JP3518997B2 - Power converter - Google Patents

Power converter

Info

Publication number
JP3518997B2
JP3518997B2 JP21908998A JP21908998A JP3518997B2 JP 3518997 B2 JP3518997 B2 JP 3518997B2 JP 21908998 A JP21908998 A JP 21908998A JP 21908998 A JP21908998 A JP 21908998A JP 3518997 B2 JP3518997 B2 JP 3518997B2
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
transformer
voltage command
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21908998A
Other languages
Japanese (ja)
Other versions
JP2000050642A (en
Inventor
文則 中村
慎一 小草
豊一 光庵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21908998A priority Critical patent/JP3518997B2/en
Publication of JP2000050642A publication Critical patent/JP2000050642A/en
Application granted granted Critical
Publication of JP3518997B2 publication Critical patent/JP3518997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、交流と直流の間
で電力を変換する電力変換装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter for converting power between alternating current and direct current.

【0002】[0002]

【従来の技術】図16は、例えば特開平8−15292
7号公報に示された、複数台の変圧器を介して交流電力
系統に接続される自励式変換器の直流偏磁を防止する従
来の電力変換装置の構成を示すブロック図である。図1
6において、1は交流電力系統、2A〜2Dは変圧器、
3A〜3DはGTOサイリスタ、GCTサイリスタ、I
GBT、トランジスタ等の自己消弧可能な半導体素子か
ら構成され、交直変換可能な自励式変換器、4はコンデ
ンサ等の直流電圧源、5は電流検出器、6は電圧検出
器、7は出力電流基準、8は系統電圧基準、9は電圧電
流制御回路、10A〜10Dは変圧器偏磁量算出部、1
1A〜11Dは出力電圧直流分補正制御部、12は直流
分補正非干渉化部、13A〜13Dは加算器、14A〜
14DはPWM制御回路、15A〜15Dはゲートパル
ス増幅回路である。
2. Description of the Related Art FIG. 16 shows, for example, Japanese Patent Laid-Open No. 8-15292.
It is a block diagram which shows the structure of the conventional power converter device which prevents the DC bias magnetism of the self-excited converter connected to an alternating current power system through the several transformer shown by the 7th publication. Figure 1
In 6, the reference numeral 1 is an AC power system, 2A to 2D are transformers,
3A to 3D are GTO thyristor, GCT thyristor, I
A self-exciting converter composed of a semiconductor element such as a GBT and a transistor capable of self-extinguishing, capable of AC / DC conversion, 4 a DC voltage source such as a capacitor, 5 a current detector, 6 a voltage detector, 7 an output current Reference, 8 is a system voltage reference, 9 is a voltage / current control circuit, 10A to 10D are transformer bias magnetic amount calculation units, 1
1A to 11D are output voltage DC component correction control units, 12 are DC component correction decoupling units, 13A to 13D are adders, and 14A to
Reference numeral 14D is a PWM control circuit, and 15A to 15D are gate pulse amplification circuits.

【0003】次に図16に示した従来の電力変換装置の
動作について説明する。図16に示した電力変換装置に
おいて、交流電力系統1の電圧もしくは自励式変換器3
A〜3Dの交流側出力電圧に直流成分が含まれていた場
合、変圧器2A〜2Dに直流成分を含んだ励磁電流が流
れることとなるが、この励磁電流の直流成分が変圧器2
A〜2Dを偏磁せしめ、その結果変圧器2A〜2Dの鉄
心を飽和に至らせる。変圧器2A〜2Dの鉄心が飽和し
た場合、変圧器鉄心は図17に示した励磁特性を有する
ため、わずかな電圧変化で急激に電流が増加し、自励式
変換器3A〜3Dのうち、偏磁飽和を起こした変圧器鉄
心に接続された変換器に過電流が発生し保護停止する。
Next, the operation of the conventional power converter shown in FIG. 16 will be described. In the power converter shown in FIG. 16, the voltage of the AC power system 1 or the self-excited converter 3
When the AC side output voltage of A to 3D includes a DC component, an exciting current including the DC component flows in the transformers 2A to 2D, and the DC component of the exciting current is the transformer 2
A-2D is demagnetized, and as a result, the iron cores of the transformers 2A-2D are saturated. When the iron cores of the transformers 2A to 2D are saturated, the transformer iron cores have the excitation characteristics shown in FIG. 17, so that a slight voltage change causes a rapid increase in the current, which causes a deviation in the self-excited converters 3A to 3D. Overcurrent occurs in the converter connected to the transformer iron core that has caused magnetic saturation, and protection stops.

【0004】上記変圧器2A〜2Dを偏磁飽和に至らし
める偏磁量は、変圧器偏磁量算出部10A〜10Dに
て、自励式変換器3A〜3Dの接続する変圧器2A〜2
Dの鉄心の磁束の偏りを算出するために必要な電気量P
11〜P4nを検出し、ここで検出された電気量に基づ
いて変圧器2A〜2D夫々の鉄心の磁束の偏りを算出す
ることによって求められる。その結果を基にして、出力
電圧直流分補正制御部11A〜11Dは、磁束の偏りを
なくすために必要な自励式変換器3A〜3D夫々の交流
側出力電圧制御に対する仮の補正値を算出する。直流成
分補正非干渉化部12では、各自励式変換器3A〜3D
において当該自励式変換器以外の自励式変換器の上記仮
の補正値を非干渉化原理に基づいて加え合わせ、当該自
励式変換器3A〜3Dの交流側出力電圧制御に対する最
終的な補正値が算出される。
The amount of eccentricity that causes the above-mentioned transformers 2A to 2D to reach the eccentricity saturation is determined by the transformer eccentricity amount calculators 10A to 10D, which are connected to the self-excited converters 3A to 3D.
Electricity P required to calculate the deviation of the magnetic flux of the iron core of D
11 to P4n are detected, and the deviation of the magnetic flux of the iron cores of the transformers 2A to 2D is calculated based on the detected amount of electricity. Based on the result, the output voltage DC component correction control units 11A to 11D calculate temporary correction values for the AC side output voltage control of the self-excited converters 3A to 3D necessary to eliminate the bias of the magnetic flux. . In the DC component correction decoupling unit 12, each self-excited converter 3A to 3D.
In the above, the temporary correction values of the self-excited converters other than the self-excited converter are added based on the decoupling principle, and the final correction value for the AC side output voltage control of the self-excited converters 3A to 3D becomes It is calculated.

【0005】この最終の補正値は、出力電流基準7、電
流検出器5にて検出された電流帰還値、系統電圧基準
8、電圧検出器6にて検出された電圧帰還値より電圧電
流制御回路9にて作成される自励式変換器3A〜3Dの
電圧指令値と加算器13A〜13Dにて加算されること
により、変圧器2A〜2Dの鉄心の磁束の偏りをなくす
ための自励式変換器3A〜3Dの交流側出力電圧の補正
を行う。PWM制御回路14A〜14Dでは加算器13
A〜13Dの出力する補正後電圧指令値に基づいて自励
式変換器3A〜3Dの半導体素子の点弧パルス幅信号を
作成し、ゲートパルス増幅回路15A〜15Dでは自励
式変換器3A〜3Dの半導体素子の点弧を行うゲートパ
ルス信号の増幅を行う。
This final correction value is obtained from the output current reference 7, the current feedback value detected by the current detector 5, the system voltage reference 8, and the voltage feedback value detected by the voltage detector 6, based on the voltage-current control circuit. The self-excited converter for eliminating the bias of the magnetic flux of the iron cores of the transformers 2A to 2D by adding the voltage command values of the self-excited converters 3A to 3D created in 9 with the adders 13A to 13D. The AC side output voltage of 3A to 3D is corrected. In the PWM control circuits 14A to 14D, the adder 13 is used.
The ignition pulse width signals of the semiconductor elements of the self-excited converters 3A to 3D are created based on the corrected voltage command values output from A to 13D, and the gate pulse amplifier circuits 15A to 15D generate self-excited converters 3A to 3D. Amplification of the gate pulse signal for firing the semiconductor element is performed.

【0006】[0006]

【発明が解決しようとする課題】従来の電力変換装置は
以上のように構成されているので、直流分補正非干渉化
部により、出力電圧直流分補正制御部の出力による偏磁
制御の相互干渉を抑えることができるが、特開平8−1
52927号公報にて開示された非干渉原理では、図1
6に示されたような個別の鉄心を有する、磁気回路の独
立した変圧器構成の場合にのみに有効である。
Since the conventional power converter is configured as described above, the DC component correction decoupling unit causes the mutual interference of the bias magnetic control by the output of the output voltage DC component correction control unit. However, it is possible to suppress
In the non-interference principle disclosed in Japanese Patent No. 52927, FIG.
Only valid for independent transformer configurations of the magnetic circuit with individual cores as shown in 6.

【0007】一方、大容量の自励式変換器では、変圧器
容積を小さく抑えるために図18に示した外鉄型多重変
圧器もしくは図19に示した内鉄型多重変圧器と呼ばれ
る多重変圧器を用いる場合が多く、この場合、各段の巻
線の作る起磁力は共通の磁路を持つため、共通の磁路を
介して他の段の鉄心の磁束に影響を与える。例えば、図
18に示した外鉄型多重変圧器の場合、漏れ磁束は無視
し、図示のように片側の鉄心のみについて考えると、一
段目巻線に発生した起磁力F1は磁路M11を介して磁
束Φ11を作るが、この磁束Φ11は磁路M12、磁路
M13にて分流し、磁束Φ12、磁束Φ13を作る。同
様に磁路M13を通った磁束Φ13は磁路M14、磁路
M15に分流して磁束Φ14、磁束Φ15を作り、磁束
15と磁束14が合流して磁束16を作る。磁束Φ11
からΦ16の関係は以下の式(式1)〜(式3)の通り
となる。 Φ13=Φ11−Φ12 ・・・(式1) Φ15=Φ13−Φ14 ・・・(式2) Φ16=Φ14+Φ15 ・・・(式3)
On the other hand, in a large-capacity self-exciting converter, in order to keep the transformer volume small, a multiple transformer called an outer iron type multiple transformer shown in FIG. 18 or an inner iron type multiple transformer shown in FIG. In many cases, since the magnetomotive force created by the windings of each stage has a common magnetic path, it affects the magnetic flux of the iron cores of other stages via the common magnetic path. For example, in the case of the outer iron type multiple transformer shown in FIG. 18, when the leakage magnetic flux is ignored and only one side of the iron core is considered as shown in the figure, the magnetomotive force F1 generated in the first-stage winding passes through the magnetic path M11. A magnetic flux Φ11 is created by shunting the magnetic flux Φ11 in a magnetic path M12 and a magnetic path M13 to create a magnetic flux Φ12 and a magnetic flux Φ13. Similarly, the magnetic flux Φ13 that has passed through the magnetic path M13 is shunted into the magnetic path M14 and the magnetic path M15 to form the magnetic flux Φ14 and the magnetic flux Φ15, and the magnetic flux 15 and the magnetic flux 14 merge to form the magnetic flux 16. Magnetic flux Φ11
Therefore, the relationship of φ16 is as shown in the following equations (Equation 1) to (Equation 3). Φ13 = Φ11−Φ12 (Equation 1) Φ15 = Φ13−Φ14 (Equation 2) Φ16 = Φ14 + Φ15 (Equation 3)

【0008】磁路M11、磁路M13、磁路M15、磁
路M16を通る磁束経路を主鉄心と呼び、磁路M12を
通る磁束Φ12、磁路M14を通る磁束Φ14が無い場
合は、(式1)〜(式3)およびΦ12=Φ14=0よ
りΦ11=Φ16=Φ15となって、全ての磁束は主鉄
心を通って鉄心の磁束状態は1〜3段すべて同じになる
ことがわかる。しかし、実際には磁路M12、磁路M1
4を通る磁束Φ12、Φ14が存在するため、(式1)
〜(式3)よりわかるとおり、各段の鉄心の磁束状態Φ
11、Φ16、Φ15が同じになるとは限らない。この
場合、例えば一段目巻線に発生した起磁力F1は、(式
1)〜(式3)より磁路M11〜M16を介して他の段
の磁束Φ16、Φ15に影響を及ぼすので、他の段の巻
線の発生する起磁力を考慮しなければ各段の鉄心の磁束
Φ11、Φ16、Φ15を正確に算出することができな
い。
A magnetic flux path passing through the magnetic path M11, magnetic path M13, magnetic path M15, and magnetic path M16 is called a main iron core. When there is no magnetic flux Φ12 passing through the magnetic path M12 and magnetic flux Φ14 passing through the magnetic path M14, From 1) to (Equation 3) and Φ12 = Φ14 = 0, Φ11 = Φ16 = Φ15, and it is understood that all magnetic flux passes through the main iron core and the magnetic flux states of the iron core are the same in all 1 to 3 stages. However, in reality, the magnetic path M12 and the magnetic path M1
Since there are magnetic fluxes Φ12 and Φ14 passing through 4, (Equation 1)
~ As seen from (Equation 3), the magnetic flux state Φ of the iron core at each stage
11, φ16, and φ15 are not always the same. In this case, for example, the magnetomotive force F1 generated in the first-stage winding affects the magnetic fluxes Φ16 and Φ15 of the other stages through the magnetic paths M11 to M16 according to (Equation 1) to (Equation 3). The magnetic fluxes Φ11, Φ16, and Φ15 of the iron core of each stage cannot be accurately calculated unless the magnetomotive force generated by the winding of the stage is taken into consideration.

【0009】なお、この現象は、各段の巻線間で共通の
磁路を有する変圧器構造であれば同様に発生する現象
で、図19に示した内鉄型多重変圧器を用いた場合で
も、例えば一段目巻線の発生する起磁力F1は磁路M
1、磁路M2、磁路M3、磁路M4を介して磁路M5の
鉄心の磁束Φ5に影響を与えるため、他の段の巻線の発
生する起磁力を考慮しなければ各段の鉄心の磁束状態を
正確に算出することができない。
It should be noted that this phenomenon occurs similarly in the case of a transformer structure having a common magnetic path between the windings of each stage. When the inner iron type multiple transformer shown in FIG. 19 is used. However, for example, the magnetomotive force F1 generated by the first winding is the magnetic path M
1. The magnetic flux Φ5 of the iron core of the magnetic path M5 is affected via the magnetic path M2, the magnetic path M3, and the magnetic path M4. Therefore, if the magnetomotive force generated by the windings of the other steps is not taken into consideration Cannot accurately calculate the magnetic flux state of.

【0010】しかしながら、特開平8−152927号
公報にて開示されたような非干渉原理を用いて偏磁補正
量を求める従来の手法では、変圧器鉄心が共通の磁路を
持たない独立した変圧器を用いて多重接続した場合に関
してしか考慮されていない。変圧器偏磁量算出部10A
〜10D、出力電圧直流分補正制御部11A〜11D、
直流分補正非干渉化部12いずれでも他の段の巻線の発
生する起磁力の影響を正確に考慮しておらず、そのた
め、変圧器鉄心が図18に示した外鉄型多重変圧器もし
くは図19に示した内鉄型多重変圧器のような共通の磁
路を持ち磁気的に影響を受け合う構成をとった場合に
は、偏磁補正量を誤って出力する場合がある。
However, in the conventional method for obtaining the amount of bias magnetization correction by using the non-interference principle disclosed in Japanese Patent Laid-Open No. 8-152927, the transformer cores are independent transformers that do not have a common magnetic path. It is considered only in the case of multiple connection using a device. Transformer bias magnetic amount calculation unit 10A
-10D, output voltage DC component correction control units 11A to 11D,
Neither of the DC component correction decoupling units 12 accurately considers the effect of the magnetomotive force generated by the windings of the other stages, so that the transformer core has the outer iron type multiple transformer shown in FIG. In the case where the inner iron type multiple transformer shown in FIG. 19 has a common magnetic path and is magnetically influenced, the bias correction amount may be erroneously output.

【0011】以上のように従来の電力変換装置では、例
えば図18に示した外鉄型多重変圧器もしくは図19に
示した内鉄型多重変圧器を介して自励式変換器が多重接
続された場合に他の段の巻線が作る起磁力の影響を考慮
することが出来ないため、正確な変圧器偏磁量ならびに
前記変圧器偏磁量から演算される偏磁補正量が算出でき
ず、十分な直流偏磁抑制効果を得ることが困難であると
いう問題点があった。本発明は上記のような問題点を解
決するためになされたものであり、共通の磁路を持つ多
重変圧器を用いた場合でも、変圧器鉄心の磁束を正しく
演算して、変圧器の直流偏磁を抑制できる電力変換装置
を得ることを目的とする。
As described above, in the conventional power converter, for example, the self-excited converters are connected in multiple via the outer iron type multiple transformer shown in FIG. 18 or the inner iron type multiple transformer shown in FIG. Since it is not possible to consider the effect of the magnetomotive force created by the windings of the other stages in this case, it is not possible to calculate the accurate transformer bias amount and the bias bias correction amount calculated from the transformer bias amount, There is a problem that it is difficult to obtain a sufficient DC bias magnetic suppression effect. The present invention has been made to solve the above problems, and even when a multiple transformer having a common magnetic path is used, the magnetic flux of the transformer iron core is correctly calculated and the direct current of the transformer is calculated. An object of the present invention is to obtain a power conversion device capable of suppressing magnetic bias.

【0012】[0012]

【課題を解決するための手段】請求項1に係る電力変換
装置は、スイッチング素子を有する複数の電力変換器
と、互いに磁気的に結合された複数の脚鉄を持った鉄
心、脚鉄にそれぞれ巻かれ複数の電力変換器の交流側に
それぞれ接続された複数の直流側巻線および脚鉄にそれ
ぞれ巻かれ交流電源に接続される複数の交流側巻線を有
する多重変圧器と、電力変換器の交流側出力電圧指令を
算出する電圧指令作成手段と、多重変圧器の複数の脚鉄
の磁束状態に応じて交流側出力電圧指令を補正するため
の電圧指令補正を算出する電圧指令補正算出手段とを備
え、出力電圧指令と電圧指令補正に基づいて電力変換器
の交流側出力電圧を制御するようにしたものである。
According to a first aspect of the present invention, there is provided a power converter including a plurality of power converters having switching elements, an iron core having a plurality of leg irons magnetically coupled to each other, and a leg iron. A multiple transformer having a plurality of DC side windings wound around and connected to the AC sides of a plurality of power converters, and a plurality of AC side windings wound around a leg iron and connected to an AC power source, and a power converter Voltage command creating means for calculating the AC side output voltage command, and voltage command correction calculating means for calculating the voltage command correction for correcting the AC side output voltage command according to the magnetic flux states of the plurality of leg irons of the multiple transformer. And the AC side output voltage of the power converter is controlled based on the output voltage command and the voltage command correction.

【0013】請求項2に係る電力変換装置は、請求項1
のものにおいて、電圧指令補正算出手段が、多重変圧器
の脚鉄に巻かれた直流側巻線および交流側巻線の電気量
から脚鉄毎に個別に仮電圧指令補正を算出する仮電圧指
令補正算出手段と、仮電圧指令補正から脚鉄相互間の直
流側巻線および交流側巻線の電気量と磁束状態との関係
を用いて電圧指令補正を算出する補正値修正手段からな
るものである。請求項3に係る電力変換装置は、請求項
2のものにおいて、電気量と磁束状態との関係が、磁気
抵抗を用いて表される関係であるとしたものである。請
求項4に係る電力変換装置は、請求項のものにおい
て、電圧指令補正算出手段は、多重変圧器の複数の直流
側巻線および交流側巻線の電気量から複数の脚鉄の磁束
状態を算出する磁束状態算出手段と、この磁束状態算出
手段にて算出された前記磁束状態から電圧指令補正を算
出する補正値算出手段とからなり、前記磁束状態算出手
段は、前記電気量に応じて変化させる非線形な特性とし
て前記磁束状態を算出するようにしたものである。請求
項5に係る電力変換装置は、請求項2のものにおいて、
電気量と磁束状態との関係を入力された電気量に応じて
変化させる非線形な特性として電圧指令補正を算出する
ようにしたものである。
A power conversion device according to a second aspect of the present invention is the power conversion device of the first aspect.
In the above, the voltage command correction calculation means calculates the temporary voltage command correction for each leg iron individually from the electric quantities of the DC side winding and the AC side winding wound on the leg irons of the multiple transformer. And a correction value correction means for calculating the voltage command correction from the provisional voltage command correction using the relationship between the amount of electricity of the DC side winding and the AC side winding between the leg irons and the magnetic flux state. is there. According to a third aspect of the present invention, in the power conversion device according to the second aspect, the relationship between the amount of electricity and the magnetic flux state is a relationship expressed by using a magnetic resistance. A power conversion device according to a fourth aspect is the power conversion device according to the first aspect , wherein the voltage command correction calculation means is a plurality of direct currents of a multiple transformer.
Magnetic flux of multiple leg irons from the electric quantities of the side winding and AC side winding
Magnetic flux state calculation means for calculating the state and this magnetic flux state calculation
Calculate the voltage command correction from the magnetic flux state calculated by
And a correction value calculation means for outputting the magnetic flux state calculation means.
The step has a non-linear characteristic that changes according to the amount of electricity.
To calculate the magnetic flux state. A power conversion device according to a fifth aspect is the power conversion device according to the second aspect,
The voltage command correction is calculated as a non-linear characteristic that changes the relationship between the electric quantity and the magnetic flux state according to the input electric quantity.

【0014】請求項に係る電力変換装置は、請求項1
のものにおいて、多重変圧器の鉄心の近傍に複数の磁気
検出器を設け、これらの磁気検出器の出力から、電圧指
令補正算出手段により電圧指令補正を算出するようにし
たものである。請求項に係る電力変換装置は、請求項
のものにおいて、電圧指令補正算出手段が、複数の磁
気検出器の出力から複数の脚鉄の磁束状態を算出する磁
束状態算出手段と、この磁束状態算出手段の出力から電
圧指令補正を算出する補正値算出手段からなるものであ
る。
A power conversion device according to a sixth aspect of the present invention is the power conversion device of the first aspect.
In the above, a plurality of magnetic detectors are provided in the vicinity of the iron core of the multiple transformer, and the voltage command correction calculation means calculates the voltage command correction from the outputs of these magnetic detectors. Power converting apparatus according to claim 7, claim
6 , the voltage command correction calculation means calculates the magnetic flux status calculation means for calculating the magnetic flux status of the plurality of leg irons from the outputs of the plurality of magnetic detectors, and the voltage command correction calculation from the outputs of the magnetic flux status calculation means. It comprises a correction value calculation means.

【0015】請求項8に係る電力変換装置は、請求項7
のものにおいて、磁束状態算出手段は、複数の磁気検出
器の出力と複数の脚鉄の磁束状態との、磁気抵抗を用い
て表される関係を用いて、前記磁気検出器の出力から前
記磁束状態を算出するようにしたものである。請求項9
に係る電力変換装置は、請求項7のものにおいて、磁束
状態算出手段は、複数の磁気検出器の出力と複数の脚鉄
の磁束状態との関係を用い、前記磁気検出器の出力に応
じて変化させる非線形な特性として前記磁束状態を算出
するようにしたものである。請求項10に係る電力変換
装置は、請求項3または請求項のものにおいて、磁気
抵抗が起磁力により変化するとしたものである。
An electric power converter according to an eighth aspect is the seventh aspect.
, The magnetic flux state calculation means includes a plurality of magnetic detection
Using the magnetic resistance of the output of the vessel and the magnetic flux state of multiple leg irons
From the output of the magnetic detector using the relationship
The magnetic flux state is calculated. Claim 9
The power converter according to claim 7, wherein the magnetic flux is
The state calculation means is composed of outputs of a plurality of magnetic detectors and a plurality of leg bars.
The magnetic flux state of the
Calculate the magnetic flux state as a nonlinear characteristic that changes
It is something that is done. According to a tenth aspect of the power conversion device of the third or eighth aspect , the magnetic resistance is changed by the magnetomotive force.

【0016】[0016]

【発明の実施の形態】実施の形態1. 図1は本発明の実施の形態1における電力変換装置の構
成を示すブロック図である。図1において、1は交流電
源である交流電力系統、2は多重変圧器であり、一段目
〜三段目の3つの脚鉄201、202、203およびこ
れらの脚鉄201〜203を互いに磁気的に結合する継
鉄204、段間磁路205を持った鉄心200と、脚鉄
201〜203にそれぞれ巻かれ後述の3つの電力変換
器3A〜3Cの交流側にそれぞれ接続された3つの直流
側巻線(以下、二次巻線と称する)211、212、2
13と、脚鉄201〜203にそれぞれ巻かれ、互い直
列になって交流電力系統1に接続された3つの交流側巻
線(以下、一次巻線と称する)221、222、223
とを有している。3A〜3CはGTOサイリスタ、GC
Tサイリスタ、IGBT、トランジスタ等の自己消弧可
能な半導体スイッチング素子から構成され、交直変換可
能な自励式の電力変換器、4はコンデンサ、直流電源等
の直流電圧源、51、52A〜52Cは電流検出器であ
り、電流検出器51で交流電力系統1との間の電流(以
下、一次電流と称する)を検出するとともに電流検出器
52A〜52Cでそれぞれ電力変換器3A〜3Cの交流
側電流(以下、二次電流と称する)を検出するようにな
っている。6は交流電力系統1の電圧を検出する電圧検
出器、7は出力電流基準、8は系統電圧基準、9は電圧
指令作成手段である電圧電流制御回路で、交流電力系統
1の電気的状態として電圧検出器6および電流検出器5
1の出力を用いるとともに、設定条件として出力電流基
準7および系統電圧基準8の設定値を用い、電力変換器
3A〜3Cの交流側出力電圧指令を算出するようになっ
ている。10A〜10Cは変圧器偏磁量算出部、11A
〜11Cは出力電圧直流分補正制御部、13A〜13C
は加算器、14A〜14CはPWM制御回路、15A〜
15Cはゲートパルス増幅回路、16は鉄心200の磁
束状態を算出する磁束状態算出手段としての変圧器磁束
状態算出部であり、変圧器偏磁量算出部10A〜10C
と出力電圧直流分補正制御部11A〜11Cで補正値算
出手段を構成し、この補正値算出手段と変圧器磁束状態
算出部16で電圧指令補正算出手段を構成している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a block diagram showing a configuration of a power conversion device according to a first embodiment of the present invention. In FIG. 1, 1 is an AC power system that is an AC power source, 2 is a multiple transformer, and three leg irons 201, 202, 203 of the first to third stages and these leg irons 201 to 203 are magnetically connected to each other. Of the iron core 200 having the yoke 204 and the inter-stage magnetic path 205 coupled to each other, and the three DC sides respectively wound around the leg irons 201 to 203 and connected to the AC sides of the three power converters 3A to 3C described later. Windings (hereinafter referred to as secondary windings) 211, 212, 2
13 and three AC side windings (hereinafter referred to as primary windings) 221, 222, 223 that are respectively wound on the leg irons 201 to 203 and connected in series to each other to the AC power system 1.
And have. 3A to 3C are GTO thyristors, GC
A self-exciting power converter that is composed of a semiconductor switching element such as a T thyristor, an IGBT, and a transistor that can be self-extinguished, and is capable of AC / DC conversion, 4 is a capacitor, a DC voltage source such as a DC power supply, 51, 52A to 52C are currents The current detector 51 detects a current (hereinafter, referred to as a primary current) with the AC power system 1, and the current detectors 52A to 52C respectively detect the AC side currents of the power converters 3A to 3C. Hereinafter, it will be referred to as a secondary current). 6 is a voltage detector that detects the voltage of the AC power system 1, 7 is an output current reference, 8 is a system voltage reference, and 9 is a voltage / current control circuit that is a voltage command creating means. Voltage detector 6 and current detector 5
In addition to using the output of 1, the set values of the output current reference 7 and the system voltage reference 8 are used as the setting conditions to calculate the AC side output voltage command of the power converters 3A to 3C. 10A to 10C are transformer bias magnetic amount calculation units, 11A
11C are output voltage DC component correction control units, 13A to 13C.
Is an adder, 14A to 14C are PWM control circuits, and 15A to
Reference numeral 15C is a gate pulse amplifier circuit, 16 is a transformer magnetic flux state calculation unit as magnetic flux state calculation means for calculating the magnetic flux state of the iron core 200, and transformer bias magnetic field amount calculation units 10A to 10C.
The output voltage DC component correction control units 11A to 11C constitute a correction value calculating unit, and the correction value calculating unit and the transformer magnetic flux state calculating unit 16 constitute a voltage command correction calculating unit.

【0017】また、図2は本実施の形態の変圧器磁束状
態算出部16の構成例を示すブロック図、図3は多重変
圧器2の磁気回路モデルを示す説明図である。図2にお
いて、171、172A〜172Cは変圧器の一次、二
次巻線の巻数倍するゲイン、181A〜181Cは減算
演算を行う減算器、19はゲイン171、172A〜1
72Cおよび減算器181A〜181Cをブロック化し
て構成した起磁力算出部、173AA〜173AC、1
73BA〜173BC、173CA〜173CCは磁気
抵抗に応じた比例定数倍するゲイン、131A〜131
Cは3入力の加算演算を行う加算器、20A〜20C
は、ゲイン173AA〜173AC、173BA〜17
3BC、173CA〜173CCおよび加算器131A
〜131Cをブロック化して構成した磁束算出部であ
り、起磁力算出部19および磁束算出部20A〜20C
で変圧器磁束状態算出部16を構成している。
FIG. 2 is a block diagram showing a configuration example of the transformer magnetic flux state calculation unit 16 of this embodiment, and FIG. 3 is an explanatory diagram showing a magnetic circuit model of the multiple transformer 2. In FIG. 2, 171, 172A to 172C are gains that multiply the number of turns of the primary and secondary windings of the transformer, 181A to 181C are subtractors that perform subtraction calculation, and 19 is gains 171, 172A to 1
72C and a subtraction unit 181A to 181C are made into a block, and a magnetomotive force calculation part, 173AA to 173AC, 1
73BA to 173BC and 173CA to 173CC are gains that are multiplied by a proportional constant according to magnetic resistance, 131A to 131A.
C is an adder for performing a three-input addition operation, 20A to 20C
Are gains 173AA to 173AC, 173BA to 17
3BC, 173CA to 173CC and adder 131A
To 131C in a block form, the magnetic flux calculation unit, and the magnetomotive force calculation unit 19 and the magnetic flux calculation units 20A to 20C.
And constitutes the transformer magnetic flux state calculation unit 16.

【0018】次に動作について説明する。電流検出器5
1および電圧検出器6の出力を電圧電流制御回路9へ送
る。電圧電流制御回路9には、出力電流基準7および系
統電圧基準8の設定値が入力されており、これらの値に
基づいて電力変換器3A〜3Cの交流側出力電圧指令を
算出して出力する。この交流側出力電圧指令に対して、
多重変圧器2の鉄心200の脚鉄201〜203に直流
偏磁が生じないようにするために、以下に述べるように
して補正を行う。
Next, the operation will be described. Current detector 5
1 and the output of the voltage detector 6 are sent to the voltage / current control circuit 9. The set values of the output current reference 7 and the system voltage reference 8 are input to the voltage / current control circuit 9, and the AC side output voltage commands of the power converters 3A to 3C are calculated and output based on these values. . For this AC side output voltage command,
In order to prevent DC bias magnetization from occurring in the leg irons 201 to 203 of the iron core 200 of the multiple transformer 2, correction is performed as described below.

【0019】多重変圧器2の鉄心200の磁束状態を検
出するのに必要な電気量として、一次電流I1、二次電
流I2A〜I2Cを電流検出器51、52A〜52Cに
て検出する。電流検出器51、52A〜52Cにて検出
された電流より、変圧器磁束状態算出部16にて変圧器
2の各段脚鉄の磁束状態が算出されるが、変圧器磁束状
態算出部16の詳細な動作を図2、図3を参照して説明
する。変圧器2の一段目〜三段目の各段の起磁力F1か
らF3は以下の(式4)で算出される。 起磁力=(二次巻線巻数×二次電流)-(一次巻線巻数×一次電流)・・・(式4) 一般に起磁力Fと磁束Φの関係は磁気抵抗Rを用いて F=R×Φ ・・・(式5) と書ける。ただし、磁気抵抗Rは磁路長L、透磁率μ、
磁気回路断面積sを用いて R=L/(μ×s) ・・・(式6) で表される。なお、この実施の形態では簡単のために透
磁率μは一定であるとする。
The primary current I1 and the secondary currents I2A to I2C are detected by the current detectors 51 and 52A to 52C as the amounts of electricity necessary to detect the magnetic flux state of the iron core 200 of the multiple transformer 2. The transformer magnetic flux state calculation unit 16 calculates the magnetic flux state of each step leg of the transformer 2 from the current detected by the current detectors 51, 52A to 52C. The detailed operation will be described with reference to FIGS. The magnetomotive forces F1 to F3 of the first to third stages of the transformer 2 are calculated by the following (Equation 4). Magnetomotive force = (number of turns of secondary winding x secondary current)-(number of turns of primary winding x primary current) (Equation 4) Generally, the relationship between magnetomotive force F and magnetic flux Φ is calculated by using magnetic resistance R F = R It can be written as × Φ (Equation 5). However, the magnetic resistance R is the magnetic path length L, the magnetic permeability μ,
It is represented by R = L / (μ × s) (Equation 6) using the magnetic circuit cross-sectional area s. In this embodiment, the magnetic permeability μ is constant for simplicity.

【0020】多重変圧器2の鉄心200が図1において
左右対称として、そのうち片側部分の磁気回路を考え
て、漏れ分を無視すれば、図3の通りモデル化すること
ができる。図3において、磁気抵抗R1〜R10は多重
変圧器2の鉄心200におけるものに相当する。一段目
〜三段目の各段の起磁力F1〜F3と磁束Φ1〜Φ3の
関係は、図3中の磁気抵抗R1〜R10を用いて、磁束
の漏れを考慮しなければそれぞれの磁気閉回路について
以下の(式7)〜(式9)が成り立つ。 F1=R1×Φ1+R5×Φ1+R2×(Φ1-Φ2)+R8×Φ1 ・・・(式7) F2=-R2×(Φ1-Φ2)+R6×Φ2+R3×(Φ2-Φ3)+R9×Φ2 ・・・(式8) F3=-R3×(Φ2-Φ3)+R7×Φ3+R4×Φ3+R10×Φ3 ・・・(式9) (式7)〜(式9)より各段の脚鉄201〜203の磁
束Φ1〜Φ3を求めることができ、 Φ1=K11×F1+K12×F2+K13×F3 ・・・(式10) Φ2=K21×F1+K22×F2+K23×F3 ・・・(式11) Φ3=K31×F1+K32×F2+K33×F3 ・・・(式12) となる。ただし、K11〜K33は(式7)〜(式9)
より磁束Φ1〜Φ3を求めた場合の係数である。
If the iron core 200 of the multiple transformer 2 is left-right symmetric in FIG. 1 and the magnetic circuit on one side of the iron core 200 is considered and leakage is neglected, it can be modeled as shown in FIG. In FIG. 3, the magnetic resistances R1 to R10 correspond to those in the iron core 200 of the multiple transformer 2. Regarding the relationship between the magnetomotive forces F1 to F3 and the magnetic fluxes Φ1 to Φ3 in each of the first to third stages, the magnetic resistances R1 to R10 in FIG. The following (formula 7) to (formula 9) are established. F1 = R1 × Φ1 + R5 × Φ1 + R2 × (Φ1-Φ2) + R8 × Φ1 ・ ・ ・ (Formula 7) F2 = -R2 × (Φ1-Φ2) + R6 × Φ2 + R3 × (Φ2-Φ3) + R9 × Φ2 ・ ・ ・ (Formula 7) 8) F3 = -R3 x (Φ2-Φ3) + R7 x Φ3 + R4 x Φ3 + R10 x Φ3 (Equation 9) From (Equation 7) to (Equation 9), the magnetic fluxes Φ1 to Φ3 of the leg irons 201 to 203 of each stage are calculated. Φ1 = K11 × F1 + K12 × F2 + K13 × F3 (Equation 10) Φ2 = K21 × F1 + K22 × F2 + K23 × F3 (Equation 11) Φ3 = K31 × F1 + K32 × F2 + K33 × F3 ・ ・ ・ ( Equation 12) is obtained. However, K11 to K33 are (formula 7) to (formula 9)
It is a coefficient when the magnetic fluxes Φ1 to Φ3 are obtained.

【0021】従って、(式10)〜(式12)を用いて
変圧器2の鉄心の磁束状態を正しく推定することが出来
るので、図2において、一次電流I1、二次電流I2A
〜I2Cをゲイン171、ゲイン172A〜172Cで
一次巻線の巻数N1、二次巻線の巻数N2A〜N2Cと
乗算し、減算器181A〜181Cにて減算して起磁力
F1〜F3を求め、ゲイン173AA〜173ACにて
(式10)中の係数K1〜K13と乗算し加算器131
Aにて加算して磁束Φ1を求め、ゲイン173BA〜ゲ
イン173BCにて(式11)中の係数K21〜K23
と乗算し加算器131Bにて加算して磁束Φ2を、そし
てゲイン173CA〜ゲイン173CCにて(式12)
中の係数K31〜K33と乗算し加算器131Cにて加
算して磁束Φ3を正しく求めることが出来る。これら磁
束Φ1〜Φ3は変圧器磁束状態として出力される。
Therefore, since the magnetic flux state of the iron core of the transformer 2 can be correctly estimated by using (Equation 10) to (Equation 12), the primary current I1 and the secondary current I2A in FIG.
.About.I2C is multiplied by the number of turns N1 of the primary winding and the number of turns N2A to N2C of the secondary winding with a gain 171, gains 172A to 172C, and subtracted by subtracters 181A to 181C to obtain magnetomotive forces F1 to F3. 173AA to 173AC multiply the coefficients K1 to K13 in (Equation 10) and adder 131
A is added to obtain the magnetic flux Φ1, and the gains 173BA to 173BC are used to calculate the coefficients K21 to K23 in (Equation 11).
And the magnetic flux Φ2 is added by the adder 131B and the gain 173CA to the gain 173CC (Equation 12).
The magnetic flux Φ3 can be correctly obtained by multiplying the coefficients K31 to K33 in the inside and adding them by the adder 131C. These magnetic fluxes Φ1 to Φ3 are output as transformer magnetic flux states.

【0022】ここで、変圧器磁束状態算出部16は加減
演算回数を減らす目的で図4に示した構成としても構わ
ない。図4は変圧器磁束状態算出部16の別の構成例を
示すブロック図であり、図において、174AA〜17
4AD、174BA〜174BD、174CA〜174
CDは比例定数倍するゲイン、132A〜132Cは4
入力の加算演算を行う加算器である。ゲイン174AA
〜174AD、174BA〜174BD、174CA〜
174CDは、巻数N1、N2A〜N2Cと係数K11
〜K13、K21〜K23、K31〜K33から求めた
ゲインとし、二次電流I2A〜I2Cおよび一次電流I
1をゲイン174AA〜174AD、174BA〜17
4BD、174CA〜174CDにて乗算し、加算器1
32A〜132Cにて加算することによって図2に示し
た変圧器磁束状態算出部16と同じ演算結果を得ること
ができる。変圧器磁束状態算出部16を図4の構成とす
ることによって図2に示した変圧器磁束状態算出部16
に比べ、加減演算の回数を減らすことができ、演算時間
を短縮できる利点がある。
Here, the transformer magnetic flux state calculation unit 16 may have the configuration shown in FIG. 4 for the purpose of reducing the number of addition and subtraction calculations. FIG. 4 is a block diagram showing another configuration example of the transformer magnetic flux state calculation unit 16, in which 174AA to 17A are shown.
4AD, 174BA to 174BD, 174CA to 174
CD is a gain that is multiplied by a proportional constant, 132A to 132C is 4
It is an adder that performs an addition operation of inputs. Gain 174AA
~ 174AD, 174BA ~ 174BD, 174CA ~
174CD has a number of turns N1, N2A to N2C and a coefficient K11.
To K13, K21 to K23, and K31 to K33, the secondary currents I2A to I2C and the primary current I are obtained.
1 for gain 174AA to 174AD, 174BA to 17
4BD, multiply by 174CA to 174CD, adder 1
By adding 32A to 132C, the same calculation result as that of the transformer magnetic flux state calculation unit 16 shown in FIG. 2 can be obtained. By configuring the transformer magnetic flux state calculation unit 16 of FIG. 4, the transformer magnetic flux state calculation unit 16 illustrated in FIG.
Compared with, there is an advantage that the number of addition and subtraction calculations can be reduced and the calculation time can be shortened.

【0023】このようにして変圧器磁束状態算出部16
にて各段の鉄心の磁束状態Φ1〜Φ3を正確に算出する
ことができるため、算出された多重変圧器2の鉄心の磁
束状態Φ1〜Φ3より、変圧器偏磁量算出部10A〜1
0Cにて偏磁量が正しく算出される。鉄心が飽和した場
合の磁束波形は正負非対称となるので、変圧器偏磁量算
出部10A〜10Cは、直流成分を含む交流信号から偏
磁量に相当する直流成分のみを抽出する手段、例えば、
ローパスフィルタ、積分器、移動平均フィルタで構成し
てもよく、あるいは、正負波形の非対称性を抽出する手
段、例えば最大値と最小値の比較器、最大値と最小値の
平均値算出器、フーリエ級数展開による偶数調波の抽出
器などで構成することができる。
In this way, the transformer magnetic flux state calculation unit 16
Since it is possible to accurately calculate the magnetic flux states Φ1 to Φ3 of the iron cores of the respective stages, from the calculated magnetic flux states Φ1 to Φ3 of the iron core of the multiple transformer 2, the transformer bias magnetic amount calculating units 10A to 1 are calculated.
The bias amount is correctly calculated at 0C. Since the magnetic flux waveform when the iron core is saturated becomes positive and negative asymmetrical, the transformer bias magnetic amount calculation units 10A to 10C are means for extracting only the DC component corresponding to the bias amount from the AC signal including the DC component, for example,
It may be composed of a low-pass filter, an integrator, a moving average filter, or a means for extracting the asymmetry of the positive and negative waveforms, for example, a comparator of maximum and minimum values, an average value calculator of maximum and minimum values, Fourier It can be composed of an even harmonic extractor by series expansion.

【0024】変圧器偏磁量算出部10A〜10Cにて算
出された変圧器偏磁量を元に出力電圧直流分補正制御部
11A〜11Cにて出力電圧直流分の補正値を算出し
て、交流側出力電圧指令に対する電圧指令補正とする。
出力電圧直流分補正制御部11A〜11Cは、変圧器偏
磁量算出部10A〜10Cにて算出された変圧器偏磁量
を変圧器偏磁量帰還値、変圧器偏磁量の指令値を零とし
たフィードバック制御系とみなせるので、例えば、比例
制御、積分制御、微分制御、もしくはこれらの組み合わ
せで構成することができる。出力電圧直流分補正制御部
11A〜11Cにて算出された電圧指令補正は、系統電
圧基準8、電圧検出器6にて検出された系統電圧帰還
値、出力電流基準7、電流検出器51にて検出された出
力電流帰還値から電圧電流制御回路9にて算出された交
流側出力電圧指令と加算器13A〜13Cにて加算さ
れ、PWM制御回路14A〜14Cの入力となる。
The output voltage DC component correction control units 11A to 11C calculate correction values for the output voltage DC component based on the transformer bias magnetic components calculated by the transformer bias magnetic component calculation units 10A to 10C. The voltage command is corrected for the AC output voltage command.
The output voltage DC component correction control units 11A to 11C use the transformer bias amount calculated by the transformer bias amount calculation units 10A to 10C as the transformer bias amount feedback value and the command value of the transformer bias amount. Since the feedback control system can be regarded as zero, it can be configured by, for example, proportional control, integral control, differential control, or a combination thereof. The voltage command correction calculated by the output voltage DC component correction control units 11A to 11C is performed by the system voltage reference 8, the system voltage feedback value detected by the voltage detector 6, the output current reference 7, and the current detector 51. The AC side output voltage command calculated by the voltage / current control circuit 9 from the detected output current feedback value is added by the adders 13A to 13C, and is input to the PWM control circuits 14A to 14C.

【0025】PWM制御回路14A〜14Cでは、加算
器13A〜13Cの出力する各段の電圧指令値に基づい
て自励式の電力変換器3A〜3DのGTOサイリスタ、
GCTサイリスタ、IGBT、トランジスタ等の自己消
弧可能な半導体スイッチング素子の点弧パルス幅信号を
作成する。ゲートパルス増幅回路15A〜15DではP
WM制御回路14A〜14Cで作成した点弧パルス幅信
号を増幅し、自励式変換器3A〜3Dの半導体スイッチ
ング素子の点弧、消弧を行うゲートパルス駆動信号を発
生する。このゲート駆動信号が自励式の電力変換器3A
〜3Cに与えられることにより、電力変換器3A〜3C
は直流電圧源4の電圧に従ってGTOサイリスタ、GC
Tサイリスタ、IGBT、トランジスタ等の自己消弧型
半導体スイッチング素子を点弧、消弧して加算器13A
〜13Cの出力に相当する電圧を発生する。
In the PWM control circuits 14A to 14C, the GTO thyristors of the self-exciting power converters 3A to 3D, based on the voltage command values of the respective stages output from the adders 13A to 13C,
An ignition pulse width signal of a semiconductor switching device capable of self-extinguishing such as a GCT thyristor, an IGBT and a transistor is created. In the gate pulse amplification circuits 15A to 15D, P
The ignition pulse width signal generated by the WM control circuits 14A to 14C is amplified to generate a gate pulse drive signal for igniting and extinguishing the semiconductor switching elements of the self-excited converters 3A to 3D. This gate drive signal is a self-excited power converter 3A
To 3C, power converters 3A to 3C
Is a GTO thyristor, GC according to the voltage of the DC voltage source 4.
An adder 13A for igniting and extinguishing a self-extinguishing type semiconductor switching element such as a T thyristor, an IGBT, and a transistor
Generate a voltage corresponding to the output of ~ 13C.

【0026】以上述べたように図1に示した実施の形態
1の電力変換装置は、(式10)〜(式12)に示した
算出手法によって他の段の巻線の発生する起磁力の影響
を考慮して、正しく変圧器磁束状態を算出することによ
り、変圧器磁束状態を誤算出することなく正しい出力電
圧直流分補正制御を行うことができるため、従来困難で
あった共通の磁路を持つ多重変圧器を介して接続された
自励式変換器においても、当該多重変圧器の直流偏磁を
抑制する効果が得られ、過電流による保護停止を避けて
運転継続性の高い高信頼の電力変換装置を提供すること
が出来る。なお、透磁率は実際は一定でなく、磁界によ
り変化するが、図17に示した励磁特性の線形な領域内
であれば透磁率を一定としても問題なく、また、非線形
な領域であっても上記のように制御することにより、偏
磁量が少なく透磁率の変化が小さい偏磁初期に偏磁を抑
制することが可能であるため、透磁率を一定とみなして
もかまわない。
As described above, in the power converter of the first embodiment shown in FIG. 1, the magnetomotive force generated by the windings of other stages is calculated by the calculation method shown in (Equation 10) to (Equation 12). By correctly calculating the transformer magnetic flux state in consideration of the influence, correct output voltage DC component correction control can be performed without miscalculating the transformer magnetic flux state. Even in a self-excited converter connected via a multi-transformer that has the effect of suppressing the DC bias magnetism of the multi-transformer, it is possible to avoid the protection stop due to overcurrent and to have a high reliability with high operation continuity. A power converter can be provided. Although the magnetic permeability is not actually constant and changes depending on the magnetic field, there is no problem even if the magnetic permeability is constant within the linear region of the excitation characteristic shown in FIG. By controlling as described above, since it is possible to suppress the bias in the initial stage of the bias where the amount of the bias is small and the change in the permeability is small, the permeability may be regarded as constant.

【0027】実施の形態2. 図5は本発明の実施の形態2の電力変換装置における変
圧器磁束状態算出部16の構成を示すブロック図、図6
は本発明の実施の形態2の電力変換装置における変圧器
磁束状態算出部16の動作手順を示すフローチャートで
ある。図5において、21AA〜21AC、21BA〜
21BC、21CA〜21CCは起磁力F1〜F3に応
じてゲインが変化する可変ゲインであり、ゲイン21A
A〜21AC、21BA〜21BC、21CA〜21C
Cおよび加算器131A〜131Cで磁束算出部20A
〜20Cを構成するとともに、起磁力算出部19と磁束
算出部20A〜20Cで変圧器磁束状態算出部16を構
成している。変圧器磁束状態算出部16を除く他の部分
は図1、図2に示した実施の形態1と同様であるので説
明を省略する。
Embodiment 2. FIG. 5 is a block diagram showing the configuration of the transformer magnetic flux state calculation unit 16 in the power conversion device according to the second embodiment of the present invention, and FIG.
6 is a flowchart showing an operation procedure of a transformer magnetic flux state calculation unit 16 in the power conversion device according to the second embodiment of the present invention. In FIG. 5, 21AA to 21AC, 21BA to
21BC and 21CA to 21CC are variable gains whose gains change according to the magnetomotive forces F1 to F3.
A-21AC, 21BA-21BC, 21CA-21C
The magnetic flux calculation unit 20A includes the C and the adders 131A to 131C.
.About.20C, the transformer magnetic flux state calculation unit 16 is configured by the magnetomotive force calculation unit 19 and the magnetic flux calculation units 20A to 20C. The other parts except the transformer magnetic flux state calculation unit 16 are similar to those of the first embodiment shown in FIGS.

【0028】実施の形態1と異なる点は、変圧器磁束状
態算出部16において、起磁力F1〜F3より定数K1
1〜K13と乗算し加算器131Aにて加算して磁束Φ
1を求め、定数K21〜K23と乗算し加算器131B
にて加算して磁束Φ2を求め、そして定数K31〜K3
3と乗算し加算器131Cにて加算して磁束Φ3を求め
るが、その際に、可変ゲイン21AA〜21AC、21
BA〜21BC、21CA〜21CCを用いて、変圧器
鉄心の磁界対磁束の非線形な関係に応じて変圧器磁束状
態を算出する点である。
The difference from the first embodiment is that in the transformer magnetic flux state calculation unit 16, the constant K1 is calculated from the magnetomotive forces F1 to F3.
1 to K13 are multiplied and added by the adder 131A to obtain the magnetic flux Φ
1 is calculated and multiplied by constants K21 to K23 to adder 131B
To obtain the magnetic flux Φ2, and the constants K31 to K3
3, and the magnetic flux Φ3 is obtained by adding with the adder 131C, and at that time, the variable gains 21AA to 21AC, 21
It is a point to calculate the transformer magnetic flux state according to the non-linear relationship between the magnetic field of the transformer core and the magnetic flux using BA to 21BC and 21CA to 21CC.

【0029】本実施の形態の背景は、変圧器鉄心が図1
7に示したように、電気量としての励磁電流と磁束との
間に非線形な特性を持つことにある。図17では変圧器
鉄心の励磁電流対磁束の関係を示しているが、励磁電流
Iと磁界Hの関係は巻数N、磁路長Lを用いて下記(式
13)の通りであり、また、磁束Φと磁界Hの関係は透
磁率μ、断面積sを用いて(式14)の通りであるの
で、励磁電流対磁束の非線形な関係に従って、変圧器鉄
心の透磁率μもまた励磁電流によって変化する。 H=N×I/L ・・・(式13) Φ=s×μ×H ・・・(式14) 従って、(式5)より鉄心の磁気抵抗Rが変化し、(式
10)〜(式12)中の係数K11〜K13、K21〜
K23、K31〜K33も変化し、特に飽和に近い領域
で大きく変化して変圧器磁束状態の推定にずれが生じる
場合がある。しかしながら、励磁電流Iと起磁力Fは巻
数Nを用いて次の(式15)の通りであるので、可変ゲ
イン21AA〜21AC、21BA〜21BC、21C
A〜21CCを設けて係数K11〜K13、K21〜K
23、K31〜K33を起磁力Fに応じて可変にするこ
とにより、変圧器鉄心の非線形な関係を補償し変圧器磁
束状態の推定のずれを防ぐことが出来る。 I=F/N ・・・(式15)
In the background of this embodiment, the transformer core is shown in FIG.
As shown in FIG. 7, it has a non-linear characteristic between the exciting current and the magnetic flux as the quantity of electricity. FIG. 17 shows the relationship between the exciting current and the magnetic flux of the transformer core, but the relationship between the exciting current I and the magnetic field H is as follows (Formula 13) using the number of turns N and the magnetic path length L, and Since the relationship between the magnetic flux Φ and the magnetic field H is as shown in (Equation 14) using the magnetic permeability μ and the cross-sectional area s, the magnetic permeability μ of the transformer core also depends on the exciting current according to the nonlinear relationship between the exciting current and the magnetic flux. Change. H = N × I / L (Equation 13) Φ = s × μ × H (Equation 14) Therefore, the magnetic resistance R of the iron core changes from (Equation 5), and (Equation 10) to (Equation 10) Coefficients K11 to K13 and K21 to in Expression 12)
K23 and K31 to K33 may also change, and in particular in a region close to saturation, there may be a large difference in estimation of the transformer magnetic flux state. However, since the exciting current I and the magnetomotive force F are expressed by the following (Equation 15) using the number of turns N, the variable gains 21AA to 21AC, 21BA to 21BC, and 21C are shown.
A to 21 CC are provided to provide coefficients K11 to K13 and K21 to K
By making 23 and K31 to K33 variable according to the magnetomotive force F, it is possible to compensate for the non-linear relationship of the transformer core and prevent a deviation in the estimation of the transformer magnetic flux state. I = F / N (Equation 15)

【0030】次に動作について説明する。図5におい
て、起磁力算出部19で起磁力F1〜F3を算出する。
可変ゲイン21AA〜21AC、21BA〜21BC、
21CA〜21CCでは、実測もしくは理論計算により
求められた変圧器鉄心の特性と起磁力算出部19によっ
て算出された起磁力F1〜F3より透磁率μを算出し、
(式6)に示された関係より磁気抵抗R1〜R10を算
出し、(式7)〜(式9)より磁束Φ1〜Φ3を(式1
0)〜(式12)の通り求める過程にて係数K11〜K
13、K21〜K23、K31〜K33を求めることが
できるので、この結果に従って係数K11〜K13、K
21〜K23、K31〜K33を変化させる。起磁力F
1〜F3は実施の形態1と同様に、可変ゲイン21AA
〜21ACにて係数K11〜K13と乗算し加算器13
1Aにて加算して磁束Φ1、可変ゲイン21BA〜21
BCにて係数K21〜K23と乗算し加算器131Bに
て加算して磁束Φ2、可変ゲイン21CA〜21CCに
て係数K31〜K33と乗算し加算器131Cにて加算
して磁束Φ3が算出され、磁束Φ1〜Φ3が変圧器磁束
状態として出力される。
Next, the operation will be described. In FIG. 5, the magnetomotive force calculator 19 calculates the magnetomotive forces F1 to F3.
Variable gains 21AA to 21AC, 21BA to 21BC,
In 21CA to 21CC, the magnetic permeability μ is calculated from the characteristics of the transformer core obtained by actual measurement or theoretical calculation and the magnetomotive forces F1 to F3 calculated by the magnetomotive force calculation unit 19.
The magnetic resistances R1 to R10 are calculated from the relationship shown in (Expression 6), and the magnetic fluxes Φ1 to Φ3 are calculated from (Expression 1) to (Expression 9).
0) to (Equation 12) in the process of obtaining coefficients K11 to K
13, K21 to K23, K31 to K33 can be obtained, and the coefficients K11 to K13 and K are calculated according to the result.
21 to K23 and K31 to K33 are changed. Magnetomotive force F
1 to F3 are variable gains 21AA as in the first embodiment.
.About.21AC to multiply the coefficients K11 to K13 and adder 13
The magnetic flux Φ1 and the variable gains 21BA to 21 are added by adding at 1A.
The coefficient K21 to K23 is multiplied by BC, the adder 131B adds the magnetic flux Φ2, the variable gains 21CA to 21CC multiply the coefficient K31 to K33, and the adder 131C adds the magnetic flux Φ3 to calculate the magnetic flux Φ3. Φ1 to Φ3 are output as transformer magnetic flux states.

【0031】図5に示した起磁力算出部16の動作手順
をフローチャートにて説明したものが図6である。変圧
器鉄心の透磁率μは磁束に依存して決まるために図6に
示した方法で計算した磁束Φ1〜Φ3は誤差を含むが、
通常、誤差は小さいので前回の計算で求めたΦ1〜Φ3
を用いて透磁率μを計算し、可変ゲイン21AA〜21
AC、21BA〜21BC、21CA〜21CCの係数
K11〜K13、K21〜K23、K31〜K33を求
めてよい。あるいは、この誤差を補正するために、Φ1
〜Φ3より透磁率μを算出し直して図6のステップ3か
らステップ5までを繰り返して誤差を収束させた後に可
変ゲイン21AA〜21AC、21BA〜21BC、2
1CA〜21CCの係数K11〜K13、K21〜K2
3、K31〜K33を求めてもよい。
FIG. 6 is a flowchart for explaining the operation procedure of the magnetomotive force calculating section 16 shown in FIG. Since the magnetic permeability μ of the transformer core depends on the magnetic flux, the magnetic fluxes Φ1 to Φ3 calculated by the method shown in FIG. 6 include an error.
Usually, the error is small, so Φ1 to Φ3 obtained in the previous calculation
Is used to calculate the magnetic permeability μ, and variable gains 21AA to 21
The coefficients K11 to K13, K21 to K23, and K31 to K33 of AC, 21BA to 21BC, and 21CA to 21CC may be obtained. Alternatively, in order to correct this error, Φ1
.About..PHI.3, the magnetic permeability .mu. Is recalculated, and steps 3 to 5 of FIG. 6 are repeated to converge the error, and then the variable gains 21AA to 21AC, 21BA to 21BC, 2
Coefficients K11 to K13 and K21 to K2 of 1CA to 21CC
3, K31 to K33 may be obtained.

【0032】なお、図5に示した変圧器磁束状態算出部
16では、起磁力F1〜F3より係数K11〜K13、
K21〜K23、K31〜K33を求めているが、巻数
比を考慮した一次電流と二次電流の差分である励磁電流
より係数K11〜K13、K21〜K23、K31〜K
33を求めても構わない。また、一次電流I1、二次電
流I2A〜I2Cより起磁力F1〜F3を求め、可変ゲ
イン21AA〜21AC、21BA〜21BC、21C
A〜21CC、加算器131A〜131Cを用いて磁束
密度Φ1〜Φ3を求めているが、図4に示した変圧器磁
束状態算出部16と同様に一次電流I1、二次電流I2
A〜I2Cに係数を乗じて加算する手法を用いても同様
の効果が得られる。また、本実施の形態では、可変ゲイ
ンを用いて変圧器鉄心の非線形な関係を補償している
が、起磁力F1〜F3と磁気抵抗R1〜R10もしくは
磁束Φ1〜Φ3の非線形な関係、あるいは励磁電流と磁
気抵抗R1〜R10もしくは磁束Φ1〜Φ3の非線形な
関係を予め求めておいてテーブル化して適宜読み出す方
式としても同様の効果が得られる。
In the transformer magnetic flux state calculator 16 shown in FIG. 5, the coefficients K11 to K13 are calculated from the magnetomotive forces F1 to F3.
Although K21 to K23 and K31 to K33 are obtained, the coefficients K11 to K13, K21 to K23, and K31 to K are calculated from the exciting current that is the difference between the primary current and the secondary current in consideration of the turns ratio.
You may ask for 33. Further, the magnetomotive forces F1 to F3 are obtained from the primary current I1 and the secondary currents I2A to I2C, and the variable gains 21AA to 21AC, 21BA to 21BC, 21C are obtained.
The magnetic flux densities Φ1 to Φ3 are obtained by using the A to 21 CC and the adders 131A to 131C, but the primary current I1 and the secondary current I2 are similar to the transformer magnetic flux state calculation unit 16 shown in FIG.
The same effect can be obtained by using a method of multiplying A to I2C by a coefficient and adding them. Further, in this embodiment, the variable gain is used to compensate for the non-linear relationship of the transformer core. However, the non-linear relationship between the magnetomotive forces F1 to F3 and the magnetic resistances R1 to R10 or the magnetic fluxes Φ1 to Φ3, or the excitation The same effect can be obtained by a method in which a non-linear relationship between the current and the magnetic resistances R1 to R10 or the magnetic fluxes Φ1 to Φ3 is obtained in advance and tabulated and appropriately read.

【0033】以上述べたように図5に示した変圧器磁束
演算手段16を設けた実施の形態2の電力変換装置は、
起磁力F1〜F3に応じて係数K11〜K13、K21
〜K23、K31〜K33を求める可変ゲイン21AA
〜21AC、21BA〜21BC、21CA〜21CC
を設けることにより、変圧器鉄心の非線形性の大きい領
域でも起磁力F1〜F3に応じて係数K11〜K13、
K21〜K23、K31〜K33を可変とすることによ
って正しい変圧器磁束状態算出ができる。この様な領域
でも他の段の巻線の発生する起磁力の影響に応じて、正
しく変圧器磁束状態を算出することにより、正しい出力
電圧直流分補正制御を行うことができるため、従来困難
であった共通の磁路を持つ多重変圧器の直流偏磁を抑制
する効果が得られ、過電流による保護停止を避けて運転
継続性の高い高信頼の電力変換装置を提供することが出
来る。
As described above, the power converter of the second embodiment provided with the transformer magnetic flux calculating means 16 shown in FIG.
Coefficients K11 to K13, K21 according to the magnetomotive forces F1 to F3
~ K23, K31 to K33 variable gain 21AA
-21AC, 21BA-21BC, 21CA-21CC
By providing, the coefficient K11 to K13, in accordance with the magnetomotive forces F1 to F3, even in the region where the transformer core has a large non-linearity,
By making K21 to K23 and K31 to K33 variable, a correct transformer magnetic flux state can be calculated. Even in such an area, it is possible to perform correct output voltage DC component correction control by correctly calculating the transformer magnetic flux state according to the effect of the magnetomotive force generated by the windings of other stages, which is difficult to achieve in the past. It is possible to obtain the effect of suppressing the DC bias magnetism of the multiple transformer having the common magnetic path, and it is possible to provide a highly reliable power conversion device with high continuity of operation while avoiding protection stop due to overcurrent.

【0034】実施の形態3. 図7は本発明の実施の形態3における電力変換装置の構
成を示すブロック図、図8は図7に示した電力変換装置
の他段発生起磁力影響補正部22の構成を示したブロッ
ク図である。図7において、182A〜182Cは電流
検出器52A〜52C、51にて検出された二次電流と
一次電流の巻数比を考慮した差分をとって励磁電流を求
める減算器、22は出力電圧直流分補正制御部11A〜
11Cの出力を、他段の発生する起磁力に応じて補正す
る補正値修正手段としての他段発生起磁力影響補正部で
ある。図8において、175AA〜175AC、175
BA〜175BC、175CA〜175CCは出力電圧
直流分補正制御部11A〜11Cの出力を入力とし、係
数K14〜K16、K24〜K26、K34〜K36を
乗算するゲイン、132A〜132Cはゲイン175A
A〜175AC、175BA〜175BC、175CA
〜175CCの出力を加算し他段発生起磁力影響補正を
行う加算器である。23A〜23Cはゲイン175AA
〜175ACと加算器132A、ゲイン175BA〜1
75BCと加算器132B、ゲイン175CA〜175
CCと加算器132Cをブロック化した他段発生起磁力
影響補正演算部であり、他段発生起磁力影響補正部22
を構成している。変圧器偏磁量算出部10A〜10Cと
出力電圧直流分補正制御部11A〜11Cで仮電圧指令
補正手段を構成するとともに、この仮電圧指令補正手段
と他段発生起磁力影響補正部22で電圧指令補正手段を
構成している。なお、減算器182A〜182C、他段
発生起磁力影響補正部22を除く他の部分は図1、図2
に示した実施の形態1と同様であるので説明を省略す
る。
Embodiment 3. 7 is a block diagram showing a configuration of a power conversion device according to a third embodiment of the present invention, and FIG. 8 is a block diagram showing a configuration of another stage generated magnetomotive force effect correction section 22 of the power conversion device shown in FIG. is there. In FIG. 7, reference numerals 182A to 182C are subtractors for obtaining an exciting current by taking a difference in consideration of the winding ratio of the secondary current and the primary current detected by the current detectors 52A to 52C and 51, and 22 is an output voltage DC component. Correction control unit 11A-
11C is another stage generated magnetomotive force influence correction unit as a correction value correction unit that corrects the output of 11C according to the magnetomotive force generated in another stage. In FIG. 8, 175AA to 175AC, 175
BA to 175BC, 175CA to 175CC use the outputs of the output voltage DC component correction control units 11A to 11C as inputs, and multiply the coefficients K14 to K16, K24 to K26, and K34 to K36, and 132A to 132C are gains 175A.
A ~ 175AC, 175BA ~ 175BC, 175CA
It is an adder that adds the outputs of ˜175 CC and corrects the effect of the magnetomotive force generated in the other stage. 23A to 23C have a gain of 175AA
~ 175AC, adder 132A, gain 175BA ~ 1
75BC, adder 132B, gain 175CA to 175
A second stage generated magnetomotive force effect correction calculation unit in which the CC and the adder 132C are blocked, and the other stage generated magnetomotive force effect correction unit 22 is provided.
Are configured. The transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C constitute a temporary voltage command correction unit, and the temporary voltage command correction unit and the other stage generated magnetomotive force influence correction unit 22 generate a voltage. It constitutes a command correction means. 1 and 2 except the subtracters 182A to 182C and the other-stage generated magnetomotive force effect correction unit 22.
The description is omitted because it is the same as the first embodiment shown in FIG.

【0035】次に動作について説明する。実施の形態1
と異なる点は変圧器磁束状態算出部16を用いて他の段
の巻線の発生する起磁力の影響を考慮して変圧器磁束状
態を算出するのでなく、他段発生起磁力補正部22にて
他の段の巻線の発生する起磁力の影響を補正して同様の
効果を得た点である。図7において、電流検出器52A
〜52Cにて検出された多重変圧器2の二次電流は電流
検出器51にて検出された一次電流と巻数比を考慮して
減算器182A〜182Cにて減算され励磁電流が算出
される。減算器182A〜182Cにて算出された励磁
電流は変圧器偏磁量算出部10A〜10Cにて脚鉄20
1〜203毎に個別に変圧器偏磁量が算出され、出力電
圧直流分補正制御部11A〜11Cにて出力電圧直流分
補正値が算出され、仮電圧指令補正として出される。こ
の仮電圧指令補正は(式10)〜(式12)に示される
他段巻線の発生する起磁力の影響の補正がなされてない
が、他段発生起磁力影響補正部22にて他段巻線の発生
する起磁力の影響分を修正され、加算器13A〜13C
に最終的な電圧指令補正として出力されることによって
他段巻線の発生する起磁力の影響による誤差を排除する
ことが出来る。
Next, the operation will be described. Embodiment 1
The difference is that the transformer magnetic flux state calculation unit 16 does not calculate the transformer magnetic flux state in consideration of the influence of the magnetomotive force generated by the windings of other stages, but the other stage generated magnetomotive force correction unit 22 The same effect was obtained by correcting the effect of the magnetomotive force generated by the windings of the other stages. In FIG. 7, the current detector 52A
The secondary current of the multi-transformer 2 detected by -52C is subtracted by the subtracters 182A-182C in consideration of the primary current detected by the current detector 51 and the turns ratio, and the exciting current is calculated. The exciting current calculated by the subtracters 182A to 182C is applied to the leg iron 20 by the transformer bias magnetic amount calculating units 10A to 10C.
The transformer magnetic bias amount is calculated individually for each of 1 to 203, and the output voltage DC component correction value is calculated by the output voltage DC component correction control units 11A to 11C, and is output as the provisional voltage command correction. Although the effect of the magnetomotive force generated by the other-stage winding shown in (Expression 10) to (Expression 12) is not corrected in this temporary voltage command correction, the other-stage generated magnetomotive force effect correction unit 22 does The influence of the magnetomotive force generated by the winding is corrected, and the adders 13A to 13C are added.
The error due to the influence of the magnetomotive force generated in the other-stage winding can be eliminated by outputting the final voltage command correction to the.

【0036】ここで、他段発生起磁力影響補正部22の
動作を図8を参照して説明する。実施の形態1にて他段
の巻線の発生する起磁力の影響を補正した変圧器磁束算
出手段16では、二次電流と一次電流から起磁力Fを求
め、磁束算出部20A〜20Cにて磁束Φ1〜Φ3を算
出することによって他段の巻線の発生する起磁力の影響
による誤差を排除したが、本実施の形態では、減算器1
82A〜182Cにて励磁電流を求めることにより、各
段毎の起磁力に比例した信号が得られるため、変圧器偏
磁量算出部10A〜10C、出力電圧直流分補正制御部
11A〜11Cを介して出力される信号も各段毎の起磁
力に比例した信号となっている。そこで、実施の形態1
にて用いた磁束算出部20A〜20Cにて乗算した係数
K11〜K13、K21〜K23、K31〜K33もし
くは励磁電流と起磁力の関係を考慮して係数K11〜K
13、K21〜K23、K31〜K33に巻数Nを乗算
した係数K14〜K16、K24〜K26、K34〜K
36をゲイン175AA〜ゲイン175AC、175B
A〜175BC、175CA〜175CCにて乗算し、
加算器132A〜132Cにて加算することによって実
施の形態1と同様の効果を得ることが出来る。
Here, the operation of the other stage generated magnetomotive force effect correction unit 22 will be described with reference to FIG. In the transformer magnetic flux calculating means 16 in which the influence of the magnetomotive force generated in the winding of the other stage is corrected in the first embodiment, the magnetomotive force F is obtained from the secondary current and the primary current, and the magnetic flux calculating units 20A to 20C. By calculating the magnetic fluxes Φ1 to Φ3, the error due to the effect of the magnetomotive force generated by the winding of the other stage is eliminated, but in the present embodiment, the subtractor 1
By obtaining the exciting current at 82A to 182C, a signal proportional to the magnetomotive force at each stage can be obtained, so that the transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C are used. The output signal is also a signal proportional to the magnetomotive force of each stage. Therefore, the first embodiment
Coefficients K11 to K13, K21 to K23, K31 to K33 multiplied by the magnetic flux calculators 20A to 20C used in Step S11 or coefficients K11 to K in consideration of the relationship between the exciting current and the magnetomotive force.
Coefficients K14 to K16, K24 to K26, K34 to K obtained by multiplying 13, K21 to K23, K31 to K33 by the number of turns N
36 to gain 175AA to gain 175AC, 175B
Multiply by A ~ 175BC, 175CA ~ 175CC,
The same effect as that of the first embodiment can be obtained by adding in the adders 132A to 132C.

【0037】なお、変圧器偏磁量算出部10A〜10C
の出力、出力電圧直流分補正制御部11A〜11Cの出
力ともに各段の起磁力に比例した信号となっているた
め、他段発生起磁力影響補正部22は、変圧器偏磁量算
出部10A〜10Cと出力電圧直流分補正制御部11A
〜11Cの間でも、加算器13A〜13CとPWM制御
回路14A〜14Cの間に設けても同様の効果を得るこ
とができる。
Incidentally, the transformer bias magnetic amount calculation units 10A to 10C.
And the output voltage DC component correction control units 11A to 11C both have signals proportional to the magnetomotive force of each stage. Therefore, the other stage generated magnetomotive force effect compensation unit 22 uses the transformer bias magnetic amount calculation unit 10A. -10C and output voltage DC component correction controller 11A
11C, or between the adders 13A to 13C and the PWM control circuits 14A to 14C, the same effect can be obtained.

【0038】以上述べたように図7に示した実施の形態
3の電力変換装置は、(式10)〜(式12)に示した
算出手法によって他の段の巻線の発生する起磁力の影響
を補正することにより、変圧器磁束状態に応じて正しい
出力電圧直流分補正制御を行うことができるため、従来
困難であった共通の磁路を持つ多重変圧器を介して接続
された自励式変換器においても、当該多重変圧器の直流
偏磁を抑制する効果が得られ、過電流による保護停止を
避けて運転継続性の高い高信頼の電力変換装置を提供す
ることが出来る。
As described above, in the power converter of the third embodiment shown in FIG. 7, the magnetomotive force generated by the windings of other stages is calculated by the calculation method shown in (Equation 10) to (Equation 12). By correcting the influence, correct output voltage DC component correction control can be performed according to the transformer magnetic flux state, so self-excited type connected via a multiple transformer with a common magnetic path, which was difficult in the past. Also in the converter, the effect of suppressing the DC bias magnetism of the multiple transformer can be obtained, and it is possible to provide a highly reliable power conversion device with high operation continuity while avoiding protection stop due to overcurrent.

【0039】実施の形態4. 図9は本発明の実施の形態4における電力変換装置の構
成を示すブロック図、図10は図9に示した電力変換装
置の他段発生起磁力影響補正部22の構成を示したブロ
ック図である。図9において、他段発生起磁力影響補正
部22の入力は減算器182A〜182Cにて求められ
た励磁電流ならびに出力電圧直流分補正制御部11A〜
11Cの出力である。図10において、21AA〜21
AC、21BA〜21BC、21CA〜21CCは出力
電圧直流分補正制御部11A〜11Cの出力を減算器1
82A〜182Cの出力に応じて係数K14〜K16、
K24〜K26、K34〜K36を可変係数として乗算
する可変ゲイン、132A〜132Cは可変ゲイン21
AA〜21AC、21BA〜21BC、21CA〜21
CCの出力を加算し他段発生起磁力影響補正をした電圧
指令補正を出力する加算器である。尚、他段発生起磁力
影響補正部22を除く他の構成部分は図7、図8に示し
た実施の形態3と同様であるので説明を省略する。
Fourth Embodiment 9 is a block diagram showing a configuration of a power conversion device according to a fourth embodiment of the present invention, and FIG. 10 is a block diagram showing a configuration of another stage generated magnetomotive force effect correction section 22 of the power conversion device shown in FIG. is there. In FIG. 9, the input of the other stage generated magnetomotive force effect correction unit 22 is the excitation current and output voltage DC component correction control unit 11A to which the subtractors 182A to 182C obtain.
This is the output of 11C. In FIG. 10, 21AA-21
AC, 21BA to 21BC, 21CA to 21CC subtract the output of the output voltage DC component correction control units 11A to 11C from the subtracter 1
The coefficients K14 to K16 according to the outputs of 82A to 182C,
Variable gains for multiplying K24 to K26 and K34 to K36 as variable coefficients, 132A to 132C are variable gains 21
AA-21AC, 21BA-21BC, 21CA-21
It is an adder that adds the output of CC and outputs the voltage command correction in which the effect of the magnetomotive force generated in the other stage is corrected. The other components except the other-stage generated magnetomotive force effect correction unit 22 are the same as those in the third embodiment shown in FIGS.

【0040】次に動作について説明する。実施の形態3
と異なる点は他段発生起磁力補正部22中ゲイン175
AA〜175AC、175BA〜175BC、175C
A〜175CCを可変ゲイン21AA〜21AC、21
BA〜21BC、21CA〜21CCとし、実施の形態
2と同様変圧器鉄心の非線形な関係を折り込むように補
償した点である。図9において、実施の形態3と同様、
出力電圧直流分補正制御部11A〜11Cの出力が他段
発生起磁力影響補正部22の入力となるが、図10にお
いて、この入力を係数倍する可変ゲイン21AA〜21
AC、21BA〜21BC、21CA〜21CCの係数
K14〜K16、K24〜K26、K34〜K36は減
算器182A〜182Cの出力に応じて可変となる、減
算器182A〜182Cにて励磁電流を求めることによ
り、各段毎の起磁力に比例した信号が得られるため、変
圧器偏磁量算出部10A〜10C、出力電圧直流分補正
制御部11A〜11Cを介して出力される信号もその起
磁力に比例した信号となっており、実施の形態2と同様
の手法で係数K11〜K13、K21〜K23、K31
〜K33もしくは励磁電流と起磁力の関係を考慮して係
数K11〜K13、K21〜K23、K31〜K33に
巻数Nを乗算した係数K14〜K16、K24〜K2
6、K34〜K36を可変とし、加算器132A〜13
2Cにて加算することによって実施の形態2と同様の効
果を得ることができる。
Next, the operation will be described. Embodiment 3
Is different from the gain 175 in the magnetomotive force correction unit 22 generated in the other stage.
AA ~ 175AC, 175BA ~ 175BC, 175C
A to 175CC are variable gains 21AA to 21AC, 21
BA to 21BC and 21CA to 21CC are set, and it is the point that the nonlinear relation of the transformer core is compensated so as to be folded as in the second embodiment. In FIG. 9, as in the third embodiment,
The outputs of the output voltage DC component correction control units 11A to 11C are input to the other-stage generated magnetomotive force effect correction unit 22, but in FIG. 10, variable gains 21AA to 21 that multiply this input by a factor.
The coefficients K14 to K16, K24 to K26, and K34 to K36 of AC, 21BA to 21BC, and 21CA to 21CC are variable according to the outputs of the subtracters 182A to 182C. By obtaining the exciting current by the subtractors 182A to 182C. Since a signal proportional to the magnetomotive force of each stage is obtained, the signals output through the transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C are also proportional to the magnetomotive force. And the coefficients K11 to K13, K21 to K23, and K31 by the same method as in the second embodiment.
.About.K33 or coefficients K14 to K16, K24 to K2 obtained by multiplying the coefficients K11 to K13, K21 to K23, K31 to K33 by the number of turns N in consideration of the relationship between the exciting current and the magnetomotive force.
6, K34 to K36 are variable, and adders 132A to 132A
The same effect as in the second embodiment can be obtained by adding 2C.

【0041】尚、変圧器偏磁量算出部10A〜10Cの
出力、出力電圧直流分補正制御部11A〜11Cの出力
ともに各段の起磁力に比例した信号となっているため、
実施の形態3同様に他段発生起磁力影響補正部22は、
変圧器偏磁量算出部10A〜10Cと出力電圧直流分補
正制御部11A〜11Cの間でも、加算器13A〜13
CとPWM制御回路14A〜14Cの間に設けても同様
の効果を得ることができる。また、実施の形態2と同様
に、可変ゲインを用いる代わりに起磁力F1〜F3と磁
気抵抗R1〜R10もしくは磁束Φ1〜Φ3の非線形な
関係、あるいは励磁電流と磁気抵抗R1〜R10もしく
は磁束Φ1〜Φ3の非線形な関係を予め求めておいてテ
ーブル化して適宜読み出す方式としても同様の効果が得
られる。
Since the outputs of the transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C are signals proportional to the magnetomotive force of each stage,
As in the third embodiment, the other stage generated magnetomotive force effect correction unit 22 is
The adders 13A to 13 are also provided between the transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C.
Even if it is provided between C and the PWM control circuits 14A to 14C, the same effect can be obtained. Further, as in the second embodiment, instead of using the variable gain, the magnetomotive forces F1 to F3 and the magnetic resistances R1 to R10 or the magnetic fluxes Φ1 to Φ3 are in a non-linear relationship, or the exciting current and the magnetic resistances R1 to R10 or the magnetic fluxes Φ1 to Φ1. The same effect can be obtained by a method in which a non-linear relationship of Φ3 is obtained in advance and tabulated and read out appropriately.

【0042】以上述べたように図9に示した実施の形態
4の電力変換装置は、励磁電流に応じて係数K14〜K
16、K24〜K26、K34〜K36を求めて可変ゲ
イン21AA〜21AC、21BA〜21BC、21C
A〜21CCを設けることにより、変圧器鉄心の非線形
性の大きい領域でも励磁電流に応じて係数K14〜K1
6、K24〜K26、K34〜K36を可変とすること
によって正しい変圧器磁束状態算出ができる。この様な
領域でも他の段の巻線の発生する起磁力の影響に応じ
て、正しく変圧器磁束状態を算出することにより、正し
い出力電圧直流分補正制御を行うことができるため、従
来困難であった共通の磁路を持つ多重変圧器の直流偏磁
を抑制する効果が得られ、過電流による保護停止を避け
て運転継続性の高い高信頼の電力変換装置を提供するこ
とが出来る。
As described above, the power converter of the fourth embodiment shown in FIG. 9 has the coefficients K14 to K depending on the exciting current.
Variable gains 21AA to 21AC, 21BA to 21BC, and 21C are obtained by calculating 16, K24 to K26, and K34 to K36.
By providing A to 21 CC, the coefficients K14 to K1 can be adjusted according to the exciting current even in the region where the transformer core has a large non-linearity.
By making 6, K24 to K26 and K34 to K36 variable, the correct transformer magnetic flux state can be calculated. Even in such an area, it is possible to perform correct output voltage DC component correction control by correctly calculating the transformer magnetic flux state according to the effect of the magnetomotive force generated by the windings of other stages, which is difficult to achieve in the past. It is possible to obtain the effect of suppressing the DC bias magnetism of the multiple transformer having the common magnetic path, and it is possible to provide a highly reliable power conversion device with high continuity of operation while avoiding protection stop due to overcurrent.

【0043】実施の形態5. 図11は本発明の実施の形態5における電力変換装置の
構成を示すブロック図、図12は図11に示した実施の
形態5の電力変換装置の変圧器磁束状態算出部16の構
成を示すブロック図である。図11において、24A〜
24Cは多重変圧器2の鉄心200の脚鉄201〜20
3の近傍に設けられ、磁気検出器として磁界を検出する
サーチコイル、16はサーチコイル24A〜24Cの出
力から変圧器磁束状態を算出する変圧器磁束状態算出部
である。また、変圧器偏磁量算出部10A〜10Cと出
力電圧直流分補正制御部11A〜11Cで補正値算出手
段を構成している。
Fifth Embodiment 11 is a block diagram showing a configuration of a power conversion device according to a fifth embodiment of the present invention, and FIG. 12 is a block showing a configuration of transformer magnetic flux state calculation unit 16 of the power conversion device according to the fifth embodiment shown in FIG. It is a figure. In FIG. 11, 24A to
24C is leg irons 201 to 20 of the iron core 200 of the multiple transformer 2.
A search coil provided in the vicinity of 3 for detecting a magnetic field as a magnetic detector, and a transformer magnetic flux state calculation unit 16 for calculating a transformer magnetic flux state from the outputs of the search coils 24A to 24C. Further, the transformer bias magnetic amount calculation units 10A to 10C and the output voltage DC component correction control units 11A to 11C constitute a correction value calculation means.

【0044】図12において、25A〜25Cはサーチ
コイル24A〜24Cの出力を積分し、磁界を求める積
分器、26は積分器25A〜25Cをブロック化した磁
界算出部である。176AA〜176AC、176BA
〜176BC、176CA〜176CCは比例定数倍す
るゲイン、133A〜133Cは3入力の加算演算を行
う加算器、20A〜20Cはゲイン176AA〜176
AC、176BA〜176BC、176CA〜176C
Cおよび加算器133A〜133Cをブロック化して構
成した磁束算出部であり、磁界算出部26と磁束算出部
20A〜20Cで変圧器磁束状態算出部16を構成して
いる。その他の部分は図1、図2に示した実施の形態1
の場合と同様であるので説明を省略する。
In FIG. 12, 25A to 25C are integrators for integrating the outputs of the search coils 24A to 24C to obtain a magnetic field, and 26 is a magnetic field calculation unit in which the integrators 25A to 25C are blocked. 176AA-176AC, 176BA
˜176BC, 176CA to 176CC are gains that are multiplied by a proportional constant, 133A to 133C are adders that perform addition operation of three inputs, and 20A to 20C are gains 176AA to 176.
AC, 176BA to 176BC, 176CA to 176C
This is a magnetic flux calculation unit configured by blocking C and the adders 133A to 133C, and the magnetic field calculation unit 26 and the magnetic flux calculation units 20A to 20C configure the transformer magnetic flux state calculation unit 16. Other parts are the same as the first embodiment shown in FIGS. 1 and 2.
The description is omitted because it is the same as the case.

【0045】次に動作について説明する。図11におい
て、サーチコイル24A〜24Cの出力電圧Vは、サー
チコイル24A〜24Cが設置されている空間の磁界H
の時間微分であるから、サーチコイルの巻数をN
サーチコイルの断面積をS、サーチコイルの磁心透磁
率をμ、時間をtとすると、 V=(N×S×μ)dH/dt ・・・(式16) で表される。従って、図12に示した通り変圧器磁束密
度状態算出部16中、サーチコイル24A〜24Cの出
力を積分器25A〜25Cにて積分することにより、次
の(式17)によりサーチコイル24A〜24Cが設置
されている空間の磁界Hが得られる。
Next, the operation will be described. In FIG. 11, the output voltage V of the search coils 24A to 24C is the magnetic field H of the space where the search coils 24A to 24C are installed.
Since it is the time derivative of S , the number of turns of the search coil is N S ,
Assuming that the cross-sectional area of the search coil is S S , the magnetic permeability of the search coil is μ S , and the time is t, V = (N S × S S × μ S ) dH S / dt (Expression 16) To be done. Therefore, as shown in FIG. 12, in the transformer magnetic flux density state calculation unit 16, by integrating the outputs of the search coils 24A to 24C by the integrators 25A to 25C, the search coils 24A to 24C are calculated by the following (Equation 17). The magnetic field H S of the space where is installed is obtained.

【0046】[0046]

【数1】 [Equation 1]

【0047】(式17)でH0は積分の初期値で初期磁
界を表す。初期値H0は起動時、残留磁束が存在しない
場合は0でよい。残留磁束が存在する場合、残留磁束の
直接検出を行わない限り、初期値を知ることは出来ず、
また、開始位相によりオフセットが残った場合、初期磁
界H0とオフセットとの区別が出来ないが、初期値H0
は(式17)で求めた空間の磁界Hが含む偶数次調波
を求め、その増減から偏磁の進行を判定する方法等で初
期値H0が不明でも偏磁を判断できる。またオフセット
を除去する方法としてはローパスフィルタにより除去す
る方法、(式17)から求めた空間の磁界Hを一定時
間監視することによりオフセット量を判断して除去する
方法がある。あるいは(式17)から求めた空間の磁界
の瞬時波形における正負の最大を比較すればオフセ
ットを考慮する必要はない。
In equation (17), H0 is the initial value of integration and represents the initial magnetic field. The initial value H0 may be 0 when there is no residual magnetic flux at startup. If the residual magnetic flux exists, the initial value cannot be known unless the residual magnetic flux is directly detected.
Further, when the offset remains due to the start phase, the initial magnetic field H0 cannot be distinguished from the offset, but the initial value H0
Even if the initial value H0 is unknown, it is possible to determine the bias by a method such as a method of determining the even harmonics included in the magnetic field H S in the space obtained by (Equation 17) and determining the progress of the bias from the increase or decrease thereof. As a method of removing the offset, there are a method of removing with a low-pass filter, and a method of determining and removing the offset amount by monitoring the magnetic field H S of the space obtained from (Equation 17) for a certain period of time. Alternatively, if the positive and negative maximums in the instantaneous waveform of the magnetic field H S in the space obtained from (Equation 17) are compared, it is not necessary to consider the offset.

【0048】ここで、サーチコイル24A〜24Cは脚
鉄201〜203近傍すなわち各段の巻線近傍に設置さ
れているので、サーチコイル24A〜24C周辺の磁界
は各段巻線の発生する磁界となるが、一次巻線と二次巻
線が密に設置されていることより、一次巻線の発生する
磁界と二次巻線の発生する磁界の合成磁界即ち励磁磁界
となりサーチコイル24A〜24Cを積分器25A〜2
5Cにて積分することによって励磁磁界を得ることが出
来る。以上のようにサーチコイルは磁気検出器として動
作する。積分器25A〜25Cにて得られた励磁磁界
は、(式13)、(式15)よりわかるとおり、(式1
0)〜(式12)中起磁力F1〜F3に比例した量なの
で、実施の形態1と同様の手法で定数K11〜K13、
K21〜K23、K31〜K33を得ることができ、ゲ
イン176AA〜176AC、176BA〜176B
C、176CA〜176CCにて係数K11〜K13、
K21〜K23、K31〜K33倍して加算器133A
〜133Cにて加算することによって磁束Φ1〜Φ3を
得ることが出来る。この様にして得られた変圧器2の磁
束状態Φ1〜Φ3は各段の変圧器偏磁量算出部10A〜
10Cに与えられ、実施の形態1と同様に作用する。
Since the search coils 24A to 24C are installed near the leg irons 201 to 203, that is, near the windings of each stage, the magnetic field around the search coils 24A to 24C is the same as the magnetic field generated by the windings of each stage. However, since the primary winding and the secondary winding are densely installed, a combined magnetic field of the magnetic field generated by the primary winding and the magnetic field generated by the secondary winding, that is, an exciting magnetic field, becomes the search coils 24A to 24C. Integrators 25A-2
An exciting magnetic field can be obtained by integrating at 5C. As described above, the search coil operates as a magnetic detector. As can be seen from (Equation 13) and (Equation 15), the exciting magnetic field obtained by the integrators 25A to 25C is (Equation 1
0) to (Equation 12), since the amount is proportional to the magnetomotive forces F1 to F3, constants K11 to K13 are calculated in the same manner as in the first embodiment.
K21 to K23 and K31 to K33 can be obtained, and gains of 176AA to 176AC and 176BA to 176B are obtained.
C, 176CA to 176CC, coefficients K11 to K13,
K21 to K23 and K31 to K33 are multiplied to adder 133A
The magnetic fluxes Φ1 to Φ3 can be obtained by adding at ˜133C. The magnetic flux states Φ1 to Φ3 of the transformer 2 obtained in this way are calculated from the transformer bias magnetic amount calculation units 10A to 10
10C, and operates similarly to the first embodiment.

【0049】以上述べたように図11に示した実施の形
態5の電力変換装置は、(式10)〜(式12)に示し
た算出手法によって他の段の巻線の発生する励磁磁界の
影響を考慮して、正しく変圧器磁束状態を算出すること
により、変圧器磁束状態を誤算出することなく正しい出
力電圧直流分補正制御を行うことができるため、従来困
難であった共通の磁路を持つ多重変圧器を介して接続さ
れた自励式変換器においても、当該多重変圧器の直流偏
磁を抑制する効果が得られ、過電流による保護停止を避
けて運転継続性の高い高信頼の電力変換装置を提供する
ことが出来る。
As described above, the power converter of the fifth embodiment shown in FIG. 11 uses the calculation method shown in (Equation 10) to (Equation 12) to calculate the exciting magnetic field generated by the windings of other stages. By correctly calculating the transformer magnetic flux state in consideration of the influence, correct output voltage DC component correction control can be performed without miscalculating the transformer magnetic flux state. Even in a self-excited converter connected via a multi-transformer that has the effect of suppressing the DC bias magnetism of the multi-transformer, it is possible to avoid the protection stop due to overcurrent and to have a high reliability with high operation continuity. A power converter can be provided.

【0050】実施の形態6. 図13は本発明の実施の形態6の変圧器磁束状態算出部
16の構成を示すブロック図である。図13において、
21AA〜21AC、21BA〜21BC、21CA〜
21CCは積分器25A〜25Cの出力を入力値に応じ
て係数K17〜K19、K27〜K29、K37〜K3
9を可変係数として乗算する可変ゲインであり、可変ゲ
イン21AA〜21AC、21BA〜21BC、21C
A〜21CCおよび加算器133A〜133Cで磁束算
出部133A〜133Cを構成している、可変ゲイン2
1AA〜21AC、21BA〜21BC、21CA〜2
1CCを除く他の構成部分は実施の形態5と同様である
ので説明を省略する。
Sixth Embodiment FIG. 13 is a block diagram showing the configuration of the transformer magnetic flux state calculation unit 16 according to the sixth embodiment of the present invention. In FIG.
21AA-21AC, 21BA-21BC, 21CA-
21 CC is a coefficient K17 to K19, K27 to K29, K37 to K3 for the output of the integrators 25A to 25C according to the input value.
9 is a variable gain that is multiplied by a variable coefficient, and is variable gains 21AA to 21AC, 21BA to 21BC, and 21C.
Variable gain 2 that constitutes magnetic flux calculation units 133A to 133C with A to 21CC and adders 133A to 133C.
1AA to 21AC, 21BA to 21BC, 21CA to 2
The other components except 1CC are the same as those in the fifth embodiment, and the description thereof will be omitted.

【0051】次に動作について説明する。実施の形態5
と異なる点は変圧器磁束状態算出部16中ゲイン176
AA〜176AC、176BA〜176BC、176C
A〜176CCを可変ゲイン21AA〜21AC、21
BA〜21BC、21CA〜21CCとし、実施の形態
2、実施の形態4と同様変圧器鉄心の非線形な関係を補
償した点である。図13において、実施の形態5と同
様、サーチコイル24A〜24Cの出力が変圧器磁束状
態算出部16の入力となるが、サーチコイル24A〜2
4Cの出力を積分器25A〜25Cにて積分することに
より各段の励磁磁界を求めることができ、積分器25A
〜25Cにて得られた励磁磁界は実施の形態5と同様に
起磁力に比例した量であるので、実施の形態2と同様に
係数K11〜K13、K21〜K23、K31〜K33
に相当した係数K17〜K19、K27〜K29、K3
7〜K39を可変ゲイン21AA〜21AC、21BA
〜21BC、21CA〜21CCにて乗算し、加算器1
33A〜133Cにて加算して磁束Φ1〜Φ3を得るこ
とによって実施の形態2と同様の効果を得ることが出来
る。
Next, the operation will be described. Embodiment 5
Is different from the gain 176 in the transformer magnetic flux state calculation unit 16
AA ~ 176AC, 176BA ~ 176BC, 176C
A to 176CC are variable gains 21AA to 21AC, 21
BA to 21BC and 21CA to 21CC are set, and the non-linear relation of the transformer core is compensated as in the second and fourth embodiments. In FIG. 13, the outputs of the search coils 24A to 24C are input to the transformer magnetic flux state calculation unit 16 as in the case of the fifth embodiment.
By integrating the output of 4C by the integrators 25A to 25C, the exciting magnetic field at each stage can be obtained.
Since the exciting magnetic field obtained at ˜25 C is an amount proportional to the magnetomotive force as in the fifth embodiment, the coefficients K11 to K13, K21 to K23, K31 to K33 are the same as in the second embodiment.
Corresponding to K17 to K19, K27 to K29, K3
7 to K39 with variable gains 21AA to 21AC, 21BA
~ 21BC, 21CA ~ 21CC multiply, adder 1
It is possible to obtain the same effect as that of the second embodiment by adding magnetic fluxes Φ1 to Φ3 by adding 33A to 133C.

【0052】以上述べたように実施の形態6の電力変換
装置は、励磁磁界に応じて係数K17〜K19、K27
〜K29、K37〜K39を可変とする可変ゲイン21
AA〜21AC、21BA〜21BC、21CA〜21
CCを設けることにより、変圧器鉄心の非線形性の大き
い領域でも励磁電流に応じて係数K17〜K19、K2
7〜K29、K37〜K39を可変とすることによって
正しい変圧器磁束状態算出ができる。この様な領域でも
他の段の巻線の発生する起磁力の影響に応じて、正しく
変圧器磁束状態を算出することにより、正しい出力電圧
直流分補正制御を行うことができるため、従来困難であ
った共通の磁路を持つ多重変圧器の直流偏磁を抑制する
効果が得られ、過電流による保護停止を避けて運転継続
性の高い高信頼の電力変換装置を提供することが出来
る。
As described above, the power converter of the sixth embodiment has the coefficients K17 to K19 and K27 depending on the exciting magnetic field.
Variable gain 21 for varying K29 to K37 to K39
AA-21AC, 21BA-21BC, 21CA-21
By providing CC, the coefficients K17 to K19 and K2 can be adjusted according to the exciting current even in the region where the transformer core has a large non-linearity.
By making 7 to K29 and K37 to K39 variable, the correct transformer magnetic flux state can be calculated. Even in such an area, it is possible to perform correct output voltage DC component correction control by correctly calculating the transformer magnetic flux state according to the effect of the magnetomotive force generated by the windings of other stages, which is difficult to achieve in the past. It is possible to obtain the effect of suppressing the DC bias magnetism of the multiple transformer having the common magnetic path, and it is possible to provide a highly reliable power conversion device with high continuity of operation while avoiding protection stop due to overcurrent.

【0053】実施の形態7. 図14は本発明の実施の形態7における電力変換装置の
構成を示すブロック図、図15は図14に示した実施の
形態7の電力変換装置の変圧器磁束状態算出部16の構
成を示すブロック図である。図15中25A〜25Cは
積分器であり、これらで変圧器磁束状態算出部16を構
成している。本実施の形態の実施の形態5との相違点は
サーチコイル24A〜24Cを脚鉄201〜203上の
変圧器巻線の近傍でなく巻線の発生する磁界の影響を直
接受けない継鉄204の近傍に設けた点および変圧器磁
束状態算出部16の構成が異なっている点であり、その
他の部分は実施の形態5と同様であるので説明を省略す
る。
Embodiment 7. 14 is a block diagram showing a configuration of a power conversion device according to a seventh embodiment of the present invention, and FIG. 15 is a block showing a configuration of transformer magnetic flux state calculation unit 16 of the power conversion device according to the seventh embodiment shown in FIG. It is a figure. In FIG. 15, reference numerals 25A to 25C denote integrators, which form the transformer magnetic flux state calculation unit 16. The difference between the fifth embodiment and the fifth embodiment is that the search coils 24A to 24C are not located near the transformer windings on the leg irons 201 to 203 but are directly affected by the magnetic field generated by the windings 204. The configuration is different from that of the transformer magnetic flux state calculation unit 16 in the vicinity of the above, and the other portions are the same as those of the fifth embodiment, and therefore the description thereof will be omitted.

【0054】次に動作について説明する。サーチコイル
24A〜24Cにてサーチコイル設置点での磁界を検出
可能であることは実施の形態5にて説明したが、図14
に示した通り巻線の発生する磁界の影響を直接受けない
変圧器鉄心外側の継鉄204側面に設置した場合、設置
点の磁界は変圧器の継鉄204の磁束が発生する磁界と
なるが、これは、継鉄204の磁束と比例する量であ
る。ここで、変圧器の継鉄204の磁束を図3を参照し
て考えると、漏れの影響を無視した場合、変圧器鉄心内
で磁束経路は閉じているので、継鉄204の磁束はΦ1
〜Φ3となり各段巻線の巻かれた脚鉄201〜203の
磁束Φ1〜Φ3と一致する。従って、変圧器鉄心外側の
継鉄側面付近の磁界を検出することによって、各段の脚
鉄の磁束状態Φ1〜Φ3と同じ量を検出することが出
来、実施の形態1〜実施の形態6にて算出した他段発生
起磁力の影響を補正する必要がなくなる。従って、図1
4に示した通り、磁界監視巻線24A〜24Cにて検出
した信号を積分器25A〜25Cにて積分することによ
り変圧器2の鉄心の磁束状態Φ1〜Φ3を算出すること
が出来、この積分器25A〜25Cの出力を変圧器各段
偏磁量算出部10A〜10Cの入力とすることによって
実施の形態1と同様の効果が得られる。
Next, the operation will be described. It has been described in the fifth embodiment that the magnetic fields at the search coil installation points can be detected by the search coils 24A to 24C, but FIG.
When installed on the side of the yoke 204 outside the transformer core that is not directly affected by the magnetic field generated by the winding as shown in, the magnetic field at the installation point is the magnetic field generated by the magnetic flux of the yoke 204 of the transformer. , Which is an amount proportional to the magnetic flux of the yoke 204. Here, considering the magnetic flux of the yoke 204 of the transformer with reference to FIG. 3, when the influence of leakage is ignored, the magnetic flux path is closed in the transformer core, so the magnetic flux of the yoke 204 is Φ1.
.Apprxeq..PHI.3, which coincides with the magnetic fluxes .PHI.1 to .PHI.3 of the leg irons 201 to 203 wound with the respective windings. Therefore, by detecting the magnetic field near the side surface of the yoke outside the transformer core, the same amount as the magnetic flux states Φ1 to Φ3 of the leg iron of each stage can be detected. It is not necessary to correct the influence of the magnetomotive force generated in the other stage calculated by Therefore, FIG.
As shown in FIG. 4, the magnetic flux states Φ1 to Φ3 of the iron core of the transformer 2 can be calculated by integrating the signals detected by the magnetic field monitoring windings 24A to 24C by the integrators 25A to 25C. By setting the outputs of the transformers 25A to 25C as the inputs of the respective transformer bias magnetic field amount calculating units 10A to 10C, the same effect as that of the first embodiment can be obtained.

【0055】以上述べたように図14に示した実施の形
態7の電力変換装置は、巻線の発生する磁界の影響を直
接受けない継鉄近傍にてサーチコイルを用いて正しく変
圧器磁束状態を算出することにより、変圧器磁束状態を
誤算出することなく正しい出力電圧直流分補正制御を行
うことができるため、従来困難であった共通の磁路を持
つ多重変圧器を介して接続された自励式変換器において
も、当該多重変圧器の直流偏磁を抑制する効果が得ら
れ、過電流による保護停止を避けて運転継続性の高い高
信頼の電力変換装置を提供することが出来る。
As described above, the power converter of the seventh embodiment shown in FIG. 14 uses the search coil in the vicinity of the yoke, which is not directly affected by the magnetic field generated by the windings, to correctly perform the transformer magnetic flux state. By calculating, the correct output voltage DC component correction control can be performed without erroneously calculating the transformer magnetic flux state, so it was connected via a multiple transformer with a common magnetic path, which was difficult in the past. Even in the self-excited converter, the effect of suppressing the DC bias magnetism of the multiple transformer can be obtained, and it is possible to provide a highly reliable power conversion device with high continuity of operation while avoiding protection stop due to overcurrent.

【0056】尚、実施の形態5〜実施の形態7では磁気
検出器としてサーチコイルを用いたが、ホール素子等磁
気量を検出できる検出器であれば何れを用いても構わな
い。また、サーチコイルの出力を積分して磁界を得てい
るが、ノイズによる影響が少ない場合はサーチコイルの
出力を直接用いても構わない。この場合、ノイズ成分が
減衰されなくなるが、偶数磁調波の抽出により偏磁量を
算出する場合には偶数調波成分の減衰を防ぐことが出来
る。また、実施の形態1〜実施の形態7では、外鉄型三
段多重変圧器を例に説明したが、段間で共通の磁路を持
ち、磁気相互作用のある変圧器なら、図19に示したよ
うな内鉄型多重変圧器等他の構成の変圧器でも構わない
し、(式10)〜(式12)を求めたのと同じ手法を用
いれば、二段あるいは四段以上の多重変圧器にも適用可
能である。また、磁気抵抗Rは鉄心に限らず、ギャップ
を有する構造をとった場合は、磁気抵抗Rとして空気の
磁気抵抗もしくは絶縁材の磁気抵抗を(式6)より求め
て、構成に合わせて直列もしくは並列に接続する手法で
磁気抵抗を算出することにより任意の鉄心構造の変圧器
に対して適用可能である。
Although the search coil is used as the magnetic detector in the fifth to seventh embodiments, any detector capable of detecting the magnetic amount such as a Hall element may be used. Further, although the output of the search coil is integrated to obtain the magnetic field, the output of the search coil may be directly used when the influence of noise is small. In this case, the noise component is not attenuated, but the attenuation of the even-numbered harmonic component can be prevented when the bias amount is calculated by extracting the even-numbered harmonic component. Further, although the outer iron type three-stage multiple transformer has been described as an example in the first to seventh embodiments, a transformer having a common magnetic path between stages and having magnetic interaction is shown in FIG. A transformer of other configuration such as the inner iron type multi-transformer as shown may be used, and if the same method as that for obtaining (Equation 10) to (Equation 12) is used, two-stage or four-stage or more multi-transformer may be used. It is also applicable to vessels. Further, the magnetic resistance R is not limited to the iron core, and when a structure having a gap is adopted, the magnetic resistance of air or the magnetic resistance of the insulating material is obtained from (Equation 6) as the magnetic resistance R, and the magnetic resistance R is connected in series or according to the configuration. It can be applied to any transformer with an iron core structure by calculating the magnetic resistance by the method of connecting in parallel.

【0057】また、実施の形態1〜実施の形態7で示し
た変圧器磁束状態算出部16をマイクロコンピュータ、
DSP等の演算手段を用いて実現しても構わない。ま
た、実施の形態1〜実施の形態4では変圧器の電気量と
して電流を検出しているが、電圧等他の電気量によって
も同様の効果が得られる。また、実施の形態1〜実施の
形態7では、説明を簡略にするため単相回路にて説明し
たが、二相以上の多相の場合でも構わず、三相構成の場
合、変圧器結線がスター/スター結線でもスター/デル
タ結線でもデルタ/デルタ結線でも同様の手法を用いて
同様の効果を得ることが出来る。また、実施の形態1〜
実施の形態7では、変圧器の一次巻線は直列に結線され
ているが、変圧器巻線が並列に配線されていても構わ
ず、同様の手法を用いて同様の効果が得られる。
Further, the transformer magnetic flux state calculation unit 16 shown in the first to seventh embodiments is replaced by a microcomputer,
It may be realized by using a computing means such as a DSP. Further, in the first to fourth embodiments, the current is detected as the electric quantity of the transformer, but the same effect can be obtained by other electric quantities such as voltage. Further, in the first to seventh embodiments, a single-phase circuit has been described for simplification of description, but a multi-phase configuration of two or more phases is also possible, and in the case of a three-phase configuration, the transformer wiring is The same effect can be obtained by using the same method for star / star connection, star / delta connection, and delta / delta connection. In addition, the first to the first embodiments
Although the primary windings of the transformer are connected in series in the seventh embodiment, the transformer windings may be wired in parallel, and the same effect can be obtained by using the same method.

【0058】また、実施の形態1〜実施の形態7では、
加算器13Aの出力に従って電圧を発生する変換器とし
てGTO、GCT、IGBT、トランジスタ等自己消弧
可能な半導体スイッチング素子を用いた自励式変換器を
用いて説明したが、電圧指令に従った電圧を発生する変
換器であればサイリスタ変換器、サイクロコンバータ等
何れでもよい。また、実施の形態2、実施の形態4、実
施の形態6中の可変ゲインに代わって、予め用意したメ
モリテーブル等の記憶手段を用いて入力に応じて必要な
値を出力する手段を用いても構わない。
Further, in the first to seventh embodiments,
As a converter that generates a voltage according to the output of the adder 13A, a self-exciting converter that uses a semiconductor switching element such as GTO, GCT, IGBT, and transistor that can self-extinguish has been described. Any converter such as a thyristor converter or a cycloconverter may be used as long as it is a converter that generates a signal. Further, instead of the variable gain in the second, fourth, and sixth embodiments, a storage unit such as a memory table prepared in advance is used to output a necessary value according to the input. I don't mind.

【0059】[0059]

【発明の効果】この発明に係る電力変換は以上のように
構成され、電圧指令補正算出手段により多重変圧器の複
数の脚鉄の磁束状態に応じて補正して電力変換器の交流
側出力電圧を制御するので、変圧器磁束状態を誤算出す
ることなく他の段の巻線の発生する起磁力の影響を折り
込んで、正しい出力電圧直流分補正制御を行うことがで
き、従来困難であった共通の磁路を持つ多重変圧器の直
流偏磁を抑制する効果が得られ、過電流による保護停止
を避けて運転継続性の高い高信頼の電力変換装置を提供
することができる効果がある。
The power conversion according to the present invention is configured as described above, and is corrected according to the magnetic flux states of the plurality of leg bars of the multiple transformer by the voltage command correction calculation means, and the AC output voltage of the power converter is corrected. Since it is possible to correct the output voltage DC component correction control by compensating the influence of the magnetomotive force generated in the windings of other stages without miscalculating the transformer magnetic flux state, which was difficult in the past. The effect of suppressing the DC bias magnetization of the multiple transformer having the common magnetic path can be obtained, and it is possible to provide a highly reliable power converter with high continuity of operation while avoiding protection stop due to overcurrent.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1の電力変換装置の構成
を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a power conversion device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1の電力変換装置の変圧
器磁束状態算出部の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a transformer magnetic flux state calculation unit of the power conversion device according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1の電力変換装置の多重
変圧器の磁気回路のモデルを示す説明図である。
FIG. 3 is an explanatory diagram showing a model of a magnetic circuit of a multiple transformer of the power conversion device according to the first embodiment of the present invention.

【図4】 本発明の実施の形態1の電力変換装置の変圧
器磁束状態算出部の別の構成を示すブロック図である。
FIG. 4 is a block diagram showing another configuration of the transformer magnetic flux state calculation unit of the power conversion device according to the first embodiment of the present invention.

【図5】 本発明の実施の形態2の電力変換装置の変圧
器磁束状態算出部の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a transformer magnetic flux state calculation unit of the power conversion device according to the second embodiment of the present invention.

【図6】 本発明の実施の形態2の電力変換装置の変圧
器磁束状態算出部の動作アルゴリズムを示すフローチャ
ートである。
FIG. 6 is a flowchart showing an operation algorithm of a transformer magnetic flux state calculation unit of the power conversion device according to the second embodiment of the present invention.

【図7】 本発明の実施の形態3の電力変換装置の構成
を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a power conversion device according to a third embodiment of the present invention.

【図8】 本発明の実施の形態3の電力変換装置の他段
発生起磁力影響補正部の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of another stage generated magnetomotive force effect correction unit of the power conversion device according to the third embodiment of the present invention.

【図9】 本発明の実施の形態4の電力変換装置の構成
を示すブロック図である。
FIG. 9 is a block diagram showing a configuration of a power conversion device according to a fourth embodiment of the present invention.

【図10】 本発明の実施の形態4の電力変換装置の他
段発生起磁力影響補正部の構成を示すブロック図であ
る。
FIG. 10 is a block diagram showing a configuration of another stage generated magnetomotive force effect correction unit of the power conversion device according to the fourth embodiment of the present invention.

【図11】 本発明の実施の形態5の電力変換装置の構
成を示すブロック図である。
FIG. 11 is a block diagram showing a configuration of a power conversion device according to a fifth embodiment of the present invention.

【図12】 本発明の実施の形態5の電力変換装置の変
圧器磁束状態算出部の構成を示すブロック図である。
FIG. 12 is a block diagram showing a configuration of a transformer magnetic flux state calculation unit of a power conversion device according to a fifth embodiment of the present invention.

【図13】 本発明の実施の形態6の電力変換装置の変
圧器磁束状態算出部の構成を示すブロック図である。
FIG. 13 is a block diagram showing a configuration of a transformer magnetic flux state calculation unit of a power conversion device according to a sixth embodiment of the present invention.

【図14】 本発明の実施の形態7の電力変換装置の構
成を示すブロック図である。
FIG. 14 is a block diagram showing a configuration of a power conversion device according to a seventh embodiment of the present invention.

【図15】 本発明の実施の形態7の電力変換装置の変
圧器磁束状態算出部の構成を示すブロック図である。
FIG. 15 is a block diagram showing a configuration of a transformer magnetic flux state calculation unit of a power conversion device according to a seventh embodiment of the present invention.

【図16】 従来の電力変換装置の構成を示すブロック
図である。
FIG. 16 is a block diagram showing a configuration of a conventional power conversion device.

【図17】 変圧器鉄心の励磁電流と磁束の関係を示す
特性図である。
FIG. 17 is a characteristic diagram showing a relationship between an exciting current and a magnetic flux of a transformer core.

【図18】 外鉄型多重変圧器を示す斜視図である。FIG. 18 is a perspective view showing an outer iron type multiple transformer.

【図19】 内鉄型多重変圧器を示す斜視図である。FIG. 19 is a perspective view showing an inner iron type multiple transformer.

【符号の説明】[Explanation of symbols]

1 交流電力系統、2 多重変圧器、3A〜3C 電力
変換器、9 電圧電流制御回路、10A〜10C 変圧
器偏磁量算出部、11A〜11C 出力電圧直流分補正
制御部、16 変圧器磁束状態算出部、22 他段発生
起磁力影響補正部、24A〜24C サーチコイル、2
00 鉄心、201〜203 脚鉄、204 継鉄、2
11〜213 直流側巻線、221〜223 交流側巻
線。
1 AC power system, 2 multiple transformers, 3A to 3C power converter, 9 voltage and current control circuit, 10A to 10C transformer bias magnetic amount calculation unit, 11A to 11C output voltage DC component correction control unit, 16 transformer magnetic flux state Calculation unit, 22 Other stage generated magnetomotive force effect correction unit, 24A to 24C Search coil, 2
00 iron core, 201-203 leg iron, 204 yoke iron, 2
11-213 DC side winding, 221-223 AC side winding.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02M 7/219 H02M 7/219 (56)参考文献 特開 平10−56739(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/48 H01F 19/00 H01F 27/42 H02J 3/38 H02M 7/219 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H02M 7/219 H02M 7/219 (56) Reference JP-A-10-56739 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H02M 7/48 H01F 19/00 H01F 27/42 H02J 3/38 H02M 7/219

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スイッチング素子を有する複数の電力変
換器と、 互いに磁気的に結合された複数の脚鉄を持った鉄心、前
記脚鉄にそれぞれ巻かれ前記複数の電力変換器の交流側
にそれぞれ接続された複数の直流側巻線および前記脚鉄
にそれぞれ巻かれ交流電源に接続される複数の交流側巻
線を有する多重変圧器と、 前記電力変換器の交流側出力電圧指令を算出する電圧指
令作成手段と、 前記多重変圧器の複数の脚鉄の磁束状態に応じて前記交
流側出力電圧指令を補正するための電圧指令補正を算出
する電圧指令補正算出手段とを備え、 前記出力電圧指令と電圧指令補正に基づいて前記電力変
換器の交流側出力電圧を制御するようにしたことを特徴
とする電力変換装置。
1. A plurality of power converters each having a switching element, an iron core having a plurality of leg irons magnetically coupled to each other, and an AC core of each of the plurality of power converters wound around the leg irons. A multiple transformer having a plurality of connected DC side windings and a plurality of AC side windings respectively wound on the leg irons and connected to an AC power source, and a voltage for calculating an AC side output voltage command of the power converter Command output means, and a voltage command correction calculation means for calculating a voltage command correction for correcting the AC side output voltage command according to the magnetic flux states of a plurality of leg irons of the multiple transformer, the output voltage command And an AC side output voltage of the power converter is controlled based on the voltage command correction.
【請求項2】 電圧指令補正算出手段は、多重変圧器の
脚鉄に巻かれた直流側巻線および交流側巻線の電気量か
ら前記脚鉄毎に個別に仮電圧指令補正を算出する仮電圧
指令補正算出手段と、前記仮電圧指令補正から前記脚鉄
相互間の前記直流側巻線および交流側巻線の電気量と磁
束状態との関係を用いて電圧指令補正を算出する補正値
修正手段からなることを特徴とする請求項1記載の電力
変換装置。
2. The voltage command correction calculation means temporarily calculates the temporary voltage command correction for each leg iron from the electric quantities of the DC side winding and the AC side winding wound on the leg iron of the multiple transformer. Voltage command correction calculation means and correction value correction for calculating voltage command correction using the relationship between the amount of electricity and the magnetic flux state of the DC side winding and the AC side winding between the leg irons from the temporary voltage command correction The power conversion device according to claim 1, comprising a means.
【請求項3】 電気量と磁束状態との関係は、磁気抵抗
を用いて表される関係であるとしたことを特徴とする請
求項2記載の電力変換装置。
3. The power converter according to claim 2, wherein the relationship between the quantity of electricity and the magnetic flux state is a relationship expressed by using a magnetic resistance.
【請求項4】 電圧指令補正算出手段は、多重変圧器の
複数の直流側巻線および交流側巻線の電気量から複数の
脚鉄の磁束状態を算出する磁束状態算出手段と、この磁
束状態算出手段にて算出された前記磁束状態から電圧指
令補正を算出する補正値算出手段とからなり、前記磁束
状態算出手段は、前記電気量に応じて変化させる非線形
な特性として前記磁束状態を算出するようにしたことを
特徴とする請求項1記載の電力変換装置。
4. The voltage command correction calculation means is a multi-transformer.
From the electric quantities of multiple DC side windings and AC side windings,
A magnetic flux state calculating means for calculating the magnetic flux state of the leg iron and this magnetic
From the magnetic flux state calculated by the flux state calculation means,
Correction value calculating means for calculating the correction
The state calculation means is a non-linear device that changes according to the amount of electricity.
That the magnetic flux state is calculated as a characteristic
The power converter according to claim 1, wherein the power converter is a power converter.
【請求項5】 電気量と磁束状態との関係を入力された
前記電気量に応じて変化させる非線形な特性として電圧
指令補正を算出するようにしたことを特徴とする請求項
2記載の電力変換装置。
5. The power conversion according to claim 2, wherein the voltage command correction is calculated as a non-linear characteristic that changes the relationship between the electric quantity and the magnetic flux state according to the input electric quantity. apparatus.
【請求項6】 多重変圧器の鉄心の近傍に複数の磁気検
出器を設け、これらの磁気検出器の出力から、電圧指令
補正算出手段により電圧指令補正を算出するようにした
ことを特徴とする請求項1記載の電力変換装置。
6. A plurality of magnetic detectors are provided in the vicinity of the iron core of the multiple transformer, and the voltage command correction calculating means calculates the voltage command correction from the outputs of these magnetic detectors. The power converter according to claim 1.
【請求項7】 電圧指令補正算出手段は、複数の磁気検
出器の出力から複数の脚鉄の磁束状態を算出する磁束状
態算出手段と、この磁束状態算出手段の出力から電圧指
令補正を算出する補正値算出手段からなることを特徴と
する請求項6記載の電力変換装置。
7. The voltage command correction calculation means calculates the magnetic flux status calculation means for calculating the magnetic flux status of the plurality of leg irons from the outputs of the plurality of magnetic detectors, and the voltage command correction calculation from the output of the magnetic flux status calculation means. 7. The power conversion device according to claim 6, comprising a correction value calculation means.
【請求項8】 磁束状態算出手段は、複数の磁気検出器
の出力と複数の脚鉄の磁束状態との、磁気抵抗を用いて
表される関係を用いて、前記磁気検出器の出力から前記
磁束状態を算出するようにしたことを特徴とする請求項
7記載の電力変換装置。
8. The magnetic flux state calculation means comprises a plurality of magnetic detectors.
Output and the magnetic flux state of multiple leg irons, using reluctance
From the output of the magnetic detector,
The magnetic flux state is calculated so that it can be calculated.
7. The power conversion device according to 7 .
【請求項9】 磁束状態算出手段は、複数の磁気検出器
の出力と複数の脚鉄の磁束状態との関係を用い、前記磁
気検出器の出力に応じて変化させる非線形な特性として
前記磁束状態を算出するようにしたことを特徴とする請
求項7記載の電力変換装置。
9. The magnetic flux state calculation means comprises a plurality of magnetic detectors.
Of the magnetic field of multiple leg irons,
As a non-linear characteristic that changes according to the output of the air detector
A contract characterized in that the magnetic flux state is calculated.
The power conversion device according to claim 7 .
【請求項10】 磁気抵抗は、起磁力により変化すると
したことを特徴とする請求項3または請求項8記載の
力変換装置。
10. The magnetic resistance changes when the magnetomotive force changes.
The power conversion device according to claim 3 or 8, wherein
JP21908998A 1998-08-03 1998-08-03 Power converter Expired - Fee Related JP3518997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21908998A JP3518997B2 (en) 1998-08-03 1998-08-03 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21908998A JP3518997B2 (en) 1998-08-03 1998-08-03 Power converter

Publications (2)

Publication Number Publication Date
JP2000050642A JP2000050642A (en) 2000-02-18
JP3518997B2 true JP3518997B2 (en) 2004-04-12

Family

ID=16730092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21908998A Expired - Fee Related JP3518997B2 (en) 1998-08-03 1998-08-03 Power converter

Country Status (1)

Country Link
JP (1) JP3518997B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489912B2 (en) * 2000-07-14 2010-06-23 三菱電機株式会社 Power converter
EP1980864B1 (en) * 2006-01-31 2012-01-11 Mitsubishi Denki Kabushiki Kaisha Residual magnetic flux determining apparatus
JP5300423B2 (en) * 2008-11-07 2013-09-25 株式会社東芝 Power converter
WO2019073658A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Power conversion device
EP3696832B1 (en) 2017-10-12 2022-09-07 Mitsubishi Electric Corporation Transformer and power conversion device
CN114184876B (en) * 2022-02-16 2022-05-10 国网江西省电力有限公司电力科学研究院 DC magnetic bias monitoring, evaluation and earth model correction platform

Also Published As

Publication number Publication date
JP2000050642A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US7184282B2 (en) Single-phase power conversion device and three-phase power conversion device
JP2774685B2 (en) Inverter control device with DC bias suppression control for three-phase transformer
JP3518997B2 (en) Power converter
JP3167936B2 (en) Power converter
JP3530748B2 (en) Power converter
JPH0728534A (en) Controller for power converter
US5621633A (en) Apparatus for controlling converter having self-arc-extinction elements
JP2008289267A (en) Power conversion device, and control method therefor
JP4607617B2 (en) Control device for power converter
CN112202179A (en) Flux linkage control method for restraining magnetic saturation of voltage compensator series transformer
JP4615336B2 (en) Single-phase power converter and three-phase power converter
WO2021161945A1 (en) Power source stabilization device
JP2006136107A (en) Semiconductor power converter and its magnetic asymmetry control method
JPH0329865A (en) Exciting current detector of transformer
JP3463164B2 (en) Power conversion device equipped with demagnetization suppression control device
JPS6126425A (en) Device for protecting transformer
JPH08152927A (en) Controller for power converter
JP2023109644A (en) DAB converter and control method
JPH08126341A (en) System interconnection inverter and its leakage current detecting device
JP3219783B2 (en) Power converter
KR0128218Y1 (en) A flux detection circuit of an induction motor
JPH0550713U (en) Transformer
JP2534035Y2 (en) Inverter demagnetization prevention circuit for inverter
JP2023109645A (en) DAB converter and control method
JPH07118959B2 (en) Induction motor control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees