SI21983A - Circuit and procedure for the control of reluctance motors - Google Patents

Circuit and procedure for the control of reluctance motors Download PDF

Info

Publication number
SI21983A
SI21983A SI200500045A SI200500045A SI21983A SI 21983 A SI21983 A SI 21983A SI 200500045 A SI200500045 A SI 200500045A SI 200500045 A SI200500045 A SI 200500045A SI 21983 A SI21983 A SI 21983A
Authority
SI
Slovenia
Prior art keywords
voltage
circuit
moto
current
motor
Prior art date
Application number
SI200500045A
Other languages
Slovenian (sl)
Inventor
Mitja Rihtarsic
Original Assignee
DOMEL, Elketromotorji in gospodinjski aparati, d.d.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOMEL, Elketromotorji in gospodinjski aparati, d.d. filed Critical DOMEL, Elketromotorji in gospodinjski aparati, d.d.
Priority to SI200500045A priority Critical patent/SI21983A/en
Priority to PCT/SI2006/000003 priority patent/WO2006098703A1/en
Publication of SI21983A publication Critical patent/SI21983A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/163Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual reluctance motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

The invention deals with a circuit and procedure for the control of a reluctance motor within a drive, which is supplied from the mains network dealing with the method of operating the drive electronics, which requires less sub-assemblies and is consequently cheaper. The circuit consists of a RF filter (35), a rectifier bridge (36), a voltage gauge (42), an intermediate DC circuit (37), an output stage (38), a sensor (4) for measuring the rotor rotation angle or sensorless algorithm and commutation logic (43). The circuit is made in such a way that the voltage within the intermediate DC circuit (37) is of pulsating type therefore the electric current (iAC) from the mains network meets the regulations on electromagnetic compatibility (EN61000-3-2). The electric currents (i1, i2, i3) within the motor (39) phase coils have to be limited to prevent a blow-out of the output stage. This is achieved by limiting voltage within the motor (39) phase coils in such a way that the phase coils are switched on only, when the voltage within the intermediate DC circuit (37) or alternating mains voltage (uAC) regarding the motor (39) operational mode is adequately low.

Description

Vezje in postopek za krmiljenje reluktančnega motorjaCircuit and process for controlling a reluctance motor

Izum se nanaša na vezje in postopek krmiljenja reluktančnega motorja, ki je napajan iz javnega omrežja in sicer se nanaša na način delovanja elektronike pogona, ki potrebuje manj podsklopov in je zato cenejša.The invention relates to a circuit and control method for a reluctance motor, which is powered by a public network, and relates to a mode of operation of the drive electronics, which requires fewer sub-assemblies and is therefore less expensive.

Kjer so v gospodinjskih in drugih aparatih za široko potrošnjo potrebne velike hitrosti vrtenja ali kjer hitrost vrtenja mora biti nastavljiva, se uporabljajo pogoni z univerzalnimi kolektorskimi motoiji. Univerzalni kolektorski motorji se uporabljajo predvsem zaradi svoje cenenosti. Sestavljeni so iz statoija z navitji, rotorja z navitji ter ščetk in kolektoija, ki komutirajo tok v navitjih rotoija. Ker se ščetke zaradi drgnenja ob kolektor obrabljajo, imajo ti motoiji kratko življensko dobo. Ščetke se spreminjajo v prah, ki onesnažuje okolico. Drgnenje ščetk ob kolektor povzroča akustični hrup. Prav tako se na robu ščetk pojavlja iskrenje, ki je vir radiofrekvenčnih motenj.Where household and other consumer goods require high speeds of rotation or where the speed of rotation must be adjustable, drives with universal collector motors are used. Universal collector motors are used mainly for their affordability. They consist of a statue of windings, a rotor with windings, and brushes and colecto, which commute the flow in the windings of the rotoi. As brushes wear off the collector, these motoes have a short life span. The brushes turn into dust that pollutes the environment. Rubbing the brushes against the manifold causes acoustic noise. Also, a spark appears on the edge of the brushes, which is a source of radio frequency interference.

Univerzalne kolektorske motorje je mogoče krmiliti z enostavnim in cenenim elektronskim vezjem, ki je predstavljeno na sliki 1. Univerzalni kolektorski motor 2 je vezan v serijo z triakom 3, ki ga proži prožilno vezje 4. Del elektronskega vezja je tudi filter za radiofrekvenčne motnje 1. Univerzalni kolektroski motor krmilimo s kotom odprtja α. V času kota odprtja α pred prehodom napetosti omrežja «ac skozi nič prožilno vezje 4 odpre triak 3. V tem trenutku prične teči tok iz omrežja /ac, ki teče do konca polperiode napetosti omrežja Mac· Triak 3 se zapre, ko tok skozenj in s tem tok skozi univerzalni kolektorski motor 2 pade na nič. Postopek se ponovi vsako polperiodo napetosti omrežja Mac- Na časovnih diagramih 5 je prikazan primer, ko je kot odprtja α je majhen in s tem je nastavljena majhna moč oziroma hitrost univerzalnega kolektorskega motoija 2. Ko kot odprtja α večamo, se veča tudi moč oziroma hitrost univerzalnega kolektorskega motoija 2. Na časovnih diagramih 6 je prikazan primer, ko je kot odprtja α velik. Največjo moč oziroma hitrost dosežemo, ko je kot odprtja α enak polperiodi napetosti omrežja Mac·Universal collector motors can be controlled by the simple and inexpensive electronic circuit shown in Figure 1. The universal collector motor 2 is connected in series with a triac 3 triggered by a triggering circuit 4. Part of the electronic circuit is also a radio interference filter 1. The universal collector motor is controlled by the opening angle α. During the opening angle α, before the voltage is transmitted through the zero trigger circuit 4, triac 3 opens through the current 3. At this point, current flows from the network / ac, which runs until the end of the half voltage period of the Mac network. · Triak 3 closes when the current through and s this causes the flow through the universal collector motor 2 to zero. The procedure is repeated every half-period of the voltage of the Mac- The diagrams 5 show an example when the opening angle α is small and thus the low power or speed of the universal collector moto is set 2. As the opening angle α increases, so does the power or speed universal collector motoi 2. The time diagrams 6 show an example where the opening angle α is large. Maximum power or velocity is obtained when the opening angle α is equal to the half-life of the Mac network ·

Iz tehničnega vidika bi namesto pogona z univerzalnim kolektorskim motoijem lahko uporabili brezkrtačni pogon z brezkrtačnim motoijem s trajnim magnetom ali brezkrtačni pogon z reluktančnim motoijem. Pri teh dveh tipih motorjev namesto ščetk in kolektoija komutira tok skozi navitja elektronika, ki je sestavni del brezkrtačnega pogona in ki je kompleksna in zato draga. Visoka cena v primerjavi s pogoni z univerzalnim kolektorskim motoijem omejujeFrom a technical point of view, a brushless drive with a permanent brushless moto with a permanent magnet or a brushless drive with a reluctance moto could be used instead of universal drive motors. With these two types of motors, instead of brushes and colecto, it commutes current through the winding electronics, which is integral to the brushless drive, and which is complex and therefore expensive. The high price, compared to drives with universal collector moto, limits

-2uporabo brezkrtačnih pogonov v aparatih za široko potrošnjo. Po drugi strani brezkrtačni pogon nima tehničnih omejitev, ki jih imajo pogoni z univerzalnimi kolektorskimi motoiji in ki so posledica uporabe ščetk in kolektoija.-2Using brushless drives in consumer appliances. Brushless drive, on the other hand, does not have the technical limitations of drives with universal collector motors that result from the use of brushes and colecto.

Nižja cena bi odprla možnost uporabe brezkrtačnih pogonov v široki potrošnji. Ceno pogona pa lahko znižamo z zmanjšanjem števila komponent na elektroniki, to je komponent elektronskega vezja.A lower price would open up the possibility of using brushless drives in consumer goods. However, the price of the drive can be reduced by reducing the number of components on the electronics, that is, the electronic circuit components.

Znani in uporabljani iz javnega omrežja napajani brezkrtačni pogoni imajo podsklope, ki so predstavljeni na sliki 2. Motor 12 je lahko brezkrtačni motor s trajnim magnetom s poljubnim številom faz ali reluktančni motor s poljubnim številom faz. Fazna navitja motorja 12 so priključena na močnostno izhodno stopnjo 11, ki jo sestavljajo polprevodniška stikala, ki komutirajo električni tok v faznih navitjih motorja 12. To usmerjanje toka mora potekati v skladu s kotom zasuka rotorja motorja 12, ki ga merimo s senzorjem 15. V cenejših pogonih je senzor 15 najpogosteje izveden s Hallovimi senzorji. Dražje so izvedbe senzorja 15 z optičnimi dajalniki pozicije. V zadnjem času je razvoj procesorskih polprevodniških vezij omogočil izdelavo brezsenzorskih brezkrtačnih pogonov, pri katerih motor 12 na gredi nima senzotja 15. Motor 12 je v tem primeru mehansko bolj preprost. Potrebno informacijo o trenutnem kotu zasuka gredi motorja 12 v brezsenzorskih brezkrtačnih pogonih dobimo iz merjenih električnih veličin in preračunavanjem le-teh v procesorskih polprevodniških vezjih. Informacijo o trenutnem kotu zasuka gredi potrebuje komutacijka logika 14, ki odpira polprevodniška stikala v močnostni izhodni stopnji 11.Powerless brushless actuators known and used from the public network have the subassemblies shown in Figure 2. Engine 12 may be a brushless permanent magnet motor with any number of phases or a reluctance motor with any number of phases. The phase windings of the motor 12 are connected to a power output stage 11 consisting of semiconductor switches that commute electrical current in the phase windings of the motor 12. This direction of flow must be in accordance with the angle of rotation of the motor rotor 12, which is measured by a sensor 15. V cheaper drives, sensor 15 is most often made with Hall sensors. Sensor 15 with optical position encoders is more expensive. Recently, the development of processor semiconductor circuits has made it possible to produce sensorless brushless drives, in which the motor 12 on the shaft lacks a sensor 15. The motor 12 is mechanically simpler in this case. The necessary information about the current angle of rotation of the motor shaft 12 in sensorless brushless drives is obtained from the measured electrical quantities and their conversion in processor semiconductor circuits. Information on the current angle of rotation of the shaft is required by the switching logic 14, which opens the semiconductor switches at power output stage 11.

Močnostna izhodna stopnja 11 dobi električno moč iz vmesnega enosmernega tokokroga 10. Da napetost v vmesnem enosmernem tokokrogu 10 ne niha preveč, s shranjevanjem električne energije poskrbi gladilni kondenzator 13. Gladilni kondenzator 13 je elektrolitski. Njegova kapacitivnosti je odvisna od moči pogona in je običajno med 100pF in nekaj 1000pF. Ker je gladilni kondenzator 13 velik, predstavlja pomemben del cene elektronike.The power output stage 11 receives electrical power from the intermediate DC circuit 10. To ensure that the voltage in the DC DC circuit 10 does not fluctuate too much, a smoothing capacitor 13. Provides a cooling capacitor 13. The cooling capacitor 13 is electrolytic. Its capacitance depends on the drive power and is usually between 100pF and some 1000pF. Because the smoothing capacitor 13 is large, it is an important part of the electronics price.

Pred gladilnim kondenzatorjem 13 je korektor faktorja moči 9, ki oblikuje električni tok iz omrežja /Ac- V kolikor v elektroniki ne bi bilo korektorja faktorja moči 9, bi se gladilni kondenzator 13 polnil samo v bližini temena napetosti omrežja wAc in amplituda polnilnega toka in s tem toka iz omrežja z'Ac bi bila zelo velika, kot je prikazano na časovnih diagramih 20 na slikiIn front of the smoothing capacitor 13 there is a power factor corrector 9, which generates electrical current from the network / A c- Unless there is a power factor corrector 9 in the electronics, the smoothing capacitor 13 would only be charged near the peak of the mains voltage w A c and the charge amplitude of current and thus the flow from the network with ' A c would be very large, as shown in the time diagrams 20 in the figure

4. Ves ostali čas bi bil tok iz omrežja z'Ac enak nič. Ker taka oblika toka iz omrežja /Ac močno onesnažuje javno omrežje, je s standardom o elektromagnetni kompatibilnosti EN61000-3-24. All the rest of the time, the current from the grid with ' A c would be zero. Since such a form of current from the network / A c pollutes the public network severely, it is with the EN61000-3-2 electromagnetic compatibility standard.

-3omejena vsebnost višjeharmonskih komponent v električnem toku, ki ga aparati vlečjo izjavnega omrežja. S pomočjo korektorja faktorja moči 9 polnimo gladilni kondenzator 13 tako, da tok iz omrežja z'ac vsebuje manj višjeharmonskih komponent oziroma so le-te nižje, kot jih še dovoljuje standard EN61000-3-2.-3 limited content of higher harmonic components in the electrical current drawn by the apparatus of the statement network. With the help of the power factor corrector 9, fill the smoothing capacitor 13 so that the current from the z'ac network contains fewer or more low-harmonic components than are allowed by EN61000-3-2.

Korektor faktorja moči 9 je lahko izveden kot pasivni filter ali kot stikalni pretvornik. Pasivni filter zahteva veliko dušilko, ki s svojo reaktanco močno zniža napetost v vmesnem enosmernem tokokrogu 10. Ker je dušilka velika, je težka in tudi draga. Zaradi znižane napetosti, teže in cene, je ta izvedba korektorja faktorja moči 9 manj primerna za uporabo v aparatih široke potrošnje. Korektor faktorja moči 9 s stikalnim pretvornikom sestavljajo dušilka, polprevodniško stikalo, polprevodniška dioda ter krmilje, ki vklaplja polprevodniško stikalo. Pri tej izvedbi je dušilka manjša kot pri izvedbi s pasivnim filtrom in zato je celotno vezje lažje. Kljub temu je z vsemi potrebnimi elementi stikalni pretvornik še vedno velik in drag.The power factor corrector 9 can be implemented as a passive filter or as a switch converter. The passive filter requires a large choke which, by its reactance, greatly reduces the voltage in the DC dc circuit 10. Because the choke is large, it is heavy and also expensive. Due to the reduced voltage, weight and price, this version of the power factor corrector 9 is less suitable for use in consumer goods. The power factor corrector 9 with a switch converter consists of a damper, a semiconductor switch, a semiconductor diode, and a control that activates the semiconductor switch. In this embodiment, the choke is smaller than in the passive filter version and therefore the whole circuit is easier. Nevertheless, with all the necessary elements, the switch converter is still large and expensive.

Na vhodu elektronik v brezkrtačnih pogonih sta usmemiški mostič 8 in filter za radiofrekvenčne motnje 7. Usmemiški mostič 8 usmeri izmenično napetost omrežja Mac- V veliki večini primerov se v usmemiškem mostiču 8 uporablja Greatzov mostič. Filter za radiofrekvenčne motnje 7 zadrži motnje, ki nastajajo v elektroniki zaradi hitrih vklopov in izklopov tokov in napetosti. Filter za radiofrekvenčne motnje 7 mora biti dimenzioniran tako, da aparat ustreza veljavnim standardom o elektromagnetni kompatibilnosti (EN55014-1).The brushless actuator input has a bridge 8 and a radio interference filter 7. The bridge 8 directs the AC power to the Mac- In most cases, the Greatz bridge is used in bridge 8. The RF Interference Filter 7 detects interference from electronics due to rapid on and off currents and voltages. The RF filter 7 must be sized so that the apparatus complies with the applicable electromagnetic compatibility standards (EN55014-1).

Veliko naporov v svetuje vloženih v zmanjšanje števila komponent v vhodnem delu elektronike in sicer v korektorju faktorja moči 9 in v vmesnem enosmernem tokokrogu 10.A great deal of effort is being made to advise on reducing the number of components in the input part of the electronics, namely in the power factor corrector 9 and in the DC dc 10.

Na sliki 3 je predstavljeno vezje, ki ga sestavljata Greatzov mostič 16 in breme 17. Greatzov mostič 16 usmerja napetost omrežja «ac, tako da na bremenu 17 dobimo pulzirajočo napetost na bremenu «l- Tej napetosti na bremenu ml sledi tok z'l, ki teče skozi breme in ki je tudi pulzirajoč. Ko tok /l razsmerimo, dobimo tok iz omrežja z'ac, ki po obliki ustreza standardom o elektromagnetni kompatibilnosti (EN61000-3-2). Tako vezje so uporabili C. Larouci, J. P. Ferrieux, L. Gerbaud, J. Roudet, J.P. Keradec v članku Optimisation of a PFC Flyback Converter in Discontinuous Conduction Mode, Proceedings PCIM 2002, Numberg, maj 2002, kjer na mestu bremena 17 uporabijo stikalni pretvornik tipa flyback.Figure 3 shows the circuit consisting of the Greatz bridge 16 and the load 17. The Greatz bridge 16 directs the voltage of the network "ac, so that a load pulsating voltage on the load 17 is obtained at the load 17" l- This voltage at the load m l is followed by the current z'l. which flows through the load and which is also pulsating. When the current / l is reversed, the current from the z'ac network conforms to the electromagnetic compatibility standards (EN61000-3-2). Such a circuit was used by C. Larouci, J. P. Ferrieux, L. Gerbaud, J. Roudet, J. P. Keradec in the article Optimization of a PFC Flyback Converter and Discontinuous Conduction Mode, Proceedings PCIM 2002, Numberg, May 2002, where a switch 17 is used at the load site flyback type converter.

Običajno se vzporedno stikalnemu pretvorniku veže kondenzator za blokado radiofrekvenčnih motenj, ki jih stikalni pretvornik povzroča. Na sliki 4 je vezje iz slike 3, kjer je vzporedno bremenu dodan kondezator 18. Dokler je kondenzator 18 majhen, le-ta služi le blokadi radiofrekvenčnih motenj, ki jih povzroča breme, na primer stikalni pretvornik. Električne veličineTypically, a capacitor is connected in parallel to the switch converter to block the radio frequency interference caused by the switch converter. In Fig. 4, the circuit of Fig. 3, where a capacitor 18 is added in parallel to the load. As long as the capacitor 18 is small, it only serves to block radio frequency interference caused by the load, such as a switch converter. Electrical sizes

-4se v tem primeru spreminjajo, kot je prikazano na časovnih diagramih 19. Napetost na bremenu ml je pulzirajoča in vsako polperiodo pade praktično na nič. Usmerjeni tok /dc je vsota toka z'l skozi breme in polnilnega toka kondenzatoija 18. Tok z'dc teče večino polperiode, tako da ko tok z'dc razsmerimo, se oblika toka iz omrežja z‘ac ne razlikuje mnogo od sinusa in ustreza standardom o elektromagnetni kompatibilnosti (EN61000-3-2). Ko kapacitivnost kondenzatoija 18 večamo, postaja napetost na kondenzatorju 18 oziroma napetost na bremenu ml bolj gladka, kot kažejo časovni diagrami 20. Kondenzator 18 se polni samo v času temena napetosti omrežja Mac· Zato teče tok z‘dc v ozkih pulzih z zelo veliko amplitudo. Vezje iz vleče tok iz omrežja z'ac, ki vsebuje mnogo višjeharmonskih komponent in zato ne ustreza standardom o elektromagnetni kompatibilnosti (EN61000-3-2).-4 in this case they change as shown in the time diagrams 19. The voltage on the load ml is pulsating and each half-period drops to practically zero. The directed current / dc is the sum of the current z'l through the load and the condensate charge current 18. The z'dc current flows for most of the half-period so that when the z'dc current is reversed, the shape of the current from the z'ac network does not differ much from the sine and corresponds to electromagnetic compatibility standard (EN61000-3-2). As the capacitance 18 capacitance increases, the voltage on capacitor 18, or the load on ml, becomes smoother than the time diagrams 20 show. . The circuit pulls current from the z'ac network, which contains many higher harmonic components and therefore does not meet the electromagnetic compatibility standards (EN61000-3-2).

Brezkrtačni motor s trajnim magnetom za svoje delovanje potrebuje dokaj stabilno napetost v vmesnem enosmernem tokokrogu 10. Razlog je v rezalni napetosti, ki nastane v navitjih motoija zaradi vrtenja rotoija. Amplituda rezalne napetosti je enaka s konstanto pomnoženi vrtilni hitrosti. Napetost v vmesnem enosmernem tokokrogu 10 mora biti večja od amplitude rezalne napetosti, da lahko v motor 12 teče električni tok, ki ustvaija pozitivni navor. Elektronika lahko zagotavlja stabilno napetost v vmesnem enosmernem tokokrogu 10, če ima gladilni kondenzator 13 dovolj veliko kapacitivnost. Zaradi velikega gladilnega kondenzatoija 13 je potreben korektor faktoija moči 9, da v elektroniko teče električni tok iz omrežja z'ac ustrezne oblike.The permanent magnet brushless motor requires a fairly stable voltage in the DC DC circuit for its operation 10. The reason is the cutting voltage generated by the moto windings due to the rotation of the rotoi. The amplitude of the cutting voltage is equal to the constant speed of rotation. The voltage in the DC dc circuit 10 must be greater than the cutting voltage amplitude in order for the electric current 12 to flow into the motor 12, producing a positive torque. The electronics can provide a stable voltage in the DC dc circuit 10, provided that the smoothing capacitor 13 has a sufficiently high capacitance. Due to the large smoothing condensate 13, a power factor corrector 9 is required to allow electrical current to flow into the electronics from the z'ac grid of the proper shape.

Stator 21 in rotor 22 reluktančnega motoija na sliki 5 sta oblikovana tako, da se magnetna upornost za magnetni pretok oziroma induktivnost L faznega navitja 23 v odvisnosti od zasuka p spreminja. Induktivnosti L se spreminja periodično s periodo 25 in sicer bi v primeru motoija na sliki 5 induktivnost L imela dve periodi.The stator 21 and rotor 22 of the reluctance motoi in Figure 5 are designed such that the magnetic resistance for the magnetic flux or inductance L of the phase winding 23 varies with the rotation p. The inductance L changes periodically with period 25, otherwise in the case of the moto in Figure 5, the inductance L would have two periods.

Sprememba induktivnosti zaradi zasuka p v faznem navitju 23, v katerem teče električni tok z'f, povzroči navor 24 na gredi. To velja za vsa fazna navitja v reluktančnem motorju. S pravilnim komutiranjem električnega toka v faznih navitjih je navor 24 pozitiven. Napetost mf, ki jo priključimo na fazno navitje 23, mora biti v grobem enaka vsoti padca napetosti 26 na upornosti faznega navitja 23, padca napetosti 27 na induktivnosti L faznega navitja 23 in padca napetosti 28, ki je posledica generiranja moči na gredi. Dodatno se v faznem navitju 23 pojavijo padci napetosti, ki so posledica vpliva drugih faznih navitij, vendar so ti padci običajno majhni in zato niso vključeni v enačbo na sliki 5. Če je električni tok z‘f majhen, je padec napetosti 28, ki je posledica generiranja moči na gredi, majhen tudi, če je hitrost vrtenja motoija velika. Zato je napetost v vmesnem enosmernem tokokrogu elektronike pogona z reluktančnim motoqem lahkoThe change in inductance due to the rotation p in the phase winding 23 in which the electric current z'f flows causes a torque 24 on the shaft. This applies to all phase windings in a reluctance motor. With the correct commutation of the electrical current in the phase windings, the torque 24 is positive. The voltage mf connected to the phase winding 23 should roughly be equal to the sum of the voltage drop 26 on the resistance of the phase winding 23, the voltage drop 27 on the inductance L of the phase winding 23, and the voltage drop 28 due to power generation on the shaft. Additionally, voltage drops occur in phase winding 23 as a result of the influence of other phase windings, but these drops are usually small and therefore not included in the equation in Figure 5. If the electric current z'f is small, the voltage drop 28, which is a consequence of generating power on the shaft, small even if the speed of rotation of the moto is high. Therefore, the voltage in the DC power circuit of a drive electronics with a reluctance motoq can be

-5pulzirajoča, kot je na časovnih diagramih 19, v nasprotju z napetostjo v vmesnem enosmernem tokokrogu 10 po znanem stanju elektronike pogona z brezkrtačnim motoijem s trajnim magetom po sliki 2, ki mora biti stabilna.-5pulsating, as in the time diagrams 19, in contrast to the voltage in the DC dc circuit 10 according to the known state of the brushless moto drive with permanent magnet according to Figure 2, which must be stable.

Po razlagi časovnih diagramov 19 vidimo, da elektronika za krmiljenje reluktančnega motoija ne potrebuje korektoija faktorja moči, v kolikor je napetost v vmesenem enosmernem tokokrogu pulzirajoča.Following the interpretation of timing diagrams 19, we can see that electronics do not require power factor correction to control the reluctance moto if the voltage in the intermediate DC circuit is pulsating.

Avtorji A. C. Clothier, S. Greetham, M. H. Haywood, N. J. Leighton, N. W. Philips v patentni prijavi Power Conversion Apparatus, GB 2396491 A, uporabijo dejstvo, da je oblika toka iz omrežja zAc v elektroniko usteza standardom o elektromagnetni kompatibilnosti (EN61000-3-2), če ima elektronika v vmesenem tokokrogu kondenzator z dovolj majhno kapacitivnostjo, kot je predstavljeno na časovih diagramih 19 na sliki 4. V patentni prijavi omenjena elektronika je napajana izjavnega omrežja in dobavlja moč navitjem, ki jih ta elektronika vklaplja in izklaplja. Navitje je lahko transformator, kot v primeru zgoraj omenjenega stikalnega pretvornika flyback. Navitja pa so lahko tudi navitja motoija. Avtorji v patentni prijavi GB 2396491 A ne opisujejo, kako so izvedli start motoija oziroma kako regulirajo hitrost ter moč motoija, pač pa opisujejo delovanje samo pri polni moči.The authors of AC Clothier, S. Greetham, MH Haywood, NJ Leighton, NW Philips, in the patent application Power Conversion Apparatus, GB 2396491 A, use the fact that the shape of the current from the network with A cv electronics complies with the electromagnetic compatibility standard (EN61000-3- 2) if the electronics in the intermediate circuit have a capacitor with a sufficiently low capacitance, as shown in timing diagrams 19 in Figure 4. In the patent application, said electronics is powered by a statement network and supplies power to the windings that this electronics switches on and off. The winding can be a transformer, as in the case of the flyback switch converter mentioned above. But windings can also be moto windings. The authors do not describe in patent application GB 2396491 A how they performed the start of the moto, or how they regulate the speed and power of the moto, but only describe the operation at full power.

Ko se reluktančni motor vrti počasi, je padec napetosti 28, ki je posledica generiranja moči na gredi majhen, tudi če je električni tok z'f velik. Če bi pri nizki vrtilni hitrosti na fazno navitje 23 priključili visoko napetost up, bi električni tok z'f dosegel zelo velike vrednosti. To se zgodi, ko je trenutna vrednost izmenične napetosti omrežja wAc na svoji temenski vrednosti. Takrat bi tok z'f v trenutno vklopljenem faznem navitju 23 toliko narasel, da bi pregorela polprevodniška stikala v močnostni izhodni stopnji, zato ga moramo omejiti.When the reluctance motor rotates slowly, the voltage drop 28 due to power generation on the shaft is small, even if the electric current z'f is large. If a high voltage up were connected to the phase winding 23 at low speed, the electric current z'f would reach very high values. This occurs when the current value of ac power w A c is at its peak value. At that point, the current z'f would increase so much in the currently turned on phase winding 23 that the semiconductor switches in the power output stage would be burnt, so we must limit it.

Tok z’p lahko omejimo tako, da na fazno navitje 23 pritisnemo pulzirajočo napetost «f s frekvenco, ki je običajno nad slišnim območjem, to je frekvenco, ki je višja od 20 kHz in ki jo ustvarimo z vezjem na sliki 6. Vezje sestavljajo Greatzov mostič 29, kondenzator 30 z majhno kapacitivnostjo in polmostič 34, ki ga sestavljata polprevodniški stikali VI in V2 ter diodi Dl in D2. Fazno navitje 23 lahko vklapljamo mehko, pri čemer imajo napetosti in tokovi obliko, kot je prikazana na sliki 7. Če fazno navitje 23 vklapljamo trdo, imajo napetosti in tokovi obliko, kot je prikazana na sliki 8. Časovna os na diagramih na slikah 7 in 8 je podana v kotu p, za katerega se rotor 22 zavrti pri neki hitrosti.The z'p current can be limited by pushing a pulsating voltage on phase winding 23 'fs a frequency that is usually above the audible range, that is, a frequency higher than 20 kHz, which is generated by the circuit of Figure 6. The circuit consists of Greatz bridge 29, low capacitance capacitor 30, and semi-bridge 34 consisting of semiconductor switches VI and V2 and diodes Dl and D2. The phase winding 23 can be switched on softly, whereby the voltages and currents take the form shown in Fig. 7. If the phase winding 23 is rigidly switched on, the voltages and currents take the form shown in Fig. 8. The time axis in the diagrams in Fig. 7 and 8 is given at an angle p for which the rotor 22 rotates at some speed.

Pri mehkem vklaplanju prikazanem na sliki 7 sta v trenutku t\ vklopljeni polprevodniški stikali V i in V2, tako da tok z’p skozi fazno navitje 23 narašča. Ta tok z'p teče po poti 32 oziroma je v temIn the soft start shown in Figure 7, the semiconductor switches V i and V2 are switched on at moment t \, so that the current z'p through the phase winding 23 increases. This stream z'p runs along Route 32, or is there

-6trenutku enak toku fr in toku z'dc na sliki 6. Potem polprevodniško stikalo Vi izklopimo in tok fr prične padati. V trenutku i2 se tok fr zaključuje po poti 33 znotraj polmostiča 34. V tem času sta tok fr in tok frc enaka 0. Prekinjanje toka /dc in zato tudi toka iz omrežja frc pa povzroči velike radiofrekvenčne motnje.-6currently equal to current fr and current z'dc in Figure 6. Then the semiconductor switch Vi is switched off and current fr begins to fall. At time i 2 , current fr terminates along path 33 inside crescent 34. During this time, current fr and current frc are equal to 0. Interrupting current / dc, and therefore current from the network frc, causes major radio frequency interference.

Pri trdem vklaplanju prikazanem na sliki 8 sta v trenutku ti vklopljeni polprevodniški stikali V i in V2, tako da tok fr skozi fazno navitje 23 narašča. Ta tok fr teče po poti 32 oziroma je v tem trenutku enak toku fr in toku frc na sliki 6. Potem izklopimo obe polprevodniški stikali Vj in V2 in tok fr prične padati. V trenutku fr se tok fr zaključuje po poti 31 in polni kondenzator 30, tako da napetost na njem začne naraščati. Tok frc je enak 0. Ko polprevodniši stikali Vi in V2 spet vklopimo teče tok po poti 32. V trenutku fr se prazni kondenzator 30, zato je tok z'dc še vedno enak 0. Enako kot v primeru mehkega vklaplanja prekinjanje toka z’dc in zato tudi toka iz omrežja frc povzroči velike radiofrekvenčne motnje.In the solid state shown in Fig. 8, the semiconductor switches V i and V 2 are instantaneously switched on, so that the current fr through the phase winding 23 increases. This current fr runs along path 32, or at the moment is equal to current fr and current frc in Figure 6. Then we turn off both semiconductor switches Vj and V 2 and the current fr begins to fall. At time fr, current fr terminates along path 31 and charges the capacitor 30 so that the voltage on it begins to increase. The current frc equals 0. When the semiconductor switches Vi and V 2 switch on, the current flows along path 32 again. At the moment fr, the capacitor 30 empties, so the current z'dc is still equal to 0. The same as in the case of soft switching, interrupting the current with ' dc and therefore the frc current also causes major radio frequency interference.

V znanih vezjih, kjer je kapacitivnost gladilnega kondenzatoija 13 v vmesnem enosmernem tokokrogu 10 velika, le-ta tokovne konice v toku fr zgladi, da se ne pojavljajo v toku /dc.In known circuits, where the capacitance of the tensile condensate 13 is large in the DC dc 10, the current spikes in the fr circuit are smoothed out so that they do not occur in the current / dc.

Drug pristop, kako izdelati cenejšo elektroniko, so izbrali avtoiji L. Helle, G. K. Andersen, F. Blaabjerg, P. O. Rasmussen v članku An Integrated Single-Phase Power-Factor-Controlled Switched Reluctance Motor Drive, Proceedings PCIM '99, Ntimberg, junij 1999. Avtoiji predstavljajo možnost zmanjšanja cene pogona tako, da z načinom krmiljenja reluktančnega motoija zmanjšajo potrebno kapacitivnost gladilnega kondenzatoija 13. Polprevodniška stikala v močnostni izhodni stopnji 11 krmilijo tako, daje trenutna poraba moči v motorju enaka, kot jo v tistem trenutku zagotavlja korektor faktoija moči 9. Zato je vloga gladilnega kondenzatoija 13 za shranjevanje energije zmanjšana in ima lahko zelo majhno kapacitivnost. Ceno pogona dodatno zmanjšajo s tem, da so navili dušilko korektoija faktorja moči 9 na stator motoija.Another approach to making cheaper electronics was chosen by L. Helle, G. K. Andersen, F. Blaabjerg, P. A. Rasmussen in the article An Integrated Single-Phase Power-Factor-Switched Reluctance Motor Drive, Proceedings PCIM '99, Ntimberg, June 1999. Automobiles are able to reduce the cost of propulsion by reducing the required capacitance of the smoothing condensate by controlling the reluctance moto 13. The semiconductor switches in power output stage 11 control such that the current power consumption in the motor is the same as that provided by the power factor corrector 9 Therefore, the role of the condensatoil 13 for energy storage is reduced and may have very low capacitance. The drive price is further reduced by winding the power factor correction choke 9 on the moto stator.

Znana vezja in postopki krmiljenja reluktančnega motoija v iz javnega omrežja napajanih pogonih, ki ustrezajo predpisom glede elektromagnetne kompatibilnosti so po sestavnih delih draga in zato neprimerna za vgradnjo v razmeroma cenene izdelke široke potrošnje ali pa v določenih obratovalnih točkah povzročajo radiofrekvenčne motnje, zaradi katerih potrebujejo velik filter za radiofrekvenčne motnje.Known circuits and control procedures for reluctance moto in public-powered drives that comply with electromagnetic compatibility regulations are costly in terms of components and therefore unsuitable for installation in relatively inexpensive consumer goods or cause radio frequency interference at certain operating points requiring high filter for radio frequency interference.

-7Naloga in cilj izuma je takšno vezje in postopek krmiljenja reluktančnega motoija v iz javnega omrežja napajanem pogonu, ki ustreza predpisom glede elektromagnetne kompatibilnosti in ki je po sestavnih delih cenejše in zato primemo za vgradnjo v razmeroma cenene izdelke široke potrošnje.-7The object and object of the invention is to provide such a circuit and process for controlling a reluctance moto in a publicly powered plant that complies with the regulations on electromagnetic compatibility and which is cheaper in components and therefore suitable for installation in relatively inexpensive consumer goods.

Po izumu je naloga rešena z vezjem in postopkom krmiljenja reluktančnega motoija po neodvisnih patentnih zahtevkih.According to the invention, the problem is solved by a circuit and process for controlling a reluctance moto according to independent claims.

V nadaljevanju bo opisano vezje in postopek krmiljenja reluktančnega motoija s pomočjo slik, ki prikazujejo:The following will describe the circuit and the process of controlling the reluctance moto using pictures showing:

Slika 1: znano vezje in postopek krmiljenja univerzalnega kolektorskega motorja,Figure 1: Known circuit and control procedure for universal collector motor,

Slika 2: znano vezje za krmiljenje brezkrtačnih motorjev,Figure 2: Known brushless motor control circuit,

Slika 3: znano usmemiško vezje brez gladilnega kondenzatoija in njegovo delovanje,Figure 3: Known non-smoothing condensation circuit and its operation,

Slika 4: znano usmemiško vezje z gladilnim kondenzatorjem in njegovo delovanje,Figure 4: Known smoothed capacitor circuit and its operation,

Slika 5: primer znanega trifaznega reluktančnega motoija,Figure 5: Example of a known three-phase reluctance motoi,

Slika 6: smeri tokov v polmostiču pri znanem pulznem napajanju faznega navitja motoija,Figure 6: Directions of currents in the camshaft with the known pulse power supply of the moto phase winding,

Slika 7: časovni diagram tokov pri znanem pulznem napajanju faznega navitja motoija,Figure 7: Timing diagram of known pulse power supply for moto phase winding,

Slika 8: časovni diagram tokov pri znanem pulznem napajanju faznega navitja motoija,Figure 8: Flowchart of known pulse power supply for moto phase winding,

Slika 9: vezje za krmiljenje reluktančnega motoija po prvem izvedbenem primeru po izumu,Figure 9: circuit for controlling the reluctance moto according to the first embodiment of the invention,

Slika 10: vezje za krmiljenje reluktančnega motoija po drugem izvedbenem primeru po izumu,Figure 10: a circuit for controlling a reluctance moto according to another embodiment of the invention,

Slika 11: vezje za krmiljenje reluktančnega motoija po tretjem izvedbenem primeru po izumu,Figure 11: a circuit for controlling a reluctance moto according to the third embodiment according to the invention,

Slika 12: primer močnostne izhodne stopnje za napajanje reluktančnega motoija po postopku po izumu,Figure 12: an example of a power output stage for powering a reluctance moto according to the method of the invention,

Slika 13: časovni diagram električnih tokov v izhodni stopnji po izumu,Figure 13: time diagram of the output current stages according to the invention,

Slika 14: časovni diagram električnih tokov in napetosti pri krmiljenju po prvem postopku po izumu,Figure 14: Timing diagram of the currents and voltages of the control according to the first method according to the invention,

Slika 15: časovni diagram električnih tokov in napetosti pri krmiljenju po drugem postopku po izumu.Figure 15: Timing diagram of the currents and voltages of the control according to the second method of the invention.

-8Po izumu in vezju po slikah 9, 10 in 11 ima elektronika iz javnega omrežja napajanega pogona z reluktačnim motoijem v vmesnem enosmernem tokokrogu 37, ki se nahaja med usmemiškim mostičem 36 in močnostno izhodno stopnjo 38, kondenzator 40 z zelo majhno kapacitivnostjo, tako da napetost na njem vsako polperiodo pade pod 25% naj večje napetosti na njem v isti polperiodi in napetostno odvisno vezje 41 ali pa ima elekronika v vmesnem enosmernem tokokrogu 37 samo napetostno odvisno vezje 41 brez kondenzatorja 40. Na napetostno odvisnem vezju 41 se v toploto pretvori magnetna energija, ki se vrača iz motorja 39. Po izumu in vezju po slikah 9, 10 in 11 iz javnega omrežja napajan pogon z reluktačnim motoijem ne potrebuje korektorja faktoija moči. Po izumu in postopku po slikah 12 in 13, kjer teče v močnostno izhodno stopnjo 38 električni tok oblike, ki povzroča manj radiofrekvenčnih motenj. Po izumu in postopku po slikah 14 in 15, kjer omejimo tok skozi navitja motorja 39 tako, da vklapljamo fazne tokove motoija 39 sinhrono z izmenično napetostjo omrežja Mac·-8 According to the invention and the circuit of FIGS. 9, 10 and 11, electronics from a public power supply network with a reluctance moto in an intermediate DC circuit 37 located between the bridge bridge 36 and the power output stage 38, a capacitor 40 with very low capacitance, such that the voltage on it every half-period drops below 25% of the highest voltage on it in the same half-period and the voltage-dependent circuit 41 or the electronics in the DC-DC circuit 37 have only a voltage-dependent circuit 41 without a capacitor 40. At the voltage-dependent circuit 41, the magnetic is converted to heat energy recovered from the engine 39. According to the invention and circuit of Figures 9, 10 and 11 from a public network, a powered reluctance moto drive does not require a power factor corrector. According to the invention and the method of Figures 12 and 13, in which the electrical output of the form 38, which causes less radio frequency interference, flows into the power output stage 38. According to the invention and the method of Figures 14 and 15, where we limit the current through the windings of the motor 39 by switching on the phase currents of the moto 39 synchronously with the AC power of the Mac network.

Čeprav je razlaga izuma narejena na trifaznem reluktančnem motoiju, velja tudi za dvofazni ali večfazni reluktančni motor.Although the explanation of the invention is made on a three-phase reluctance motor, it is also applicable to a two-phase or multi-phase reluctance motor.

Vezja za krmiljenje reluktančnega motoija 39 z dvema ali več fazami po izvedbenih primerih na slikah 9, 10 in 11 vsebujejo filter za radiofrekvenčne motnje 35, usmemiški mostič 36, vmesni enosmerni tokokrog 37 s kondenzatorjem 40 in napetostno odvisnim vezjem 41 ali le z napetostno odvisnim vezjem 41, močnostno izhodno stopnjo 38, senzoijem 44, komutacijsko logiko 43 ter merilnik napetosti 42. Senzor 44 je mogoče nadomestiti z brezsenzorskim algoritmom. Pod merilnik napetosti 42 se razume elektronsko vezje, ki da informacijo o prehodu napetosti omrežja Mac skozi nič.Circuits for controlling a reluctance moto 39 with two or more phases according to embodiments in Figures 9, 10 and 11 include a filter for radio frequency interference 35, a bridge bridge 36, an intermediate DC circuit 37 with a capacitor 40 and a voltage-dependent circuit 41, or only with a voltage-dependent circuit 41, power output stage 38, sensor 44, switching logic 43, and voltage meter 42. Sensor 44 can be replaced by a sensorless algorithm. A voltage meter 42 is understood to mean an electronic circuit that provides information about the passage of voltage across a Mac network through zero.

Vklopi in izklopi tokov in napetosti v močnostni izhodni stopnji 38 so zelo hitri in zato povzročajo radiofrekvenčne motnje. Zato je želeno, daje teh preklopov čim manj. Najmanj jih je, če se preklopi zgodijo le pri komutaciji toka iz enega faznega navitja 46 v naslednje fazno navitje 47 in potem fazno navitje 48. V času ene periode spremembe induktivnosti 25 zaradi vrtenja je tako vsako od faznih navitij motoija 39 le enkrat vklopljeno in enkrat izklopljeno z izjemo zelo nizkih hitrosti in starta, ko je čas ene periode spremembe induktivnosti 25 daljši od polperiode napetosti omrežja Mac· Takrat je lahko zaradi postopka krmiljenja moči oziroma hitrosti po izumu fazno navitje motoija 39 večkrat vklopljeno in izklopljeno v času ene periode spremembe induktivnosti 25, vendar le enkrat v času polperiode napetosti omrežja Mac·The on and off currents and voltages in power output stage 38 are very fast and therefore cause radio frequency interference. Therefore, it is desirable to give as little switching as possible. The smallest number of switches occurs when switching current only from one phase winding 46 to the next phase winding 47 and then phase winding 48. During one period of change of inductance 25 due to rotation, each of the phase windings of moto 39 is switched on only once and once switched off with the exception of very low speeds and starts when the period of one inductance change period 25 is longer than the half voltage period of the Mac mains. , but only once during the Mac half-life ·

-9Na sliki 12 je narisano vezje močnostne izhodne stopnje 38, na katerega so priključena fazno navitje 46, fazno navitje 47 in fazno navitje 48 reluktančnega motoija 39. Vezje močnostne izhodne stopnje 38 sestavljajo diode od Di do D6 ter polprevodniša stikala od Vi do Ve, ki so lahko bipolarni tranzistorji, MOSFET-i ali IGBT-ji. Skozi fazno navitje 46 teče tok zj, skozi fazno navitje 47 teče tok zj in skozi fazno navitje 48 teče tok /3. Potek tokov zj, zj in zj je predstavljen na časovnih diagramih na sliki 13, kjer je prikazano dogajanje v času enega vrtljaja, pri čemer je čas enega vrtljaja mnogo krajši od polperiode napetosti omrežja «ac·-9Figure 12 shows a circuit of power output stage 38 to which a phase winding 46, a phase winding 47 and a phase winding 48 of a reluctance moto 39 are connected. The circuit of the power output stage 38 consists of diodes Di to D6 and semiconductor switches Vi to Ve, which can be bipolar transistors, MOSFETs or IGBTs. Through phase winding 46 flows a stream zj, through phase winding 47 flows a stream zj and through phase winding 48 flows current z / 3. The flow paths zj, zj and zj are presented in the time diagrams in Fig. 13, which shows the occurrence of a single revolution, where the time of one revolution is much shorter than the voltage half-period «ac ·

V trenutku ti na časovnih diagramih na sliki 13 sta vkloljeni polprevodniški stikali V! in V2, tako da tok zj skozi fazno navitje 46 teče po poti 50. Tok zj je v tem trenutku enak toku zj.At the moment these in the timing diagrams in Figure 13, semiconductor switches V are enabled! and V2 such that the current zj through phase winding 46 flows along path 50. The current zj at this point is equal to the current zj.

Postopek komutacije toka iz faznega navitja 46 v fazno navitje 47 se prične z vklopom polprevodniških stikal V3 in V4 oziroma faznega navitja 47. Trenutek vklopa faznega navitja 47 se spreminja v odvisnosti od hitrosti in obremenitve motoija 39. V trenutku /2 tok zj narašča in teče po poti 52. Tok zj je sedaj vsota tokov zj in zj. Fazno navitje 46 izklopimo tako, da najprej izklopimo samo polprevodniško stikalo Vi, tako da se v trenutku /3 tok zj zaključuje po poti 51 preko polprevodniškega stikala V2 in diode Dj znotraj polmostiča 34 v močnostni izhodni stopnji 38. Induktivnost faznega navitja 46 mora v tem času še naraščati, da tok zj v faznem navitju 46 ustvaija navor in s tem pada. Namesto polprevodniškega stikala Vi bi lahko izklopili polprevodniško stikalo V2 tako, da bi se tok zj zaključeval skozi polprevodniško stikalo Vi in diodo D2. Čas, ko se tok zj zaključuje znotraj polmostiča 34 je lahko daljši od 5% periode spremembe induktivnosti 25. Ko tok zj postane večji od toka zj, izklopimo še polprevodniško stikalo Vi. Tok zj potem v trenutku G teče iz polmostiča 34 po poti 49 in se odšteva od toka zj, ki teče po poti 52. Ker je tok zj večji od toka zj, je tok zj večji od nič. Ko tok zj pade na nič, je komutacija tok iz faznega navitja 46 v fazno navitje 47 končana.The process of switching the current from phase winding 46 to phase winding 47 begins with the activation of semiconductor switches V 3 and V4 or phase winding 47. The moment of switching on phase winding 47 changes depending on the speed and load of the moto 39. In a moment / 2 the current zj increases and flows along path 52. The current zj is now the sum of the currents zj and zj. Phase winding 46 is switched off by first switching off only the semiconductor switch Vi, so that at instant / 3 the current zj terminates along path 51 via the semiconductor switch V 2 and the diode Dj inside the semiconductor 34 in the power output stage 38. The inductance of the phase winding 46 must in during this time it is increasing that the current zj in the phase winding 46 generates torque and thus decreases. Instead of the semiconductor switch Vi, the semiconductor switch V2 could be switched off by terminating the current through the semiconductor switch Vi and diode D2. The time when the current zj terminates inside the semicircuit 34 may be longer than 5% of the period of change of inductance 25. When the current zj becomes greater than the current zj, the semiconductor switch Vi is switched off. The current zj then at instant G flows from the camshaft 34 along the path 49 and is subtracted from the current zj flowing along the path 52. Since the current zj is greater than the current zj, the current zj is greater than zero. When the current zj drops to zero, the commutation current from phase winding 46 to phase winding 47 is complete.

Ko se motor 39 zavrti naprej, se prične komutacija toka iz faznega navitja 47 v fazno navitje 48 in tako z vrtenjem naprej.When the motor 39 is rotated forward, the commutation of the current from the phase winding 47 to the phase winding 48 begins, thus rotating forward.

Tok zj med komutacijo ni padel na nič oziroma ni začel teči nazaj v vmesni enosmerni tokokrogDuring switching, the current did not drop to zero or start to flow back to the DC link

37. Zato med delovanjem kondenzator 40 ni potreben. V primeru, da moramo v trenutku h izklopiti obe polprevodniški stikali Vi in V2, bi tok zj začel teči nazaj oziroma energija bi se iz magnetnega polja v motorju 39 pričela vračati v vmesni enosmerni tokokrog 37. To energijo lahko shranimo v kondenzatorju 40, ali jo spremenimo v toploto na napetostno odvisnem elementu 41.37. Therefore, capacitor 40 is not required during operation. If both semiconductor switches Vi and V2 were to be switched off at time h, the current zj would start to flow back or the energy would return from the magnetic field in the motor 39 to the intermediate DC 37. This energy can be stored in the capacitor 40, or change to heat on the voltage-dependent element 41.

-10Pri startu in za krmiljenje moči oziroma hitrosti je potrebno omejiti tokove skozi navitja motoija-10 When starting and controlling the power or speed, it is necessary to limit the currents through the moto windings

39. To dosežemo z nižanjem napetosti na navitjih reluktančnega motorja 39 in sicer tako, da vklapljamo fazna navitja motoija 39 sinhrono z napetostjo omrežja Mac- Ko se motor vrti zelo počasi, vklapljamo fazna navitja motorja 39 le v bližini prehoda omrežne napetosti Mac skozi nič. Kot odprtja a, kot je označen na slikah 14 in 15 je pri počasnem vrtenju majhen. V času kota odprtja a elektronika komutira tokove zj, z'2 in z3 v fazah motorja 39, kot to zahteva zasuk rotoija. Ko hitrost motoija 39 narašča, se lahko veča tudi kot odprtja a ne da bi pri tem stekel prevelik tok skozi fazna navitja motoija 39. Ko motor 39 doseže nazivno hitrost, je kot odprtja a enak π. Takrat močnostna izhodna stopnja 38 komutira tok v faznih navitjih motoija 39 brez prekinitev. Na slikah 14 in 15 je označen tudi čas enega zasuka 53 motoija 39 v kolikor bi bil motor 39 enak motoiju na sliki 5.39. This is achieved by reducing the voltage on the windings of the reluctance motor 39 by switching on the phase windings of the moto 39 synchronously with the voltage of the Mac network. When the motor is rotating very slowly, the phase windings of the motor 39 are switched on only near the passage of the Mac voltage through zero. The aperture angle a, as indicated in Figures 14 and 15, is small in slow rotation. At the opening angle a, the electronics switch the currents zj, z ' 2 and z 3 in the motor phases 39 as required by the rotation of the rotoi. As the speed of the moto 39 increases, it can increase as well as the openings a, without causing too much current through the phase windings of the motoi 39. When the motor 39 reaches the rated speed, the opening angle a is equal to π. At that time, power output stage 38 commutes the current in phase windings of moto 39 without interruption. Figures 14 and 15 also indicate the time of one rotation 53 of the moto 39 insofar as the motor 39 would be identical to the moto in Fig. 5.

Krmiljenje moči oziroma hitrosti reluktančnega motoija 39 pri startu in med obratovanjem s kotom odprtja a je lahko izvedeno na dva načina. Po prvem načinu elektronika vklaplja in izklaplja fazna navitja motoija 39 tako, da pričnejo električni tokovi zj, z'2, z3 v fazah motoija 39 teči v trenutku kota β v bližini prehoda napetosti omrežja «ac skozi 0 in potem tečejo samo v času kota odprtja a, kot je prikazano na sliki 14. Po drugem načinu električni tokovi zj, z2, z3 v fazah motoija 39 tečejo samo v času kota odprtja a in prenehajo teči v trenutku kota β n bližini prehoda napetosti omrežja Mac skozi nič, kot je prikazano na sliki 15. Ta drugi način je podoben načinu krmiljenja univerzalnega kolektorskega motorja 2 s triakom 3, kot je prikazano na sliki 1. Pri obeh načinih čas kota odprtja a lahko zavzame vrednosti od nič do polovice periode napetosti omrežja «ac·There are two ways of controlling the power or speed of the reluctance moto 39 at start-up and during operation with the opening angle a. In the first mode, the electronics switch the phase windings of moto 39 on and off so that the electrical currents zj, z ' 2 , z 3 in moto phase 39, start to flow at the moment of angle β near the voltage crossing' ac through 0 and then flow only during the angle openings a, as shown in Figure 14. In another way, the electric currents zj, z, 2 , and 3 in moto stages 39 only flow at the time of the opening angle a and cease to flow at the moment of angle β n near the passage of voltage across the Mac through zero, as is shown in Fig. 15. This second mode is similar to the method of controlling the universal collector motor 2 with triac 3, as shown in Fig. 1. In both modes, the opening angle time a can take values from zero to half the grid voltage period «ac ·

S kotom β je označeno, koliko električni tokovi zj, z2, z'3 v fazah motoija 39 prehitevajo ali zamujajo trenutek prehoda napetosti omrežja Mac skozi nič. Kot β, ko električni tokovi zj, z'2, z3 začnejo oziroma nehajo teči je od prehoda napetosti omrežja «ac skozi nič časovno oddaljen manj kot 20% polperiode napetosti omrežja Mac·The angle β denotes how much the currents zj, z 2 , z ' 3 in moto stages 39 overtake or delay the moment when the voltage of the Mac network passes through zero. Like β, when the electric currents zj, z ' 2 , z 3 start or stop flowing, less than 20% of the half-life of the Mac network voltage is transmitted at zero over zero time ·

Po prvem izvedbenem primeru vezja na sliki 9 merilnik napetosti 42 posreduje komutacij ski logiki 43 informacijo o trenutni vrednosti napetosti omrežja Mac oziroma o trenutku prehoda napetosti omrežja Mac skozi nič. Tako lahko komutacijska logika 43 sinhrono z napetostjo omrežja Mac krmili kot odprtja a.. Polega tega komutacijska logika 43 skrbi tudi za komutacijo tokov zj, z2, z3 v odvisnosti od zasuka rotoija motoija 39. Za svoje delovanje potrebuje komutacijska logika 43 tudi informacijo o želeni hitrosti oziroma želenem navoru.According to the first embodiment of the circuit of Figure 9, the voltage meter 42 provides the switching logic 43 with information about the current voltage value of the Mac network or the time when the voltage across the Mac network passes through zero. Thus, the switching logic 43 can be controlled synchronously with the voltage of the Mac network as the openings of a .. In addition, the switching logic 43 also takes care of the commutation of currents zj, z, 2 , 3 depending on the rotation of the rotoi moto 39. For its operation, the switching logic 43 also needs information about the desired speed or torque.

-11Po drugem izvedbenem primeru vezja na sliki 10 sinhrono z javnim omrežjem prekinjamo tok skozi fazna navitja motorja 39 in s tem krmilimo kot odprtja a z dodatnim polprevodniškim stikalom 45 v vmesnem enosmernem tokokrogu 37, do katerega vodimo informacijo o trenutni vrednosti napetosti omrežja u^c oziroma o trenutku prehoda napetosti omrežja Mac skozi nič. Polprevodniško stikalo 45 je lahko v pozitivni ali negativni veji vmesnega enosmernega tokokroga 37.In the second embodiment, the circuit of Fig. 10 interrupts the flow through the phase windings of the motor 39 synchronously with the public network, thereby controlling the openings with an additional semiconductor switch 45 in the intermediate DC circuit 37 to which information about the current value of the voltage u ^ c or about the moment when the voltage of the Mac network passes through zero. The semiconductor switch 45 may be in the positive or negative branch of the DC link 37.

Po tretjem izvedbenem primeru vezja na sliki 11 sinhrono z javnim omrežjem prekinjamo tok skozi fazna navitja motorja 39 in s tem krmilimo kot odprtja a že v usmemiškem mostiču 36, kjer uporabimo krmiljena polprevodniška stikala. V tem primeru vodimo informacijo o trenutni vrednosti napetosti omrežja Mac oziroma o trenutku prehoda napetosti omrežja Mac skozi nič do usmemiškega mostiča 36.According to the third embodiment of the circuit of Fig. 11, we synchronously with the public network interrupt the flow through the phase windings of the motor 39 and thereby control the openings a in the bridge bridge 36, where controlled semiconductor switches are used. In this case, we keep information about the current value of the Mac network voltage, or the moment when the Mac network voltage passes through zero to the bridge bridge 36.

V zadnjih dveh primerih močnostna izhodna stopnja 38 le usmerja tok glede na zasuk rotorja v ustrezno navitje motorja 39.In the last two cases, the power output stage 38 only directs the current relative to the rotation of the rotor to the corresponding motor winding 39.

Claims (12)

Patentni zahtevkiPatent claims 1. Postopek krmiljenja moči oziroma hitrosti reluktančnega motoija (39) pri startu in med obratovanjem označen s tem, da elektronika vklaplja in izklaplja fazna navitja motoija (39) tako, da električni tokovi v fazah motoija (39) prično teči v trenutku kota (β) v bližini prehoda napetosti omrežja («ac) skozi nič in potem tečejo samo v času kota odprtja (a).A method for controlling the power or speed of a reluctance moto (39) at start-up and in operation, characterized in that the electronics switch on and off the moto winding phase (39) so that the electric currents in the moto stages (39) begin to flow momentarily at an angle (β ) near the voltage grid crossing («ac) through zero and then only flow at the opening angle (a). 2. Postopek krmiljenja moči oziroma hitrosti reluktančnega motoija (39) pri startu in med obratovanjem označen s tem, da elektronika vklaplja in izklaplja fazna navitja motoija (39) tako, da električni tokovi v fazah motoija (39) tečejo samo v času kota odprtja (a) in prenehajo teči v trenutku kota (β) v bližini prehoda napetosti omrežja («Ac) skozi nič.2. A method of controlling the power or speed of a reluctance moto (39) at start-up and during operation, characterized in that the electronics switch on and off the phase winding moto (39) so that the electric currents in the moto stages (39) flow only during the opening angle ( a) and cease running at the instant of angle (β) near the voltage crossing of the network (« A c) through zero. 3. Postopek po zahtevkih 1 in 2, označen s tem, da čas kota odprtja (a) lahko zavzame vrednosti od nič do polovice periode napetosti omrežja («ac)·Method according to claims 1 and 2, characterized in that the opening angle time (a) can take values from zero to half the grid voltage period («ac) · 4. Postopek po zahtevkih 1 in 2, označen s tem, da je kot (β) od prehoda napetosti omrežja («ac) časovno oddaljen manj kot 20% polperiode napetosti omrežja («ac)·Method according to Claims 1 and 2, characterized in that the angle (β) is less than 20% of the network voltage half-cycle («ac) over a time interval (« ac) · 5. Postopek po zahtevkih 1 in 2 označen s tem, daje posamezno fazno navitje motoija (39) le enkrat vklopljeno in enkrat izklopljeno v času, ki je krajši od ene periode spremembe induktivnosti (25) zaradi vrtenja in hkrati krajši od polperiode napetosti omrežja («ac)·Method according to Claims 1 and 2, characterized in that each phase winding of the moto (39) is only switched on and off once for a period shorter than one period of change of inductance (25) due to rotation and at the same time shorter than the half voltage of the grid ( «Ac) · 6. Postopek po zahtevkih 1 in 2 označen s tem, da se električni tok po izklopu faznega navitja najprej zaključuje znotraj polmostiča (34) v močnostni izhodni stopnji (38) in sicer v času daljšem od 5% periode spremembe induktivnosti (25), nato pa električni tok izklopljene faze teče iz polmostiča (34).Method according to Claims 1 and 2, characterized in that, after switching off the phase winding, the electrical current is first terminated inside the semiautomatic switch (34) in the power output stage (38) for a period longer than 5% of the inductance change period (25), then however, the off-phase electric current flows from the camshaft (34). 7. Postopek po zahtevkih 1, 2, 5 in 6 označen s tem, da komutacijska logika (43) sinhrono z napetostjo omrežja («ac) krmili kot odprtja (a).Method according to Claims 1, 2, 5 and 6, characterized in that the switching logic (43) controls the opening angle (a) synchronously with the voltage of the network («ac). 8. Postopek po zahtevkih 1, 2, 5 in 6 označen s tem, da polprevodniško stikalo (45) v vmesnem enosmernem tokokrogu (37) sinhrono z napetostjo omrežja («ac) krmili kot odprtja (a).Method according to claims 1, 2, 5 and 6, characterized in that the semiconductor switch (45) in the intermediate DC circuit (37) controls the openings angle (a) in synchrony with the voltage. 9. Postopek po zahtevkih 1, 2, 5 in 6 označen s tem, da usmemiški mostič (36), ki vsebuje krmiljena polprevodniška stikala, sinhrono z napetostjo omrežja («ac) krmili kot odprtja (a).Method according to claims 1, 2, 5 and 6, characterized in that the pier bridge (36) containing the controlled semiconductor switches controls the opening angle (a) in synchrony with the mains voltage («ac). 10. Postopek po zahtevkih od 7 do 9 označen s tem, da sinhronizacijo krmiljenja kota odprtja (a) dosežemo s pomočjo merilnika napetosti (42).Method according to claims 7 to 9, characterized in that the synchronization of the opening angle control (a) is achieved by means of a voltage meter (42). -1311. Vezje za izvajanje postopka po zahtevkih od 1 do 10 z elektroniko za krmiljenje reluktančnega ki jo sestavljajo usmemiški mostič (36), vmesni enosmerni tokokrog (37) in močnostna izhodna stopnja (38) označena s tem, da se v vmesnem enosmernem tokokrogu nahajata kondenzator (40) in napetostno odvisno vezje (41).-1311. A circuit for carrying out the process according to claims 1 to 10 with electronics for controlling the reluctance device comprising a bridge bridge (36), an intermediate DC circuit (37) and a power output stage (38), characterized in that a capacitor ( 40) and voltage dependent circuit (41). 12. Vezje za izvajanje postopka po zahtevkih od 1 do 10 z elektroniko za krmiljenje reluktančnega ki jo sestavljajo usmemiški mostič (36), vmesni enosmerni tokokrog (37) in močnostna izhodna stopnja (38) označena s tem, da se v vmesnem enosmernem tokokrogu nahajat le napetostno odvisno vezje (41) brez kondenzatorja (40).A circuit for performing the process according to claims 1 to 10 with electronics for controlling the reluctance device comprising a bridge bridge (36), an intermediate DC circuit (37) and a power output stage (38), characterized in that they are located in the intermediate DC circuit only voltage dependent circuit (41) without capacitor (40). 13. Vezje po zahtevku 12, označeno s tem, da se v napetostno odvisnem vezju (41) v toploto spremeni magnetna energija, ki seje vrnila iz motorja (39).Circuit according to claim 12, characterized in that the voltage-dependent circuit (41) is transformed into heat by the magnetic energy that returned from the motor (39).
SI200500045A 2005-02-21 2005-02-21 Circuit and procedure for the control of reluctance motors SI21983A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200500045A SI21983A (en) 2005-02-21 2005-02-21 Circuit and procedure for the control of reluctance motors
PCT/SI2006/000003 WO2006098703A1 (en) 2005-02-21 2006-02-15 A circuit and a method for controlling a reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200500045A SI21983A (en) 2005-02-21 2005-02-21 Circuit and procedure for the control of reluctance motors

Publications (1)

Publication Number Publication Date
SI21983A true SI21983A (en) 2006-08-31

Family

ID=36463515

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200500045A SI21983A (en) 2005-02-21 2005-02-21 Circuit and procedure for the control of reluctance motors

Country Status (2)

Country Link
SI (1) SI21983A (en)
WO (1) WO2006098703A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0618751D0 (en) 2006-09-22 2006-11-01 Switched Reluctance Drives Ltd Operating electrical machines from a DC link
CN109861214B (en) * 2019-02-28 2022-10-04 中国电力科学研究院有限公司 Method and system for judging weak line with stable transient power angle of regional power grid
CN116317811A (en) * 2021-12-21 2023-06-23 莱克电气股份有限公司 Control method and device of switch reluctance motor, cooking equipment and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312826A (en) * 1994-05-17 1995-11-28 Shibaura Eng Works Co Ltd Driving device of motor
DE19843106B4 (en) * 1998-09-21 2005-08-18 Ebm-Papst Mulfingen Gmbh & Co. Kg System for controlling the speed of AC motors
DE29918256U1 (en) * 1999-10-18 2001-03-01 Bosch Gmbh Robert Suppressor
GB2396491B (en) * 2002-12-21 2005-11-30 Dyson Ltd Power conversion apparatus

Also Published As

Publication number Publication date
WO2006098703A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
Su et al. Low-cost sensorless control of brushless DC motors with improved speed range
US8796966B2 (en) Motor controller and related method
Mahmoud et al. Studying different types of power converters fed switched reluctance motor
MacMinn et al. Application of sensor integration techniques to switched reluctance motor drives
Lettenmaier et al. Single-phase induction motor with an electronically controlled capacitor
JP5432901B2 (en) Motor power factor correction apparatus and method
Anand et al. Modified dual output cuk converter-fed switched reluctance motor drive with power factor correction
EP0114275B1 (en) Voltage-controlled, inverter-motor system
WO2012061458A1 (en) Power factor correction circuits for switched reluctance machines
JP5421518B2 (en) Electronic commutator circuit
KR20000017563A (en) Switched reluctance drive with high power factor
WO2013112981A1 (en) Circuit for transferring power between a direct current line and an alternating-current line
JP2002051589A (en) Controller for inverter for drive of motor
CN109995304A (en) A method of switched reluctance machines noise is reduced based on PWM carrier frequency is adjusted
Mishra et al. An efficient control scheme of self-reliant solar-powered water pumping system using a three-level DC–DC converter
SI21983A (en) Circuit and procedure for the control of reluctance motors
CN110299878A (en) A kind of control method of electric excitation biconvex electrode electric machine angle position half control power-generating control system
Krishnan et al. Effect of power factor correction circuit on switched reluctance motor drives for appliances
JPH09117183A (en) Power generator
TW425754B (en) Portable power unit
EP0161738A1 (en) Semi-conductor motor control system
US6933705B1 (en) Generator stator voltage control through DC chopper
CN110336419B (en) Multifunctional speed-regulating motor system for regulating and controlling power supply or converting power generation according to instruction speed
Bist et al. A PFC based BLDCM drive for low power household appliances
JPH05199789A (en) Control circuit for dc/three-phase current converter

Legal Events

Date Code Title Description
OO00 Grant of patent

Effective date: 20060608

KO00 Lapse of patent

Effective date: 20110923