WO2020171095A1 - Electromagnetic interference filter circuit - Google Patents

Electromagnetic interference filter circuit Download PDF

Info

Publication number
WO2020171095A1
WO2020171095A1 PCT/JP2020/006386 JP2020006386W WO2020171095A1 WO 2020171095 A1 WO2020171095 A1 WO 2020171095A1 JP 2020006386 W JP2020006386 W JP 2020006386W WO 2020171095 A1 WO2020171095 A1 WO 2020171095A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary winding
electromagnetic interference
filter circuit
common mode
interference filter
Prior art date
Application number
PCT/JP2020/006386
Other languages
French (fr)
Japanese (ja)
Inventor
立宇 戴
文潔 陳
明華 鄭
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to JP2021502057A priority Critical patent/JP7103505B2/en
Publication of WO2020171095A1 publication Critical patent/WO2020171095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to the field of electric power electronics, and particularly to a common mode choke coil and an electromagnetic interference filter circuit.
  • Electric power equipment connected to the electric power network may cause electromagnetic interference (Electro-Magnetic-Interference, EMI) during use.
  • the electromagnetic interference can adversely affect the normal operation of the power network. Therefore, the electric power equipment connected to the electric power network must meet the requirements of the conducted electromagnetic interference regulations specified in the area where the electric power network exists.
  • Commonly used conduction electromagnetic interference filters include passive electromagnetic interference filters, active electromagnetic interference filters, and hybrid passive and active electromagnetic interference filters.
  • the passive electromagnetic interference filter is widely applied as a device that suppresses the influence of electromagnetic interference due to the use of electrical equipment on the power network.
  • size reduction, weight reduction, and integration in device design there is an increasing demand for size reduction, weight reduction, and integration in device design.
  • the disadvantages of the passive electromagnetic interference filter such as large volume, heavy weight, and low suppression effect, are becoming noticeable. It has become.
  • the active electromagnetic interference filter and the hybrid electromagnetic interference filter can significantly reduce the volume and weight as compared with the conventional passive electromagnetic interference filter, and can obtain the same or better filtering effect. It is highly regarded by the industry and is recognized as the best alternative to traditional passive electromagnetic interference filters.
  • the hybrid electromagnetic interference filter is configured so as to take advantage of both of the active electromagnetic interference filter and the passive electromagnetic interference filter and to avoid the disadvantages thereof. It is more widely applied and has potential in the future than active electromagnetic interference filters.
  • the inventor of the present application clarified the following by conducting research and research. That is, from the time when the concept of the hybrid electromagnetic interference filter was disclosed to the present, the circuit of the active filter portion and the circuit of the passive filter portion that constitute the hybrid electromagnetic interference filter operate independently of each other, and the circuit is physically , And thus the volume of the hybrid filter is the sum of the volume of the active filter portion and the volume of the passive filter portion. Therefore, the volume of the hybrid filter is still large.
  • a common mode choke coil and an electromagnetic interference filter circuit are provided as an example of an embodiment of the present invention.
  • the common mode choke coil since the number of turns of the primary winding is large, the primary winding can exert a function of suppressing common mode interference, while the secondary winding has a function of detecting an electromagnetic interference signal. It can be exerted and the detected signal can be used for active electromagnetic interference filtering. Therefore, the common mode choke coil has integrated dual functions of common mode interference suppression and signal detection. Therefore, by using the common mode choke coil, the passive filter circuit and the active filter circuit can be easily integrated, and the electromagnetic interference filter can be downsized. Further, since the inductance is connected in series to the secondary winding of the common mode choke coil, the high frequency characteristics of the common mode choke coil are improved by the inductance.
  • a common mode choke coil is provided as an example of an embodiment of the present invention.
  • the common mode choke coil includes a first primary winding, a second primary winding, and a secondary winding, and the secondary winding includes the first primary winding and the second primary winding. and electromagnetically coupled with the primary winding, the common mode choke coil, further, a first resistor connected in series to both ends of the secondary winding (R CT) and the first inductance (L a) And the number of turns of the first primary winding is set to be larger than that of the secondary winding, and the number of turns of the second primary winding is set to be larger than that of the secondary winding. Has been done.
  • the number of turns of the first primary winding is 2 or more, and the number of turns of the second primary winding is 2 or more.
  • the first inductance (L a ) has a hollow coil structure or a structure in which a printed circuit board is covered with copper.
  • the number of turns of the first primary winding is the same as the number of turns of the second primary winding.
  • the winding directions of the first primary winding and the second primary winding are opposite to each other, and the winding direction of the secondary winding is the first winding.
  • the winding direction of either one of the primary winding and the second primary winding is the same.
  • the common mode choke coil further has a magnetic core, and the first primary winding, the second primary winding, and the secondary winding have the magnetic field. It is wrapped around the core.
  • An electromagnetic interference filter circuit is provided as an example of an embodiment of the present invention.
  • the electromagnetic interference (EMI) filter circuit one end of the first primary winding of the common mode choke coil is connected to a first output end of an impedance stabilization network, and the second of the common mode choke coil is connected.
  • One end of the primary winding is connected to the second output end of the impedance stabilization network, and the other end of the first primary winding and the other end of the second primary winding are respectively power input ends of the utility equipment.
  • a common mode choke coil according to any one of the aspects of the present invention, which is configured to be connected to, and two input terminals are respectively connected to both ends of the secondary winding of the common mode choke coil,
  • An operational amplifier configured to output a compensation signal from an output terminal and having a feedback resistor (R f ) connected between the output terminal and the input terminal; and the other end of the first primary winding.
  • R f feedback resistor
  • a resistor and a capacitor connected in series with the other end of the second primary winding, connected to the output end of the operational amplifier, and based on the compensation signal, the first primary winding and A current injection network configured to inject current into the second primary winding.
  • the electromagnetic interference filter circuit further comprises a compensation capacitor (C f), the compensation capacitor (C f) and the said feedback resistance (R f) are connected in parallel.
  • the current injection network includes a first capacitor (C 1 ), a second resistor (R 1 ), and a third resistor (R 2 ) which are sequentially connected in series. And a second capacitor (C 2 ), and the output terminal of the operational amplifier is connected to a connection node between the second resistor (R 1 ) and the third resistor (R 2 ). ..
  • the two input terminals of the operational amplifier are connected to the secondary winding of the common mode choke coil via a third resistor (R g ) and a fourth resistor (R s ) respectively. Connected to both ends of the wire.
  • the present invention by setting a large number of turns of the primary winding of the common mode choke coil, it is possible to realize both the detection function and the common mode interference suppression function. Therefore, the active filter and the passive filter are integrated. It is advantageous in that the size of the filter can be reduced. Furthermore, by connecting an inductance in series to the secondary winding of the common mode choke coil, the high frequency characteristics of the common mode choke coil can be improved.
  • the term "comprising/comprising” refers to the presence of a feature, an overall configuration, a procedure, or a component, excluding the presence or addition of one or more other features, overall configurations, procedures, or components. do not do.
  • FIG. 1 is a diagram showing a configuration of a common mode choke coil according to the first embodiment of the present invention.
  • FIG. 2 is an equivalent circuit constructed for the signal detection function of the common mode choke coil according to the first embodiment of the present invention.
  • FIG. 3 is an equivalent circuit constructed for the common mode interference suppression function of the common mode choke coil according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the configuration of the electromagnetic interference filter circuit according to the second embodiment of the present invention.
  • FIG. 5 is a graph of simulation results showing the filtering effect of the electromagnetic interference filter circuit according to the second embodiment of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish the names of different elements, and represent the spatial arrangement or temporal order of these elements. These elements are not limited to the above terms as they have no meaning.
  • the term “and/or” includes any one and all combinations of one or more of the associated listed terms.
  • the terms “comprising,” “including,” “having,” etc. refer to the presence of the listed features, elements, elements, or packages, and excludes the presence or addition of one or more other features, elements, elements, or packages. Not something to do.
  • Embodiment 1 provides a common mode choke coil.
  • FIG. 1 is a diagram showing the configuration of the common mode choke coil of this embodiment.
  • the common mode choke coil 10 has a first primary winding 11, a second primary winding 12, and a secondary winding 13.
  • the secondary winding 13 is electromagnetically coupled with the first primary winding 11 and the second primary winding 12.
  • the number of turns of the first primary winding 11 is N 1
  • the number of turns of the second primary winding 12 is N 2
  • the number of turns of the secondary winding 13 is Ns.
  • N 1 is set to be larger than Ns
  • N 2 is also set to be larger than Ns.
  • the common mode choke coil 10 of the present embodiment since the first primary winding 11 and the second primary winding 12 have a large number of turns, it is possible to exert the function of suppressing common mode interference. Since the secondary winding 13 is electromagnetically coupled to the first primary winding 11 and the second primary winding 12, the secondary winding 13 can exert a function of detecting an electromagnetic interference signal. The detected signal can be used for active electromagnetic interference filtering. Therefore, the common mode choke coil 10 has an integrated dual function of common mode interference suppression and signal detection, which is advantageous for integration of a passive filter circuit and an active filter circuit, and downsizing of the electromagnetic interference filter. Is realized.
  • the number of turns of the first primary winding 11 and the second primary winding 12 is set to be large and a drastic change in magnetic flux can be generated, even when the number of turns of the secondary winding 13 is relatively small. , The detection signal used in the active electromagnetic interference filter can be sufficiently obtained.
  • a high transformation ratio is formed between the first primary winding 11 and the second primary winding 12 and the secondary winding 13. Therefore, it is possible to provide a high gain to the electromagnetic interference filter circuit including the common mode choke coil 10.
  • the number of turns N 1 of the first primary winding 11 is, for example, 2 or more, and the number of turns N 2 of the second primary winding 12 is 2 or more.
  • the first primary winding 11 and the second primary winding 12 can exert a common mode interference suppression effect, and the secondary winding 13 can obtain a sufficient detection signal with a small number of turns. it can.
  • a first resistor R CT and a first inductance L a are connected in series at both ends of the secondary winding 13 of the common mode choke coil 10.
  • the first inductance L a can realize the phase shift adjustment and impedance matching of both ends (that is, the detection end) of the secondary winding 13, and the high frequency generated when the number of turns of the secondary winding 13 is small.
  • the adverse effect of parasitic capacitance can be suppressed and the high frequency characteristics of the common mode choke coil can be improved.
  • the common mode choke coil 10 of the present embodiment the number of turns of the first primary winding 11 and the second primary winding 12 is large, whereas the number of turns of the secondary winding 13 is small, resulting in high conversion. A ratio can be formed, and a high gain can be provided to the electromagnetic interference filter circuit including the common mode choke coil 10. Further, since the number of turns of the secondary winding 13 is small, the high frequency parasitic capacitance generated in the secondary winding 13 increases, which may adversely affect the high frequency characteristics of the common mode choke coil 10. However, since the adverse effect is eliminated by the first inductance L a which is connected in series with the secondary winding 13, the common mode choke coil 10 of the present embodiment has still good high frequency characteristics ..
  • the common mode choke coil 10 of the present embodiment is characterized in that the number of turns of the first primary winding 11 and the second primary winding 12 is large, whereas the number of secondary windings 13 is small.
  • the secondary winding 13 is characterized in that the first inductance L a is connected in series, the electromagnetic interference filter circuit can be downsized, and the high conversion ratio can be achieved. Therefore, it is possible to provide a high gain to the electromagnetic interference filter circuit, and further, it has excellent high frequency characteristics.
  • the number of turns N 1 of the first primary winding 11 may be the same as the number of turns N 2 of the second primary winding 12. Thereby, the first primary winding 11 and the second primary winding 12 can suppress the common mode interference more effectively.
  • the first primary winding 11 and the second primary winding 12 have the same winding direction. Thereby, the effect of suppressing common mode interference can be exhibited.
  • the common mode choke coil 10 may further include a magnetic core 14, and the magnetic core 14 has a first primary winding 11 and a second primary winding 11.
  • the winding 12 and the secondary winding 13 may be wound around.
  • the secondary winding 13 can be electromagnetically coupled with the first primary winding 11 and the second primary winding 12.
  • the winding position of the secondary winding 13 on the magnetic core 14 may be between the first primary winding 11 and the second primary winding 12.
  • the magnetic core 14 may be formed in a closed shape.
  • the magnetic core 14 has a closed ring shape.
  • the present embodiment is not limited to this, and the magnetic core 14 may have another shape.
  • the magnetic core 14 may have an open ring shape or a rod shape.
  • the first inductance L a may have a hollow coil structure or a structure in which a printed circuit board is covered with copper. As a result, the space occupied by the first inductance L a is reduced, and particularly when the first inductance L a has a structure in which the printed circuit board is covered with copper, the first inductance L a has an extra space. Since it does not occupy, the size of the filter circuit using the common mode choke coil 10 can be reduced.
  • the inductance values of the first primary winding 11, the second primary winding 12 and the secondary winding 13 are L 1 , L 2 and L CT , respectively.
  • the first primary winding 11 and the second primary winding 12 may each be connected to a main circuit.
  • the main circuit may be an AC power supply or may be a line impedance stabilization network connected to the AC power supply.
  • the common mode choke coil 10 in the present embodiment can realize two functions of signal detection and common mode interference suppression, and hereinafter, equivalent circuits are constructed for the two functions.
  • the first primary winding 11 and the second primary winding 12 having the same number of turns are connected to the main circuit, and the common mode noise current is the same as the first primary winding 11 and the first primary winding 11.
  • a signal is generated in the secondary winding 13 by causing the magnetic core 14 to generate magnetic flux in the same direction by flowing through the two primary windings 12, and at the same time, the magnetic fluxes generated by the differential mode noise currents cancel each other out. It has become.
  • FIG. 2 is an equivalent circuit constructed for the signal detection function of the common mode choke coil in this embodiment.
  • FIG. 2 is a simplified model in which the current flowing through the first primary winding 11 and the second primary winding 12 is equivalently converted into the secondary winding 13 based on the common mode signal detection principle.
  • n 2 C p is an equivalent capacitance value obtained by converting the parasitic capacitance C p of the first primary winding 11 and the second primary winding 12 into the secondary winding 13.
  • L CT is the inductance of the secondary winding 13.
  • R CT and L a are the resistance value of the first resistance and the inductance value of the first inductance connected to the secondary winding 13, respectively.
  • the transfer function G CT (s) for signal detection can be derived based on the simple model shown in FIG.
  • the transfer function is as shown in Equation 1 below.
  • ni indicates a current signal detected by the secondary winding 13
  • V R indicates a voltage signal obtained by conversion.
  • FIG. 3 is an equivalent circuit constructed for the common mode interference suppression function of the common mode choke coil of this embodiment.
  • L 3 corresponds to L CT in FIG.
  • the inductances L 1 and L 2 are the same and distributed symmetrically, the three windings 11, 12 and 13 are completely coupled, and the coupling coefficient k is 1.
  • FIG. 3B shows equivalent common mode impedances Z CM1 and Z CM2 of the common mode choke coil 10 of FIG.
  • Z CM1 and Z CM2 have the same value and can provide a common mode interference suppression function.
  • Z CM1 and Z CM2 represent the equivalent common mode impedances of the first primary winding 11 and the second primary winding 12, respectively.
  • the arrow on the dotted line indicates the direction of the common mode current
  • I CM indicates the equivalent common mode interference current source.
  • i CM indicates the common mode interference current
  • the dotted arrow 101 indicates the direction of the common mode current.
  • the number of turns of the primary winding is large, whereas the number of turns of the secondary winding is small, so that the common mode interference in the primary winding is suppressed, and a sufficient detection signal is obtained. It is possible to obtain the effect that the primary winding and the secondary winding have a high conversion ratio. Therefore, the passive filter and the active filter can be easily integrated, and the system can obtain a higher gain. Furthermore, since the inductance is connected in series to the secondary winding, it is possible to realize phase shift adjustment and impedance matching at the detection end, and the adverse effect on high-frequency parasitic capacitance due to the small number of turns of the secondary winding. Can be suppressed and the high frequency characteristics can be improved. Therefore, the common mode choke coil according to the present embodiment can not only realize the miniaturization of the electromagnetic interference (EMI) filter but also obtain good high frequency characteristics and high gain.
  • EMI electromagnetic interference
  • Embodiment 2 provides an electromagnetic interference (EMI) filter circuit.
  • the electromagnetic interference filter circuit includes the common mode choke coil 10 described in the first embodiment.
  • FIG. 4 is a diagram showing the configuration of the electromagnetic interference filter circuit of this embodiment.
  • the electromagnetic interference filter circuit 40 includes the common mode choke coil 10, an operational amplifier 41, and a current injection network 42.
  • the common mode choke coil 10 is the common mode choke coil described in the first embodiment, and the description regarding the common mode choke coil 10 in the first embodiment is incorporated.
  • one end 111 of the first primary winding 11 of the common mode choke coil 10 is connected to the first output end 401 of the impedance stabilization network (LISN) 400, and the second primary winding 11 is connected.
  • One end 121 of 12 is connected to the second output end 402 of the impedance stabilization network 400, and the other end 112 of the first primary winding 11 and the other end 122 of the second primary winding 12 are respectively used for utility. It is connected to the power input ends 301 and 302 of the facility 300.
  • the operational amplifier 41 is configured such that two input terminals 411 and 412 are respectively connected to both ends of the secondary winding 13 of the common mode choke coil 10 and a compensation signal is output from the output terminal 413. ing.
  • a feedback resistor R f is connected between the output terminal 413 and the input terminal 411 of the operational amplifier 41.
  • the input end 411 is, for example, the in-phase input end of the operational amplifier 41
  • the input end 412 is, for example, the anti-phase input end of the operational amplifier 41.
  • the two input terminals 411 and 412 of the operational amplifier 41 are connected to the two ends of the common mode choke coil 10 via the third resistance R g and the fourth resistance R s , respectively.
  • the secondary winding 13 is connected to the both ends.
  • the current injection network 42 includes a resistor and a capacitor connected in series between the other end 112 of the first primary winding 11 and the other end 122 of the second primary winding 12. Good.
  • the current injection network 42 is connected to the output terminal 413 of the operational amplifier 41, and injects a current into the first primary winding 11 and the second primary winding 12 based on the compensation signal output from the output terminal 413. To do.
  • the current injection network 42 includes a first capacitor C 1 , a second resistor R 1 , a third resistor R 2, and a third resistor R 2 , which are sequentially connected in series. Two capacitors C 2 may be provided.
  • the output terminal 413 of the operational amplifier 41 is connected to the node 421 between the second resistor R 1 and the third resistor R 2 .
  • the electromagnetic interference filter circuit 40 further includes a compensation capacitor C f .
  • the compensation capacitor C f is connected in parallel with the feedback resistor R f .
  • the compensation capacitor C f which is connected in parallel with the feedback resistor R f , can improve the phase margin of the electromagnetic interference filter circuit 40 having the advanced phase and change the open loop frequency characteristic of the electromagnetic interference filter circuit 40. Therefore, it is ensured that the active filtering function of the electromagnetic interference filter circuit 40 operates stably, and high attenuation of conducted electromagnetic interference is realized.
  • the power supply equipment 300 is an electromagnetic interference source, and the impedance stabilization network (LISN) 400 provides a standard impedance of 50 ⁇ as a load of the electromagnetic interference filter circuit 40. May be configured to do so.
  • the electromagnetic interference filter circuit 40 includes a portion of a passive electromagnetic interference filter and a portion of an active electromagnetic interference filter. Since the first primary winding 11 and the second primary winding 12 of the common mode choke coil 10 have equivalent common mode impedance, they can be used as passive electromagnetic interference filters.
  • the active electromagnetic interference filter includes an operational amplifier 41, a current injection network 42, and a resistor and a capacitor connected to the operational amplifier 41.
  • the output terminal 413 of the operational amplifier 41 suppresses electromagnetic interference by injecting the currents i c1 and i c2 into the first primary winding 11 and the second primary winding 12 via the current injection network, The influence of the electromagnetic interference of the electric equipment 300 on the electric power network is prevented.
  • the electromagnetic interference filter circuit since the electromagnetic interference filter circuit includes the common mode choke coil described in the first embodiment, it is possible to suppress common mode interference by using the primary winding of the common mode choke coil.
  • an active amplifier can be used to perform active filtering. Therefore, the electromagnetic interference filter circuit of the present embodiment can realize a hybrid function of a passive electromagnetic interference filter function and an active electromagnetic interference filter function with a small volume, and a good electromagnetic interference filtering effect can be obtained.
  • the common mode choke coil has a large number of turns of the primary winding, but has a small number of turns of the secondary winding, and since the inductance is connected in series to the secondary winding, good high frequency characteristics and high Gain can be obtained. Furthermore, since the feedback resistance of the operational amplifier is connected in parallel with the compensation capacitor C f to form advance compensation, the phase margin of the electromagnetic interference filter circuit is improved and the open loop frequency characteristic of the electromagnetic interference filter circuit can be changed. ..
  • a noise source is simulated with a square wave having an amplitude value of 5V, a frequency of 100 kHz, and an impedance of 50 ⁇ .
  • the simulation condition of the present embodiment is not limited to this.
  • the insertion loss of the electromagnetic interference filter circuit 40 can be obtained by comparing the numerical value of the original noise spectrum with the numerical value of the noise spectrum after being added to the electromagnetic interference filter circuit 40. Further, it is possible to judge whether or not the system is stable based on the state of the noise spectrum after being added to the electromagnetic interference filter circuit 40.
  • the original noise is noise of electromagnetic interference before being added to the electromagnetic interference filter circuit 40.
  • the inductance of each winding (that is, L 1 , L 2 , L CT ) in the common mode choke coil, the number of windings of each winding, and the resistance R CT are aimed at ensuring the stabilization of the system and maximization of the filtering effect.
  • the inductance value of the first inductance L a are set.
  • parameters of each element in the electromagnetic interference filter circuit 40 are set, and simulation is performed. Next, the simulation result will be described.
  • FIG. 5 is a graph of simulation results showing the filtering effect of the electromagnetic interference filter circuit of this embodiment.
  • Reference numeral 501 indicates the peak envelope of the original noise spectrum.
  • Reference numeral 502 shows a spectrum of noise after being added to the electromagnetic interference filter circuit of the present embodiment.
  • the electromagnetic interference filter circuit includes a compensation capacitor C f connected in parallel with a feedback resistor and has a common mode.
  • the first inductance L a is connected in series to the secondary winding of the choke coil.
  • Reference numeral 503 represents a spectrum of noise after being added to the electromagnetic interference filter circuit which is the first comparative example, and the electromagnetic interference filter circuit which is the first comparative example is a compensation resistor connected in parallel with the feedback resistor.
  • the first inductance L a is not connected in series to the secondary winding of the common mode choke coil.
  • Reference numeral 504 shows a spectrum of noise after being added to the electromagnetic interference filter circuit which is the second comparative example, and the electromagnetic interference filter circuit which is the second comparative example does not include the compensation capacitor C f.
  • the first inductance L a is connected in series to the secondary winding of the common mode choke coil.
  • the horizontal axis represents frequency, the unit thereof is hertz (Hz), the vertical axis represents noise intensity, and the unit thereof is decibel microvolt (dB ⁇ V).
  • the electromagnetic interference filter circuit of the present embodiment can effectively suppress common mode electromagnetic interference.
  • the intensity of the original noise at a frequency of 1 MHz (10 6 Hz) is 100 dB ⁇ V, while after being added to the electromagnetic interference filter circuit, the noise intensity is reduced to 30 dB ⁇ V as shown in spectrum 502. There is. That is, the electromagnetic interference filter circuit of this embodiment can attenuate the intensity of electromagnetic noise by about 70 dB ⁇ V. Therefore, this simulation result verifies the feasibility and practicality of the electromagnetic interference filter circuit of the present embodiment.
  • the electromagnetic interference filter circuit of the present embodiment includes the compensation capacitor C f , and therefore the filtering characteristic is also improved.
  • the noise intensity of the spectrum 502 is lower than the noise intensity of the spectrum 504 as a whole, and is extremely low particularly in the high frequency region.
  • the noise intensity of the spectrum 504 is higher than the intensity of the original noise 501. Therefore, without the compensation capacitor C f , the first inductance L a alone is sufficient. The noise cannot be suppressed by the filter circuit in the high frequency band, but the noise is increased.
  • the noise intensity of the spectrum 503 is lower than the noise intensity of the spectrum 504 in the high frequency region, but in the low frequency region, for example, in the frequency band 506 in FIG.
  • the noise intensity of spectrum 503 is higher than the noise intensity of spectrum 504. Therefore, without the first inductance L a , the compensation capacitor C f alone may deteriorate the filtering performance in the low frequency region of the filter circuit as shown in the spectrum 503.
  • the electromagnetic interference filter circuit of the present embodiment includes the compensation capacitor C f and the first inductance L a, and therefore the filtering performance (that is, The noise suppression performance) is significantly improved, and good filtering performance is obtained in both the high frequency region and the low frequency region.
  • the electromagnetic interference filter circuit includes only one of the compensation capacitor C f and the first inductance L a , the filtering performance in the high frequency region or the low frequency region becomes low, and noise is enhanced. It may cause adverse effects.
  • the electromagnetic interference filter circuit can realize a hybrid of the passive electromagnetic interference filtering function and the active electromagnetic interference filtering function in a small volume, so that a good electromagnetic interference filtering effect can be obtained. In addition to having good high frequency characteristics and high gain. Furthermore, since the compensation capacitor C f is connected in parallel to the feedback resistor of the operational amplifier, the open loop frequency characteristic of the electromagnetic interference filter circuit is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Filters And Equalizers (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Networks Using Active Elements (AREA)

Abstract

The present invention provides a common mode choke coil and an electromagnetic interference filter circuit. The common mode choke coil comprises a first primary winding, a second primary winding, and a secondary winding. The secondary winding is electromagnetically coupled with the first primary winding and the second primary winding. The common mode choke coil is additionally provided with a first resistor and a first inductance connected in series to both ends of the secondary winding. The number of turns in the first primary winding is set so as to be more than the number of turns in the secondary winding. The number of turns in the second primary winding is set so as to be more than the number of turns in the secondary winding.

Description

電磁干渉フィルター回路Electromagnetic interference filter circuit
 本発明は、電力電子技術分野に関し、特に、コモンモードチョークコイルおよび電磁干渉フィルター回路に関する。 The present invention relates to the field of electric power electronics, and particularly to a common mode choke coil and an electromagnetic interference filter circuit.
 電力ネットワークに接続される用電設備は、使用時に電磁干渉(Electro-Magnetic-Interference,EMI)を引き起こすことがある。当該電磁干渉は、電力ネットワークの正常運転に悪い影響を及ぼす可能性がある。このため、電力ネットワークに接続される用電設備は、電力ネットワークの存在地域で規定された伝導電磁干渉規制の要求を満たさなければならない。 Electric power equipment connected to the electric power network may cause electromagnetic interference (Electro-Magnetic-Interference, EMI) during use. The electromagnetic interference can adversely affect the normal operation of the power network. Therefore, the electric power equipment connected to the electric power network must meet the requirements of the conducted electromagnetic interference regulations specified in the area where the electric power network exists.
 通常、伝導電磁干渉フィルターを用いて用電設備による電磁干渉の問題を解決することができる。よく使われている伝導電磁干渉フィルターとして、パッシブ電磁干渉フィルター、アクティブ電磁干渉フィルター、及びパッシブとアクティブとのハイブリッド電磁干渉フィルターが挙げられる。 Normally, you can solve the problem of electromagnetic interference due to electrical equipment by using a conductive electromagnetic interference filter. Commonly used conduction electromagnetic interference filters include passive electromagnetic interference filters, active electromagnetic interference filters, and hybrid passive and active electromagnetic interference filters.
 現在、パッシブ電磁干渉フィルターは、用電設備の使用による電磁干渉が電力ネットワークに対する影響を抑制する装置として広く応用されている。しかしながら、装置の設計に対して、小型化、軽量化および集積化の要求が高くなりつつある。それに伴い、パッシブ電磁干渉フィルターにおける体積が大きく、重量が重く、抑制効果が低いといった短所が目立つようになっており、これらの短所を改善しなければ、パッシブ電磁干渉フィルターの適用が制限されることになっている。 Currently, the passive electromagnetic interference filter is widely applied as a device that suppresses the influence of electromagnetic interference due to the use of electrical equipment on the power network. However, there is an increasing demand for size reduction, weight reduction, and integration in device design. Along with this, the disadvantages of the passive electromagnetic interference filter, such as large volume, heavy weight, and low suppression effect, are becoming noticeable. It has become.
 アクティブ電磁干渉フィルター及びハイブリッド電磁干渉フィルターは、従来のパッシブ電磁干渉フィルターに比べて、体積や重量を大幅に低減することができるとともに、同等またはより良いフィルタリング効果を得ることができるため、学術界及び産業界から高く評価され、従来のパッシブ電磁干渉フィルターに代わる最良の選択であると認識されている。 The active electromagnetic interference filter and the hybrid electromagnetic interference filter can significantly reduce the volume and weight as compared with the conventional passive electromagnetic interference filter, and can obtain the same or better filtering effect. It is highly regarded by the industry and is recognized as the best alternative to traditional passive electromagnetic interference filters.
 なお、ハイブリッド電磁干渉フィルターは、アクティブ電磁干渉フィルター及びパッシブ電磁干渉フィルターの両方の長所を生かし、短所を避けるように構成されたものであり、技術的な面および実行可能性の面において、単独のアクティブ電磁干渉フィルターより広く適用されて将来性のあるものである。 It should be noted that the hybrid electromagnetic interference filter is configured so as to take advantage of both of the active electromagnetic interference filter and the passive electromagnetic interference filter and to avoid the disadvantages thereof. It is more widely applied and has potential in the future than active electromagnetic interference filters.
 但し、上記技術背景に関する説明は、本発明の技術案を分かり易くかつ完全に説明し、当業者に理解され易いように述べたものである。したがって、上記技術案が本発明の「背景技術」において紹介されていることから、上記技術案が当業者にとって公知なものであると判断してはならない。 However, the above-mentioned technical background is provided so that the technical solution of the present invention can be easily and completely understood and can be easily understood by those skilled in the art. Therefore, since the above technical solution is introduced in the “background art” of the present invention, it should not be judged that the above technical solution is known to those skilled in the art.
 本願の発明者は、調査および研究を行うことにより、次のことを解明した。即ち、ハイブリッド電磁干渉フィルターという概念が開示されてから現在に至るまで、ハイブリッド電磁干渉フィルターを構成するアクティブフィルター部分の回路とパッシブフィルター部分の回路とは、互いに独立して動作し、回路も物理的に互いに分離しており、したがって、ハイブリッドフィルタの体積はアクティブフィルター部分の体積とパッシブフィルター部分の体積との和になっている。そのため、ハイブリッドフィルタの体積が依然として大きくなっている。 The inventor of the present application clarified the following by conducting research and research. That is, from the time when the concept of the hybrid electromagnetic interference filter was disclosed to the present, the circuit of the active filter portion and the circuit of the passive filter portion that constitute the hybrid electromagnetic interference filter operate independently of each other, and the circuit is physically , And thus the volume of the hybrid filter is the sum of the volume of the active filter portion and the volume of the passive filter portion. Therefore, the volume of the hybrid filter is still large.
 本発明の実施形態の一例として、コモンモードチョークコイルおよび電磁干渉フィルター回路を提供する。当該コモンモードチョークコイルにおいて、一次巻線の巻数が多いため、一次巻線は、コモンモード干渉を抑制する機能を発揮することができる一方、二次巻線は、電磁干渉信号を検出する機能を発揮することができるとともに、検出された信号をアクティブ電磁干渉フィルタリングに用いることが可能である。そのため、当該コモンモードチョークコイルは、コモンモード干渉抑制と信号検出との二重機能が統合されている。したがって、当該コモンモードチョークコイルを用いることにより、パッシブフィルター回路とアクティブフィルター回路との統合が容易になり、しかも、電磁干渉フィルターの小型化を実現することができる。さらに、当該コモンモードチョークコイルの二次巻線には、インダクタンスが直列接続されているため、当該インダクタンスによってコモンモードチョークコイルの高周波特性が改善される。 A common mode choke coil and an electromagnetic interference filter circuit are provided as an example of an embodiment of the present invention. In the common mode choke coil, since the number of turns of the primary winding is large, the primary winding can exert a function of suppressing common mode interference, while the secondary winding has a function of detecting an electromagnetic interference signal. It can be exerted and the detected signal can be used for active electromagnetic interference filtering. Therefore, the common mode choke coil has integrated dual functions of common mode interference suppression and signal detection. Therefore, by using the common mode choke coil, the passive filter circuit and the active filter circuit can be easily integrated, and the electromagnetic interference filter can be downsized. Further, since the inductance is connected in series to the secondary winding of the common mode choke coil, the high frequency characteristics of the common mode choke coil are improved by the inductance.
 本発明の実施形態の一例として、コモンモードチョークコイルを提供する。当該コモンモードチョークコイルは、第1の一次巻線と、第2の一次巻線と、二次巻線とを備え、上記二次巻線が、上記第1の一次巻線及び上記第2の一次巻線と電磁カップリングしており、上記コモンモードチョークコイルは、さらに、上記二次巻線の両端に直列接続されている第1の抵抗(RCT)と第1のインダクタンス(La)とを備えており、上記第1の一次巻線の巻数が上記二次巻線の巻数よりも大きく設定され、上記第2の一次巻線の巻数が上記二次巻線の巻数よりも大きく設定されている。 A common mode choke coil is provided as an example of an embodiment of the present invention. The common mode choke coil includes a first primary winding, a second primary winding, and a secondary winding, and the secondary winding includes the first primary winding and the second primary winding. and electromagnetically coupled with the primary winding, the common mode choke coil, further, a first resistor connected in series to both ends of the secondary winding (R CT) and the first inductance (L a) And the number of turns of the first primary winding is set to be larger than that of the secondary winding, and the number of turns of the second primary winding is set to be larger than that of the secondary winding. Has been done.
 本発明の実施形態の一例として、上記第1の一次巻線の巻数は2以上であり、かつ上記第2の一次巻線の巻数は2以上である。 As an example of the embodiment of the present invention, the number of turns of the first primary winding is 2 or more, and the number of turns of the second primary winding is 2 or more.
 本発明の実施形態の一例として、上記第1のインダクタンス(La)は中空コイル構造又はプリント基板を銅で覆う構造となっている。 As an example of the embodiment of the present invention, the first inductance (L a ) has a hollow coil structure or a structure in which a printed circuit board is covered with copper.
 本発明の実施形態の一例として、上記第1の一次巻線の巻数は上記第2の一次巻線の巻数と同じである。 As an example of the embodiment of the present invention, the number of turns of the first primary winding is the same as the number of turns of the second primary winding.
 本発明の実施形態の一例として、上記第1の一次巻線と上記第2の一次巻線とは、巻き方向が逆になっており、上記二次巻線の巻き方向は、上記第1の一次巻線と第2の一次巻線とのいずれか一方の巻き方向と同じである。 As an example of the embodiment of the present invention, the winding directions of the first primary winding and the second primary winding are opposite to each other, and the winding direction of the secondary winding is the first winding. The winding direction of either one of the primary winding and the second primary winding is the same.
 本発明の実施形態の一例として、上記コモンモードチョークコイルは、さらに磁気コアを有し、上記第1の一次巻線と、上記第2の一次巻線と、上記二次巻線とが上記磁気コアに巻き付いている。 As an example of an embodiment of the present invention, the common mode choke coil further has a magnetic core, and the first primary winding, the second primary winding, and the secondary winding have the magnetic field. It is wrapped around the core.
 本発明の実施形態の一例として、電磁干渉フィルター回路を提供する。当該電磁干渉(EMI)フィルター回路は、上記コモンモードチョークコイルの上記第1の一次巻線の一端がインピーダンス安定化ネットワークの第1の出力端に接続され、上記コモンモードチョークコイルの上記第2の一次巻線の一端がインピーダンス安定化ネットワークの第2の出力端に接続され、上記第1の一次巻線の他端および上記第2の一次巻線の他端がそれぞれ用電設備の電力入力端に接続されるように構成された、上記発明のいずれか一側面に記載されたコモンモードチョークコイルと、2つの入力端が上記コモンモードチョークコイルの上記二次巻線の両端にそれぞれ接続され、出力端から補償信号を出力し、上記出力端と上記入力端との間に帰還抵抗(Rf)が接続されるように構成されたオペアンプと、上記第1の一次巻線の上記他端と上記第2の一次巻線の上記他端との間に直列接続された抵抗とキャパシタとを含み、上記オペアンプの上記出力端に接続され、上記補償信号に基づいて上記第1の一次巻線および上記第2の一次巻線に電流を注入するように構成された電流注入ネットワークと、を備えている。 An electromagnetic interference filter circuit is provided as an example of an embodiment of the present invention. In the electromagnetic interference (EMI) filter circuit, one end of the first primary winding of the common mode choke coil is connected to a first output end of an impedance stabilization network, and the second of the common mode choke coil is connected. One end of the primary winding is connected to the second output end of the impedance stabilization network, and the other end of the first primary winding and the other end of the second primary winding are respectively power input ends of the utility equipment. A common mode choke coil according to any one of the aspects of the present invention, which is configured to be connected to, and two input terminals are respectively connected to both ends of the secondary winding of the common mode choke coil, An operational amplifier configured to output a compensation signal from an output terminal and having a feedback resistor (R f ) connected between the output terminal and the input terminal; and the other end of the first primary winding. A resistor and a capacitor connected in series with the other end of the second primary winding, connected to the output end of the operational amplifier, and based on the compensation signal, the first primary winding and A current injection network configured to inject current into the second primary winding.
 本発明の実施形態の一例として、上記電磁干渉フィルター回路は、補償キャパシタ(Cf)をさらに備え、上記補償キャパシタ(Cf)と上記帰還抵抗(Rf)とが並列接続している。 As an example of an embodiment of the present invention, the electromagnetic interference filter circuit further comprises a compensation capacitor (C f), the compensation capacitor (C f) and the said feedback resistance (R f) are connected in parallel.
 本発明の実施形態の一例として、上記電流注入ネットワークは、順次に直列接続している第1のキャパシタ(C1)と、第2の抵抗(R1)と、第3の抵抗(R2)と、第2のキャパシタ(C2)とを備え、上記オペアンプの上記出力端は、上記第2の抵抗(R1)と上記第3の抵抗(R2)との接続節点に接続されている。 As an example of the embodiment of the present invention, the current injection network includes a first capacitor (C 1 ), a second resistor (R 1 ), and a third resistor (R 2 ) which are sequentially connected in series. And a second capacitor (C 2 ), and the output terminal of the operational amplifier is connected to a connection node between the second resistor (R 1 ) and the third resistor (R 2 ). ..
 本発明の実施形態の一例として、上記オペアンプの上記2つの入力端は、それぞれ第3の抵抗(Rg)及び第4の抵抗(Rs)を介して上記コモンモードチョークコイルの上記二次巻線の上記両端に接続されている。 As an example of the embodiment of the present invention, the two input terminals of the operational amplifier are connected to the secondary winding of the common mode choke coil via a third resistor (R g ) and a fourth resistor (R s ) respectively. Connected to both ends of the wire.
 本発明によれば、コモンモードチョークコイルの一次巻線の巻数を多く設定することにより、検出機能とコモンモード干渉抑制機能との両方を実現することができるため、アクティブフィルターとパッシブフィルターとの集積に有利であり、フィルターの小型化を実現することが可能である。さらに、コモンモードチョークコイルの二次巻線にインダクタンスを直列接続することにより、コモンモードチョークコイルの高周波特性を改善することができる。 According to the present invention, by setting a large number of turns of the primary winding of the common mode choke coil, it is possible to realize both the detection function and the common mode interference suppression function. Therefore, the active filter and the passive filter are integrated. It is advantageous in that the size of the filter can be reduced. Furthermore, by connecting an inductance in series to the secondary winding of the common mode choke coil, the high frequency characteristics of the common mode choke coil can be improved.
 以下の説明及び図面により、本発明の実施形態が詳細に開示され、本発明の原理の使い方が明示される。但し、本発明の実施形態の範囲は、これによって限定されることがない。本願の特許請求の範囲の精神及び条項の範囲内において、本発明の実施形態を様々な変更、修正及び等価変換を行うことができる。 The following description and drawings disclose the embodiments of the present invention in detail and clearly show how to use the principles of the present invention. However, the scope of the embodiments of the present invention is not limited thereby. Various changes, modifications and equivalent conversions can be made to the embodiments of the present invention within the spirit and terms of the claims of the present application.
 1つの実施形態について記載及び/又は説明した特徴は、同じ又は類似した方式で1つ以上の他の実施形態に適用したり、他の実施形態における特徴と組み合わせたり、他の実施形態における特徴を取り替えたりすることが可能である。 Features described and/or described for one embodiment may be applied to one or more other embodiments in the same or similar fashion, combined with features of other embodiments, or combined with features of other embodiments. It can be replaced.
 本発明において、「備える/含む」といった用語は、特徴、全体構成、手順、または構成部分の存在を指し、1つ以上のその他の特徴、全体構成、手順、または構成部分の存在あるいは追加を排除しない。 In the present invention, the term "comprising/comprising" refers to the presence of a feature, an overall configuration, a procedure, or a component, excluding the presence or addition of one or more other features, overall configurations, procedures, or components. do not do.
 図面は、本発明の実施形態をより明確に理解させるためのものであり、明細書の一部分の構成となって、本発明の実施形態を例示するのに用いられ、文字説明とともに本発明の原理を解釈するものである。以下の説明において、図面は単なる本発明の一部の実施形態を示すものであり、当業者であれば、創造的労働を行わなくても、これらの図面に基づいてその他の図面を得ることができる。 The drawings are for the purpose of more clearly understanding the embodiments of the present invention, and constitute a part of the specification, and are used for illustrating the embodiments of the present invention. Is to be interpreted. In the following description, the drawings show only some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without creative labor. it can.
図1は、本発明の実施形態1におけるコモンモードチョークコイルの構成を示す図である。FIG. 1 is a diagram showing a configuration of a common mode choke coil according to the first embodiment of the present invention. 図2は、本発明の実施形態1におけるコモンモードチョークコイルの信号検出機能について構築した等価回路である。FIG. 2 is an equivalent circuit constructed for the signal detection function of the common mode choke coil according to the first embodiment of the present invention. 図3は、本発明の実施形態1におけるコモンモードチョークコイルのコモンモード干渉抑制機能について構築した等価回路である。FIG. 3 is an equivalent circuit constructed for the common mode interference suppression function of the common mode choke coil according to the first embodiment of the present invention. 図4は、本発明の実施形態2に係る電磁干渉フィルター回路の構成を示す図である。FIG. 4 is a diagram showing the configuration of the electromagnetic interference filter circuit according to the second embodiment of the present invention. 図5は、本発明の実施形態2に係る電磁干渉フィルター回路のフィルタリング効果を示すシミュレーション結果のグラフである。FIG. 5 is a graph of simulation results showing the filtering effect of the electromagnetic interference filter circuit according to the second embodiment of the present invention.
 図面を参照し、以下の明細書により、本発明の前述及びその他の特徴が明らかになる。明細書および図面において、本発明の特定の実施形態について具体的に開示しているが、これはその中で本出願の原則の部分の実施形態を採用可能であることを表明しているのであって、本出願は、説明した実施形態に限られず、逆に、本出願は、特許請求の範囲内に属する全ての修正、変型及び等価変換を含むということを理解しなければならない。以下、添付図面を参照して、本出願の各種実施形態について説明を行う。これらの実施形態は単に例示的に示したものであり、本発明を限定するものではない。 The above and other features of the present invention will become apparent from the following specification with reference to the drawings. While the specification and drawings specifically disclose specific embodiments of the invention, there are representations therein that embodiments of the principles of the present application may be employed. It is to be understood, therefore, that this application is not limited to the described embodiments, but, conversely, that this application includes all modifications, variations and equivalent transformations falling within the scope of the claims. Various embodiments of the present application will be described below with reference to the accompanying drawings. These embodiments are presented by way of example only and are not limiting of the invention.
 本発明の実施形態において、用語「第1の」、「第2の」などは、異なる要素に対する呼び方を区別するためのものであり、これらの要素の空間配置または時間的な順序などを表す意味がないので、これらの要素は上記用語に制限されることがない。用語「および/または」は、関連してリストされた用語の1つ又は複数のうちのいずれか1つ及びすべての組み合わせを含む。用語「備える」、「含む」、「有する」などは、記載した特徴、要素、素子、またはパッケージの存在を指し、1つ又は複数のその他の特徴、要素、素子又はパッケージの存在または追加を排除するものではない。 In the embodiments of the present invention, the terms “first”, “second”, etc. are used to distinguish the names of different elements, and represent the spatial arrangement or temporal order of these elements. These elements are not limited to the above terms as they have no meaning. The term “and/or” includes any one and all combinations of one or more of the associated listed terms. The terms “comprising,” “including,” “having,” etc. refer to the presence of the listed features, elements, elements, or packages, and excludes the presence or addition of one or more other features, elements, elements, or packages. Not something to do.
 本発明の実施形態において、単数形式「一」、「当該」などは、複数形式を含み、「一種」または「一類」と理解されるべきであり、「1つ」の意味に限定されることがない。また「当該」という用語は、前後の記載において別途で明確に示されている場合を除き、単数形式も複数形式も含むと理解されるべきである。また、前後の記載において別途で明確に示されていない限り、用語「~による」は、「少なくとも一部による」と理解され、用語「~に基づく」は、「少なくとも一部に基づく」と理解されるべきである。 In the embodiments of the present invention, the singular forms “one”, “corresponding” and the like include plural forms and should be understood as “one kind” or “one kind” and are limited to the meaning of “one”. There is no. Also, the term “corresponding” should be understood to include both singular and plural forms, unless the context clearly dictates otherwise. Also, unless stated otherwise explicitly in the preceding and following statements, the term "by" is understood to be "based at least in part" and the term "based on" is understood to be "based at least in part." It should be.
<実施形態1>
 実施形態1は、コモンモードチョークコイルを提供する。
<Embodiment 1>
Embodiment 1 provides a common mode choke coil.
 図1は、本実施形態のコモンモードチョークコイルの構成を示す図である。図1に示すように、コモンモードチョークコイル10は、第1の一次巻線11と、第2の一次巻線12と、二次巻線13とを有している。なお、二次巻線13は、第1の一次巻線11及び第2の一次巻線12と電磁カップリングされている。 FIG. 1 is a diagram showing the configuration of the common mode choke coil of this embodiment. As shown in FIG. 1, the common mode choke coil 10 has a first primary winding 11, a second primary winding 12, and a secondary winding 13. The secondary winding 13 is electromagnetically coupled with the first primary winding 11 and the second primary winding 12.
 本実施形態において、第1の一次巻線11の巻数はN1、第2の一次巻線12の巻数はN2、二次巻線13の巻数はNsとする。図1に示すように、N1はNsより多く設定され、N2もNsより多く設定されている。 In the present embodiment, the number of turns of the first primary winding 11 is N 1 , the number of turns of the second primary winding 12 is N 2 , and the number of turns of the secondary winding 13 is Ns. As shown in FIG. 1, N 1 is set to be larger than Ns, and N 2 is also set to be larger than Ns.
 本実施形態のコモンモードチョークコイル10において、第1の一次巻線11および第2の一次巻線12は、巻数が多いため、コモンモード干渉を抑制する機能を発揮することができる。二次巻線13は、第1の一次巻線11および第2の一次巻線12と電磁カップリングされているため、電磁干渉信号を検出する機能を発揮することができる。検出された信号は、アクティブ電磁干渉フィルタリングに用いることができる。ゆえに、当該コモンモードチョークコイル10は、コモンモード干渉抑制と信号検出との二重機能が統合されているため、パッシブフィルター回路とアクティブフィルター回路との集積に有利であり、電磁干渉フィルターの小型化が実現される。 In the common mode choke coil 10 of the present embodiment, since the first primary winding 11 and the second primary winding 12 have a large number of turns, it is possible to exert the function of suppressing common mode interference. Since the secondary winding 13 is electromagnetically coupled to the first primary winding 11 and the second primary winding 12, the secondary winding 13 can exert a function of detecting an electromagnetic interference signal. The detected signal can be used for active electromagnetic interference filtering. Therefore, the common mode choke coil 10 has an integrated dual function of common mode interference suppression and signal detection, which is advantageous for integration of a passive filter circuit and an active filter circuit, and downsizing of the electromagnetic interference filter. Is realized.
 本実施形態において、第1の一次巻線11と第2の一次巻線12の巻数が多く設定され、激しい磁束変化を生じることができるため、二次巻線13の巻数が比較的少ない場合でも、アクティブ電磁干渉フィルターに使われる検出信号を十分に得ることができる。一方、二次巻線13の巻数を少なくすることにより、第1の一次巻線11および第2の一次巻線12と二次巻線13との間で高い変換比(transformation ratio)を形成することができるため、コモンモードチョークコイル10を有する電磁干渉フィルター回路に高いゲインを提供することができる。 In the present embodiment, since the number of turns of the first primary winding 11 and the second primary winding 12 is set to be large and a drastic change in magnetic flux can be generated, even when the number of turns of the secondary winding 13 is relatively small. , The detection signal used in the active electromagnetic interference filter can be sufficiently obtained. On the other hand, by reducing the number of turns of the secondary winding 13, a high transformation ratio is formed between the first primary winding 11 and the second primary winding 12 and the secondary winding 13. Therefore, it is possible to provide a high gain to the electromagnetic interference filter circuit including the common mode choke coil 10.
 本実施形態において、第1の一次巻線11の巻数N1は、例えば2以上とし、第2の一次巻線12の巻数N2は2以上とする。これにより、第1の一次巻線11および第2の一次巻線12は、コモンモード干渉抑制効果を発揮することができるとともに、二次巻線13が少ない巻数で十分な検出信号を得ることができる。 In the present embodiment, the number of turns N 1 of the first primary winding 11 is, for example, 2 or more, and the number of turns N 2 of the second primary winding 12 is 2 or more. As a result, the first primary winding 11 and the second primary winding 12 can exert a common mode interference suppression effect, and the secondary winding 13 can obtain a sufficient detection signal with a small number of turns. it can.
 本実施形態において、図1に示すように、コモンモードチョークコイル10の二次巻線13の両端には、第1の抵抗RCTと第1のインダクタンスLaとが直列接続されている。第1のインダクタンスLaは、二次巻線13の両端(即ち、検出端)の位相シフト調整及びインピーダンス整合を実現することができるとともに、二次巻線13の巻数が少ない場合に発生する高周波寄生容量の悪い影響を抑制し、コモンモードチョークコイルの高周波特性を改善することができる。 In the present embodiment, as shown in FIG. 1, a first resistor R CT and a first inductance L a are connected in series at both ends of the secondary winding 13 of the common mode choke coil 10. The first inductance L a can realize the phase shift adjustment and impedance matching of both ends (that is, the detection end) of the secondary winding 13, and the high frequency generated when the number of turns of the secondary winding 13 is small. The adverse effect of parasitic capacitance can be suppressed and the high frequency characteristics of the common mode choke coil can be improved.
 本実施形態のコモンモードチョークコイル10によれば、第1の一次巻線11と第2の一次巻線12の巻数が多いのに対して、二次巻線13の巻数が少ないため、高い変換比を形成することができ、当該コモンモードチョークコイル10を有する電磁干渉フィルター回路に高いゲインを提供することができる。また、二次巻線13の巻数が少ないため、二次巻線13で発生する高周波寄生容量が増大して、コモンモードチョークコイル10の高周波特性に悪い影響を及ぼすことがある。しかしながら、当該悪い影響が二次巻線13に直列接続されている第1のインダクタンスLaにより解消されるため、本実施形態のコモンモードチョークコイル10は、依然として良好な高周波特性を有している。従って、本実施形態のコモンモードチョークコイル10は、第1の一次巻線11および第2の一次巻線12の巻数が多いのに対して、二次巻線13の巻数が少ないという特徴を有し、さらに、二次巻線13に第1のインダクタンスLaが直列接続されているなどの特徴を有しているため、電磁干渉フィルター回路の小型化を実現することができるとともに、高い変換比を得ることができるため、電磁干渉フィルター回路に高いゲインを提供することが可能であり、しかも、良好な高周波特性を有している。 According to the common mode choke coil 10 of the present embodiment, the number of turns of the first primary winding 11 and the second primary winding 12 is large, whereas the number of turns of the secondary winding 13 is small, resulting in high conversion. A ratio can be formed, and a high gain can be provided to the electromagnetic interference filter circuit including the common mode choke coil 10. Further, since the number of turns of the secondary winding 13 is small, the high frequency parasitic capacitance generated in the secondary winding 13 increases, which may adversely affect the high frequency characteristics of the common mode choke coil 10. However, since the adverse effect is eliminated by the first inductance L a which is connected in series with the secondary winding 13, the common mode choke coil 10 of the present embodiment has still good high frequency characteristics .. Therefore, the common mode choke coil 10 of the present embodiment is characterized in that the number of turns of the first primary winding 11 and the second primary winding 12 is large, whereas the number of secondary windings 13 is small. In addition, since the secondary winding 13 is characterized in that the first inductance L a is connected in series, the electromagnetic interference filter circuit can be downsized, and the high conversion ratio can be achieved. Therefore, it is possible to provide a high gain to the electromagnetic interference filter circuit, and further, it has excellent high frequency characteristics.
 本実施形態において、第1の一次巻線11の巻数N1は、第2の一次巻線12の巻数N2と同じであってもよい。これにより、第1の一次巻線11および第2の一次巻線12は、より効果的にコモンモード干渉を抑制することができる。 In the present embodiment, the number of turns N 1 of the first primary winding 11 may be the same as the number of turns N 2 of the second primary winding 12. Thereby, the first primary winding 11 and the second primary winding 12 can suppress the common mode interference more effectively.
 本実施形態において、図1に示すように、第1の一次巻線11と第2の一次巻線12とは、巻き方向が同じである。これにより、コモンモード干渉に対する抑制効果を発揮することができる。 In the present embodiment, as shown in FIG. 1, the first primary winding 11 and the second primary winding 12 have the same winding direction. Thereby, the effect of suppressing common mode interference can be exhibited.
 本実施形態において、図1に示すように、コモンモードチョークコイル10は、磁気コア14をさらに備えてもよく、かつ、当該磁気コア14には、第1の一次巻線11、第2の一次巻線12及び二次巻線13が巻き付いてもよい。これにより、二次巻線13は、第1の一次巻線11および第2の一次巻線12と電磁カップリングすることができる。1つの実施例として、二次巻線13の磁気コア14における巻き位置は、第1の一次巻線11と第2の一次巻線12との間としてもよい。 In the present embodiment, as shown in FIG. 1, the common mode choke coil 10 may further include a magnetic core 14, and the magnetic core 14 has a first primary winding 11 and a second primary winding 11. The winding 12 and the secondary winding 13 may be wound around. Thereby, the secondary winding 13 can be electromagnetically coupled with the first primary winding 11 and the second primary winding 12. As one example, the winding position of the secondary winding 13 on the magnetic core 14 may be between the first primary winding 11 and the second primary winding 12.
 本実施形態において、磁気コア14はクローズ状に形成されてもよい。例えば、図1において、磁気コア14は、クローズした環状になっている。但し、本実施形態は、これに限定されず、磁気コア14をその他の形状としてもよい。例えば、磁気コア14は、オープンした環状や、棒状などとしてもよい。 In the present embodiment, the magnetic core 14 may be formed in a closed shape. For example, in FIG. 1, the magnetic core 14 has a closed ring shape. However, the present embodiment is not limited to this, and the magnetic core 14 may have another shape. For example, the magnetic core 14 may have an open ring shape or a rod shape.
 本実施形態において、第1のインダクタンスLaは、中空コイル構造またはプリント基板を銅で覆った構造としてもよい。これにより、第1のインダクタンスLaの占める空間が少なくなり、特に、第1のインダクタンスLaはプリント基板を銅で覆った構造とした場合、当該第1のインダクタンスLaは、余計な空間を占めることがないため、コモンモードチョークコイル10を用いたフィルター回路のサイズを縮小することができる。 In the present embodiment, the first inductance L a may have a hollow coil structure or a structure in which a printed circuit board is covered with copper. As a result, the space occupied by the first inductance L a is reduced, and particularly when the first inductance L a has a structure in which the printed circuit board is covered with copper, the first inductance L a has an extra space. Since it does not occupy, the size of the filter circuit using the common mode choke coil 10 can be reduced.
 次に、本発明のコモンモードチョークコイル10の回路モデルについて説明する。 Next, a circuit model of the common mode choke coil 10 of the present invention will be described.
 本実施形態において、図1に示すように、第1の一次巻線11、第2の一次巻線12及び二次巻線13のインダクタンス値は、それぞれL1、L2及びLCTとしている。第1の一次巻線11と第2の一次巻線12とは、それぞれ主回路に接続されてもよい。当該主回路は、交流電源であってもよく、または、交流電源に接続されたラインインピーダンス安定化ネットワークであってもよい。 In the present embodiment, as shown in FIG. 1, the inductance values of the first primary winding 11, the second primary winding 12 and the secondary winding 13 are L 1 , L 2 and L CT , respectively. The first primary winding 11 and the second primary winding 12 may each be connected to a main circuit. The main circuit may be an AC power supply or may be a line impedance stabilization network connected to the AC power supply.
 本実施形態におけるコモンモードチョークコイル10は、信号検出とコモンモード干渉抑制との2つの機能を実現することが可能であり、以下、当該2つの機能についてそれぞれ等価回路を構築する。 The common mode choke coil 10 in the present embodiment can realize two functions of signal detection and common mode interference suppression, and hereinafter, equivalent circuits are constructed for the two functions.
 まずは、信号検出機能の等価回路について説明する。 First, we will explain the equivalent circuit of the signal detection function.
 図1に示すように、同じ巻数を有する第1の一次巻線11および第2の一次巻線12が主回路に接続されており、コモンモードノイズ電流は、第1の一次巻線11および第2の一次巻線12を流れて磁気コア14で同じ方向の磁束を発生させることにより、二次巻線13に信号が発生させ、同時に、ディファレンシャルモードノイズ電流によって発生する磁束は、互いに打ち消されるようになっている。 As shown in FIG. 1, the first primary winding 11 and the second primary winding 12 having the same number of turns are connected to the main circuit, and the common mode noise current is the same as the first primary winding 11 and the first primary winding 11. A signal is generated in the secondary winding 13 by causing the magnetic core 14 to generate magnetic flux in the same direction by flowing through the two primary windings 12, and at the same time, the magnetic fluxes generated by the differential mode noise currents cancel each other out. It has become.
 図2は、本実施形態におけるコモンモードチョークコイルの信号検出機能について構築された等価回路である。図2は、コモンモード信号検出原理に基づいて、第1の一次巻線11および第2の一次巻線12に流れる電流を二次巻線13に等価変換した簡易モデルである。n2pは、第1の一次巻線11および第2の一次巻線12の寄生容量Cpを二次巻線13に換算した等価容量値である。LCTは、二次巻線13のインダクタンスである。RCT及びLaはそれぞれ二次巻線13に接続されている第1の抵抗の抵抗値及び第1のインダクタンスのインダクタンス値である。 FIG. 2 is an equivalent circuit constructed for the signal detection function of the common mode choke coil in this embodiment. FIG. 2 is a simplified model in which the current flowing through the first primary winding 11 and the second primary winding 12 is equivalently converted into the secondary winding 13 based on the common mode signal detection principle. n 2 C p is an equivalent capacitance value obtained by converting the parasitic capacitance C p of the first primary winding 11 and the second primary winding 12 into the secondary winding 13. L CT is the inductance of the secondary winding 13. R CT and L a are the resistance value of the first resistance and the inductance value of the first inductance connected to the secondary winding 13, respectively.
 図2に示す簡易モデルに基づいて、信号検出に関する伝達関数GCT(s)を導き出すことができる。当該伝達関数は、以下の式1に示すようになっている。 The transfer function G CT (s) for signal detection can be derived based on the simple model shown in FIG. The transfer function is as shown in Equation 1 below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、図2において、niは、二次巻線13で検出した電流信号を示しており、VRは、変換によって得られた電圧信号を示している。 Further, in FIG. 2, ni indicates a current signal detected by the secondary winding 13, and V R indicates a voltage signal obtained by conversion.
 次に、コモンモード干渉抑制機能の等価回路について説明する。 Next, the equivalent circuit of the common mode interference suppression function will be explained.
 図3は、本実施形態のコモンモードチョークコイルのコモンモード干渉抑制機能について構築した等価回路である。 FIG. 3 is an equivalent circuit constructed for the common mode interference suppression function of the common mode choke coil of this embodiment.
 コモンモード干渉抑制機能を分析するため、コモンモード等価インピーダンスを得る必要がある。本実施形態のコモンモードチョークコイル10の構造に基づいて、以下の(式2)を得ることができる。 ㆍIn order to analyze the common mode interference suppression function, it is necessary to obtain the common mode equivalent impedance. The following (formula 2) can be obtained based on the structure of the common mode choke coil 10 of the present embodiment.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式2において、Vi及びIiは、該当の巻線の電圧及び電流であり、i=1,2,3。Mij(i,j=1,2,3,i≠j)は、2つの巻線同士の間の相互インダクタンスである。L3は、図1中のLCTに対応している。仮に、インダクタンスL1とL2とが同じであり、かつ対称に分布しており、3つの巻線11、12、13は完全にカップリングしており、カップリング係数kは1である。上記条件に基づいて、図3の(a)に示す等価回路をデカップリング処理すると、図3の(b)に示す等価回路を得ることができる。図3の(b)は、図1のコモンモードチョークコイル10の等価コモンモードインピーダンスZCM1及びZCM2を示している。理想的な状況では、ZCM1とZCM2とは同じ値を有し、コモンモード干渉抑制機能を提供することができる。但し、ZCM1及びZCM2は、それぞれ第1の一次巻線11および第2の一次巻線12の等価コモンモードインピーダンスを示している。 In Equation 2, V i and I i are the voltage and current of the corresponding winding, and i=1, 2, 3. M ij (i,j=1,2,3,i≠j) is the mutual inductance between the two windings. L 3 corresponds to L CT in FIG. Assuming that the inductances L 1 and L 2 are the same and distributed symmetrically, the three windings 11, 12 and 13 are completely coupled, and the coupling coefficient k is 1. By decoupling the equivalent circuit shown in FIG. 3A based on the above conditions, the equivalent circuit shown in FIG. 3B can be obtained. FIG. 3B shows equivalent common mode impedances Z CM1 and Z CM2 of the common mode choke coil 10 of FIG. In an ideal situation, Z CM1 and Z CM2 have the same value and can provide a common mode interference suppression function. However, Z CM1 and Z CM2 represent the equivalent common mode impedances of the first primary winding 11 and the second primary winding 12, respectively.
 また、図3の(a)、(b)において、点線上の矢印は、コモンモード電流の方向を示しており、ICMは、等価コモンモード干渉電流源を示している。図1において、iCMはコモンモード干渉電流を示しており、点線矢印101は、コモンモード電流の方向を示している。 3A and 3B, the arrow on the dotted line indicates the direction of the common mode current, and I CM indicates the equivalent common mode interference current source. In FIG. 1, i CM indicates the common mode interference current, and the dotted arrow 101 indicates the direction of the common mode current.
 本実施形態の上記説明によれば、一次巻線の巻数が多いのに対して、二次巻線の巻数が少ないため、一次巻線がコモンモード干渉が抑制され、十分な検出信号が得られ、一次巻線および二次巻線が高い変換比を有するといった効果を獲得することができる。従って、パッシブフィルターとアクティブフィルターとを容易に統合することができるとともに、システムがより高いゲインを得ることができる。さらに、二次巻線にインダクタンスが直列接続されているため、検出端の位相シフト調整及びインピーダンス整合を実現することができるとともに、二次巻線の巻数が少ないことによる高周波寄生容量への不良影響を抑制して高周波特性を改善することができる。従って、本実施形態のコモンモードチョークコイルは、電磁干渉(EMI)フィルターの小型化を実現することができるだけでなく、良好な高周波特性および高いゲインを得ることもできる。 According to the above description of the present embodiment, the number of turns of the primary winding is large, whereas the number of turns of the secondary winding is small, so that the common mode interference in the primary winding is suppressed, and a sufficient detection signal is obtained. It is possible to obtain the effect that the primary winding and the secondary winding have a high conversion ratio. Therefore, the passive filter and the active filter can be easily integrated, and the system can obtain a higher gain. Furthermore, since the inductance is connected in series to the secondary winding, it is possible to realize phase shift adjustment and impedance matching at the detection end, and the adverse effect on high-frequency parasitic capacitance due to the small number of turns of the secondary winding. Can be suppressed and the high frequency characteristics can be improved. Therefore, the common mode choke coil according to the present embodiment can not only realize the miniaturization of the electromagnetic interference (EMI) filter but also obtain good high frequency characteristics and high gain.
<実施形態2>
 実施形態2は、電磁干渉(EMI)フィルター回路を提供する。当該電磁干渉フィルター回路は、実施形態1に記載のコモンモードチョークコイル10を有している。
<Embodiment 2>
Embodiment 2 provides an electromagnetic interference (EMI) filter circuit. The electromagnetic interference filter circuit includes the common mode choke coil 10 described in the first embodiment.
 図4は、本実施形態の電磁干渉フィルター回路の構成を示す図である。図4に示すように、電磁干渉フィルター回路40は、コモンモードチョークコイル10と、オペアンプ41と、電流注入ネットワーク42とを備えている。 FIG. 4 is a diagram showing the configuration of the electromagnetic interference filter circuit of this embodiment. As shown in FIG. 4, the electromagnetic interference filter circuit 40 includes the common mode choke coil 10, an operational amplifier 41, and a current injection network 42.
 図4に示すように、コモンモードチョークコイル10は、実施形態1に記載したコモンモードチョークコイルであり、実施形態1におけるコモンモードチョークコイル10に関する説明が取り入れられる。 As shown in FIG. 4, the common mode choke coil 10 is the common mode choke coil described in the first embodiment, and the description regarding the common mode choke coil 10 in the first embodiment is incorporated.
 図4に示すように、コモンモードチョークコイル10の第1の一次巻線11の一端111は、インピーダンス安定化ネットワーク(LISN)400の第1の出力端401に接続され、第2の一次巻線12の一端121は、インピーダンス安定化ネットワーク400の第2の出力端402に接続され、第1の一次巻線11の他端112および第2の一次巻線12の他端122は、それぞれ用電設備300の電力入力端301及び302に接続されている。 As shown in FIG. 4, one end 111 of the first primary winding 11 of the common mode choke coil 10 is connected to the first output end 401 of the impedance stabilization network (LISN) 400, and the second primary winding 11 is connected. One end 121 of 12 is connected to the second output end 402 of the impedance stabilization network 400, and the other end 112 of the first primary winding 11 and the other end 122 of the second primary winding 12 are respectively used for utility. It is connected to the power input ends 301 and 302 of the facility 300.
 図4に示すように、オペアンプ41は、2つの入力端411、412がコモンモードチョークコイル10の二次巻線13の両端にそれぞれ接続され、出力端413から補償信号を出力するように構成されている。なお、オペアンプ41の出力端413と入力端411との間に帰還抵抗Rfが接続されている。ここで、入力端411は、例えばオペアンプ41の同相入力端であり、入力端412は、例えばオペアンプ41の逆相入力端である。 As shown in FIG. 4, the operational amplifier 41 is configured such that two input terminals 411 and 412 are respectively connected to both ends of the secondary winding 13 of the common mode choke coil 10 and a compensation signal is output from the output terminal 413. ing. A feedback resistor R f is connected between the output terminal 413 and the input terminal 411 of the operational amplifier 41. Here, the input end 411 is, for example, the in-phase input end of the operational amplifier 41, and the input end 412 is, for example, the anti-phase input end of the operational amplifier 41.
 図4に示すように、1つの実施例として、オペアンプ41の2つの入力端411、412は、それぞれ第3の抵抗Rg、第4の抵抗Rsを介して、コモンモードチョークコイル10の二次巻線13の上記両端に接続されている。 As shown in FIG. 4, as one embodiment, the two input terminals 411 and 412 of the operational amplifier 41 are connected to the two ends of the common mode choke coil 10 via the third resistance R g and the fourth resistance R s , respectively. The secondary winding 13 is connected to the both ends.
 図4に示すように、電流注入ネットワーク42は、第1の一次巻線11の他端112と第2の一次巻線12の他端122との間に直列接続された抵抗およびキャパシタを備えてもよい。当該電流注入ネットワーク42は、オペアンプ41の出力端413に接続され、当該出力端413から出力された補償信号に基づいて、第1の一次巻線11および第2の一次巻線12に電流を注入する。 As shown in FIG. 4, the current injection network 42 includes a resistor and a capacitor connected in series between the other end 112 of the first primary winding 11 and the other end 122 of the second primary winding 12. Good. The current injection network 42 is connected to the output terminal 413 of the operational amplifier 41, and injects a current into the first primary winding 11 and the second primary winding 12 based on the compensation signal output from the output terminal 413. To do.
 図4に示すように、本実施形態において、電流注入ネットワーク42は、順次に直列接続している第1のキャパシタC1と、第2の抵抗R1と、第3の抵抗R2と、第2のキャパシタC2とを備えてもよい。なお、オペアンプ41の出力端413は、第2の抵抗R1と第3の抵抗R2との節点421に接続されている。 As shown in FIG. 4, in this embodiment, the current injection network 42 includes a first capacitor C 1 , a second resistor R 1 , a third resistor R 2, and a third resistor R 2 , which are sequentially connected in series. Two capacitors C 2 may be provided. The output terminal 413 of the operational amplifier 41 is connected to the node 421 between the second resistor R 1 and the third resistor R 2 .
 図4に示すように、本実施形態において、電磁干渉フィルター回路40は、補償キャパシタCfをさらに備えている。当該補償キャパシタCfは帰還抵抗Rfと並列接続している。帰還抵抗Rfと並列接続している補償キャパシタCfは、位相が進んでいる、電磁干渉フィルター回路40の位相余裕を改善し、電磁干渉フィルター回路40の開ループ周波数特性を変えることができる。そのため、電磁干渉フィルター回路40のアクティブフィルタリング機能が安定して作動することが確保され、伝導電磁干渉の高減衰が実現される。 As shown in FIG. 4, in this embodiment, the electromagnetic interference filter circuit 40 further includes a compensation capacitor C f . The compensation capacitor C f is connected in parallel with the feedback resistor R f . The compensation capacitor C f, which is connected in parallel with the feedback resistor R f , can improve the phase margin of the electromagnetic interference filter circuit 40 having the advanced phase and change the open loop frequency characteristic of the electromagnetic interference filter circuit 40. Therefore, it is ensured that the active filtering function of the electromagnetic interference filter circuit 40 operates stably, and high attenuation of conducted electromagnetic interference is realized.
 本実施形態において、図4に示すように、用電設備300は、電磁干渉源であり、インピーダンス安定化ネットワーク(LISN)400は、電磁干渉フィルター回路40の負荷として、標準の50Ωのインピーダンスを提供するように構成されてもよい。電磁干渉フィルター回路40は、パッシブ電磁干渉フィルターの部分およびアクティブ電磁干渉フィルターの部分を含む。なお、コモンモードチョークコイル10の第1の一次巻線11と第2の一次巻線12は、等価コモンモードインピーダンスを有しているため、パッシブ電磁干渉フィルターとすることができる。アクティブ電磁干渉フィルターは、オペアンプ41と、電流注入ネットワーク42と、オペアンプ41に接続された抵抗およびキャパシタとを含む。オペアンプ41の出力端413は、電流注入ネットワークを介して、電流ic1、ic2を第1の一次巻線11、第2の一次巻線12に注入することにより、電磁干渉を抑制し、用電設備300の電磁干渉による電力ネットワークへの影響を防止する。 In the present embodiment, as shown in FIG. 4, the power supply equipment 300 is an electromagnetic interference source, and the impedance stabilization network (LISN) 400 provides a standard impedance of 50Ω as a load of the electromagnetic interference filter circuit 40. May be configured to do so. The electromagnetic interference filter circuit 40 includes a portion of a passive electromagnetic interference filter and a portion of an active electromagnetic interference filter. Since the first primary winding 11 and the second primary winding 12 of the common mode choke coil 10 have equivalent common mode impedance, they can be used as passive electromagnetic interference filters. The active electromagnetic interference filter includes an operational amplifier 41, a current injection network 42, and a resistor and a capacitor connected to the operational amplifier 41. The output terminal 413 of the operational amplifier 41 suppresses electromagnetic interference by injecting the currents i c1 and i c2 into the first primary winding 11 and the second primary winding 12 via the current injection network, The influence of the electromagnetic interference of the electric equipment 300 on the electric power network is prevented.
 本実施形態によれば、電磁干渉フィルター回路は、実施形態1に記載のコモンモードチョークコイルを備えているため、コモンモードチョークコイルの一次巻線を利用してコモンモード干渉を抑制することができるだけでなく、オペアンプを利用してアクティブフィルタリングを行うこともできる。したがって、本実施形態の電磁干渉フィルター回路は、小体積でパッシブ電磁干渉フィルター機能とアクティブ電磁干渉フィルター機能とのハイブリッド機能を実現することができ、良好な電磁干渉フィルタリング効果を得ることができる。また、コモンモードチョークコイルは、一次巻線の巻数が多いのに対して二次巻線の巻数が少なく、かつ、二次巻線にインダクタンスが直列接続されているため、良好な高周波特性および高いゲインを得ることができる。さらに、オペアンプの帰還抵抗は補償キャパシタCfと並列接続して進み補償が形成されているため、電磁干渉フィルター回路の位相余裕が改善され、電磁干渉フィルター回路の開ループ周波数特性を変えることができる。 According to the present embodiment, since the electromagnetic interference filter circuit includes the common mode choke coil described in the first embodiment, it is possible to suppress common mode interference by using the primary winding of the common mode choke coil. Alternatively, an active amplifier can be used to perform active filtering. Therefore, the electromagnetic interference filter circuit of the present embodiment can realize a hybrid function of a passive electromagnetic interference filter function and an active electromagnetic interference filter function with a small volume, and a good electromagnetic interference filtering effect can be obtained. Further, the common mode choke coil has a large number of turns of the primary winding, but has a small number of turns of the secondary winding, and since the inductance is connected in series to the secondary winding, good high frequency characteristics and high Gain can be obtained. Furthermore, since the feedback resistance of the operational amplifier is connected in parallel with the compensation capacitor C f to form advance compensation, the phase margin of the electromagnetic interference filter circuit is improved and the open loop frequency characteristic of the electromagnetic interference filter circuit can be changed. ..
 次に、シミュレーション結果を参照しながら、本実施形態の電磁干渉フィルター回路40の安定性及びフィルタリング効果について説明する。 Next, the stability and filtering effect of the electromagnetic interference filter circuit 40 of the present embodiment will be described with reference to the simulation results.
 シミュレーションにおいて、振幅値が5V、周波数が100kHz、インピーダンスが50Ωである方形波でノイズ源を模擬する。ただし、本実施形態のシミュレーションの条件は、これに限定されることがない。 In the simulation, a noise source is simulated with a square wave having an amplitude value of 5V, a frequency of 100 kHz, and an impedance of 50Ω. However, the simulation condition of the present embodiment is not limited to this.
 シミュレーションにおいて、原ノイズのスペクトルの数値と電磁干渉フィルター回路40に加えた後のノイズスペクトルの数値とを比較することにより、電磁干渉フィルター回路40の挿入ロスを得ることができる。また、電磁干渉フィルター回路40に加えた後のノイズスペクトルの状況に基づいて、システムが安定しているか否かを判断することができる。なお、原ノイズとは、電磁干渉フィルター回路40に加える前の電磁干渉のノイズである。 In the simulation, the insertion loss of the electromagnetic interference filter circuit 40 can be obtained by comparing the numerical value of the original noise spectrum with the numerical value of the noise spectrum after being added to the electromagnetic interference filter circuit 40. Further, it is possible to judge whether or not the system is stable based on the state of the noise spectrum after being added to the electromagnetic interference filter circuit 40. The original noise is noise of electromagnetic interference before being added to the electromagnetic interference filter circuit 40.
 まず、システムの安定化及びフィルタリング効果の最大化を確保することを目標として、コモンモードチョークコイルにおける各巻線のインダクタンス(即ち、L1、L2、LCT)、各巻線の巻数、抵抗RCTの抵抗値、及び第1のインダクタンスLaのインダクタンス値を設定する。そして、概略的に設計されたコモンモードチョークコイル10を基に、電磁干渉フィルター回路40における各素子のパラメータを設定して、シミュレーションを行う。次に、シミュレーション結果について説明する。 First, the inductance of each winding (that is, L 1 , L 2 , L CT ) in the common mode choke coil, the number of windings of each winding, and the resistance R CT are aimed at ensuring the stabilization of the system and maximization of the filtering effect. And the inductance value of the first inductance L a are set. Then, based on the roughly designed common mode choke coil 10, parameters of each element in the electromagnetic interference filter circuit 40 are set, and simulation is performed. Next, the simulation result will be described.
 図5は、本実施形態の電磁干渉フィルター回路のフィルタリング効果を示すシミュレーション結果のグラフである。501は、原ノイズのスペクトルのピーク包絡線を示している。502は、本実施形態の電磁干渉フィルター回路に加えた後のノイズのスペクトルを示しており、当該電磁干渉フィルター回路は、帰還抵抗と並列接続している補償キャパシタCfを備え、かつ、コモンモードチョークコイルの二次巻線に第1のインダクタンスLaが直列接続されている。503は、第1の比較例である電磁干渉フィルター回路に加えた後のノイズのスペクトルを示しており、当該第1の比較例である電磁干渉フィルター回路は、帰還抵抗と並列接続している補償キャパシタCfを備えているが、そのコモンモードチョークコイルの二次巻線に第1のインダクタンスLaが直列接続されていない。504は、第2の比較例である電磁干渉フィルター回路に加えた後のノイズのスペクトルを示しており、当該第2の比較例である電磁干渉フィルター回路は、補償キャパシタCfを備えていないが、そのコモンモードチョークコイルの二次巻線に第1のインダクタンスLaが直列接続されている。また、図5において、横軸は周波数を示し、その単位がヘルツ(Hz)であり、縦軸はノイズ強度を示し、その単位がデシベルマイクロボルト(dBμV)である。 FIG. 5 is a graph of simulation results showing the filtering effect of the electromagnetic interference filter circuit of this embodiment. Reference numeral 501 indicates the peak envelope of the original noise spectrum. Reference numeral 502 shows a spectrum of noise after being added to the electromagnetic interference filter circuit of the present embodiment. The electromagnetic interference filter circuit includes a compensation capacitor C f connected in parallel with a feedback resistor and has a common mode. The first inductance L a is connected in series to the secondary winding of the choke coil. Reference numeral 503 represents a spectrum of noise after being added to the electromagnetic interference filter circuit which is the first comparative example, and the electromagnetic interference filter circuit which is the first comparative example is a compensation resistor connected in parallel with the feedback resistor. Although the capacitor C f is provided, the first inductance L a is not connected in series to the secondary winding of the common mode choke coil. Reference numeral 504 shows a spectrum of noise after being added to the electromagnetic interference filter circuit which is the second comparative example, and the electromagnetic interference filter circuit which is the second comparative example does not include the compensation capacitor C f. The first inductance L a is connected in series to the secondary winding of the common mode choke coil. In FIG. 5, the horizontal axis represents frequency, the unit thereof is hertz (Hz), the vertical axis represents noise intensity, and the unit thereof is decibel microvolt (dBμV).
 図5に示すシミュレーション結果により、次のことが判明された。 The following was found from the simulation results shown in Fig. 5.
 (1)電磁干渉フィルター回路に加えた後、ノイズのスペクトル502には、発振現象が現れていないことから、本実施形態の電磁干渉フィルター回路が高い安定性を有していることを示している。 (1) Since the oscillation phenomenon does not appear in the noise spectrum 502 after being added to the electromagnetic interference filter circuit, it shows that the electromagnetic interference filter circuit of this embodiment has high stability. ..
 (2)本実施形態の電磁干渉フィルター回路は、コモンモード電磁干渉を有効的に抑制することができる。例えば、1MHz(106Hz)の周波数での原ノイズの強度が100dBμVであるのに対して、電磁干渉フィルター回路に加えた後、スペクトル502に示すように、ノイズの強度が30dBμVまで低減されている。即ち、本実施形態の電磁干渉フィルター回路は、電磁ノイズの強度を70dBμV程度減衰させることができる。したがって、このシミュレーション結果は、本実施形態の電磁干渉フィルター回路の実現可能性及び実用性が検証された。 (2) The electromagnetic interference filter circuit of the present embodiment can effectively suppress common mode electromagnetic interference. For example, the intensity of the original noise at a frequency of 1 MHz (10 6 Hz) is 100 dBμV, while after being added to the electromagnetic interference filter circuit, the noise intensity is reduced to 30 dBμV as shown in spectrum 502. There is. That is, the electromagnetic interference filter circuit of this embodiment can attenuate the intensity of electromagnetic noise by about 70 dBμV. Therefore, this simulation result verifies the feasibility and practicality of the electromagnetic interference filter circuit of the present embodiment.
 (3)周波数スペクトル502と周波数スペクトル503とを比較すれば分かるように、本実施形態のコモンモードチョークコイルの二次巻線に第1のインダクタンスLaが直列接続されているため、フィルターのフィルタリング効果が明らかに改善され、特に、高周波領域において著しく改善されている。例えば、1MHzより大きい周波数領域においては、スペクトル502の強度が周波数の増加に伴って持続的に低下するのに対して、スペクトル503の強度が周波数の増加に伴って低下するが、低下の幅がスペクトル502より小さくなっている。したがって、スペクトル502の高周波特性がスペクトル503より優れていることが分かる。 (3) As can be seen by comparing the frequency spectrum 502 and the frequency spectrum 503, since the first inductance L a is connected in series to the secondary winding of the common mode choke coil of the present embodiment, the filtering of the filter is performed. The effect is clearly improved, especially in the high frequency range. For example, in the frequency region higher than 1 MHz, the intensity of the spectrum 502 continuously decreases as the frequency increases, whereas the intensity of the spectrum 503 decreases as the frequency increases, but the width of the decrease is small. It is smaller than the spectrum 502. Therefore, it can be seen that the high frequency characteristics of the spectrum 502 are superior to those of the spectrum 503.
 (4)スペクトル502とスペクトル504とを比較すれば分かるように、本実施形態の電磁干渉フィルター回路は、補償キャパシタCfを備えているため、フィルタリング特性も改善されている。具体的には、スペクトル502のノイズ強度は、全体的にスペクトル504のノイズ強度より低く、特に、高周波領域において著しく低くなっている。例えば、図5に示すように、周波数帯域505において、スペクトル504のノイズ強度が原ノイズ501の強度よりも高くなっており、そのため、補償キャパシタCfがなければ、第1のインダクタンスLaだけでは、高周波数帯においてフィルター回路でノイズを抑制することができず、逆にノイズを増強させることになる。 (4) As can be seen by comparing the spectrum 502 and the spectrum 504, the electromagnetic interference filter circuit of the present embodiment includes the compensation capacitor C f , and therefore the filtering characteristic is also improved. Specifically, the noise intensity of the spectrum 502 is lower than the noise intensity of the spectrum 504 as a whole, and is extremely low particularly in the high frequency region. For example, as shown in FIG. 5, in the frequency band 505, the noise intensity of the spectrum 504 is higher than the intensity of the original noise 501. Therefore, without the compensation capacitor C f , the first inductance L a alone is sufficient. The noise cannot be suppressed by the filter circuit in the high frequency band, but the noise is increased.
 (5)スペクトル503とスペクトル504とを比較すれば分かるように、高周波領域において、スペクトル503のノイズ強度がスペクトル504のノイズ強度より低いが、低周波領域において、例えば図5中の周波数帯域506では、スペクトル503のノイズ強度がスペクトル504のノイズ強度より高くなっている。したがって、第1のインダクタンスLaがなければ、補償キャパシタCfだけでは、スペクトル503に示すように、フィルター回路の低周波領域におけるフィルタリング性能が低くなる恐れがある。 (5) As can be seen by comparing the spectrum 503 with the spectrum 504, the noise intensity of the spectrum 503 is lower than the noise intensity of the spectrum 504 in the high frequency region, but in the low frequency region, for example, in the frequency band 506 in FIG. The noise intensity of spectrum 503 is higher than the noise intensity of spectrum 504. Therefore, without the first inductance L a , the compensation capacitor C f alone may deteriorate the filtering performance in the low frequency region of the filter circuit as shown in the spectrum 503.
 上述した図5におけるスペクトル502、503、504の比較によれば、本実施形態の電磁干渉フィルター回路は、補償キャパシタCfと第1のインダクタンスLaとを備えているため、フィルタリング性能(即ち、ノイズ抑制性能)が大幅に改善され、高周波領域及び低周波領域ともに良好なフィルタリング性能を有している。それに対して、電磁干渉フィルター回路は、補償キャパシタCfおよび第1のインダクタンスLaのうちの一方しか備えていない場合、高周波領域または低周波領域におけるフィルタリング性能が低くなり、ノイズが増強されるといった逆効果まで生じる恐れがある。また、本実施形態によれば、電磁干渉フィルター回路は、小体積でパッシブ電磁干渉フィルタリング機能とアクティブ電磁干渉フィルタリング機能とのハイブリッドを実現することができるので、良好な電磁干渉フィルタリング効果を得ることができるとともに、良好な高周波特性および高いゲインを有する。さらに、オペアンプの帰還抵抗に補償キャパシタCfが並列接続されているため、電磁干渉フィルター回路の開ループ周波数特性が改善されている。 According to the comparison between the spectra 502, 503, and 504 in FIG. 5 described above, the electromagnetic interference filter circuit of the present embodiment includes the compensation capacitor C f and the first inductance L a, and therefore the filtering performance (that is, The noise suppression performance) is significantly improved, and good filtering performance is obtained in both the high frequency region and the low frequency region. On the other hand, when the electromagnetic interference filter circuit includes only one of the compensation capacitor C f and the first inductance L a , the filtering performance in the high frequency region or the low frequency region becomes low, and noise is enhanced. It may cause adverse effects. Further, according to the present embodiment, the electromagnetic interference filter circuit can realize a hybrid of the passive electromagnetic interference filtering function and the active electromagnetic interference filtering function in a small volume, so that a good electromagnetic interference filtering effect can be obtained. In addition to having good high frequency characteristics and high gain. Furthermore, since the compensation capacitor C f is connected in parallel to the feedback resistor of the operational amplifier, the open loop frequency characteristic of the electromagnetic interference filter circuit is improved.
 以上、具体的な実施形態に基づいて本発明について説明を行ったが、当業者であれば分かるように、これらの説明はすべて例示的なものであって、本発明の特許請求の範囲を限定するものではない。当業者は、本発明の精神及び原理に基づいて本発明について様々な変形及び改良を行うことができるが、これらの変形及び改良も本発明の範囲内に入るものである。 The present invention has been described above based on the specific embodiments. However, as will be understood by those skilled in the art, these descriptions are merely illustrative and limit the scope of the claims of the present invention. Not something to do. Those skilled in the art can make various modifications and improvements to the present invention based on the spirit and principle of the present invention, but these modifications and improvements are also within the scope of the present invention.

Claims (8)

  1.  電磁干渉(EMI)フィルター回路であって、
     第1の一次巻線と、第2の一次巻線と、二次巻線と、前記二次巻線の両端に直列接続された第1の抵抗(RCT)及び第1のインダクタンス(La)とを有し、前記二次巻線が前記第1の一次巻線及び前記第2の一次巻線と電磁カップリングし、前記第1の一次巻線の巻数が前記二次巻線の巻数よりも多く設定され、前記第2の一次巻線の巻数が前記二次巻線の巻数よりも多く設定され、前記第1の一次巻線の一端がインピーダンス安定化ネットワークの第1の出力端に接続され、前記第2の一次巻線の一端がインピーダンス安定化ネットワークの第2の出力端に接続され、前記第1の一次巻線の他端及び前記第2の一次巻線の他端がそれぞれ用電設備の電力入力端に接続されるように構成されたコモンモードチョークコイルと、
     2つの入力端が前記コモンモードチョークコイルの前記二次巻線の両端にそれぞれ接続され、出力端から補償信号を出力し、前記出力端と前記入力端との間に帰還抵抗(Rf)が接続されるように構成されたオペアンプと、
     前記第1の一次巻線の前記他端と前記第2の一次巻線の前記他端との間に直列接続された抵抗とキャパシタとを含み、前記オペアンプの前記出力端に接続され、前記補償信号に基づいて前記第1の一次巻線および前記第2の一次巻線に電流を注入するように構成された電流注入ネットワークと、
     を備えていることを特徴とする、電磁干渉(EMI)フィルター回路。
    An electromagnetic interference (EMI) filter circuit,
    A first primary winding, a second primary winding, a secondary winding, and a first resistor (R CT ) and a first inductance (La) connected in series at both ends of the secondary winding. And the secondary winding is electromagnetically coupled with the first primary winding and the second primary winding, and the number of turns of the first primary winding is greater than the number of turns of the secondary winding. The number of turns of the second primary winding is set to be greater than the number of turns of the secondary winding, and one end of the first primary winding is connected to the first output end of the impedance stabilization network. One end of the second primary winding is connected to the second output end of the impedance stabilization network, and the other end of the first primary winding and the other end of the second primary winding are respectively used. A common mode choke coil configured to be connected to the power input end of electrical equipment,
    Two input terminals are respectively connected to both ends of the secondary winding of the common mode choke coil, a compensation signal is output from the output terminal, and a feedback resistor (R f ) is provided between the output terminal and the input terminal. An operational amplifier configured to be connected,
    A resistor and a capacitor connected in series between the other end of the first primary winding and the other end of the second primary winding, and connected to the output end of the operational amplifier; A current injection network configured to inject current into the first primary winding and the second primary winding based on a signal;
    An electromagnetic interference (EMI) filter circuit characterized by comprising:
  2.  前記電磁干渉フィルター回路は、補償キャパシタ(Cf)をさらに備え、当該補償キャパシタ(Cf)が前記帰還抵抗(Rf)と並列接続していることを特徴とする請求項1に記載の電磁干渉フィルター回路。 The electromagnetic interference filter circuit according to claim 1, further comprising a compensation capacitor ( Cf ), the compensation capacitor ( Cf ) being connected in parallel with the feedback resistor ( Rf ). Interference filter circuit.
  3.  前記電流注入ネットワークは、順次に直列接続している第1のキャパシタ(C1)と、第2の抵抗(R1)と、第3の抵抗(R2)と、第2のキャパシタ(C2)とを備え、
     前記オペアンプの前記出力端は、前記第2の抵抗(R1)と前記第3の抵抗(R2)との節点に接続されていることを特徴とする請求項1に記載の電磁干渉フィルター回路。
    The current injection network includes a first capacitor (C 1 ), a second resistor (R 1 ), a third resistor (R 2 ), and a second capacitor (C 2 ) that are sequentially connected in series. ) And
    The electromagnetic interference filter circuit according to claim 1, wherein the output terminal of the operational amplifier is connected to a node between the second resistor (R 1 ) and the third resistor (R 2 ). ..
  4.  前記オペアンプの前記2つの入力端は、それぞれ第3の抵抗(Rg)及び第4の抵抗(Rs)を介して前記コモンモードチョークコイルの前記二次巻線の前記両端に接続されていることを特徴とする請求項1に記載の電磁干渉フィルター回路。 The two input terminals of the operational amplifier are connected to the both ends of the secondary winding of the common mode choke coil via a third resistor (R g ) and a fourth resistor (R s ) respectively. The electromagnetic interference filter circuit according to claim 1, wherein:
  5.  前記第1の一次巻線の巻数が2以上に設定され、かつ、前記第2の一次巻線の巻数が2以上に設定されていることを特徴とする請求項1に記載の電磁干渉フィルター回路。 The electromagnetic interference filter circuit according to claim 1, wherein the number of turns of the first primary winding is set to 2 or more, and the number of turns of the second primary winding is set to 2 or more. ..
  6.  前記第1のインダクタンス(La)が中空コイル構造またはプリント基板を銅で覆う構造であることを特徴とする請求項1に記載の電磁干渉フィルター回路。 The electromagnetic interference filter circuit according to claim 1, wherein the first inductance (L a ) is a hollow coil structure or a structure in which a printed circuit board is covered with copper.
  7.  前記第1の一次巻線の巻数が前記第2の一次巻線の巻数と同じであることを特徴とする請求項1に記載の電磁干渉フィルター回路。 The electromagnetic interference filter circuit according to claim 1, wherein the number of turns of the first primary winding is the same as the number of turns of the second primary winding.
  8.  前記コモンモードチョークコイルは、磁気コアをさらに備え、
     前記第1の一次巻線、前記第2の一次巻線、及び前記二次巻線は、前記磁気コアに巻き付いていることを特徴とする請求項1に記載の電磁干渉フィルター回路。
    The common mode choke coil further comprises a magnetic core,
    The electromagnetic interference filter circuit according to claim 1, wherein the first primary winding, the second primary winding, and the secondary winding are wound around the magnetic core.
PCT/JP2020/006386 2019-02-22 2020-02-19 Electromagnetic interference filter circuit WO2020171095A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021502057A JP7103505B2 (en) 2019-02-22 2020-02-19 Electromagnetic interference filter circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910135279.7 2019-02-22
CN201910135279.7A CN111614094B (en) 2019-02-22 2019-02-22 Electromagnetic interference filter circuit

Publications (1)

Publication Number Publication Date
WO2020171095A1 true WO2020171095A1 (en) 2020-08-27

Family

ID=72143962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006386 WO2020171095A1 (en) 2019-02-22 2020-02-19 Electromagnetic interference filter circuit

Country Status (3)

Country Link
JP (1) JP7103505B2 (en)
CN (1) CN111614094B (en)
WO (1) WO2020171095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127445A1 (en) * 2021-12-28 2023-07-06 株式会社豊田自動織機 Power supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180497A (en) * 2002-11-18 2004-06-24 Power Integrations Inc Method and arrangement for conducting input emi filtering of power supply
US6898092B2 (en) * 2003-06-25 2005-05-24 Picor Corporation EMI filter circuit
JP2016516318A (en) * 2013-02-13 2016-06-02 ヴァレオ システム ドゥ コントロール モトゥール Device and method for filtering electromagnetic interference
JP2017038500A (en) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Conductive noise suppression circuit and inverter device
JP2018157747A (en) * 2017-03-17 2018-10-04 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Active filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458284A (en) * 2008-12-30 2009-06-17 南京师范大学 Common mode noise and differential mode noise separator for conductive electromagnetic interference noise
KR101598259B1 (en) * 2013-12-30 2016-02-26 강원대학교산학협력단 Emi filter apparatus and method for driving thereof
US10177702B2 (en) * 2015-08-12 2019-01-08 Samsung Electronics Co., Ltd. Conduction noise filtering circuit, inverting device, and compressor
KR101939784B1 (en) 2017-09-22 2019-01-18 한밭대학교 산학협력단 Board for EMI of Dash Camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180497A (en) * 2002-11-18 2004-06-24 Power Integrations Inc Method and arrangement for conducting input emi filtering of power supply
US6898092B2 (en) * 2003-06-25 2005-05-24 Picor Corporation EMI filter circuit
JP2016516318A (en) * 2013-02-13 2016-06-02 ヴァレオ システム ドゥ コントロール モトゥール Device and method for filtering electromagnetic interference
JP2017038500A (en) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. Conductive noise suppression circuit and inverter device
JP2018157747A (en) * 2017-03-17 2018-10-04 シャフナー・エーエムファウ・アクチェンゲゼルシャフト Active filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127445A1 (en) * 2021-12-28 2023-07-06 株式会社豊田自動織機 Power supply device

Also Published As

Publication number Publication date
CN111614094A (en) 2020-09-01
CN111614094B (en) 2023-08-18
JP7103505B2 (en) 2022-07-20
JPWO2020171095A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US7403403B2 (en) Noise suppressor
US7199692B2 (en) Noise suppressor
US7193869B2 (en) Noise suppressor
US20070252664A1 (en) Noise Suppression Circuit
US7116203B2 (en) Circuit using choke coil and choke coil
WO2020171095A1 (en) Electromagnetic interference filter circuit
JP4290669B2 (en) Noise suppression circuit
JP2004297551A (en) Noise filter device and switching power supply
JP6251221B2 (en) Noise filter device
JP4424476B2 (en) Noise suppression circuit
JP2004080436A (en) Common-mode signal suppressing circuit
CN113965068A (en) Power supply filter circuit and method capable of inhibiting information leakage of power line
CN109639128B (en) Method for reducing conducted common-mode interference of flyback switching power supply by optimizing transformer structure
Kim et al. A new asymmetrical winding common mode choke capable of attenuating differential mode noise
US7362162B2 (en) Line filter
JP2004356918A (en) Noise suppression circuit
JP4275034B2 (en) Noise suppression circuit
CN216437057U (en) Power supply filter circuit capable of inhibiting information leakage of power line
US9948004B2 (en) Hybrid coil circuit
CN217824765U (en) Output filter for use in a gradient power amplifier
JP4290643B2 (en) Filter circuit
JP7425727B2 (en) LC filter arrangements and electrical or electronic devices comprising such LC filter arrangements
CN113691121B (en) Filter plate and cooking device
US20220059279A1 (en) Coil device, circuit element module, and electronic device
CN215871185U (en) Switching power supply port conduction noise automatic detection cancellation circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759104

Country of ref document: EP

Kind code of ref document: A1