクトル主巻線と磁気的に結合する直流リアクトル補助巻線と、電圧源と、制御手段と、を備える。直流リアクトル主巻線は、交流電源を整流する整流回路と負荷側の平滑コンデンサとの間に接続されている。電圧源は、直流リアクトル補助巻線に接続され任意の電圧波形を発生する。制御手段は、直流リアクトルの磁気飽和を抑制すると共に直流リップルを補償するように電圧源を制御する。 Conventionally, a device that compensates for the ripple component of the DC voltage supplied from the power supply to the DC system and stabilizes the DC voltage is known. For example, the DC reactor device disclosed in Patent Document 1 includes a DC reactor main winding, a DC reactor auxiliary winding that is magnetically coupled to the DC reactor main winding via a DC reactor core, a voltage source, and a control means. And. The DC reactor main winding is connected between the rectifier circuit that rectifies the AC power supply and the smoothing capacitor on the load side. The voltage source is connected to the DC reactor auxiliary winding to generate an arbitrary voltage waveform. The control means controls the voltage source so as to suppress the magnetic saturation of the DC reactor and compensate for the DC ripple.
特許第3763745号公報Japanese Patent No. 3763745
 特許文献1の請求項2に対応する実施形態の直流リアクトル装置は、直流一次巻線側の直流電流を検出する直流一次巻線電流検出回路、及び、直流二次巻線側の直流電流を検出する直流二次巻線電流検出回路を有している。制御部の磁気飽和抑制制御部は、一次巻線電流検出値と二次巻線電流検出値との差分を算出する。この構成では二つの電流センサが必要であるため、装置が大型になるという問題がある。 The DC reactor device of the embodiment corresponding to claim 2 of Patent Document 1 detects a DC primary winding current detection circuit that detects a DC current on the DC primary winding side and a DC current on the DC secondary winding side. It has a DC secondary winding current detection circuit. The magnetic saturation suppression control unit of the control unit calculates the difference between the primary winding current detection value and the secondary winding current detection value. Since this configuration requires two current sensors, there is a problem that the device becomes large.
 本開示の目的は、電流センサの構成を簡素化し、装置を小型化可能な電源安定化装置を提供することにある。 An object of the present disclosure is to provide a power supply stabilizing device capable of simplifying the configuration of a current sensor and reducing the size of the device.
 本開示の電源安定化装置は、直流電源から直流配電線を介して電力負荷に電力供給する直流システムにおいて、直流配電線と電力負荷との間に直列に配置され、直流電源から電力負荷に印加される直流電圧を安定化する。この電源安定化装置は、カレントトランスと、電流センサと、制御電源と、を備える。 The power supply stabilizer of the present disclosure is arranged in series between a DC distribution line and a power load in a DC system that supplies power from a DC power source to a power load via a DC distribution line, and is applied to the power load from the DC power source. It stabilizes the DC voltage that is applied. This power supply stabilizer includes a current transformer, a current sensor, and a control power supply.
 カレントトランスは、トランスコア、一次巻線及び二次巻線を含む。一次巻線は、直流配電線と電力負荷との間に直列接続され、トランスコアを貫通する。二次巻線は、トランスコアに所定巻数であるN1ターン巻回され、トランスコアを介して一次巻線と磁気結合する。電流センサは、一次巻線が貫通するセンサコアを有する。二次巻線に直列接続されたセンサ用二次巻線がセンサコアに所定巻数と同数のN1ターン巻回されている。 Current transformers include transformer cores, primary windings and secondary windings. The primary winding is connected in series between the DC distribution line and the power load and penetrates the transformer core. The secondary winding is wound around the transcore for N 1 turns, which is a predetermined number of turns, and is magnetically coupled to the primary winding via the transcore. The current sensor has a sensor core through which the primary winding penetrates. The secondary winding for the sensor connected in series with the secondary winding is wound around the sensor core in the same number of N 1 turns as the predetermined number of turns.
 制御電源は、電圧制御項及び電流制御項を演算する。電圧制御項は、直流電圧のリップル電圧を相殺するために用いられる。電流制御項は、一次巻線に流れる一次電流のうち一次巻線に直流起磁力を発生させる直流電流成分を相殺するように二次巻線に相殺電流を注入するために用いられる。そして制御電源は、電圧制御項と電流制御項とを加算して得られた電圧指令値に基づいて出力電圧生成回路を動作させることで、二次巻線に出力電圧を印加する。 The control power supply calculates the voltage control term and the current control term. The voltage control term is used to cancel the ripple voltage of the DC voltage. The current control term is used to inject a canceling current into the secondary winding so as to cancel the DC current component that generates a DC magnetomotive force in the primary winding among the primary currents flowing in the primary winding. Then, the control power supply applies an output voltage to the secondary winding by operating the output voltage generation circuit based on the voltage command value obtained by adding the voltage control term and the current control term.
 電流センサは、一次巻線に流れる一次電流による起磁力と、センサ用二次巻線に流れる相殺電流による起磁力との差分を検出する。制御電源は、当該起磁力の差分を0に近づけるように電流制御項を演算する。 The current sensor detects the difference between the magnetomotive force due to the primary current flowing in the primary winding and the magnetomotive force due to the canceling current flowing in the secondary winding for the sensor. The control power supply calculates the current control term so that the difference in the magnetomotive force approaches zero.
 本開示の電源安定化装置では、一つの電流センサで、一次電流による起磁力と相殺電流による起磁力との差分を検出し、制御回路は、その起磁力の差分に基づき電流制御項を演算する。したがって、二つの電流センサが必要となる特許文献1の従来技術に対し、電流センサの数を減らし、装置を小型化することができる。 In the power supply stabilizer of the present disclosure, one current sensor detects the difference between the magnetomotive force due to the primary current and the magnetomotive force due to the canceling current, and the control circuit calculates the current control term based on the difference in the magnetomotive force. .. Therefore, the number of current sensors can be reduced and the device can be downsized as compared with the conventional technique of Patent Document 1 which requires two current sensors.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態による電源安定化装置を含む直流システムの概略構成図であり、 図2は、制御回路の電圧制御ブロック及び電流制御ブロックの図であり、 図3は、電圧制御ブロックのHPF及び電流制御ブロックのLPFの周波数特性図であり、 図4は、一実施形態による電流センサの構成図であり、 図5は、その他の実施形態の電流センサの構成図であり、 図6は、その他の実施形態の電圧制御ブロック図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic configuration diagram of a DC system including a power supply stabilizer according to an embodiment. FIG. 2 is a diagram of a voltage control block and a current control block of a control circuit. FIG. 3 is a frequency characteristic diagram of the HPF of the voltage control block and the LPF of the current control block. FIG. 4 is a configuration diagram of a current sensor according to an embodiment. FIG. 5 is a block diagram of the current sensor of another embodiment. FIG. 6 is a voltage control block diagram of another embodiment.
 (一実施形態)
 本開示の一実施形態による電源安定化装置を図面に基づいて説明する。図1に示すように、電源安定化装置20は、直流電源11から直流配電線12を介して電力負荷70に電力供給する直流システム90において、直流配電線12と電力負荷70との間に直列に配置される。電源安定化装置20を直列配置とする構成では、電源安定化装置20による直流電源11の分担電圧が少なくて済み、装置容量を低減可能である。
(One Embodiment)
The power supply stabilizing device according to the embodiment of the present disclosure will be described with reference to the drawings. As shown in FIG. 1, the power supply stabilizing device 20 is in series between the DC distribution line 12 and the power load 70 in the DC system 90 that supplies power from the DC power supply 11 to the power load 70 via the DC distribution line 12. Placed in. In the configuration in which the power supply stabilizing devices 20 are arranged in series, the shared voltage of the DC power supply 11 by the power supply stabilizing device 20 can be reduced, and the device capacity can be reduced.
 電力負荷70は種類を問わず、複数ある場合もある。ただし、一般に電力負荷70はリアクトル成分及び容量成分を有しており、LC共振回路が形成される。例えば電力負荷70で高調波電流が発生すると、これが加振源となりLC共振を引き起こす場合がある。或いは、負荷変動等をきっかけに共振が励起されるおそれがある。共振現象が起きると直流配電線12のインピーダンス降下で直流電圧Vbが大きく変動したり、過大な共振電流が流れ、過電圧や過電流を引き起こしたりする。そこで、このような事象を防止するため、直流システム90において直流電圧Vbを安定化することが求められる。 There may be a plurality of power loads 70 regardless of the type. However, in general, the power load 70 has a reactor component and a capacitance component, and an LC resonance circuit is formed. For example, when a harmonic current is generated at the power load 70, this may act as an excitation source and cause LC resonance. Alternatively, resonance may be excited due to load fluctuation or the like. When a resonance phenomenon occurs, the DC voltage Vb fluctuates greatly due to the impedance drop of the DC distribution wire 12, or an excessive resonance current flows, causing an overvoltage or an overcurrent. Therefore, in order to prevent such an event, it is required to stabilize the DC voltage Vb in the DC system 90.
 本実施形態の電源安定化装置20は、カレントトランス30、電流センサ40、及び、制御電源50等を備える。この電源安定化装置20は、制御電源50が生成する出力電圧Voutにより直流電圧Vbの電圧リップル成分を補償するとともに、一次電流Iauxの直流電流成分を相殺する。こうして電源安定化装置20は、直流電源11から電力負荷70に印加される直流電圧Vbを安定化する。なお、直流電圧Vbは電圧センサ等により検出され、制御電源50の制御回路60に取得される。 The power supply stabilizing device 20 of the present embodiment includes a current transformer 30, a current sensor 40, a control power supply 50, and the like. The power supply stabilizing device 20 compensates for the voltage ripple component of the DC voltage Vb by the output voltage Vout generated by the control power supply 50, and cancels the DC current component of the primary current Iaux. In this way, the power supply stabilizing device 20 stabilizes the DC voltage Vb applied from the DC power supply 11 to the power load 70. The DC voltage Vb is detected by a voltage sensor or the like and is acquired by the control circuit 60 of the control power supply 50.
 カレントトランス30は、一次巻線31及び二次巻線32を含む。一次巻線31は、直流配電線12と電力負荷70との間に直列接続されている。二次巻線32は、制御電源50に接続されており、トランスコア33を介して一次巻線31と磁気結合する。一次巻線31の巻数は1ターンであり、二次巻線32の巻数はN1ターンである。二次巻線32の巻数N1ターンの値は、直流電源11の直流電圧Vb、制御電源50の電流容量や耐圧に応じて任意に設定可能である。 The current transformer 30 includes a primary winding 31 and a secondary winding 32. The primary winding 31 is connected in series between the DC distribution line 12 and the power load 70. The secondary winding 32 is connected to the control power supply 50 and magnetically couples with the primary winding 31 via the transformer core 33. The number of turns of the primary winding 31 is one turn, and the number of turns of the secondary winding 32 is N 1 turn. The value of the number of turns N 1 turn of the secondary winding 32 can be arbitrarily set according to the DC voltage Vb of the DC power supply 11 and the current capacity and withstand voltage of the control power supply 50.
 直流電源11から電力負荷70への経路である一次巻線31には、直流電流成分とリップル電流成分との両方を含んだ一次電流Iauxが流れる。一次電流Iauxはトランスコア33内に磁束を発生させる。そして、その磁束の密度によってトランスコア33の寸法が決定される。一次電流Iauxの直流電流成分は、トランスコア33の磁束密度を増加させ、寸法を大きくする方向に働く。そこで、カレントトランス30の小型化を図り、一次巻線31の直流電流成分を相殺するために制御電源50の出力電圧Voutによって二次巻線32に注入される電流を相殺電流Ictという。 A primary current Iaux containing both a DC current component and a ripple current component flows through the primary winding 31 which is a path from the DC power supply 11 to the power load 70. The primary current Iaux generates a magnetic flux in the transformer core 33. Then, the dimension of the transformer core 33 is determined by the density of the magnetic flux. The direct current component of the primary current Iaux increases the magnetic flux density of the transcore 33 and acts in the direction of increasing the dimensions. Therefore, the current injected into the secondary winding 32 by the output voltage Vout of the control power supply 50 in order to reduce the size of the current transformer 30 and cancel the DC current component of the primary winding 31 is referred to as an offset current Ict.
 電流センサ40は、「Iaux-N1Ict」で表される検出電流Isnsを検出し、制御回路60に通知する。電流センサ40の詳細な構成については図4を参照して後述することとし、先に、従来技術の電流検出構成との違いについて説明する。従来技術では、一次巻線31に流れる一次電流Iauxを検出する電流センサ、及び、二次巻線32に流れる相殺電流Ictを検出する電流センサ、の二台の電流センサが用いられる。 The current sensor 40 detects the detected current Iss represented by "Iux-N 1 Ict" and notifies the control circuit 60 of it. The detailed configuration of the current sensor 40 will be described later with reference to FIG. 4, and the difference from the current detection configuration of the prior art will be described first. In the prior art, two current sensors are used: a current sensor that detects the primary current Iux flowing through the primary winding 31 and a current sensor that detects the canceling current Ict flowing through the secondary winding 32.
 一方、本実施形態では、「相殺電流Ictに二次巻線32の巻数N1ターンを乗じた値を一次電流Iauxから減じた値」が一台の電流センサ40により検出される。ここで、電流に巻数を乗じた値は起磁力(単位:[AT(アンペアターン)])である。一次電流Iauxに一次巻線31の巻数1ターンを乗じた値が起磁力Iaux[AT]であり、相殺電流Ictに二次巻線32の巻数N1ターンを乗じた値が起磁力N1Ict[AT]である。 On the other hand, in the present embodiment, " a value obtained by multiplying the canceling current Ict by the number of turns N 1 turn of the secondary winding 32 multiplied by the primary current Iaux" is detected by one current sensor 40. Here, the value obtained by multiplying the current by the number of turns is the magnetomotive force (unit: [AT (ampere-turn)]). The primary value obtained by multiplying the number of turns one turn of the current Iaux the primary winding 31 is magnetomotive force Iaux [AT], offset current value obtained by multiplying the number of turns N 1 turns of the secondary winding 32 to Ict magnetomotive force N 1 Ict [AT].
 つまり、検出電流Isns(=Iaux-N1Ict)は、一次巻線31に流れる一次電流Iauxによる起磁力と、二次巻線32に流れる相殺電流Ictによる起磁力との差分を意味する。本実施形態の電流センサ40は、この起磁力の差分を直接検出し、制御電源50に出力する。 That is, the detected current Isns (= Iux-N 1 Ict) means the difference between the magnetomotive force due to the primary current Iaux flowing in the primary winding 31 and the magnetomotive force due to the canceling current Ict flowing in the secondary winding 32. The current sensor 40 of the present embodiment directly detects the difference in the magnetomotive force and outputs the difference to the control power supply 50.
 制御電源50は、動作電源51、出力電圧生成回路52、及び、制御回路60を含む。動作電源51は、図1に示すように専用の直流電源で構成されてもよい。或いは、直流配電線12から分岐された配電線に接続されることで、直流電源11の直流電圧Vbが利用されてもよい。 The control power supply 50 includes an operating power supply 51, an output voltage generation circuit 52, and a control circuit 60. The operating power supply 51 may be configured by a dedicated DC power supply as shown in FIG. Alternatively, the DC voltage Vb of the DC power supply 11 may be used by being connected to the distribution line branched from the DC distribution line 12.
 出力電圧生成回路52は、制御回路60からの指令に従って動作し、二次巻線32に印加される出力電圧Voutを生成する。例えば出力電圧生成回路52は、高速にPWM制御された単相インバータで構成される。単相インバータは、例えば特許文献1の図10に記載されたハーフブリッジ回路、又は、図12に記載されたフルブリッジ回路に準じて実現可能である。ブリッジ回路を構成する複数のスイッチング素子がPWM制御によりスイッチング動作することで、動作電源51の電源電圧Einvを変換して出力電圧Voutを生成する。 The output voltage generation circuit 52 operates in accordance with a command from the control circuit 60 to generate an output voltage Vout applied to the secondary winding 32. For example, the output voltage generation circuit 52 is composed of a high-speed PWM-controlled single-phase inverter. The single-phase inverter can be realized, for example, according to the half-bridge circuit described in FIG. 10 of Patent Document 1 or the full-bridge circuit described in FIG. By switching the plurality of switching elements constituting the bridge circuit by PWM control, the power supply voltage Einv of the operating power supply 51 is converted to generate the output voltage Vout.
 制御回路60は、直流電圧Vb、動作電源51の電源電圧Einv、出力電圧Vout、及び、電流センサ40の検出電流Isnsに基づき、出力電圧生成回路52をPWM制御するためのデューティ比Dを演算する。図2に制御回路60の演算構成を示す。制御回路60は、電圧制御ブロック61、電流制御ブロック62、加算器63及び除算器64を含む。 The control circuit 60 calculates a duty ratio D for PWM control of the output voltage generation circuit 52 based on the DC voltage Vb, the power supply voltage Einv of the operating power supply 51, the output voltage Vout, and the detection current Isns of the current sensor 40. .. FIG. 2 shows the arithmetic configuration of the control circuit 60. The control circuit 60 includes a voltage control block 61, a current control block 62, an adder 63 and a divider 64.
 電圧制御ブロック61は直流電圧Vbの電圧リップルを相殺する出力電圧Voutを発生させるための電圧制御項V*_vを演算する。図2に示すフィードバック制御構成の電圧制御ブロック61は、ハイパスフィルタ(図中及び以下「HPF」)611、偏差算出器612、及び電圧制御器613を含む。HPF611は、リップル電圧を含んだ直流電圧Vb中の直流成分をカットし、リップル電圧成分Vout*を抽出する。 The voltage control block 61 calculates a voltage control term V * _v for generating an output voltage Vout that cancels the voltage ripple of the DC voltage Vb. The voltage control block 61 having a feedback control configuration shown in FIG. 2 includes a high-pass filter (in the figure and hereinafter “HPF”) 611, a deviation calculator 612, and a voltage controller 613. HPF611 cuts the DC component in the DC voltage Vb including the ripple voltage and extracts the ripple voltage component Vout *.
 偏差算出器612は、リップル電圧成分Vout*と出力電圧Voutとの電圧偏差を算出する。電圧制御器613は、電圧偏差に比例制御のゲインKpvを乗じて電圧制御項V*_vを演算する。或いは、比例制御に積分制御を加えた比例積分制御により電圧制御項V*_vが演算されてもよい。なお、積分制御ブロックの図示を省略する。 The deviation calculator 612 calculates the voltage deviation between the ripple voltage component Vout * and the output voltage Vout. The voltage controller 613 calculates the voltage control term V * _v by multiplying the voltage deviation by the proportional control gain Kpv. Alternatively, the voltage control term V * _v may be calculated by the proportional integral control which is the proportional control plus the integral control. The illustration of the integration control block is omitted.
 電流制御ブロック62はカレントトランス30の直流電流成分を制御するための電流制御項V*_iを演算する。図2に示す電流制御ブロック62は、ローパスフィルタ(図中及び以下「LPF」)621、偏差算出器622、及び電流制御器623を含む。LPF621は、電流センサ40が検出した検出電流Isns(=Iaux-N1Ict)中の直流電流成分以外をカットしたフィルタ後検出電流Isns_LPFを出力する。 The current control block 62 calculates the current control term V * _i for controlling the DC current component of the current transformer 30. The current control block 62 shown in FIG. 2 includes a low-pass filter (in the figure and hereinafter “LPF”) 621, a deviation calculator 622, and a current controller 623. The LPF621 outputs a filtered detection current Isns_LPF that cuts off components other than the DC current component in the detection current Isns (= Iux-N 1 Ict) detected by the current sensor 40.
 ここで、一次電流Iauxに含まれる直流電流成分をIct*(図2に不図示)とすると、フィルタ後検出電流Isns_LPFは、「Ict*-N1Ict」、すなわち、一次電流Iauxの直流電流成分Ict*による起磁力と相殺電流Ictによる起磁力との差分に相当する。 Here, assuming that the DC current component included in the primary current Iux is Ict * (not shown in FIG. 2), the detected current after filtering Isns_LPF is "Ict * -N 1 Ict", that is, the DC current component of the primary current Iux. It corresponds to the difference between the magnetomotive force due to Ict * and the magnetomotive force due to the canceling current Ict.
 偏差算出器622は、フィルタ後検出電流Isns_LPFと目標値である0との電流偏差を算出する。電流制御器623は、電流偏差に比例制御のゲインKpiを乗じて電流制御項V*_iを演算する。ゲインKpiには、電流次元の値を電圧次元に変換する抵抗次元の係数が含まれる。或いは、比例制御に積分制御を加えた比例積分制御により電流制御項V*_iが演算されてもよい。なお、積分制御ブロックの図示を省略する。 The deviation calculator 622 calculates the current deviation between the detected current Isns_LPF after filtering and the target value 0. The current controller 623 calculates the current control term V * _i by multiplying the current deviation by the proportional control gain Kpi. The gain Kpi includes a coefficient of the resistance dimension that converts the value of the current dimension into the voltage dimension. Alternatively, the current control term V * _i may be calculated by the proportional integral control which is the proportional control plus the integral control. The illustration of the integration control block is omitted.
 加算器63は、電圧制御項V*_vと電流制御項V*_iとを加算し、出力電圧生成回路52の電圧指令値Vinv*を算出する。除算器64は、電圧指令値Vinv*を動作電源51の電源電圧Einvで除算することで出力電圧生成回路52のデューティ比Dを演算する。出力電圧生成回路52がデューティ比Dに基づくPWM制御により動作すると、出力電圧Voutがカレントトランス30の二次巻線32に印加される。 The adder 63 adds the voltage control term V * _v and the current control term V * _i to calculate the voltage command value Vinv * of the output voltage generation circuit 52. The divider 64 calculates the duty ratio D of the output voltage generation circuit 52 by dividing the voltage command value Vinv * by the power supply voltage Einv of the operating power supply 51. When the output voltage generation circuit 52 operates by PWM control based on the duty ratio D, the output voltage Vout is applied to the secondary winding 32 of the current transformer 30.
 電圧指令値Vinv*の電圧制御項V*_vが出力電圧Voutに反映されることで、一次巻線31において直流電圧Vbに含まれるリップル電圧に相当する出力電圧Voutが発生し、直流電圧Vbの変動が補償される。本実施形態では直流電圧Vbの変動を検出して出力電圧Vout制御するため、精度良い制御が可能となる。 When the voltage control term V * _v of the voltage command value Vinv * is reflected in the output voltage Vout, the output voltage Vout corresponding to the ripple voltage included in the DC voltage Vb is generated in the primary winding 31, and the DC voltage Vb Fluctuations are compensated. In the present embodiment, since the fluctuation of the DC voltage Vb is detected and the output voltage Vout is controlled, accurate control is possible.
 さらに電圧指令値Vinv*の電流制御項V*_iが出力電圧Voutに反映されることで、二次巻線32に相殺電流Ictを重畳させる磁束成分が供給される。したがって、二次巻線32に流れる相殺電流Ictにより、カレントトランス30の一次巻線31に発生する直流磁束成分が相殺される。よって、カレントトランス30の磁路断面積を小さくすることができ、カレントトランス30の小型化が可能となる。 Further, the current control term V * _i of the voltage command value Vinv * is reflected in the output voltage Vout, so that a magnetic flux component that superimposes the canceling current Ict on the secondary winding 32 is supplied. Therefore, the canceling current Ict flowing in the secondary winding 32 cancels the DC magnetic flux component generated in the primary winding 31 of the current transformer 30. Therefore, the magnetic path cross-sectional area of the current transformer 30 can be reduced, and the current transformer 30 can be miniaturized.
 ここで、仮に電流制御ブロック62の制御応答が電圧制御ブロック61の制御応答よりも早いと、カレントトランス30内の磁束が常にゼロに制御されるため、出力電圧Voutを適切に発生させることできなくなる。すなわち、リップル電圧相殺と直流磁束制御との制御干渉が生じる。そこで、電圧制御ブロック61の制御応答が電流制御ブロック62の制御応答より早くなるように構成されることで、制御干渉が防止される。 Here, if the control response of the current control block 62 is faster than the control response of the voltage control block 61, the magnetic flux in the current transformer 30 is always controlled to zero, so that the output voltage Vout cannot be appropriately generated. .. That is, control interference between the ripple voltage cancellation and the DC magnetic flux control occurs. Therefore, control interference is prevented by configuring the control response of the voltage control block 61 to be faster than the control response of the current control block 62.
 例えば図3に示すように、電流制御ブロック62のLPF621のカットオフ周波数fcoLは、電圧制御ブロック61のHPF611のカットオフ周波数fcoHよりも低く設定されている。或いは、電流制御器623のゲインKpiと電圧制御器613のゲインKpvとの関係を調整することで、電圧制御ブロック61の制御応答が電流制御ブロック62の制御応答より早くなるようにすることも可能である。 For example, as shown in FIG. 3, the cutoff frequency fcoL of the LPF621 of the current control block 62 is set lower than the cutoff frequency fcoH of the HPF611 of the voltage control block 61. Alternatively, by adjusting the relationship between the gain Kpi of the current controller 623 and the gain Kpv of the voltage controller 613, the control response of the voltage control block 61 can be made faster than the control response of the current control block 62. Is.
 次に図4を参照し、カレントトランス30及び電流センサ40の詳細構成について説明する。カレントトランス30は、リング状のトランスコア33に一次巻線31が貫通しており、N1ターンの二次巻線32が巻回されている。トランスコア33を貫通している一次巻線31の巻数は1ターンである。二次巻線32は制御電源50に接続されている。 Next, with reference to FIG. 4, the detailed configuration of the current transformer 30 and the current sensor 40 will be described. In the current transformer 30, the primary winding 31 penetrates the ring-shaped transformer core 33, and the secondary winding 32 of N 1 turn is wound around the current transformer 30. The number of turns of the primary winding 31 penetrating the transformer core 33 is one turn. The secondary winding 32 is connected to the control power supply 50.
 電流センサ40は、リング状のセンサコア43に一次巻線31が貫通しており、カレントトランス30の二次巻線32と同じ巻数、すなわちN1ターンのセンサ二次巻線42が巻回されている。センサコア43を貫通している一次巻線31の巻数は1ターンである。センサ二次巻線42は二次巻線32に直列接続されている。二次巻線32及びセンサ二次巻線42には、一次電流Iauxが作る磁束を相殺する向きに相殺電流Ictが流れる。 In the current sensor 40, the primary winding 31 penetrates the ring-shaped sensor core 43, and the same number of turns as the secondary winding 32 of the current transformer 30, that is, the sensor secondary winding 42 of N 1 turn is wound. There is. The number of turns of the primary winding 31 penetrating the sensor core 43 is one turn. The sensor secondary winding 42 is connected in series with the secondary winding 32. A canceling current Ict flows through the secondary winding 32 and the sensor secondary winding 42 in a direction that cancels the magnetic flux created by the primary current Iaux.
 この構成によりセンサコア43には、1ターンの一次巻線31に流れる一次電流Iauxによる起磁力と、N1ターンの二次巻線32に流れる相殺電流Ictによる起磁力との差分(Iaux-N1Ict)に比例する磁束が発生する。センサコア43の断面には、センサコア43の磁束量を検出するホールセンサ45が組み込まれている。増幅器(図中「AMP」)46は、ホールセンサ45が検出した磁束量を増幅する。 With this configuration, the sensor core 43 has a difference (Iaux-N 1) between the magnetomotive force due to the primary current Iaux flowing in the primary winding 31 of one turn and the magnetomotive force due to the canceling current Ict flowing in the secondary winding 32 of N 1 turn. A magnetic flux proportional to Ict) is generated. A hall sensor 45 for detecting the amount of magnetic flux of the sensor core 43 is incorporated in the cross section of the sensor core 43. The amplifier (“AMP” in the figure) 46 amplifies the amount of magnetic flux detected by the Hall sensor 45.
 図4に例示した電流センサ40は磁気平衡式であり、増幅された磁束量は、センサコア43に巻回されたN2ターンの帰還巻線47に印加される。帰還巻線47に接続されたシャント抵抗48の検出電圧Vdcctが制御電源50に入力される。検出電圧Vdcctは、下式で表される。
  Vdcct∝(Iaux-N1Ict)/N2
The current sensor 40 illustrated in FIG. 4 is of a magnetic equilibrium type, and the amplified magnetic flux amount is applied to the N 2 turn feedback winding 47 wound around the sensor core 43. The detection voltage Vdcct of the shunt resistor 48 connected to the feedback winding 47 is input to the control power supply 50. The detected voltage Vdcct is expressed by the following equation.
Vdcct∝ (Iaux-N 1 Ict) / N 2
 制御電源50の制御回路60で検出電圧Vdcctは検出電流「Iaux-N1Ict(=Isns)」に換算され、電流制御ブロック62に入力される。そして、図2を参照して上述した通り、電流制御ブロック62において検出電流Isnsを目標値0に近づけるように電流制御項V*_iが演算される。つまり、制御電源50は、一次電流Iauxによる起磁力と相殺電流Ictによる起磁力とを一致させるように、二次巻線32に相殺電流Ictを注入する。 The detection voltage Vdcct in the control circuit 60 of the control power supply 50 is converted into the detection current "Iux-N 1 Ict (= Isns)" and input to the current control block 62. Then, as described above with reference to FIG. 2, the current control term V * _i is calculated so that the detected current Iss approaches the target value 0 in the current control block 62. That is, the control power supply 50 injects the canceling current Ict into the secondary winding 32 so that the magnetomotive force due to the primary current Iaux and the magnetomotive force due to the canceling current Ict match.
 このように本実施形態の電流センサ40は、一次電流Iaux自体、及び、相殺電流Ict自体を検出するのではなく、センサコア43を貫通する一次巻線31、及び、センサコア43に巻回されたセンサ二次巻線42に流れる電流の起磁力の差分を検出する。したがって、電流制御ブロック62における比較演算を直接的に実現可能である。 As described above, the current sensor 40 of the present embodiment does not detect the primary current Iux itself and the canceling current Ict itself, but rather the primary winding 31 penetrating the sensor core 43 and the sensor wound around the sensor core 43. The difference in the magnetomotive force of the current flowing through the secondary winding 42 is detected. Therefore, the comparison operation in the current control block 62 can be directly realized.
 ところで、特許文献1(特許第3763745号公報)の図4、図5に示される請求項2に対応する実施形態では、直流一次巻線電流検出回路が検出した一次巻線電流検出値と直流二次巻線電流検出回路が検出した二次巻線電流検出値との差分が算出される。この差分に基づく電圧指令データにより電圧源が電圧波形を生成することで、鉄心(トランスコア)の磁気飽和が抑制される。 By the way, in the embodiment corresponding to claim 2 shown in FIGS. 4 and 5 of Patent Document 1 (Japanese Patent No. 376,745), the primary winding current detection value detected by the DC primary winding current detection circuit and the DC secondary winding current detection value are detected. The difference from the secondary winding current detection value detected by the secondary winding current detection circuit is calculated. The voltage source generates a voltage waveform based on the voltage command data based on this difference, so that the magnetic saturation of the iron core (trans core) is suppressed.
 特許文献1の構成では二つの電流センサが必要であるため、装置が大型になるという問題がある。それに対し本実施形態では、一つの電流センサ40で、一次電流Iauxによる起磁力と相殺電流Ictによる起磁力との差分を検出し、制御回路60は、その起磁力の差分に基づき電流制御項V*_iを演算する。したがって、電流センサの数を減らし、装置を小型化することができる。 Since the configuration of Patent Document 1 requires two current sensors, there is a problem that the device becomes large. On the other hand, in the present embodiment, one current sensor 40 detects the difference between the magnetomotive force due to the primary current Iaux and the magnetomotive force due to the canceling current Ict, and the control circuit 60 detects the difference between the magnetomotive forces and the current control term V based on the difference in the magnetomotive forces. * Calculate _i. Therefore, the number of current sensors can be reduced and the device can be miniaturized.
 また、特開2018-74668号公報(以下「参考文献」)には、カレントトランスの二次巻線に抵抗性のインピーダンスを付与し負性抵抗による直流配電系統の電圧を安定化する技術が開示されている。例えば参考文献の請求項8に対応する実施例3では、二次巻線に接続された交流/直流変換装置を定抵抗特性となるように制御しているに過ぎず、電力の振動成分を十分に補償できない。また、一次巻線電流の直流成分を除去するためのコンデンサや直流磁束成分を相殺するための三次巻線が設けられている。直流成分を低減することでトランスコア寸法の小型化に寄与する反面、直流成分除去用コンデンサや三次巻線を追加すると、装置が大型化するという問題がある。 Further, Japanese Patent Application Laid-Open No. 2018-74668 (hereinafter referred to as "references") discloses a technique for imparting a resistive impedance to the secondary winding of a current transformer and stabilizing the voltage of a DC distribution system due to a negative resistance. Has been done. For example, in the third embodiment corresponding to claim 8 of the reference, the AC / DC converter connected to the secondary winding is merely controlled so as to have a constant resistance characteristic, and the vibration component of the electric power is sufficiently controlled. Cannot be compensated. Further, a capacitor for removing the DC component of the primary winding current and a tertiary winding for canceling the DC magnetic flux component are provided. While reducing the DC component contributes to the miniaturization of the transcore size, there is a problem that the device becomes larger when a capacitor for removing the DC component and a tertiary winding are added.
 それに対し本実施形態では、直流電圧Vbのリップル電圧成分Vout*を検出し、そのリップル電圧成分Vout*を相殺するようにカレントトランス30の巻線電圧を制御する。したがって、参考文献のようなコンデンサや三次巻線を追加することなく、リップル電圧成分Vout*の補償特性を向上させることができる。 On the other hand, in the present embodiment, the ripple voltage component Vout * of the DC voltage Vb is detected, and the winding voltage of the current transformer 30 is controlled so as to cancel the ripple voltage component Vout *. Therefore, the compensation characteristic of the ripple voltage component Vout * can be improved without adding a capacitor or a tertiary winding as in the reference.
 (その他の実施形態)
 (a)制御電源50の出力電圧生成回路52の構成としては、単相インバータ以外に、特許文献1に開示されたチョッパ回路等を用いてもよい。また、出力電圧生成回路52の動作方式はデューティ比DによるPWM制御方式に限らず、どのような方式で出力電圧Voutを生成してもよい。
(Other embodiments)
(A) As the configuration of the output voltage generation circuit 52 of the control power supply 50, a chopper circuit or the like disclosed in Patent Document 1 may be used in addition to the single-phase inverter. Further, the operation method of the output voltage generation circuit 52 is not limited to the PWM control method based on the duty ratio D, and the output voltage Vout may be generated by any method.
 (b)直流電源11の電圧Vbが検出される箇所は、図1に例示した「直流配電線12とカレントトランス30との間」に限らず、「カレントトランス30と電力負荷70との間」であってもよい。すなわち、電力負荷70の両端電圧が検出されてもよい。 (B) The location where the voltage Vb of the DC power supply 11 is detected is not limited to "between the DC distribution line 12 and the current transformer 30" illustrated in FIG. 1, but "between the current transformer 30 and the power load 70". It may be. That is, the voltage across the power load 70 may be detected.
 (c)電流センサ40の構成は、図4に例示した磁気平衡式に限らず、図5に示すようにオープンループのホール素子式としてもよい。オープンループ式では、増幅器46で増幅されたホール素子45の出力が制御電源50に入力される。 (C) The configuration of the current sensor 40 is not limited to the magnetic equilibrium type illustrated in FIG. 4, and may be an open-loop Hall element type as shown in FIG. In the open loop type, the output of the Hall element 45 amplified by the amplifier 46 is input to the control power supply 50.
 (d)制御回路60の電圧制御ブロック61の構成は、直流電圧VbをHPF611で処理して得られたリップル電圧成分Vout*に対して出力電圧Voutをフィードバックする構成に限らない。図6に示すように、フィードフォワード制御器614において、リップル電圧成分Vout*にゲインKffvが乗算されることで電圧制御項V*_vが演算されてもよい。 (D) The configuration of the voltage control block 61 of the control circuit 60 is not limited to the configuration in which the output voltage Vout is fed back to the ripple voltage component Vout * obtained by processing the DC voltage Vb with the HPF611. As shown in FIG. 6, in the feedforward controller 614, the voltage control term V * _v may be calculated by multiplying the ripple voltage component Vout * by the gain Kffv.
 (e)制御回路60の電流制御ブロック62において、図2の構成に対しLPF621が偏差算出器622の後に設けられてもよい。LPF621が電流制御ループ内に構成されれば等価である。また、LPF621によるフィルタ処理に代えて平均化処理が実施されてもよい。 (E) In the current control block 62 of the control circuit 60, the LPF 621 may be provided after the deviation calculator 622 with respect to the configuration of FIG. It is equivalent if LPF621 is configured in the current control loop. Further, the averaging process may be performed instead of the filter process by LPF621.
 以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the present embodiment.
 本開示に記載の制御回路及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御回路及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御回路及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control circuits and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the control circuit and method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control circuit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiments. However, the present disclosure is not limited to such embodiments and structures. The present disclosure also includes various variations and variations within an equal range. Also, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and ideas of the present disclosure.

Claims (2)

  1.  直流電源(11)から直流配電線(12)を介して電力負荷(70)に電力供給する直流システムにおいて、前記直流配電線と前記電力負荷との間に直列に配置され、前記直流電源から前記電力負荷に印加される直流電圧(Vb)を安定化する電源安定化装置であって、
     トランスコア(33)、前記直流配電線と前記電力負荷との間に直列接続され、前記トランスコアを貫通する一次巻線(31)、及び、前記トランスコアに所定巻数であるN1ターン巻回され、前記トランスコアを介して前記一次巻線と磁気結合する二次巻線(32)を含むカレントトランス(30)と、
     前記一次巻線が貫通するセンサコア(43)を有し、前記二次巻線に直列接続されたセンサ用二次巻線(42)が前記センサコアに前記所定巻数と同数のN1ターン巻回された電流センサ(40)と、
     前記直流電圧のリップル電圧(Vout*)を相殺するための電圧制御項(V*_v)、及び、前記一次巻線に流れる一次電流(Iaux)のうち前記一次巻線に直流起磁力を発生させる直流電流成分を相殺するように前記二次巻線に相殺電流(Ict)を注入するための電流制御項(V*_i)を演算し、且つ、前記電圧制御項と前記電流制御項とを加算して得られた電圧指令値(Vinv*)に基づいて出力電圧生成回路(52)を動作させることで、前記二次巻線に出力電圧(Vout)を印加する制御電源(50)と、
     を備え、
     前記電流センサは、前記一次巻線に流れる前記一次電流による起磁力と、前記センサ用二次巻線に流れる前記相殺電流による起磁力との差分を検出し、
     前記制御電源は、当該起磁力の差分を0に近づけるように前記電流制御項を演算する電源安定化装置。
    In a DC system that supplies power from a DC power supply (11) to a power load (70) via a DC distribution line (12), the DC power supply is arranged in series between the DC distribution line and the power load, and the DC power supply is used as described above. A power supply stabilizer that stabilizes the direct current voltage (Vb) applied to the power load.
    A transformer core (33), a primary winding (31) connected in series between the DC distribution line and the power load and penetrating the transformer core, and an N1 turn wound around the transformer core, which is a predetermined number of turns. A current transformer (30) including a secondary winding (32) that magnetically couples with the primary winding via the transformer core.
    The sensor core (43) through which the primary winding penetrates, and the secondary winding (42) for a sensor connected in series with the secondary winding is wound around the sensor core in the same number of N1 turns as the predetermined number of turns. With the current sensor (40)
    A DC electromotive force is generated in the primary winding of the voltage control term (V * _v) for canceling the ripple voltage (Vout *) of the DC voltage and the primary current (Iaux) flowing in the primary winding. The current control term (V * _i) for injecting the canceling current (Ict) into the secondary winding is calculated so as to cancel the direct current component, and the voltage control term and the current control term are added. A control power supply (50) that applies an output voltage (Vout) to the secondary winding by operating the output voltage generation circuit (52) based on the voltage command value (Vinv *) obtained in the above process.
    With
    The current sensor detects the difference between the magnetomotive force due to the primary current flowing through the primary winding and the magnetomotive force due to the canceling current flowing through the secondary winding for the sensor.
    The control power supply is a power supply stabilizing device that calculates the current control term so that the difference in the magnetomotive force approaches zero.
  2.  前記電圧制御項の制御応答は、前記電流制御項の制御応答より早くなるように設定されている請求項1に記載の電源安定化装置。 The power supply stabilizing device according to claim 1, wherein the control response of the voltage control term is set to be faster than the control response of the current control term.
PCT/JP2021/004496 2020-02-11 2021-02-08 Power source stabilization device WO2021161945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020021067A JP7492227B2 (en) 2020-02-11 Power supply stabilizer
JP2020-021067 2020-02-11

Publications (1)

Publication Number Publication Date
WO2021161945A1 true WO2021161945A1 (en) 2021-08-19

Family

ID=77292282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004496 WO2021161945A1 (en) 2020-02-11 2021-02-08 Power source stabilization device

Country Status (1)

Country Link
WO (1) WO2021161945A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272113A (en) * 2001-03-13 2002-09-20 Toshiba Corp Dc reactor device and high-frequency suppression control device
JP2008289267A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Power conversion device, and control method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272113A (en) * 2001-03-13 2002-09-20 Toshiba Corp Dc reactor device and high-frequency suppression control device
JP2008289267A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Power conversion device, and control method therefor

Also Published As

Publication number Publication date
JP2021129343A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US10126332B2 (en) Current transducer with fluxgate detector
US5177428A (en) Inverter control device capable of supressing dc magnetization in three-phase transformer
JP3365356B2 (en) DC-DC converter
JP2607648B2 (en) Power converter
JP2008154408A (en) Output voltage control device of pwm inverter
JP3167936B2 (en) Power converter
WO2021161945A1 (en) Power source stabilization device
JP2008289267A (en) Power conversion device, and control method therefor
JP7492227B2 (en) Power supply stabilizer
JP3763745B2 (en) DC reactor device and high-frequency suppression control device
JP6443652B2 (en) Power converter
JPH0728534A (en) Controller for power converter
JP4607617B2 (en) Control device for power converter
JP2013005536A (en) Switching power supply circuit
JP3518997B2 (en) Power converter
JP6515549B2 (en) Multi-output power supply
JP3690584B2 (en) Control device for DC reactor
US20180358175A1 (en) Active inductor
JP3210185B2 (en) DC / DC converter control circuit
JP2913175B1 (en) Automatic voltage regulator for synchronous or brushless synchronous generators
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JP2005204429A (en) High-frequency restraint and control device
JP3463164B2 (en) Power conversion device equipped with demagnetization suppression control device
JP3219783B2 (en) Power converter
JP2000262099A (en) Lateral flow compensating device for ac generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754649

Country of ref document: EP

Kind code of ref document: A1