WO2020173132A1 - Method and system for determining transient power angle stability weak line of regional power grid - Google Patents

Method and system for determining transient power angle stability weak line of regional power grid Download PDF

Info

Publication number
WO2020173132A1
WO2020173132A1 PCT/CN2019/117585 CN2019117585W WO2020173132A1 WO 2020173132 A1 WO2020173132 A1 WO 2020173132A1 CN 2019117585 W CN2019117585 W CN 2019117585W WO 2020173132 A1 WO2020173132 A1 WO 2020173132A1
Authority
WO
WIPO (PCT)
Prior art keywords
power grid
line
regional power
matrix
branch
Prior art date
Application number
PCT/CN2019/117585
Other languages
French (fr)
Chinese (zh)
Inventor
孙玉娇
周勤勇
张健
秦晓辉
张彦涛
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Publication of WO2020173132A1 publication Critical patent/WO2020173132A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Disclosed are a method and system for determining a transient power angle stability weak line of a regional power grid. The method comprises: acquiring line information of each line of a regional power grid and information of a bus connected to each line of the regional power grid (S1); calculating vulnerable factor matrices LEF of faulty lines according to different set line faults; and taking a fault, corresponding to the maximum value in the ranking of absolute values LEF' of the vulnerable factor matrices, in the vulnerable factor matrices LEF as the most serious fault, and taking a line, corresponding to the maximum value in the ranking of the absolute values LEF' of the vulnerable factor matrices, in the vulnerable factor matrices LEF as the weakest line.

Description

判断区域电网暂态功角稳定薄弱线路的方法、 系统 Method and system for judging weak line with transient power angle stability of regional power grid
本公开要求在 2019 年 02 月 28 日提交中国专利局、 申请号为 201910152065.0 的中国专利申请的优先权, 以上申请的全部内容通过引用结合 在本公开中。 技术领域 This disclosure claims the priority of a Chinese patent application filed with the Chinese Patent Office with an application number of 201910152065.0 on February 28, 2019. The entire content of the above application is incorporated into this disclosure by reference. Technical field
本申请属于电力系统技术领域, 例如涉及一种判断区域电网暂态功角稳定 薄弱线路的方法、 系统。 背景技术 This application belongs to the technical field of power systems, for example, it relates to a method and system for judging weak lines with stable transient power angles in a regional power grid. Background technique
相关技术中, 寻找电力系统暂态功角稳定薄弱线路时, 往往更关心的是系 统发生故障以后对系统的影响, 分析故障影响的方法主要采用仿真方法, 耗费 时间, 相关技术中的判断薄弱断面或薄弱线路的方法要么缺乏故障影响的分析, 要么方法较为复杂。 发明内容 In related technologies, when looking for a weak line with transient power angle stability in the power system, it is often more concerned about the impact of the system on the system after a fault occurs. The method of analyzing the impact of the fault mainly adopts the simulation method, which is time-consuming, and the judgment of the weak section in the related technology Or the method of weak line either lacks the analysis of the influence of the fault, or the method is more complicated. Summary of the invention
本申请能在一定程度地解决相关技术中的技术问题之一。 This application can solve one of the technical problems in related technologies to a certain extent.
本申请提出了一种判断区域电网暂态功角稳定薄弱线路的方法。该方法能够 仅根据电力系统一状态信息直接获取薄弱线路, 并按对该薄弱线路影响严重程 度排序的系统故障, 减少计算时间和仿真时间, 对电力系统的暂态功角稳定分 析具有重要意义。 This application proposes a method for judging weak lines with transient power angle stability in a regional power grid. This method can directly obtain weak lines only according to the state information of the power system, and sort the system faults according to the severity of the weak lines, reduce calculation time and simulation time, and is of great significance to the transient power angle stability analysis of the power system.
本申请还提出了一种判断区域电网暂态功角稳定薄弱线路的系统。 This application also proposes a system for judging weak lines with transient power angle stability in a regional power grid.
本申请第一方面实施例提出的判断区域电网暂态功角稳定薄弱线路的方 法, 包括: The method for judging a weak line with transient power angle stability of a regional power grid proposed in the embodiment of the first aspect of this application includes:
获取所述区域电网的每个线路的线路信息以及与所述区域电网的每个线路 相连的母线信息; 根据获取的所述线路信息与所述母线信息, 计算所述区域电网故障前每个 线路的功率, 并计算所述区域电网故障前的支路导纳矩阵 、 所述区域电网故 障前的节点-支路关联矩阵 A、 所述区域电网故障前的节点导纳矩阵 ; 增加与在所述区域电网外的连接母线相关联的支路, 并将与在所述区域电 网外的连接母线相关联的支路对应的导纳值设置为无穷大, 并对应修改所述区 域电网故障前的支路导纳矩阵 、 所述区域电网故障前的节点-支路关联矩阵 A、 所述区域电网故障前的节点导纳矩阵 5。, 得到修改后的支路导纳矩阵、 修改 后的节点-支路关联矩阵、 修改后的节点导纳矩阵; 根据设置的不同的线路故障, 相应修改所述修改后的支路导纳矩阵、 所述 修改后的节点-支路关联矩阵、 所述修改后的节点导纳矩阵, 形成所述区域电网 故障后的支路导纳矩阵 BI、 所述区域电网故障后的节点 -支路关联矩阵 \ 所述 Acquire the line information of each line of the regional power grid and the information of the bus connected to each line of the regional power grid; calculate each line before the regional power grid failure according to the obtained line information and the bus information Calculating the branch admittance matrix before the regional power grid failure, the node-branch correlation matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure; Add branches associated with the connection bus outside the regional power grid, and set the admittance value corresponding to the branch associated with the connection bus outside the regional power grid to infinity, and modify the regional power grid accordingly The branch admittance matrix before the failure, the node-branch association matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure 5 . , Obtain the modified branch admittance matrix, the modified node-branch association matrix, and the modified node admittance matrix; according to different line faults, the modified branch admittance matrix, The modified node-branch correlation matrix and the modified node admittance matrix form the branch admittance matrix BI after the regional power grid failure, and the node-branch correlation matrix after the regional power grid fails \ Said
Figure imgf000004_0001
支路关联矩阵 A、 所述区域电网故障后的节点导纳矩阵 B e, 计算所述区域电网 故障后的每个线路的功率、 所述区域电网故障后的每个线路的脆弱因子及所述
Figure imgf000004_0002
Figure imgf000004_0001
The branch association matrix A, the node admittance matrix B e after the regional power grid failure, calculate the power of each line after the regional power grid failure, the vulnerability factor of each line after the regional power grid failure, and the
Figure imgf000004_0002
列所述脆弱因子矩阵绝对值 LEF' , 将在所述脆弱因子矩阵绝对值 LEF'的排序中 的最大值, 在所述脆弱因子矩阵 ^ 中对应的故障作为最严重故障, 将在所述
Figure imgf000004_0003
List the absolute value of the vulnerability factor matrix LEF', the maximum value in the ranking of the absolute value of the vulnerability factor matrix LEF', and the corresponding fault in the vulnerability factor matrix ^ as the most serious fault,
Figure imgf000004_0003
的线路作为最薄弱线路。 The line as the weakest line.
本申请第二方面实施例提出的判断区域电网暂态功角稳定薄弱线路的系 统, 所述系统包括: The embodiment of the second aspect of the present application proposes a system for judging weak lines with transient power angle stability in a regional power grid, the system includes:
获取模块, 配置为获取所述区域电网的每个线路的线路信息以及与所述区 域电网的每个线路相连的母线信息; 第一计算模块, 配置为根据所述获取模块获取的所述线路信息与所述母线 信息, 计算所述区域电网故障前每个线路的功率, 并计算所述区域电网故障前 的支路导纳矩阵 、 所述区域电网故障前的节点-支路关联矩阵 A、 所述区域电 网故障前的节点导纳矩阵 ; The acquisition module is configured to acquire line information of each line of the regional power grid and bus information connected to each line of the regional power grid; The first calculation module is configured to calculate the power of each line before the regional power grid failure according to the line information and the bus information acquired by the acquisition module, and calculate the branch admittance before the regional power grid failure Matrix, the node-branch correlation matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure;
第一修改模块, 配置为增加与在所述区域电网外的连接母线相关联的支路, 并将与在所述区域电网外的连接母线相关联的支路对应的导纳值设置为无穷 大, 并对应修改所述区域电网故障前的支路导纳矩阵 、 所述区域电网故障前 的节点-支路关联矩阵 A、 所述区域电网故障前的节点导纳矩阵 , 得到修改后 的支路导纳矩阵、 修改后的节点-支路关联矩阵、 修改后的节点导纳矩阵; The first modification module is configured to add a branch associated with the connection bus outside the regional power grid, and set the admittance value corresponding to the branch associated with the connection bus outside the regional power grid to infinity, And correspondingly modify the branch admittance matrix before the regional power grid failure, the node-branch association matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure to obtain the modified branch guidance Admittance matrix, modified node-branch incidence matrix, modified nodal admittance matrix;
第二修改模块, 配置为根据设置的不同的线路故障, 相应修改所述第一修 改模块修改后的支路导纳矩阵、 所述修改后的节点-支路关联矩阵、 所述修改后 的节点导纳矩阵, 形成所述区域电网故障后的支路导纳矩阵 B^、 所述区域电网 故障后的节点-支路关联矩阵 所述区域电网故障后的节点导纳矩阵 e; 第二计算模块, 配置为根据所述区域电网故障后的支路导纳矩阵 BV 所述 区域电网故障后的节点-支路关联矩阵 A\ 所述区域电网故障后的节点导纳矩阵 The second modification module is configured to modify the branch admittance matrix modified by the first modification module, the modified node-branch association matrix, and the modified node accordingly according to different line faults set Admittance matrix, forming the branch admittance matrix B^ after the regional power grid failure, the node-branch correlation matrix after the regional power grid failure, the node admittance matrix e after the regional power grid failure ; second calculation module , Configured as the branch admittance matrix BV after the regional power grid failure, the node-branch association matrix A after the regional power grid failure, the node admittance matrix after the regional power grid failure
B 0 , 计算所述区域电网故障后的每个线路的功率、 所述区域电网故障后的每个 线路的脆弱因子及所述区域电网故
Figure imgf000005_0001
B 0 , calculate the power of each line after the regional power grid failure, the vulnerability factor of each line after the regional power grid failure, and the failure of the regional power grid
Figure imgf000005_0001
第三计算模块, 配置为计算所述区域电网故障后每个线路的脆弱因子矩阵 绝对值 L£F' , 并降序排列所述脆弱因子矩阵绝对值/^F' , 将在所述脆弱因子矩
Figure imgf000005_0002
在所述脆
Figure imgf000006_0001
The third calculation module is configured to calculate the absolute value of the vulnerability factor matrix L£F' of each line after the regional power grid failure, and arrange the absolute value of the vulnerability factor matrix/^F' in descending order, and the
Figure imgf000005_0002
In the crisp
Figure imgf000006_0001
附图说明 Description of the drawings
通过参考下面的附图, 可以更为完整地理解本申请的示例性实施方式: 图 1 是根据本申请公开实施例的所述判断区域电网暂态功角稳定薄弱线路 的方法流程图; The exemplary embodiments of this application can be understood more completely by referring to the following drawings: Fig. 1 is a flow chart of the method for determining the transient power angle stable weak line of the regional power grid according to the disclosed embodiments of this application;
图 2 ( a )是根据本申请公开实施例的不同故障下系统最大发电机功角差仿 真曲线图; Fig. 2 (a) is a simulation curve diagram of the maximum generator power angle difference of the system under different faults according to the disclosed embodiments of the present application;
图 2 ( b )是根据本申请公开实施例的不同故障下系统最大发电机功角差仿 真曲线图; Figure 2 (b) is a simulation curve diagram of the maximum generator power angle difference of the system under different faults according to the disclosed embodiments of the present application;
图 3是根据本申请实施例公开的所述判断区域电网暂态功角稳定薄弱线路 的系统方框图。 具体实施方式 Fig. 3 is a block diagram of the system for judging the weak line of the transient power angle stability of the regional power grid according to the embodiment of the present application. detailed description
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本申请一部分的实施例, 而不 是全部的实施例。 基于本申请中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都应当属于本申请保护的范围。 The following describes the technical solutions in the embodiments of the present invention clearly and completely with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by a person of ordinary skill in the art without creative labor should fall within the protection scope of this application.
需要说明的是, 本申请的说明书和权利要求书及上述附图中的术语“第一’’、 “第二’’等是用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。应该 理解这样使用的数据在适当情况下可以互换, 以便这里描述的本申请的实施例 能够以除了在这里图示或描述的那些以外的顺序实施。 此外, 术语“包括”和“具 有”以及他们的任何变形, 意图在于覆盖不排他的包含, 例如, 包含了一系列步 骤或单元的过程、 方法、 系统、 产品或设备不必限于清楚地列出的那些步骤或 单元, 而是可包括没有清楚地列出的或对于这些过程、 方法、 产品或设备固有 的其它步骤或单元。 It should be noted that the terms "first" and "second" in the description and claims of this application and the above-mentioned drawings are used to distinguish similar objects, and not necessarily used to describe a specific sequence or sequence. order. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application described herein can be implemented in a sequence other than those illustrated or described herein. In addition, the terms "including" and "having" and any variations of them are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or device that includes a series of steps or units is not necessarily limited to the clearly listed Those steps or units may include other steps or units that are not clearly listed or are inherent to these processes, methods, products, or equipment.
下面结合具体实施例对本申请作进一步详细的说明。 The application will be further described in detail below in conjunction with specific embodiments.
本申请提出获取区域电网暂态功角稳定薄弱线路及故障的方法, 基于系统 的一状态, 计算系统发生不同类型故障后的线路薄弱因子矩阵, 判断电网薄弱 线路, 并给出不同故障对该薄弱线路影响程度的指标排序, 可以直接给出电网 的薄弱环节和系统最严重故障, 可减少计算时间和仿真时间, 对电力系统暂态 功角稳定分析具有十分明晰的指导作用。 This application proposes a method for obtaining transient power-angle stable weak lines and faults of the regional power grid. Based on a state of the system, calculate the line weakness factor matrix after different types of faults in the system, and judge the power grid weakness It also gives a ranking of indicators of the degree of influence of different faults on the weak line, which can directly give the weak link of the power grid and the most serious fault of the system, which can reduce the calculation time and simulation time, and is very useful for the transient power angle stability analysis of the power system. Clear guidance.
一般情况下, 对一区域电网, 当线路 k发生故障后, 假设线路 i上的潮流转 移值为 APki, 则潮流转以后线路 i的功率与最大功率之比为: In general, for a regional power grid, when line k fails, assuming that the power flow transfer value on line i is AP ki , the ratio of the power of line i to the maximum power after the power flow transfer is:
Figure imgf000007_0001
Figure imgf000007_0001
根据直流潮流计算公式: According to the DC power flow calculation formula:
(2) (2)
(3)
Figure imgf000007_0002
令矩阵 A为节点-支路关联矩阵, 则有
(3)
Figure imgf000007_0002
Let matrix A be the node-branch incidence matrix, then
PL= BLAT6 (4) psp = B0e (5) SPP L = B L A T 6 (4) p sp = B 0 e (5) SP
PL = BLATB0 > (6) P L = B L A T B 0 > (6)
B0{AAT) lABL lPL=B0{AAT) lABL lBLATB0 lPSP=P (7) 当线路发生开断时: B 0 (AA T ) l AB L l P L =B 0 (AA T ) l AB L l B L A T B 0 l P SP =P (7) When the line is broken:
P^BL fArB0 f lPSP (8) 则: P^B L f A r B 0 fl P SP (8) Then:
PL'= B'ArB0' % (A4r ) 1 ABL 1PL = B^' O (9) 式中, 为所述区域电网故障前每个支路的功率向量; 为所述区域电网 故障前的支路导纳矩阵, 在一些实施例中, 其为所述区域电网故障前只考虑电 抗的各支路导纳组成的矩阵; A为所述区域电网故障前的节点-支路关联矩阵; 为所述区域电网故障前的节点导纳矩阵, 在一些实施例中, 其为只考虑电抗的 节点导纳矩阵; K为所述区域电网故障后各支路的功率; 为所述区域电网故 障后的支路导纳矩阵, 在一些实施例中, 其为只考虑电抗的每个支路导纳组成 的矩阵; ^为所述区域电网故障后的节点-支路关联矩阵; 为所述区域电网故 障后 薄弱
Figure imgf000008_0003
P L '= B'A r B 0 '% (A4 r ) 1 AB L 1 P L = B^' O (9) where is the power vector of each branch before the regional grid failure; The branch admittance matrix before the regional power grid failure, in some embodiments, is a matrix composed of the branch admittances that only consider reactance before the regional power grid failure; A is the node before the regional power grid failure − Branch incidence matrix; is the node admittance matrix before the regional power grid failure, in some embodiments, it is only considering reactance Node admittance matrix; K is the power of each branch after the regional power grid fails; is the branch admittance matrix after the regional power grid fails, in some embodiments, it is the conductance of each branch considering only reactance ^ Is the node-branch correlation matrix after the failure of the regional power grid; is the weakness of the regional power grid after the failure
Figure imgf000008_0003
当所考察的区域电网与外区域电网存在电气联系时, 在进行指标计算前, 需要将外区域电网通过零阻抗进行虚拟连接, 以使指标计算更为合理。 When there is an electrical connection between the investigated regional power grid and the outer regional power grid, the outer regional power grid needs to be virtually connected through zero impedance before the index calculation is performed to make the indicator calculation more reasonable.
本方法应用的前提是认为电网基本都是分层分区的。 The premise of the application of this method is that the power grid is basically divided into layers.
对一层级的电网, 图 1 为本申请公开实施例的所述判断故障后区域电网稳 定薄弱线路的方法流程图, 流程如下: For a one-level power grid, FIG. 1 is a flow chart of the method for determining a stable weak line of a regional power grid after a fault according to an embodiment of the disclosure, and the process is as follows:
步骤 S1 : 获取所述区域电网各线路信息以及与所述区域电网各线路相连的 母线信息, 即通过系统的运行状态, 获取区域电网各线路信息, 包括线路两端 母线名称、 电压等级及线路的电抗值; 获取与线路相连的母线信息, 包括母线 名称、 电压等级及运行状态下的母线电压、 相角。 Step S1: Obtain the information of each line of the regional power grid and the information of the bus connected to each line of the regional power grid, that is, obtain the line information of the regional power grid through the operating status of the system, including the name of the bus at both ends of the line, the voltage level and the information of the line Reactance value; Obtain the information of the bus connected to the line, including the bus name, voltage level, and the bus voltage and phase angle in the running state.
需要说明的是, 所述母线的电压等级可以参考所使用的电压等级序列确定。 步骤 S2:根据 S 1中获取的所述区域电网各线路信息以及与所述区域电网各 线路相连的母线信息, 计算故障前所述区域电网的各线路的功率以及计算所述 区域电网的故障前的支路导纳矩阵 、 故障前所述区域电网的节点 -支路关联矩 阵 A、 故障前节点导纳矩阵 。 It should be noted that the voltage level of the bus can be determined with reference to the voltage level sequence used. Step S2: Calculate the power of each line of the regional power grid before the fault and calculate the pre-fault of the regional power grid based on the information of the lines of the regional power grid and the information of the buses connected to the lines of the regional power grid obtained in S1 The branch admittance matrix, the node-branch association matrix A of the regional power grid before the failure, and the node admittance matrix before the failure.
步骤 S3: 对所考察区域电网外的连接母线, 增加与所述区域电网外的连接 母线相关联的支路, 并将所述支路对应的导纳值设置为无穷大, 并对应修改所 述 S2 中的故障前的支路导纳矩阵 、 故障前所述区域电网的节点 -支路关联矩 阵 A、 故障前的节点导纳矩阵 5。。 Step S3: For the connection bus bar outside the investigated regional power grid, add branches associated with the connection bus bar outside the regional power grid, and set the admittance value corresponding to the branch to infinity, and modify the S2 accordingly The branch admittance matrix before the failure in, the node-branch association matrix A of the regional power grid before the failure, and the node admittance matrix before the failure 5 . .
步骤 S4:根据设置的不同的线路故障,相应修改所述 S3中的支路导纳矩阵、 节点-支路关联矩阵、 节点导纳矩阵, 形成故
Figure imgf000008_0001
节点
Figure imgf000008_0002
节点-支路关联矩阵 I、 节 点导纳矩阵 B>乂及按前述公式( 9)计算所述区域电网故障后的每个线路的功率、 所述区域电网故障后每个线路的脆弱因子及所述区域电网故障后线路脆弱因子 矩阵 。 步骤 S6:计算所述 S5中的所述区域电网故障后每个线路的脆弱因子矩阵绝 对值 L£F , 并降序排列所述脆弱因子矩阵绝对值 L£Ff , 所述脆弱因子矩阵绝对 值 L£F'排序中最大值对应的所述故障 (在一些实施例中,
Figure imgf000009_0001
Step S4: According to different line faults, modify the branch admittance matrix, node-branch incidence matrix, and node admittance matrix in S3 accordingly to form a fault
Figure imgf000008_0001
node
Figure imgf000008_0002
The node-branch correlation matrix I, the node admittance matrix B>q, and the power of each line after the regional power grid failure, the vulnerability factor of each line after the regional power grid failure and the total Describes the line vulnerability factor matrix after regional power grid failure. Step S6: Calculate the absolute value of the vulnerability factor matrix L£F of each line after the regional power grid failure in the S5, and arrange the absolute value of the vulnerability factor matrix L£F f in descending order, the absolute value of the vulnerability factor matrix The fault corresponding to the maximum value in the L£F' ranking (in some embodiments,
Figure imgf000009_0001
在脆弱因子矩阵 L£F中的行)为最严重故障,对应的所述线路(在一些实施例中, 为 LEF'最大值对应的在脆弱因子矩阵 L£F中的列) 为最薄弱线路。 The row in the vulnerability factor matrix L£F) is the most serious fault, and the corresponding line (in some embodiments, the column in the vulnerability factor matrix L£F corresponding to the maximum value of LEF') is the weakest line .
需要说明的是, 所述脆弱因子矩阵绝对值为根据所述脆弱因子矩阵获取, 在一些实施例中, 所述脆弱因子矩阵绝对值为通过将所述脆弱因子矩阵中的元 素进行绝对值计算而得到。 可理解的是, 所述脆弱因子矩阵绝对值, 可以通过 将脆弱因子矩阵中的脆弱因子, 取绝对值而得到。 It should be noted that the absolute value of the vulnerability factor matrix is obtained according to the vulnerability factor matrix. In some embodiments, the absolute value of the vulnerability factor matrix is calculated by performing absolute value calculation on the elements in the vulnerability factor matrix. get. It is understandable that the absolute value of the vulnerability factor matrix can be obtained by taking the absolute value of the vulnerability factor in the vulnerability factor matrix.
还需要说明的是, 所述母线包括: 供电设备(比如: 发电站)上的与用电 设备连接以使供电设备能向用电设备供电的连接线, 以及, 用电设备(比如: 工厂耗电设备)上的与供电设备连接以使用电设备能接受供电设备的供电的连 接线。 可理解的是, 通过连接供电设备上的母线和用电设备上的母线, 可以实 现供电设备向用电设备供电。 所述供电设备的母线可以被当作所述电网中的节 点, 所述用电设备的母线也可以被当作所述电网中的节点。 每个所述线路是指, 连接于两个所述母线之间的一条线路。 可理解的是, 在两个母线之间, 可能连 接有多个所述线路, 使这两个母线之间实现对接。 在任何一对对接的两个母线 之间, 连接的所有所述线路可以被当作一个所述支路。 在所述区域电网外的连 接母线是指, 在所述区域电网外且与所述区域电网连接的母线。 与在所述区域 电网外的连接母线相关联的支路是指, 在所述区域电网外的连接母线, 和所述 区域电网之间设置的支路。 It should also be noted that the bus bar includes: a connection line on a power supply device (such as a power station) that is connected to a power-consuming device so that the power-supply device can supply power to the power-consuming device, and a power-consuming device (such as a factory consumption Electrical equipment) connected to the power supply equipment to use the electrical equipment can receive the power supply of the power supply equipment. It is understandable that by connecting the bus bar on the power supply device and the bus bar on the power consuming device, the power supply device can supply power to the power consuming device. The bus bar of the power supply device may be regarded as a node in the power grid, and the bus bar of the electric device may also be regarded as a node in the power grid. Each line refers to a line connected between two bus bars. It is understandable that between two busbars, there may be a plurality of said lines connected, so that the two busbars can be connected to each other. Between any pair of butt-connected two busbars, all the connected lines can be regarded as one branch. The connection bus bar outside the regional power grid refers to a bus bar outside the regional power grid and connected to the regional power grid. The branch associated with the connection bus outside the regional power grid refers to a branch set between the connection bus outside the regional power grid and the regional power grid.
可理解的是, 所述支路导纳矩阵 为, 用于表示一个电路(比如: 所述区 域电网) 中各支路导纳参数的矩阵, 其行数和列数均为电路的支路总数。 示例 性地, 就一个有 N个节点, B条支路的网络(不含受控源, 无互感)而言, 其支路 导纳矩阵为一个 B阶对角阵, 也即, 该支路导纳矩阵之中, 只有主对角线的元 素可以为非零值, 其他元素的取值均为零。 在支路导纳矩阵中, Yjj可以用于表 示 j支路的自导纳。 当一个电路有互感或受控源时, 其支路导纳矩阵可以为非对 角阵。 Yij可以用于表示 i支路与 j支路的互导纳。 所述节点-支路关联矩阵 A是 指, 描述节点与支路之间的关联关系的矩阵, 对于一个具有 n个节点、 b条支路 的有向图, 该有向图的节点-支路关联矩阵为一个 n x b阶矩阵, 其中, 在一些实 施例中, 可以将每一支路对应的起始节点在矩阵中所对应的值设为 1 , 并将每一 支路对应的终止节点在矩阵中所对应的值设为 -1。所述节点导纳矩阵 s◦是指, 以 系统元件的等值导纳为基础所建立的、 描述电力网络各节点电压和注入电流之 间关系的一个对称的方阵, 节点导纳矩阵的阶数等于电力网络的节点数。 节点 导纳矩阵的对角线元素为自导纳, 所述自导纳为: 与节点直接连接的支路上的 导纳之和, 理想电压源相当于短路(此时, 阻抗 z=o), 理想电流源相当于开路 (此时, 阻抗 Z= oo), 实际电源用理想电源与阻抗组合表示。 节点导纳矩阵的非 对角线元素为互导纳, 互导纳为: 直接连接两个节点的各支路导纳之和的相反 数。 所述脆弱因子矩阵是指, 不同故障下计算非故障线路的脆弱因子, 并形成 以故障线路和非故障线路的脆弱因子形成的矩阵(例如, 以列对应非故障线路, 以行对应故障线路, 可以形成矩阵, 这样, 可以用所述脆弱因子矩阵中的每个 元素表示该元素行所在的线路发生故障后计算得到该元素列所在的非故障线路 的脆弱因子值)。 It is understandable that the branch admittance matrix is a matrix used to represent the admittance parameters of each branch in a circuit (for example: the regional power grid), and the number of rows and columns are the total number of branches of the circuit. . Exemplarily, for a network with N nodes and B branches (without controlled sources and no mutual inductance), the branch admittance matrix is a B-order diagonal matrix, that is, the branch In the admittance matrix, only the elements of the main diagonal can have non-zero values, and the values of other elements are all zero. In the branch admittance matrix, Yjj can be used to represent the self-admittance of j branch. When a circuit has a mutual inductance or a controlled source, its branch admittance matrix can be a non-diagonal matrix. Yij can be used to express the mutual admittance between i branch and j branch. The node-branch association matrix A refers to a matrix that describes the relationship between nodes and branches. For a directed graph with n nodes and b branches, the node-branch of the directed graph The incidence matrix is an nxb-order matrix, where, in some embodiments, the value of the starting node corresponding to each branch in the matrix can be set to 1, and each The corresponding end node of the branch is set to -1 in the matrix. The nodal admittance matrix s ◦ refers to a symmetrical square matrix that is established based on the equivalent admittance of system components and describes the relationship between the voltage and the injected current of each node in the power network. The order of the nodal admittance matrix The number is equal to the number of nodes in the power network. The diagonal element of the node admittance matrix is the self-admittance, and the self-admittance is: the sum of the admittance on the branch directly connected to the node, and the ideal voltage source is equivalent to a short circuit (at this time, the impedance z=o), The ideal current source is equivalent to an open circuit (at this time, impedance Z=oo), and the actual power source is represented by the combination of ideal power source and impedance. The off-diagonal element of the nodal admittance matrix is the mutual admittance, which is the opposite of the sum of the admittances of the branches directly connecting the two nodes. The vulnerability factor matrix refers to calculating the vulnerability factors of non-faulty lines under different faults, and forming a matrix formed by the vulnerability factors of faulty lines and non-faulty lines (for example, columns correspond to non-faulty lines, and rows correspond to faulty lines, A matrix can be formed. In this way, each element in the vulnerability factor matrix can be used to indicate that after the line where the element row is located fails, the vulnerability factor value of the non-faulty line where the element column is located is calculated).
以华东区域江苏一规划电网方案为例进行了应用验证。 该规划方案下, 华 东电网形成特高压环网, 江苏电网与外部电网的 500kV联络线有 4条。 在一极 端方式下, 令华东其他省份送电江苏, 且江苏电网达最大受电规模。 此时计算 不同线路严重故障下的线路脆弱因子矩阵, 选择绝对值较大的脆弱因子 (即: 脆弱因子矩阵绝对值较大)对应的线路, 结果如表 1所示。 The application verification was carried out by taking the Jiangsu No. 1 planning power grid scheme in East China as an example. Under this plan, the East China Power Grid forms a UHV ring network, and there are 4 500kV tie lines between Jiangsu Power Grid and external power grids. Under the unipolar approach, other provinces in East China will be able to transmit power to Jiangsu, and the Jiangsu power grid will reach the largest scale of power receiving. At this time, calculate the line fragility factor matrix under severe faults of different lines, and select the line corresponding to the fragility factor with a larger absolute value (ie: the fragility factor matrix has a larger absolute value). The results are shown in Table 1.
表 1 极端方式下脆弱线路及其对应的脆弱因子的绝对值 Table 1 Absolute values of vulnerable lines and corresponding vulnerability factors under extreme methods
Figure imgf000010_0001
Figure imgf000010_0001
表 1表明: 系统的最脆弱线路为“苏廻峰 51—皖芜三 51”线路,其次是“皖 当涂 51—苏溧阳 51”。 之后依次为江苏内部的其他线路。 Table 1 shows: The most vulnerable line of the system is the "Su Weifeng 51-Wuwu San 51" line, followed by "Wan Dangtu 51-Su Liyang 51". Followed by other lines within Jiangsu.
按脆弱因子大小排序的脆弱线路及对应的故障列表如下: The list of vulnerable lines and corresponding faults sorted by the size of the vulnerability factor is as follows:
表 2 极端方式下按脆弱因子的绝对值排序的脆弱线路及对应的故障 Table 2 Vulnerable lines and corresponding faults sorted by the absolute value of the vulnerability factor in the extreme mode
Figure imgf000010_0002
Figure imgf000011_0001
Figure imgf000010_0002
Figure imgf000011_0001
为了查看对脆弱线路影响较大的故障, 列出“苏廻峰 51—皖芜三 51”、 “皖 当涂 51—苏溧阳 51”等几个线路按故障后脆弱因子的绝对值排序的故障线路 分别如表 3至表 5所示。 In order to view the faults that have a greater impact on the fragile lines, list the faulty lines sorted by the absolute value of the vulnerability factor after the fault, such as "Su Weifeng 51-Wanwu San 51", "Wandangtu 51-Su Liyang 51", etc. As shown in Table 3 to Table 5.
表 3 极端方式下“苏迴峰—皖芜三”线路及其他线路故障时的脆弱因子的绝对值 Table 3 Absolute values of vulnerability factors of the "Suhuifeng-Wuwusan" line and other lines in the extreme mode
Figure imgf000011_0002
Figure imgf000011_0002
对表 3中的故障进行仿真, 结果表明, 排在前两位的“院当涂 51—苏溧阳 51’’、“苏州南 51—苏溧阳 51”线路故障后系统失稳,其余线路故障后系统稳定。 验证了指标的正确性。 The simulation of the faults in Table 3 shows that the top two "Yindangtu 51-Suliyang 51" and "Suzhou South 51-Suliyang 51" lines fail after the system fails, and the remaining lines fail after the failure. The system is stable. The correctness of the index is verified.
表 4 极端方式下“院当涂 51—苏溧阳 51”线路及其他线路故障时的脆弱因子的绝对值
Figure imgf000012_0001
Table 4 Absolute value of the vulnerability factor of the “Yuandangtu 51-Suliyang 51” line and other lines in the extreme mode
Figure imgf000012_0001
表 5 极端方式下“苏州南 51—苏溧阳 51”线路及其他线路故障时的脆弱因子的绝对值Table 5 Absolute value of the vulnerability factor of the "Suzhou South 51-Suliyang 51" line and other lines under the extreme mode
Figure imgf000012_0002
Figure imgf000013_0002
Figure imgf000012_0002
Figure imgf000013_0002
对表 4、 表 5中的故障进行仿真, 结果表明, 排在最前面的“苏廻峰 51— 皖芜三 51”线路故障后系统失稳, 其余线路故障后系统稳定。 验证了指标的正确 性。 The faults in Table 4 and Table 5 are simulated, and the results show that the system is unstable after the fault of the top line "Su Weifeng 51-Wanwu San 51", and the system is stable after the other lines fail. Verify the correctness of the indicators.
部分故障的仿真曲线图 2 ( a )、 图 2 ( b )所示。 The simulation curves of partial failures are shown in Figure 2 (a) and Figure 2 (b).
本申请第二方面实施例提出的判断区域电网暂态功角稳定薄弱线路的系 统, 图 3为判断区域电网暂态功角稳定薄弱线路的系统方框图, 系统 300包括: 获取模块 301 ,配置为获取所述区域电网各线路信息以及与所述区域电网各 线路相连的母线信息。 The system for judging weak lines with transient power angle stability in a regional power grid proposed by an embodiment of the second aspect of the present application. FIG. 3 is a block diagram of the system for judging weak lines with transient power angle stability in a regional power grid. The system 300 includes: an acquisition module 301 configured to acquire Information about each line of the regional power grid and information about the bus connected to each line of the regional power grid.
第一计算模块 302,配置为根据所述第一获取模块获取的所述区域电网各线 路信息以及与所述区域电网各线路相连的母线信息, 计算故障前所述区域电网 的各线路的功率以及计算所述区域电网的故障前的支路导纳矩阵 、 故障前所 述区域电网的节点-支路关联矩阵 A、 故障前节点导纳矩阵 。 The first calculation module 302 is configured to calculate the power of each line of the regional power grid before the failure and the information of the bus connected to each line of the regional power grid obtained by the first obtaining module. Calculate the branch admittance matrix before the failure of the regional power grid, the node-branch association matrix A of the regional power grid before the failure, and the node admittance matrix before the failure.
第一修改模块 303, 配置为对所考察区域电网外的连接母线, 增加与所述区 域电网外的连接母线相关联的支路, 并将所述支路对应的导纳值设置为无穷大, 并对应修改所述 S2中的支路导纳矩阵 、 故障前所述区域电网的节点-支路关 联矩阵 A、 故障前的节点导纳矩阵 5。。 The first modification module 303 is configured to add a branch associated with the connection bus outside the regional power grid to the connection bus outside the investigated regional power grid, and set the admittance value corresponding to the branch to infinity, and Correspondingly modify the branch admittance matrix in S2, the node-branch association matrix A of the regional power grid before the fault, and the node admittance matrix 5 before the fault. .
第二修改模块 304, 配置为根据设置的不同的线路故障,相应修改所述第一 修改模块中的支路导纳矩阵、 节点-支路关联矩阵、 节点导纳矩阵, 形成故障后 的所述支路导纳矩阵 B;L、 节点-支路关联矩阵 A、 节点导纳矩阵 B:'S。 The second modification module 304 is configured to modify the branch admittance matrix, the node-branch association matrix, and the node admittance matrix in the first modification module according to different line faults to form the faulty Branch admittance matrix B; L, node-branch incidence matrix A , node admittance matrix B:' S.
第二计算模块 305, 配置为根据所述第二修改模块的所述支路导纳矩阵 L、 节点-支路关联矩阵 A\ 节点导纳矩阵 B 计算所述区域电网故障后每个线路的功 率、 所述区域电网故障后每个线路的脆弱因子及所述区域电网故障后线路脆弱 因子矩阵 L£F。 The second calculation module 305 is configured to calculate the power of each line after the regional power grid failure according to the branch admittance matrix L, the node-branch association matrix A \the node admittance matrix B of the second modification module , The vulnerability factor of each line after the regional power grid failure and the line vulnerability factor matrix L£F after the regional power grid failure.
第三计算模块 306,配置为计算所述第二计算模块中的所述区域电网故障后
Figure imgf000013_0001
The third calculation module 306 is configured to calculate after the regional power grid failure in the second calculation module
Figure imgf000013_0001
施例中, 为 LET最大值对应的在脆弱因子矩阵 L£F中的行)为最严重故障, 对应 的所述线路 (在一些实施例中,为 最大值对应的在脆弱因子矩阵 中的列 ) 为最薄弱线路。 In an embodiment, the row in the vulnerability factor matrix L£F corresponding to the maximum value of LET is the most serious fault, and the corresponding line (in some embodiments, the column in the vulnerability factor matrix corresponding to the maximum value) ) It is the weakest line.
根据本申请的一个实施例, 所述获取模块 301 的所述区域电网各线路信息 包括: 所述线路两端的母线名称、 所述线路两端电压等级、 以及所述线路的电 抗值; 与所述区域电网各线路相连的母线信息, 包括所述与所述区域电网各线 路相连的母线名称、 所述与所述区域电网各线路相连的母线的电压等级、 所述 与所述区域电网各线路相连的母线电压、 所述与所述区域电网各线路相连的母 线相角。 According to an embodiment of the present application, the line information of the regional power grid of the acquiring module 301 includes: the name of the bus at both ends of the line, the voltage level at both ends of the line, and the reactance value of the line; and Information about the bus bars connected to each line of the regional power grid, including the name of the bus bar connected to each line of the regional power grid, the voltage level of the bus bar connected to each line of the regional power grid, and the line connected to the regional power grid The bus voltage, the phase angle of the bus connected to each line of the regional power grid.
根据本申请的一个实施例, 所述第一计算模块 302 中所述各支路导纳组成 的矩阵 、 节点导纳矩阵 5◦的获得只考虑电抗因素。 According to an embodiment of the present application, the matrix composed of the branch admittances in the first calculation module 302 and the node admittance matrix 5 ° are obtained only considering the reactance factor.
这里判断区域电网暂态功角稳定薄弱线路的系统与第一方面实施例中的判 断区域电网暂态功角稳定薄弱线路采用的方法相同或相似, 这里不再赘述。 The system for judging a weak line with transient power angle stability of the regional power grid is the same or similar to the method used for judging a weak line with transient power angle stability of the regional power grid in the embodiment of the first aspect, and will not be repeated here.
上述本申请实施例序号仅仅为了描述, 不代表实施例的优劣。 The serial numbers of the foregoing embodiments of the present application are only for description, and do not represent the advantages and disadvantages of the embodiments.
在本申请的上述实施例中, 对各个实施例的描述都各有侧重, 在一个实施 例中没有详述的部分, 可以参见其他实施例的相关描述。 In the above-mentioned embodiments of the present application, the description of each embodiment has its own focus. For parts that are not detailed in one embodiment, reference may be made to related descriptions of other embodiments.
在本申请所提供的几个实施例中, 应该理解到, 所揭露的技术内容, 可通 过其它的方式实现。 其中, 以上所描述的装置实施例仅仅是示意性的, 例如所 述单元或模块的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个单元或模块或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接搞合或通信连接可以是通过一些接口, 模块或单元的间接搞合或通信连接, 可以是电性或其它的形式。 In the several embodiments provided in this application, it should be understood that the disclosed technical content can be implemented in other ways. The device embodiments described above are merely illustrative, for example, the division of the units or modules is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or modules or components. Can be combined or integrated into another system, or some features can be omitted or not implemented. On the other hand, the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, modules or units, and may be in electrical or other forms.
所述作为分离部件说明的单元或模块可以是或者也可以不是物理上分开 的, 作为单元或模块显示的部件可以是或者也可以不是物理单元或模块, 即可 以位于一个地方, 或者也可以分布到多个网络单元或模块上。 可以根据实际的 需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。 The units or modules described as separate parts may or may not be physically separated, and the parts displayed as units or modules may or may not be physical units or modules, that is, they may be located in one place, or they may be distributed to Multiple network units or modules. Some or all of the units or modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
另外, 在本申请各个实施例中的各功能单元或模块可以集成在一个处理单 元或模块中, 也可以是各个单元或模块单独物理存在, 也可以两个或两个以上 单元或模块集成在一个单元或模块中。 上述集成的单元或模块既可以采用硬件 的形式实现, 也可以采用软件功能单元或模块的形式实现。 In addition, each functional unit or module in each embodiment of the present application may be integrated into one processing unit or module, or each unit or module may exist alone physically, or two or more units or modules may be integrated into one. Unit or module. The above-mentioned integrated units or modules can be implemented in the form of hardware or software functional units or modules.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或 使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本申请 的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或 部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备 (可为个人计算机、 服务器或者网 络设备等) 执行本申请各个实施例所述方法的全部或部分步骤。 而前述的存储 介质包括: U 盘、 只读存储器 ( ROM, Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 移动硬盘、 磁碟或者光盘等各种可以存储程 序代码的介质。 本申请利用电网的初始潮流, 通过简单的信息获取和矩阵运算, 即可计算 区域电网的不同线路发生不同类型故障后的线路脆弱因子 LFF矩阵, 并可通过 脆弱因子矩阵直接判断系统的暂态功角稳定下的最薄弱线路和最严重故障, 方 法简单直接, 对系统的薄弱环节及其他线路对薄弱环节的影响一目了然, 可以 大大节省仿真时间, 可用于电力系统的多种分析中。 If the integrated unit is realized in the form of a software functional unit and sold as an independent product or When in use, it can be stored in a computer readable storage medium. Based on this understanding, the technical solution of this application essentially or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. A number of instructions are included to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the present application. The aforementioned storage media include: U disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), portable hard disk, magnetic disk or CD-ROM and other media that can store program codes . This application uses the initial power flow of the power grid, through simple information acquisition and matrix operations, can calculate the line vulnerability factor LFF matrix after different types of faults occur on different lines of the regional power grid, and can directly judge the transient power of the system through the vulnerability factor matrix. The weakest line and the most serious fault under angular stability are simple and direct. The weak link of the system and the influence of other lines on the weak link are clear at a glance, which can greatly save simulation time and can be used in various analysis of power systems.

Claims

权 利 要 求 书 Claims
1、 一种判断区域电网暂态功角稳定薄弱线路的方法, 所述方法包括: 获取所述区域电网的每个线路的线路信息以及与所述区域电网的每个线路 相连的母线信息; 1. A method for judging weak lines with transient power angle stability of a regional power grid, the method comprising: obtaining line information of each line of the regional power grid and bus information connected to each line of the regional power grid;
根据获取的所述线路信息与所述母线信息, 计算所述区域电网故障前每个 线路的功率, 并计算所述区域电网故障前的支路导纳矩阵 、 所述区域电网故 障前的节点-支路关联矩阵 A、 所述区域电网故障前的节点导纳矩阵 ; According to the acquired line information and the busbar information, calculate the power of each line before the regional power grid failure, and calculate the branch admittance matrix before the regional power grid failure, and the node before the regional power grid failure − Branch incidence matrix A, the node admittance matrix before the regional power grid failure;
增加与在所述区域电网外的连接母线相关联的支路, 并将与在所述区域电 网外的连接母线相关联的支路对应的导纳值设置为无穷大, 并对应修改所述区 域电网故障前的支路导纳矩阵 、 所述区域电网故障前的节点-支路关联矩阵 A、 所述区域电网故障前的节点导纳矩阵 5。, 得到修改后的支路导纳矩阵、 修改 后的节点-支路关联矩阵、 修改后的节点导纳矩阵; Add branches associated with the connection bus outside the regional power grid, and set the admittance value corresponding to the branch associated with the connection bus outside the regional power grid to infinity, and modify the regional power grid accordingly The branch admittance matrix before the failure, the node-branch association matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure 5 . , Obtain the modified branch admittance matrix, the modified node-branch incidence matrix, and the modified node admittance matrix;
根据设置的不同的线路故障, 相应修改所述修改后的支路导纳矩阵、 所述 修改后的节点-支路关联矩阵、 所述修改后的节点导纳矩阵, 形成所述区域电网 故障后的支路导纳矩阵 BI、 所述区域电网故障后的节点-支路关联矩阵 I、 所述 According to different line faults, the modified branch admittance matrix, the modified node-branch association matrix, and the modified node admittance matrix are modified accordingly to form the post-regional power grid failure The branch admittance matrix BI, the node-branch association matrix I after the regional grid failure, the
Figure imgf000016_0001
支路关联矩阵 A\ 所述区域电网故障后的节点导纳矩阵 BV 计算所述区域电网 故障后的每个线路的功率、 所述区域电网故障后的每个线路的脆弱因子及所述
Figure imgf000016_0002
Figure imgf000016_0001
Branch correlation matrix A\ The node admittance matrix BV after the regional power grid failure calculates the power of each line after the regional power grid failure, the vulnerability factor of each line after the regional power grid failure, and the
Figure imgf000016_0002
列所述脆弱因子矩阵绝对值 LEF' , 将在所述脆弱因子矩阵绝对值 LEF'的排序中 的最大值, 在所述脆弱因子矩阵 ^ 中对应的故障作为最严重故障, 将在所述
Figure imgf000017_0001
Column absolute value LEF' of the vulnerability factor matrix will be in the ranking of the absolute value LEF' of the vulnerability factor matrix The maximum value of, the corresponding fault in the vulnerability factor matrix ^ is regarded as the most serious fault,
Figure imgf000017_0001
的线路作为最薄弱线路。 The line as the weakest line.
2、 根据权利要求 1所述的方法, 其中, 所述区域电网的每个线路的线路信 息包括: 每个所述线路两端的母线名称、 每个所述线路两端电压等级、 以及每 个所述线路的电抗值; 2. The method according to claim 1, wherein the line information of each line of the regional power grid includes: the name of the bus at both ends of each line, the voltage level at both ends of each line, and each line The reactance value of the line;
与所述区域电网的每个线路相连的母线信息, 包括: 与所述区域电网的每 个线路相连的母线名称、 与所述区域电网的每个线路相连的母线的电压等级、 与所述区域电网的每个线路相连的母线电压、 与所述区域电网的每个线路相连 的母线相角。 The information of the bus bars connected to each line of the regional power grid includes: the name of the bus bar connected to each line of the regional power grid, the voltage level of the bus bar connected to each line of the regional power grid, and the area The voltage of the bus connected to each line of the power grid, and the phase angle of the bus connected to each line of the regional power grid.
3、 根据权利要求 1所述的方法, 其中, 在根据获取的所述线路信息与所述 母线信息, 计算所述区域电网故障前每个线路的功率, 并计算所述区域电网故 障前的支路导纳矩阵 、 所述区域电网故障前的节点-支路关联矩阵 A、 所述区 域电网故障前的节点导纳矩阵 5◦的步骤中, 3. The method according to claim 1, wherein, according to the acquired line information and the busbar information, the power of each line before the regional power grid failure is calculated, and the support before the regional power grid failure is calculated In the steps of the road admittance matrix, the node-branch association matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure 5 °,
所述支路导纳矩阵 、所述节点导纳矩阵 5◦均为通过只考虑电抗因素获得。The branch admittance matrix and the node admittance matrix 5 ◦ are both obtained by considering only reactance factors.
4、 一种判断区域电网暂态功角稳定薄弱线路的系统, 所述系统包括: 获取模块, 配置为获取所述区域电网的每个线路的线路信息以及与所述区 域电网的每个线路相连的母线信息; 4. A system for judging weak lines with transient power angle stability in a regional power grid, the system comprising: an obtaining module configured to obtain line information of each line of the regional power grid and connected to each line of the regional power grid Bus information;
第一计算模块, 配置为根据所述获取模块获取的所述线路信息与所述母线 信息, 计算所述区域电网故障前每个线路的功率, 并计算所述区域电网故障前 的支路导纳矩阵 、 所述区域电网故障前的节点-支路关联矩阵 A、 所述区域电 网故障前的节点导纳矩阵 ; The first calculation module is configured to calculate the power of each line before the regional power grid failure according to the line information and the bus information acquired by the acquisition module, and calculate the branch admittance before the regional power grid failure Matrix, the node-branch correlation matrix A before the regional power grid failure, and the node admittance matrix before the regional power grid failure;
第一修改模块, 配置为增加与在所述区域电网外的连接母线相关联的支路, 并将与在所述区域电网外的连接母线相关联的支路对应的导纳值设置为无穷 大, 并对应修改所述区域电网故障前的支路导纳矩阵 、 所述区域电网故障前
Figure imgf000018_0001
The first modification module is configured to add branches associated with the connection bus outside the regional power grid, And set the admittance value corresponding to the branch associated with the connection bus outside the regional power grid to infinity, and correspondingly modify the branch admittance matrix before the regional power grid failure, and the branch admittance matrix before the regional power grid failure.
Figure imgf000018_0001
的支路导纳矩阵、 修改后的节点-支路关联矩阵、 修改后的节点导纳矩阵; Branch admittance matrix, modified node-branch incidence matrix, and modified node admittance matrix;
第二修改模块, 配置为根据设置的不同的线路故障, 相应修改所述第一修 改模块修改后的支路导纳矩阵、 所述修改后的节点-支路关联矩阵、 所述修改后 的节点导纳矩阵, 形成所述区域电网故障后的支路导纳矩阵 B^、 所述区域电网 故障后的节点 -支路关联矩阵 、 所述区域电网故障后的节点导纳矩阵 Bf。;
Figure imgf000018_0002
区域电网故障后的节点 -支路关联矩阵 、 所述区域电网故障后的节点导纳矩阵
The second modification module is configured to modify the branch admittance matrix modified by the first modification module, the modified node-branch association matrix, and the modified node accordingly according to different line faults set The admittance matrix forms the branch admittance matrix B^ after the regional power grid failure, the node-branch association matrix after the regional power grid failure, and the node admittance matrix B f after the regional power grid failure. ;
Figure imgf000018_0002
Node-branch association matrix after regional power grid failure, node admittance matrix after said regional power grid failure
B。, 计算所述区域电网故障后的每个线路的功率、 所述区域电网故障后的每个 线路的脆弱因子及所述区域电网故
Figure imgf000018_0003
B. Calculate the power of each line after the regional power grid failure, the vulnerability factor of each line after the regional power grid failure, and the failure of the regional power grid
Figure imgf000018_0003
第三计算模块, 配置为计算所述区域电网故障后每个线路的脆弱因子矩阵 绝对值 L£F' , 并降序排列所述脆弱因子矩阵绝对值/^F' , 将在所述脆弱因子矩 The third calculation module is configured to calculate the absolute value of the vulnerability factor matrix L£F' of each line after the regional power grid failure, and arrange the absolute value of the vulnerability factor matrix/^F' in descending order, and the
Figure imgf000018_0004
Figure imgf000018_0004
5、 根据权利要求 4所述的系统, 其中, 所述区域电网的每个线路的线路信 息包括: 每个所述线路两端的母线名称、 每个所述线路两端电压等级、 以及每 个所述线路的电抗值; 与所述区域电网的每个线路相连的母线信息, 包括: 与所述区域电网的每 个线路相连的母线名称、 与所述区域电网的每个线路相连的母线的电压等级、 与所述区域电网的每个线路相连的母线电压、 与所述区域电网的每个线路相连 的母线相角。 5. The system according to claim 4, wherein the line information of each line of the regional power grid includes: the name of the bus at both ends of each line, the voltage level at both ends of each line, and each line The reactance value of the line; The information of the bus bars connected to each line of the regional power grid includes: the name of the bus bar connected to each line of the regional power grid, the voltage level of the bus bar connected to each line of the regional power grid, and the area The voltage of the bus connected to each line of the power grid, and the phase angle of the bus connected to each line of the regional power grid.
6、 根据权利要求 4所述的系统, 其中, 所述第一计算模块中, 所述支路导 纳矩阵 、 所述节点导纳矩阵 5◦均为通过只考虑电抗因素获得。 6. The system according to claim 4, wherein, in the first calculation module, the branch admittance matrix and the nodal admittance matrix 5 ° are obtained by considering only reactance factors.
PCT/CN2019/117585 2019-02-28 2019-11-12 Method and system for determining transient power angle stability weak line of regional power grid WO2020173132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910152065.0 2019-02-28
CN201910152065.0A CN109861214B (en) 2019-02-28 2019-02-28 Method and system for judging weak line with stable transient power angle of regional power grid

Publications (1)

Publication Number Publication Date
WO2020173132A1 true WO2020173132A1 (en) 2020-09-03

Family

ID=66899350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117585 WO2020173132A1 (en) 2019-02-28 2019-11-12 Method and system for determining transient power angle stability weak line of regional power grid

Country Status (2)

Country Link
CN (1) CN109861214B (en)
WO (1) WO2020173132A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861214B (en) * 2019-02-28 2022-10-04 中国电力科学研究院有限公司 Method and system for judging weak line with stable transient power angle of regional power grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795058A (en) * 2014-02-12 2014-05-14 国家电网公司 Static voltage stability margin analyzing and system fault ordering method of power system
CN105656039A (en) * 2016-03-21 2016-06-08 国网宁夏电力公司电力科学研究院 Recognition method for vulnerable lines of power system
US20180026550A1 (en) * 2011-05-08 2018-01-25 Paul Wilkinson Dent Inverter with independent current and voltage controlled outputs
CN107895947A (en) * 2017-12-20 2018-04-10 广东电网有限责任公司惠州供电局 A kind of power distribution network vulnerable line discrimination method
CN109861214A (en) * 2019-02-28 2019-06-07 中国电力科学研究院有限公司 Judge method, the system of regional power grid transient rotor angle stability weakness route

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160257A (en) * 2003-11-27 2005-06-16 Japan Science & Technology Agency Single phase/three-phase converter, and its control method
SI21983A (en) * 2005-02-21 2006-08-31 DOMEL, Elketromotorji in gospodinjski aparati, d.d. Circuit and procedure for the control of reluctance motors
CN102403721B (en) * 2011-11-23 2014-09-03 昆明理工大学 Method for adjusting super real-time coincidence time sequence based on transient power angle stability margin
CN103094901B (en) * 2013-01-09 2014-12-03 中国电力科学研究院 Method for identification of transient state power angle instability in real time based on actual measurement response message
CA2827701A1 (en) * 2013-09-23 2015-03-23 Sureshchandra B. Patel Methods of patel decoupled loadlow computation for electrical power system
IN2013CH04376A (en) * 2013-09-26 2015-04-03 Abb Technology Ltd
CN103762579B (en) * 2013-12-22 2015-11-11 国家电网公司 A kind of direct-current power emergency control performance index calculation method improving transient power angle stability of power grid
WO2017072593A1 (en) * 2015-10-26 2017-05-04 Rakesh Goel System and method for improved performance and synchronization of a grid tie inverter
CN106684855A (en) * 2015-11-10 2017-05-17 中国电力科学研究院 Transient stability emergency control method based on key branch identification
CN106130039A (en) * 2016-07-06 2016-11-16 南方电网科学研究院有限责任公司 The leading instability mode recognition method of power system and system
CN106786529B (en) * 2016-12-23 2019-05-03 国网山西省电力公司电力科学研究院 A kind of distribution static security analysis method
CN107317354B (en) * 2017-06-30 2019-12-17 天津大学 Method for analyzing transient power angle stability of multi-machine system with wind power plant
CN107785889B (en) * 2017-10-18 2020-08-21 中国电力科学研究院有限公司 Minimum startup optimization method for weak receiving-end power grid supporting high-capacity direct current feed-in

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026550A1 (en) * 2011-05-08 2018-01-25 Paul Wilkinson Dent Inverter with independent current and voltage controlled outputs
CN103795058A (en) * 2014-02-12 2014-05-14 国家电网公司 Static voltage stability margin analyzing and system fault ordering method of power system
CN105656039A (en) * 2016-03-21 2016-06-08 国网宁夏电力公司电力科学研究院 Recognition method for vulnerable lines of power system
CN107895947A (en) * 2017-12-20 2018-04-10 广东电网有限责任公司惠州供电局 A kind of power distribution network vulnerable line discrimination method
CN109861214A (en) * 2019-02-28 2019-06-07 中国电力科学研究院有限公司 Judge method, the system of regional power grid transient rotor angle stability weakness route

Also Published As

Publication number Publication date
CN109861214A (en) 2019-06-07
CN109861214B (en) 2022-10-04

Similar Documents

Publication Publication Date Title
Hastad et al. Reconfiguring a hypercube in the presence of faults
Liao Generalized fault-location methods for overhead electric distribution systems
CN108429257B (en) Distribution network frame planning method based on load point clustering partitioning and considering geographic factors
CN109256970B (en) MMC-MTDC transmission system monopolar grounding fault current calculation method
Ashraf et al. Performance analysis of static network reduction methods commonly used in power systems
CN103605829A (en) Equivalent model method for performing electromagnetic transient simulation on alternating current/direct current hybrid power grid
CN107271853A (en) Electrical power distribution automatization system distribution low current grounding localization method and system
CN107622360A (en) A kind of critical circuits recognition methods for considering subjective and objective factor
CN106228459A (en) Equivalent reliability estimation method based on Monte Carlo
CN109946561A (en) A kind of current transformer polarity testing method, apparatus, equipment and storage medium
WO2020173132A1 (en) Method and system for determining transient power angle stability weak line of regional power grid
CN104954164A (en) Method for fault tolerance of data center network structure
Alwash et al. New impedance‐based fault location method for unbalanced power distribution systems
CN106226657B (en) Power failure area identification method for power grid fault diagnosis
Zhu Analysis of transmission system faults in the phase domain
CN109861855B (en) Method and device for determining importance of nodes in power communication network
CN107689917A (en) A kind of power telecom network route distribution method balanced based on non-coherent traffic
CN107292532B (en) Power supply reliability assessment method for one-supply one-standby power distribution network in five-state space
CN110829413B (en) Radial distribution network reliability assessment method based on road matrix
CN106169757A (en) A kind of sensitive load voltage dip remission method based on fault current limiter
CN110048422B (en) Rapid reliability evaluation method for power distribution network
CN107679689B (en) Method for analyzing fault consequences of multi-source power distribution network by using partition matrix technology
CN111146798A (en) Reliability modeling method for multi-terminal direct-current power transmission system
CN103886520A (en) Method and system for conducting failure processing through digitization power distribution network
Wang et al. A new false‐root identification method based on two‐terminal fault location algorithm for double‐circuit transmission lines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19916959

Country of ref document: EP

Kind code of ref document: A1