WO2019212257A1 - Power conversion apparatus having scott transformer - Google Patents

Power conversion apparatus having scott transformer Download PDF

Info

Publication number
WO2019212257A1
WO2019212257A1 PCT/KR2019/005262 KR2019005262W WO2019212257A1 WO 2019212257 A1 WO2019212257 A1 WO 2019212257A1 KR 2019005262 W KR2019005262 W KR 2019005262W WO 2019212257 A1 WO2019212257 A1 WO 2019212257A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
power
transformer
scott transformer
phase
Prior art date
Application number
PCT/KR2019/005262
Other languages
French (fr)
Korean (ko)
Inventor
박영호
류승표
김수남
김성일
슈테판밀로바노빅
드라젠두짓
Original Assignee
현대일렉트릭앤에너지시스템(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190049955A external-priority patent/KR102235397B1/en
Application filed by 현대일렉트릭앤에너지시스템(주) filed Critical 현대일렉트릭앤에너지시스템(주)
Priority to CN201980003789.7A priority Critical patent/CN111052588B/en
Priority to US16/634,490 priority patent/US11025171B2/en
Priority to EP19796080.0A priority patent/EP3651343A4/en
Publication of WO2019212257A1 publication Critical patent/WO2019212257A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • H01F30/14Two-phase, three-phase or polyphase transformers for changing the number of phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Definitions

  • the present invention relates to a power conversion device having a Scott transformer.
  • power conversion devices are used in structures such as ships, offshore plants, and railroad cars.
  • the power converter may be a high power DC-AC or a high power DC-DC converter.
  • a transformer and a plurality of multi-level converters may be employed.
  • a current increase of at least one of the plurality of multi-level converters may occur due to current imbalance of the transformer, causing a problem in that the power converter does not operate normally. Can be.
  • Patent Document 1 European Patent Publication No. 2458725
  • Patent Document 2 European Patent Publication No. 2637296
  • a power conversion apparatus employing a scott transformer.
  • a power converter is a DC-AC converter having at least two multi-level converter for converting the input DC power into AC power, hundreds of Hz to Scott transformer operating at a medium frequency of several tens of kHz and converting the voltage level of AC power from each of the at least two multi-level converters from the DC-AC converter into three-phase AC power and outputting the three-phase AC power. It may include an AC-DC converter for converting three-phase AC power from the Scott transformer into DC power.
  • FIG. 1 is a schematic configuration diagram of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a voltage phase diagram of a Scott transformer employed in a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a power conversion apparatus according to another embodiment of the present invention.
  • 4A to 4D are conceptual circuit diagrams and voltage-current waveform graphs showing schematic operations of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 5 is a voltage waveform graph of a power conversion apparatus according to an embodiment or the other embodiment of the present invention.
  • 6A to 6D are conceptual views illustrating an operation when an anode grid or a plurality of single pole grids are input to a power converter according to an embodiment of the present invention, and a partial operation when one pole fails.
  • FIGS. 7A to 7D are diagrams illustrating a partial operation of a positive pole of a positive electrode grid in a power converter according to an embodiment of the present invention and a power converter according to another embodiment.
  • FIG. 1 is a schematic configuration diagram of a power conversion apparatus according to an embodiment of the present invention.
  • the power converter 100 may include a DC-AC converter 110, a Scott transformer 120, and an AC-DC converter 130.
  • the DC-AC converter 110 may include at least two multi-level converters 111 and 112.
  • Each of the at least two multi-level converters 111 and 112 may convert the input DC power into AC power.
  • the multi level converters 111 and 112 may be modular multi level converters.
  • Each of the first and second multi-level converters 111 and 112 may include first DC terminals P1 and N1 and second DC terminals P2 and N2.
  • Each converter of the first and second multi-level converters 111 and 112 is implemented with four arms, and each arm is implemented with a serial connection of a sub module SM connected in series with an ARM inductor. Can be. That is, the first arm connects terminals P1 and A1, the second arm connects terminals P1 and B1, the third arm connects terminals N1 and A1, and the fourth arm connects terminals N1 and B1. .
  • Each of the first and second multi-level converters 111 and 112 may have an A branch and a B branch.
  • the A branch may be configured in series with an upper first arm and a lower second arm and female inductor.
  • the B branch may include an upper third arm, a lower fourth arm and a female inductor in series.
  • the submodule SM may be implemented as a half bridge (HB) cell or a full bridge (FB) cell or a combination of a half bridge and a full bridge.
  • the arm may be implemented as a series combination of submodules combining several types of submodules connected in series with an inductor in the same type.
  • the DC terminal N1 of the first multi-level converter 111 and the second multi The DC terminal P2 of the level converter 112 may be connected together.
  • the DC terminal P1 of the first multi-level converter 111 is connected to the DC + pole
  • the DC terminal N2 of the second multi-level converter 112 is connected to the DC-pole
  • the first multi-level converter 111 is connected.
  • the DC terminal N1 and the DC terminal P2 of the second multi level converter 112 may be connected to DCo.
  • the AC terminal of the first multi level converter 111 is connected to the first primary windings P1 (AP1 ⁇ AN1) of the first transformer T1 of the Scott transformer 120, and of the second multi level converter 112.
  • the AC terminal may be connected to the second primary winding P2 of the second transformer T2 of the Scott transformer 120 (from AP2 to AN2).
  • the first secondary winding S1 of the first transformer T1 has a first terminal BP1 and a second terminal BN1.
  • the second secondary winding S2 of the second transformer T2 has a first terminal BP2, a second terminal B02 and a third terminal BN2, where the second terminal B02 is a first terminal ( It is the center tap connection between BP2) and the third terminal BN2.
  • the second terminal BN1 of the first secondary winding S1 of the first transformer T1 is connected to the second terminal B02 of the second secondary winding S2 of the second transformer T2.
  • the first and second multi-level converters 111 and 112 may employ a submodule SM.
  • the number of submodules SM may vary depending on the available MVDC network voltage level, the selected voltage class of the semiconductor used to implement the submodule SM, and the particular control margin not related to the converter basic operating principle.
  • the submodule SM may be implemented as an active semiconductor device, which allows for degrees of freedom associated with the selection of operating frequencies of the first and second transformers T1 and T2 used in the Scott transformer 120. can do. Accurate operating frequencies are subject to design optimization based on various parameters, but operating frequencies of hundreds of Hz to several kHz are typically achievable with state-of-the-art semiconductor devices.
  • a high voltage semiconductor eg, 6.5 kV
  • the allowable operating frequency may be limited to less than several tens of kHz.
  • a low voltage semiconductor for example, 1.7 kV
  • FIG. 2 is a voltage phase diagram of a Scott transformer employed in a power conversion apparatus according to an embodiment.
  • the Scott transformer 120 may be implemented using two double winding transformers T1 and T2.
  • the second secondary winding S2 of the second transformer T2 is divided into two parts, both of which have the same number of turns as N / 2, which enables center tap connection and also the first secondary winding of the first transformer T1. It may be connected to the bottom of (S1).
  • the upper end of the first secondary winding S1 of the first transformer T1 and the upper end and the lower end of the second secondary winding S2 of the second transformer T2 are the secondary of the Scott transformer 120 indicated by A, B and C. Used as a vehicle side terminal. In order to ensure the normal operation of the Scott transformer 120, the number of turns of the first secondary winding S1 of the first transformer T1 is Should be set to.
  • the secondary terminal line voltages (VAB, VBC, and VCA) of the Scott transformer 120 are balanced three phases with three phase 120 degree phase differences, while the primary terminal voltages VT1 and VT2 of the Scott transformer 120 have 90 degree phase differences. It has a single phase.
  • the Scott transformer 120 may operate at a medium frequency of several hundred Hz to several tens of kHz.
  • the operating frequency of the European railway is 16 and 2/3 Hz to 60 Hz, and the volume and weight may increase when the Scott transformer operates at a commercial frequency of 50 Hz to 60 Hz.
  • the Scott transformer 120 of the present invention operates at a medium frequency of several hundred Hz to several tens of kHz, so that volume and weight can be reduced to several ten percent or less compared to a Scott transformer operating at a commercial frequency. If Scott transformers operating at commercial frequencies operate at frequencies below hundreds of Hz or tens of kHz, smooth operation is difficult, and there is no sense of size and weight reduction.
  • the DC-AC converter 110 and the AC-DC converter 130 may also operate at a medium frequency of several hundred Hz to several tens of kHz.
  • the DC-AC converter 110 converts a bipole DC or unipole DC power into two single-phase AC powers having a 90 degree phase difference
  • the Scott transformer 120 converts two single-phase AC powers into three-phase AC powers.
  • the AC-DC converter 130 may convert three-phase AC power into unipolar DC power.
  • the AC-DC converter 130 may have two semiconductor switches S1, S4, S3, S6, and S5 and S2 connected in series with each other, and may include three legs connected in parallel with each other. .
  • the AC-DC converter 130 includes a DC terminal, a first DC terminal P3 and a second DC terminal N3, and an AC terminal, that is, the first AC terminal A and the second AC terminal AB and the first terminal. 3 may be provided with an AC terminal C, and the AC terminal of the AC-DC converter 130 may be connected to the secondary terminals of the Scott transformer 120, that is, BP1, BP2, and BN2.
  • the DC terminal side of the AC-DC converter 130 may have a kind of filter, for example, a capacitive filter bank.
  • the AC-DC converter 230 operates with a square wave voltage to minimize switching loss.
  • the AC-DC converter 230 When the AC-DC converter 230 is composed of three legs connected in parallel with each other having two semiconductor switches S1, S4, S3, S6, and S5, S2 connected in series with each other, The legs may each receive AC power of each phase of three-phase AC power from Scott transformer 220, and the three legs may be operated by six-step operation and may deliver power in both directions. Can be.
  • the AC-DC converter 130 may be composed of three legs by transferring three-phase AC power from the Scott transformer 120, so that the number of devices may be reduced in comparison with the case where two H bridges are formed. .
  • FIG. 3 is a schematic diagram of a power conversion apparatus according to another embodiment of the present invention.
  • the power conversion apparatus 200 may provide an AC-contrast in comparison with the power conversion apparatus 100 according to the embodiment of the present invention illustrated in FIG. 1. It may include an AC-DC converter 230 having a different configuration from the DC converter 130.
  • the AC-DC converter 230 of the power converter 200 is an AC-DC converter of the power converter 100 according to the embodiment of the present invention shown in FIG. 1.
  • three legs having two diodes D1, D4, D3, D6, and D5, D2 connected in series with each other may include three legs connected in parallel with each other. Accordingly, power can be transmitted in one direction.
  • the AC-DC converter 230 may be composed of three legs by transferring three-phase AC power from the Scott transformer 220, so as to reduce the number of devices in case of two H bridges. The efficiency can be increased by rectifying square waves.
  • the first and second multi-level converters 211, 212 now operate to provide sinusoidal voltages VMMC1 and VMMC2 to the primary winding of Scott transformer 220 at their respective AC terminals.
  • the fundamental frequencies of the voltages VMMC1 and VMMC2 may define operating frequencies of the first and second transformers T1 and T2 of the Scott transformer 220.
  • the magnitudes of the voltages applied to the first and second transformers T1 and T2 must be adjusted.
  • the voltages VT1 and VT2 of the first and second transformers T1 and T2 should be generated with a phase shift equal to one quarter of the fundamental period (90 degree electrical diagram), and the line voltage of the secondary winding of the Scott transformer 320 ( VAB, VBC, VCA) are symmetrical.
  • 4A to 4D are conceptual circuit diagrams and voltage-current waveform graphs illustrating an operation of a power conversion apparatus according to an embodiment of the present invention.
  • FIG. 4A equivalent circuits of the first and second multi-level converters 211 and 212 connected to the first and second transformers T1 and T2, respectively, are illustrated in FIG. Can be seen.
  • the voltage waveform VMMC1 (between the A and B branches of the first multi-level converter 111) with respect to the voltages generated on the secondary side (provided by the AC-DC converter 230).
  • the current of the first and second transformers T1 and T2 can be controlled by adjusting the phase shift of the voltage) and VMMC2 (the voltage between the A and B branches of the second multi-level converter 112).
  • the voltage VMMC1 of the first multi-level converter 111 and the VMMC2 of the second multi-level converter 112 are waveforms generated by the AC-DC converter 130 at their AC terminals, that is, VAB, VBC, and VCA.
  • the signal for the leg of the AC-DC converter 130 may be phase shifted from each other by 1/3 of the fundamental period.
  • the voltage waveforms of the AC terminals A, B and C are at two separate voltage levels (0, Vo) with respect to the DC terminal N3.
  • the phases may be generated out of phase with each other. 3 levels of voltage (as a result of direct subtraction of both leg voltages) and voltage levels (Vo, 0, -Vo) to the AC terminals (VAB, VBC, VCA) of the AC-DC converter 130 of this reference line. It may have (see Fig. 4b).
  • VT1 voltage of the first primary winding of the first transformer T1
  • VT2 voltage of the second primary winding of the second transformer T2
  • m1 is the primary and secondary winding ratio of transformer T1 and m2 is the primary and secondary winding ratio of transformer T2.
  • the power converter of the present invention may have the following technical effects.
  • the DC-AC converter of the present invention uses two single-phase multi-level converters. As a result, the total number of semiconductor devices can be reduced to two-thirds, thereby reducing the size of the converter. The current capacity of the device is increased, but this can be canceled out in large part by significantly reducing the complexity of the circuit of the AC-DC converter.
  • Scott transformers can be used to make the system more compact by reducing the number of effective turns of the system by a quarter, which makes it suitable for specific applications such as railways. It also simplifies transformer design.
  • FIG. 5 is a voltage waveform graph of a power conversion apparatus according to another embodiment of the present invention.
  • the voltage unbalance generated in each leg of the AC-DC converter 230 does not affect the output voltage.
  • the topology of the unidirectional power converter does not affect the operation of transformer turn ratio or phase shift imbalance in actual implementation.
  • the output voltage Vo has a typical waveform of a 6 pulse diode rectifier.
  • 6A to 6D are conceptual views illustrating an operation when an anode grid or a plurality of single pole grids are input to a power converter according to an embodiment of the present invention, and a partial operation when one pole fails.
  • FIG. 6A when a bipolar grid is provided, the first and second multi level converters are connected in series as shown.
  • FIG. 6B a redundancy principle is shown when one of two multi-level converters fails or one pole of an external grid fails to supply power. The faulty pole is isolated from the circuit and the other continues to run at half the rated power.
  • the first and second multi-level converters operate independently of one another (synchronized with Scott transformer).
  • FIG. 6D a redundancy principle is shown when one of the two monopole grids fails. The faulty pole is isolated from the circuit and the other continues to run at half the rated power.
  • FIGS. 7A to 7D are diagrams illustrating a partial operation of a positive pole of a positive electrode grid in a power converter according to an embodiment of the present invention and a power converter according to another embodiment.
  • a bipolar network with a neutral wire can be used, in which case the DC terminal P1 of the first multi-level converter is connected to the DC + pole, the DC terminal N2 of the second multi-level converter is connected to the DC- pole, and the first multi-level DC terminal N1 of the converter and DC terminal P2 of the second multi-level converter are connected to DC0.
  • the other one pole can continue to operate in half of the system in abnormal mode. .
  • the failed multi-level converter is isolated from the rest of the circuit, so the associated transformer (second transformer T2 in Figures 7A and 7C) acts as a bypass connection circuit that provides a small winding leakage inductance.
  • the associated transformer second transformer T2 in Figures 7A and 7C acts as a bypass connection circuit that provides a small winding leakage inductance.
  • the AC-DC converter one of the three legs cannot function, but the other two legs continue to operate in a manner similar to a single-phase DAB.

Abstract

The present invention may comprise: a direct current-to-alternating current conversion unit having at least two multi-level converters each converting input direct-current power into alternating-current power; a Scott transformer which operates at a medium frequency of hundreds of Hz to tens of thousands of Hz so that a voltage level of the alternating-current power from each of the at least two multi-level converters of the direct current-to-alternating current conversion unit is transformed into three-phase alternating-current power to be output; and an alternating current-to-direct current conversion unit for converting the three-phase alternating-current power from the Scott transformer into direct-current power.

Description

스콧 트랜스포머를 갖는 전력 변환 장치Power Converter with Scott Transformer
본 발명은 스콧 트랜스포머를 갖는 전력 변환 장치에 관한 것이다.The present invention relates to a power conversion device having a Scott transformer.
일반적으로, 선박, 해양 플랜트, 철도 차량 등의 구조물에서 전력 변환 장치가 사용된다.In general, power conversion devices are used in structures such as ships, offshore plants, and railroad cars.
한편, 선박, 해양 플랜트, 철도 차량 등의 구조물에서는 다양한 전력 레벨이 필요할 수 있으며, 이를 위해 전력 변환 장치는 고전력 직류-교류 또는 고전력 직류-직류 변환 장치일 수 있다.Meanwhile, structures such as ships, offshore plants, and railroad cars may require various power levels, and for this purpose, the power converter may be a high power DC-AC or a high power DC-DC converter.
상술한 전력 변환 장치는 트랜스포머 및 복수의 멀티 레벨 컨버터 등이 채용될 수 있으나, 트랜스포머의 전류 불균형으로 복수의 멀티 레벨 컨버터 중 적어도 하나의 전류 증가가 발생되어 전력 변환 장치가 정상 동작하지 못하는 문제점이 발생될 수 있다.As the above-described power converter, a transformer and a plurality of multi-level converters may be employed. However, a current increase of at least one of the plurality of multi-level converters may occur due to current imbalance of the transformer, causing a problem in that the power converter does not operate normally. Can be.
(특허문헌1) 유럽 등록특허공보 2458725호(Patent Document 1) European Patent Publication No. 2458725
(특허문헌2) 유럽 등록특허공보 2637296호(Patent Document 2) European Patent Publication No. 2637296
본 발명의 일 실시예에 따르면, 스콧 트랜스포머(scott transformer)를 채용한 전력 변환 장치가 제공된다.According to one embodiment of the present invention, a power conversion apparatus employing a scott transformer is provided.
상술한 본 발명의 과제를 해결하기 위해, 본 발명의 일 실시예에 따른 전력 변환 장치는 입력 직류 전력을 교류 전력으로 각각 변환하는 적어도 둘의 멀티 레벨 컨버터를 갖는 직류-교류 변환부, 수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작하여 상기 직류-교류 변환부로부터의 적어도 둘의 멀티 레벨 컨버터 각각으로부터의 교류 전력의 전압 레벨을 삼상 교류 전력으로 변압하여 출력하는 스콧 트랜스포머(scott transformer), 상기 스콧 트랜스포머로부터의 삼상 교류 전력을 직류 전력으로 변환하는 교류-직류 변환부를 포함할 수 있다.In order to solve the above problems of the present invention, a power converter according to an embodiment of the present invention is a DC-AC converter having at least two multi-level converter for converting the input DC power into AC power, hundreds of Hz to Scott transformer operating at a medium frequency of several tens of kHz and converting the voltage level of AC power from each of the at least two multi-level converters from the DC-AC converter into three-phase AC power and outputting the three-phase AC power. It may include an AC-DC converter for converting three-phase AC power from the Scott transformer into DC power.
본 발명의 일 실시예에 따르면, 멀티 레벨 컨버터에서 장애가 발생할 경우에도 정상적인 전원 변환 동작을 수행할 수 있는 효과가 있다.According to an embodiment of the present invention, even when a failure occurs in the multi-level converter, it is possible to perform a normal power conversion operation.
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 개략적인 구성도이다.1 is a schematic configuration diagram of a power conversion apparatus according to an embodiment of the present invention.
도 2은 본 발명의 일 실시예에 따른 전력 변환 장치에 채용된 스콧 트랜스포머의 전압 위상 다이어그램이다.2 is a voltage phase diagram of a Scott transformer employed in a power conversion apparatus according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 실시예에 따른 전력 변환 장치의 개략적인 구성도이다.3 is a schematic diagram of a power conversion apparatus according to another embodiment of the present invention.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 전력 변환 장치의 개략적인 동작을 나타내는 개념적인 회로도 및 전압-전류 파형 그래프이다.4A to 4D are conceptual circuit diagrams and voltage-current waveform graphs showing schematic operations of a power conversion apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예 또는 다른 일 실시예에 따른 전력 변환 장치의 전압 파형 그래프이다.5 is a voltage waveform graph of a power conversion apparatus according to an embodiment or the other embodiment of the present invention.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 전력 변환 장치에 양극 그리드 또는 복수의 단극 그리드가 입력될 경우의 동작과 한 극이 고장시의 부분 동작을 나타내는 개념도이다.6A to 6D are conceptual views illustrating an operation when an anode grid or a plurality of single pole grids are input to a power converter according to an embodiment of the present invention, and a partial operation when one pole fails.
도 7a 내지 도 7d는 본 발명의 일 실시예에 따른 전력 변환 장치 및 다른 일 실시예에 따른 전력 변환 장치에서 양극 그리드의 한극 고장시의 부분 동작을 나타내는 도면이다.7A to 7D are diagrams illustrating a partial operation of a positive pole of a positive electrode grid in a power converter according to an embodiment of the present invention and a power converter according to another embodiment.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
도 1은 본 발명의 일 실시예에 따른 전력 변환 장치의 개략적인 구성도이다.1 is a schematic configuration diagram of a power conversion apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전력 변환 장치(100)는 직류-교류 변환부(110), 스콧 트랜스포머(120) 및 교류-직류 변환부(130)를 포함할 수 있다.Referring to FIG. 1, the power converter 100 according to an embodiment of the present invention may include a DC-AC converter 110, a Scott transformer 120, and an AC-DC converter 130.
직류-교류 변환부(110)는 적어도 둘의 멀티 레벨 컨버터(111,112)를 포함할 수 있다.The DC-AC converter 110 may include at least two multi-level converters 111 and 112.
적어도 둘의 멀티 레벨 컨버터(111,112) 각각은 입력된 직류 전력을 교류 전력으로 변환할 수 있다. 멀티 레벨 컨버터(111,112)는 모듈형 멀티 레벨 컨버터일 수 있다.Each of the at least two multi-level converters 111 and 112 may convert the input DC power into AC power. The multi level converters 111 and 112 may be modular multi level converters.
제1 및 제2 멀티 레벨 컨버터(111,112) 각각은 제1 DC 단자(P1, N1) 및 제2 DC 단자(P2, N2)를 구비할 수 있다.Each of the first and second multi-level converters 111 and 112 may include first DC terminals P1 and N1 and second DC terminals P2 and N2.
제1 및 제2 멀티 레벨 컨버터(111,112) 각각의 컨버터는 4 개의 암(arm)으로 구현되며, 각 암은 암(ARM) 인덕터(Larm)와 직렬로 연결된 서브 모듈 (SM)의 직렬 연결로 구현될 수 있다. 즉, 제1 암은 단자 P1 및 A1을 연결하고, 제2 암은 단자 P1 및 B1을 연결하고, 제3 암은 단자 N1 및 A1을 연결하며, 제4 암은 단자 N1 및 B1을 연결할 수 있다. 제1 및 제2 멀티 레벨 컨버터(111,112) 각각은 A 분기 및 B 분기를 가질 수 있다. 상기 A 분기는 상부의 제1 암 및 하부의 제2 암 및 암 인덕터로 직렬로 구성될 수 있다. 상기 B 분기는 상부의 제3 암, 하부의 제4 암 및 암 인덕터가 직렬로 구성될 수 있다.Each converter of the first and second multi-level converters 111 and 112 is implemented with four arms, and each arm is implemented with a serial connection of a sub module SM connected in series with an ARM inductor. Can be. That is, the first arm connects terminals P1 and A1, the second arm connects terminals P1 and B1, the third arm connects terminals N1 and A1, and the fourth arm connects terminals N1 and B1. . Each of the first and second multi-level converters 111 and 112 may have an A branch and a B branch. The A branch may be configured in series with an upper first arm and a lower second arm and female inductor. The B branch may include an upper third arm, a lower fourth arm and a female inductor in series.
서브 모듈(SM)은 하프 브리지 (HB) 셀 또는 풀 브리지 (FB) 셀 또는 하프 브리지와 풀 브리지의 조합으로 구현될 수 있다. 암(ARM)은 인덕터(Larm)와 직렬로 연결된 여러 유형의 서브 모듈을 동일한 유형으로 조합한 서브 모듈의 시리즈 조합으로 구현될 수 있다.The submodule SM may be implemented as a half bridge (HB) cell or a full bridge (FB) cell or a combination of a half bridge and a full bridge. The arm may be implemented as a series combination of submodules combining several types of submodules connected in series with an inductor in the same type.
중성선을 지닌 바이폴라 MVDC(Medium Voltage Direct Current) 네트워크가 MVDC 측에서 사용 가능하고 3극 (DC +, DCo, DC-)이 있는 경우, 제1 멀티 레벨 컨버터(111)의 DC 단자 N1과 제2 멀티 레벨 컨버터(112)의 DC 단자 P2를 함께 연결할 수 있다. 이때, 제1 멀티 레벨 컨버터(111)의 DC 단자 P1은 DC + 극에 접속되고, 제2 멀티 레벨 컨버터(112)의 DC 단자 N2는 DC-극에 접속되고, 제1 멀티 레벨 컨버터(111)의 DC 단자 N1과 제2 멀티 레벨 컨버터(112)의 DC 단자 P2는 DCo에 접속될 수 있다.When a bipolar MVDC (medium voltage direct current) network with a neutral wire is available on the MVDC side and there are three poles (DC +, DCo, DC-), the DC terminal N1 of the first multi-level converter 111 and the second multi The DC terminal P2 of the level converter 112 may be connected together. At this time, the DC terminal P1 of the first multi-level converter 111 is connected to the DC + pole, the DC terminal N2 of the second multi-level converter 112 is connected to the DC-pole, and the first multi-level converter 111 is connected. The DC terminal N1 and the DC terminal P2 of the second multi level converter 112 may be connected to DCo.
제1 멀티 레벨 컨버터(111)의 AC 단자는 스콧 트랜스포머(120)의 제1 트랜스포머(T1)의 제1 일차 권선(P1)(AP1 ~ AN1)에 연결되고, 제2 멀티 레벨 컨버터(112)의 AC 단자는 스콧 트랜스포머(120)의 제2 트랜스포머(T2)의 제2 일차 권선(P2)에 연결될 수 있다(AP2 ~ AN2로). 제1 트랜스포머(T1)의 제1 이차 권선(S1)은 제1 단자 (BP1)와 제2 단자 (BN1)를 갖는다. 제2 트랜스포머(T2)의 제2 이차 권선(S2)은 제1 단자 (BP2), 제2 단자 (B02) 및 제3 단자 (BN2)를 가지며, 여기서 제2 단자 (B02)는 제1 단자 (BP2)와 제3 단자 (BN2) 사이의 중앙 탭 접속이다. 또한, 제1 트랜스포머(T1)의 제1 이차 권선(S1)의 제2 단자 (BN1)는 제2 트랜스포머(T2)의 제2 이차 권선(S2)의 제2 단자 (B02)에 접속된다.The AC terminal of the first multi level converter 111 is connected to the first primary windings P1 (AP1 ˜ AN1) of the first transformer T1 of the Scott transformer 120, and of the second multi level converter 112. The AC terminal may be connected to the second primary winding P2 of the second transformer T2 of the Scott transformer 120 (from AP2 to AN2). The first secondary winding S1 of the first transformer T1 has a first terminal BP1 and a second terminal BN1. The second secondary winding S2 of the second transformer T2 has a first terminal BP2, a second terminal B02 and a third terminal BN2, where the second terminal B02 is a first terminal ( It is the center tap connection between BP2) and the third terminal BN2. In addition, the second terminal BN1 of the first secondary winding S1 of the first transformer T1 is connected to the second terminal B02 of the second secondary winding S2 of the second transformer T2.
MVDC 네트워크를 인터페이스하려면 제1 및 제2 멀티 레벨 컨버터(111,112)는 서브 모듈(SM)을 채용할 수 있다. 서브 모듈(SM)의 개수는 사용 가능한 MVDC 네트워크 전압 수준, 서브 모듈(SM)을 구현하는 데 사용되는 반도체의 선택된 전압 클래스 및 변환기 기본 동작 원리와 관련이 없는 특정 제어 마진에 따라 다를 수 있다.In order to interface the MVDC network, the first and second multi-level converters 111 and 112 may employ a submodule SM. The number of submodules SM may vary depending on the available MVDC network voltage level, the selected voltage class of the semiconductor used to implement the submodule SM, and the particular control margin not related to the converter basic operating principle.
예를 들어, 서브 모듈(SM)은 활성 반도체 소자로 구현될 수 있으며, 이는 스콧 트랜스포머(120)에서 사용되는 제1 및 제2 트랜스포머(T1, T2)의 동작 주파수의 선택과 관련된 자유도를 가능하게 할 수 있다. 정확한 동작 주파수는 다양한 파라미터에 기초한 설계 최적화의 대상이 되지만, 일반적으로 수백 Hz에서 수 kHz의 동작 주파수는 최첨단 반도체 디바이스로 달성할 수 있다.For example, the submodule SM may be implemented as an active semiconductor device, which allows for degrees of freedom associated with the selection of operating frequencies of the first and second transformers T1 and T2 used in the Scott transformer 120. can do. Accurate operating frequencies are subject to design optimization based on various parameters, but operating frequencies of hundreds of Hz to several kHz are typically achievable with state-of-the-art semiconductor devices.
고전압 반도체 (예: 6.5kV)를 사용하면 제1 및 제2 멀티 레벨 컨버터(111,112)의 서브 모듈(SM)의 수가 더 적어질 수 있으나 허용 작동 주파수가 수십 kHz 미만으로 제한될 수 있다. 반면, 저전압 반도체 (예를 들어, 1.7kV)를 사용하면 제1 및 제2 멀티 레벨 컨버터(111,112)의 서브 모듈(SM)의 수가 증가하지만, 보다 높은 스위칭 주파수가 가능해진다.The use of a high voltage semiconductor (eg, 6.5 kV) may result in a smaller number of sub-modules SM of the first and second multi-level converters 111 and 112, but the allowable operating frequency may be limited to less than several tens of kHz. On the other hand, the use of a low voltage semiconductor (for example, 1.7 kV) increases the number of sub-modules SM of the first and second multi-level converters 111 and 112, but enables a higher switching frequency.
도 2는 일 실시예에 따른 전력 변환 장치에 채용된 스콧 트랜스포머의 전압 위상 다이어그램이다.2 is a voltage phase diagram of a Scott transformer employed in a power conversion apparatus according to an embodiment.
도 2를 참조하면, 스콧 트랜스포머(120)는 두 개의 2중 권선 트랜스포머 (T1 및 T2)를 사용하여 구현될 수 있다. 제1 및 제2 트랜스포머(T1,T2)는 각각 하나의 일차 권선 (Pk) 및 이차 권선(Sk) (여기서, k = 1 또는 2 및 T1 및 T2의 권선을 나타냄)를 포함할 수 있다. 제2 트랜스포머(T2)의 제2 이차 권선(S2)은 두 부분으로 나뉘며, 둘 다 N/2와 같은 권선수를 가지며 센터 탭 연결이 가능하게 되고 또한 제1 트랜스포머(T1)의 제1 이차 권선(S1)의 하단에 연결될 수 있다.Referring to FIG. 2, the Scott transformer 120 may be implemented using two double winding transformers T1 and T2. The first and second transformers T1 and T2 may each comprise one primary winding Pk and secondary winding Sk, where k = 1 or 2 and the windings of T1 and T2. The second secondary winding S2 of the second transformer T2 is divided into two parts, both of which have the same number of turns as N / 2, which enables center tap connection and also the first secondary winding of the first transformer T1. It may be connected to the bottom of (S1).
제1 트랜스포머(T1)의 제1 이차 권선(S1)의 상단과 제2 트랜스포머(T2)의 제2 이차 권선(S2)의 상단 및 하단은 A, B 및 C로 표시된 스콧 트랜스포머(120)의 이 차측 단자로 사용된다. 스콧 트랜스포머(120)의 정상적인 동작을 보장하기 위해 제1 트랜스포머(T1)의 제1 이차 권선(S1)의 권선수는
Figure PCTKR2019005262-appb-I000001
로 설정되어야 한다.
The upper end of the first secondary winding S1 of the first transformer T1 and the upper end and the lower end of the second secondary winding S2 of the second transformer T2 are the secondary of the Scott transformer 120 indicated by A, B and C. Used as a vehicle side terminal. In order to ensure the normal operation of the Scott transformer 120, the number of turns of the first secondary winding S1 of the first transformer T1 is
Figure PCTKR2019005262-appb-I000001
Should be set to.
결과적으로, 제1 트랜스포머(T1)의 제1 일차 권선(P1) 및 제2 트랜스포머(T2)의 제2 일차 권선(P2)의 권선수를 동일하게 하면 권선비 관계는
Figure PCTKR2019005262-appb-I000002
로 유도될 수 있다.
As a result, when the number of turns of the first primary winding P1 of the first transformer T1 and the second primary winding P2 of the second transformer T2 is the same, the turns ratio relation is
Figure PCTKR2019005262-appb-I000002
May be induced.
스콧 트랜스포머(120)의 2 차측 단자 선간 전압(VAB, VBC 및 VCA)은 삼상 120도 위상차를 갖는 평형 삼상인 반면에 스콧 트랜스포머(120)의 1 차측 단자 전압 (VT1 및 VT2)은 90도 위상차를 갖는 단상이다.The secondary terminal line voltages (VAB, VBC, and VCA) of the Scott transformer 120 are balanced three phases with three phase 120 degree phase differences, while the primary terminal voltages VT1 and VT2 of the Scott transformer 120 have 90 degree phase differences. It has a single phase.
스콧 트랜스포머(120)는 수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작할 수 있다.The Scott transformer 120 may operate at a medium frequency of several hundred Hz to several tens of kHz.
본 발명의 전력 변환 장치의 사용처가 유럽 철도인 경우, 유럽 철도의 사용 주파수는 16과 2/3 Hz 내지 60Hz가 사용되며, 스콧 트랜스포머가 50Hz 내지 60Hz의 상용 주파수에 동작하는 경우 부피 및 무게가 커질 수 밖에 없다. 이에 반하여 본 발명의 스콧 트랜스포머(120)는 수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작하여, 상용 주파수에 동작하는 스콧 트랜스포머에 대비해서 부피 및 무게가 수십% 이하로 저감될 수 있다. 만일 상용 주파수에서 동작하는 스콧 트랜스포머가 수백 Hz 이하나 수십 kHz 이상의 주파수로 동작하는 경우 원활한 동작이 어렵고, 사이즈 및 무게 저감의 의미가 없다. 따라서 중간 주파수에서 동작할 수 있도록 스콧 트랜스포머에 적절한 코어 재질이나 권선을 적용하여 새롭게 개발할 필요가 있으며, 향후 스콧 트랜스포머 뿐만 아니라 직류-교류 변환부 또는 교류-직류 변환부의 반도체 소자 특성이 발전되는 경우 수백 kHz 이상의 하이 주파수(High Frequency)에서도 동작이 가능할 수도 있다.When the power conversion device of the present invention is used in the European railway, the operating frequency of the European railway is 16 and 2/3 Hz to 60 Hz, and the volume and weight may increase when the Scott transformer operates at a commercial frequency of 50 Hz to 60 Hz. There is no choice but to. In contrast, the Scott transformer 120 of the present invention operates at a medium frequency of several hundred Hz to several tens of kHz, so that volume and weight can be reduced to several ten percent or less compared to a Scott transformer operating at a commercial frequency. If Scott transformers operating at commercial frequencies operate at frequencies below hundreds of Hz or tens of kHz, smooth operation is difficult, and there is no sense of size and weight reduction. Therefore, it is necessary to newly develop by applying the appropriate core material or winding to Scott transformer so that it can operate at intermediate frequency. Hundreds of kHz will be developed when the characteristics of semiconductor devices in DC-AC converter or AC-DC converter as well as Scott transformer are developed in the future. Operation may be possible even at the high frequency.
직류-교류 변환부(110) 및 교류-직류 변환부(130) 또한, 수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작할 수 있다.The DC-AC converter 110 and the AC-DC converter 130 may also operate at a medium frequency of several hundred Hz to several tens of kHz.
직류-교류 변환부(110)는 양극(Bipole) 직류 또는 단극(Unipole) 직류 전력을 90도 위상차를 갖는 둘의 단상 교류 전력으로 변환하고, 스콧 트랜스포머(120)는 둘의 단상 교류 전력을 삼상 교류 전력으로 변환하며, 교류-직류 변환부(130)는 삼상 교류 전력을 단극 직류 전력으로 변환할 수 있다.The DC-AC converter 110 converts a bipole DC or unipole DC power into two single-phase AC powers having a 90 degree phase difference, and the Scott transformer 120 converts two single-phase AC powers into three-phase AC powers. Converting to electric power, the AC-DC converter 130 may convert three-phase AC power into unipolar DC power.
교류-직류 변환부(130)는 서로 직렬 연결된 둘의 반도체 스위치(S1,S4),(S3,S6),(S5,S2)를 각각 가지며 서로 병렬 연결된 셋의 레그(leg)를 포함할 수 있다.The AC-DC converter 130 may have two semiconductor switches S1, S4, S3, S6, and S5 and S2 connected in series with each other, and may include three legs connected in parallel with each other. .
교류-직류 변환부(130)는 DC 단자, 제 1 DC 단자 (P3) 및 제 2 DC 단자 (N3), 및 AC 단자, 즉 제 1 AC 단자 (A) 및 제 2 AC 단자 (AB) 및 제 3 AC 단자 (C)를 구비할 수 있고, 교류-직류 변환부(130)의 AC 단자는 스콧 트랜스포머(120)의 2 차측 단자, 즉 BP1, BP2 및 BN2에 연결될 수 있다. 교류-직류 변환부(130)의 DC 단자쪽에는 일종의 필터, 예를 들어 용량성 필터 뱅크가 있을 수 있다.The AC-DC converter 130 includes a DC terminal, a first DC terminal P3 and a second DC terminal N3, and an AC terminal, that is, the first AC terminal A and the second AC terminal AB and the first terminal. 3 may be provided with an AC terminal C, and the AC terminal of the AC-DC converter 130 may be connected to the secondary terminals of the Scott transformer 120, that is, BP1, BP2, and BN2. The DC terminal side of the AC-DC converter 130 may have a kind of filter, for example, a capacitive filter bank.
교류-직류 변환부(230)는 스위칭 손실을 최소화하기 위해 구형파 전압으로 동작한다.The AC-DC converter 230 operates with a square wave voltage to minimize switching loss.
교류-직류 변환부(230)가 서로 직렬 연결된 둘의 반도체 스위치(S1,S4), (S3,S6),(S5,S2)를 각각 갖는 서로 병렬 연결된 셋의 레그로 구성되는 경우, 상기 셋의 레그는 각각 스콧 트랜스포머(220)로부터의 삼상 교류 전력의 각 상의 교류 전력을 입력받을 수 있으며, 상기 셋의 레그는 식스-스텝(six-step) 운전에 의해 동작할 수 있고, 양방향으로 전력을 전달할 수 있다.When the AC-DC converter 230 is composed of three legs connected in parallel with each other having two semiconductor switches S1, S4, S3, S6, and S5, S2 connected in series with each other, The legs may each receive AC power of each phase of three-phase AC power from Scott transformer 220, and the three legs may be operated by six-step operation and may deliver power in both directions. Can be.
교류-직류 변환부(130)는 스콧 트랜스포머(120)로부터의 삼상 교류 전력이 전달되어 셋의 레그로 구성될 수 있어, 두개의 H 브리지로 구성되는 경우에 대비하여 소자의 수를 저감할 수 있다.The AC-DC converter 130 may be composed of three legs by transferring three-phase AC power from the Scott transformer 120, so that the number of devices may be reduced in comparison with the case where two H bridges are formed. .
도 3은 본 발명의 다른 일 실시예에 따른 전력 변환 장치의 개략적인 구성도이다.3 is a schematic diagram of a power conversion apparatus according to another embodiment of the present invention.
도 1과 함께 도 3을 참조하면, 본 발명의 다른 일 실시예에 따른 전력 변환 장치(200)는 도 1에 도시된 본 발명의 일 실시예에 따른 전력 변환 장치(100)의 대비하여 교류-직류 변환부(130)와 구성이 상이한 교류-직류 변환부(230)를 포함할 수 있다.Referring to FIG. 1 along with FIG. 1, the power conversion apparatus 200 according to another embodiment of the present invention may provide an AC-contrast in comparison with the power conversion apparatus 100 according to the embodiment of the present invention illustrated in FIG. 1. It may include an AC-DC converter 230 having a different configuration from the DC converter 130.
본 발명의 다른 일 실시예에 따른 전력 변환 장치(200)의 교류-직류 변환부(230)는 도 1에 도시된 본 발명의 일 실시예에 따른 전력 변환 장치(100)의 교류-직류 변환부(130)에 대비하여 서로 직렬 연결된 둘의 다이오드(D1,D4), (D3,D6), (D5,D2)를 각각 갖고 서로 병렬 연결된 세개의 레그(leg)를 포함할 수 있다. 이에 따라, 단방향으로 전력을 전달할 수 있다. 마찬가지로, 교류-직류 변환부(230)는 스콧 트랜스포머(220)로부터의 삼상 교류 전력이 전달되어 셋의 레그로 구성될 수 있어, 두개의 H 브리지로 구성되는 경우에 대비하여 소자의 수를 저감할 수 있고, 구형파를 정류하여 효율이 증가할 수 있다.The AC-DC converter 230 of the power converter 200 according to another embodiment of the present invention is an AC-DC converter of the power converter 100 according to the embodiment of the present invention shown in FIG. 1. In contrast to 130, three legs having two diodes D1, D4, D3, D6, and D5, D2 connected in series with each other may include three legs connected in parallel with each other. Accordingly, power can be transmitted in one direction. Similarly, the AC-DC converter 230 may be composed of three legs by transferring three-phase AC power from the Scott transformer 220, so as to reduce the number of devices in case of two H bridges. The efficiency can be increased by rectifying square waves.
본 발명의 다른 일 실시예에 따른 전력 변환 장치(200)에서 MVDC 측면 및 스콧 트랜스포머에 대한 위상 변화는 없지만, 도 1에 도시된 양방향 전력 변환 장치(100)의 동작 원리와 약간 상이하다.Although there is no phase change for the MVDC side and Scott transformer in the power converter 200 according to another embodiment of the present invention, the operation principle of the bidirectional power converter 100 shown in FIG. 1 is slightly different.
즉, 출력에서 펄스 전압을 생성하는 대신 제1 및 제2 멀티 레벨 컨버터(211,212)는 이제 각각의 AC 단자에서 정현파 전압 VMMC1 및 VMMC2를 스콧 트랜스포머(220)의 일차 권선에 제공하도록 작동한다. 전압 VMMC1 및 VMMC2의 기본 주파수는 스콧 트랜스포머(220)의 제1 및 제2 트랜스포머 (T1, T2)의 동작 주파수를 정의할 수 있다. 출력 전압을 제어하기 위해서는 제1 및 제2 트랜스포머 (T1, T2)에 인가되는 전압의 크기가 조정되어야 한다. 제1 및 제2 트랜스포머 (T1, T2)의 전압 VT1과 VT2는 기본주기 (90도 전기도)의 1/4과 동일한 위상 편이로 생성되어야 하며, 스콧 트랜스포머(320)의 이차 권선의 선간 전압 (VAB, VBC, VCA)은 대칭된다.That is, instead of generating a pulse voltage at the output, the first and second multi-level converters 211, 212 now operate to provide sinusoidal voltages VMMC1 and VMMC2 to the primary winding of Scott transformer 220 at their respective AC terminals. The fundamental frequencies of the voltages VMMC1 and VMMC2 may define operating frequencies of the first and second transformers T1 and T2 of the Scott transformer 220. In order to control the output voltage, the magnitudes of the voltages applied to the first and second transformers T1 and T2 must be adjusted. The voltages VT1 and VT2 of the first and second transformers T1 and T2 should be generated with a phase shift equal to one quarter of the fundamental period (90 degree electrical diagram), and the line voltage of the secondary winding of the Scott transformer 320 ( VAB, VBC, VCA) are symmetrical.
이외의 직류-교류 변환부(210) 및 스콧 트랜스포머(220)에 관한 설명은 본 발명의 일 실시예에 따른 전력 변환 장치(100)에서의 직류-교류 변환부(110) 및 스콧 트랜스포머(120)와 동일 또는 유사하므로 상세한 설명은 생략하기로 한다.In addition to the description of the DC-AC converter 210 and the Scott transformer 220, the DC-AC converter 110 and the Scott transformer 120 in the power converter 100 according to an embodiment of the present invention. Since it is the same as or similar to the detailed description thereof will be omitted.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 전력 변환 장치의 동작을 나타내는 개념적인 회로도와 전압-전류 파형 그래프이다.4A to 4D are conceptual circuit diagrams and voltage-current waveform graphs illustrating an operation of a power conversion apparatus according to an embodiment of the present invention.
도 1과 함께, 도 4a 내지 도 4d를 참조하면, 도 4a에 도시된 바와 같이, 제1 및 제2 트랜스포머(T1,T2)에 각각 연결된 제1 및 제2 멀티 레벨 컨버터(211,212)의 등가 회로를 볼 수 있다.4A through 4D, as shown in FIG. 4A, equivalent circuits of the first and second multi-level converters 211 and 212 connected to the first and second transformers T1 and T2, respectively, are illustrated in FIG. Can be seen.
도 4a에 도시된 바와 같이, 2차측에서 생성된 전압들 (교류-직류 변환기(230)에 의해 제공되는)에 대하여 전압 파형 VMMC1 (제1 멀티 레벨 컨버터(111)의 A 분기와 B 분기 사이의 전압) 및 VMMC2 (제2 멀티 레벨 컨버터(112)의 A 분기와 B 분기 사이의 전압)의 위상 시프트를 조정함으로써 제1 및 제2 트랜스포머(T1, T2)의 전류를 제어할 수 있다.As shown in FIG. 4A, the voltage waveform VMMC1 (between the A and B branches of the first multi-level converter 111) with respect to the voltages generated on the secondary side (provided by the AC-DC converter 230). The current of the first and second transformers T1 and T2 can be controlled by adjusting the phase shift of the voltage) and VMMC2 (the voltage between the A and B branches of the second multi-level converter 112).
제1 멀티 레벨 컨버터(111)의 전압 VMMC1 및 그와 관련된 제1 트랜스포머(T1)의 제1 일차 권선(P1)의 전압 VT1과, 제2 멀티 레벨 컨버터(112)의 전압 VMMC2 및 그와 관련된 제2 트랜스포머의 제2 일차 권선(P2)의 전압 VT2 사이의 위상차
Figure PCTKR2019005262-appb-I000003
를 계산한다. 여기서, 제1 멀티 레벨 컨버터(111)의 전압 VMMC1 및 제2 멀티 레벨 컨버터(112)의 VMMC2 모두가 그 AC 단자, 즉 VAB, VBC 및 VCA에서 교류-직류 변환부(130)에 의해 생성된 파형에 동기되도록 제어한다.
Voltage VMC1 of first multi-level converter 111 and voltage VT1 of first primary winding P1 of first transformer T1 associated therewith, voltage VMMC2 of second multi-level converter 112 and associated voltage thereof 2 Phase difference between voltage VT2 of the second primary winding P2 of the transformer
Figure PCTKR2019005262-appb-I000003
Calculate Here, the voltage VMMC1 of the first multi-level converter 111 and the VMMC2 of the second multi-level converter 112 are waveforms generated by the AC-DC converter 130 at their AC terminals, that is, VAB, VBC, and VCA. To be synchronized to
교류-직류 변환부(130)의 레그(leg)에 대한 신호는 기본주기의 1/3만큼 서로 위상 시프트될 수 있다. 이러한 방식으로, 교류-직류 변환부(130)의 각 레그의 위상에 의해, AC 단자 (A, B 및 C)의 전압 파형은 DC 단자 N3에 대해 두 개의 별도의 전압 레벨 (0, Vo)에 있어서, 위상이 서로 어긋나게 생성될 수 있다. 이 기준 라인의 교류-직류 변환부(130)의 AC 단자 (VAB, VBC, VCA)에 전압을 3 레벨 (양 레그 전압의 직접적인 감산의 결과로서) 형태 및 전압 레벨 (Vo, 0, -Vo)을 가질 수 있다 (도 4b 참조).The signal for the leg of the AC-DC converter 130 may be phase shifted from each other by 1/3 of the fundamental period. In this way, due to the phase of each leg of the AC-DC converter 130, the voltage waveforms of the AC terminals A, B and C are at two separate voltage levels (0, Vo) with respect to the DC terminal N3. Thus, the phases may be generated out of phase with each other. 3 levels of voltage (as a result of direct subtraction of both leg voltages) and voltage levels (Vo, 0, -Vo) to the AC terminals (VAB, VBC, VCA) of the AC-DC converter 130 of this reference line. It may have (see Fig. 4b).
이는, 교류-직류 변환부(130)의 AC 단자 전압 선간 전압 (VAB, VBC, VCA)에 대응한다. VT1 (제1 트랜스포머(T1)의 제1 일차 권선의 전압)과 VT2 (제2 트래스포머(T2)의 제2 일차 권선의 전압)은 다음과 같은 수식으로 표시될 수 있다.This corresponds to the AC terminal voltage line voltages VAB, VBC, and VCA of the AC-DC converter 130. VT1 (voltage of the first primary winding of the first transformer T1) and VT2 (voltage of the second primary winding of the second transformer T2) may be expressed by the following equation.
(수식)(Equation)
Figure PCTKR2019005262-appb-I000004
Figure PCTKR2019005262-appb-I000004
여기서, m1는 변압기 T1의 1차 및 2차간 권선비이고 m2는 변압기 T2의 1차 및 2차간 권선비이다.Where m1 is the primary and secondary winding ratio of transformer T1 and m2 is the primary and secondary winding ratio of transformer T2.
도 4c 및 도 4d를 참조하면, 제1 및 제2 멀티 레벨 컨버터(111, 112)에 의해 생성된 전압 파형과 제1 및 제2 트랜스포머(T1, T2)의 각 일차 권선(P1,P2)을 통해 흐르는 전류(iT1,iT2)를 각각 볼 수 있다.4C and 4D, voltage waveforms generated by the first and second multi-level converters 111 and 112 and respective primary windings P1 and P2 of the first and second transformers T1 and T2 are illustrated. The currents iT1 and iT2 flowing through can be seen, respectively.
트랜스포머의 권선비 관계, 수식 및 도 4b에 기초하여,
Figure PCTKR2019005262-appb-I000005
Figure PCTKR2019005262-appb-I000006
를 계산할 수 있다. 출력 전압을 Vo라고 하면,
Figure PCTKR2019005262-appb-I000007
이고,
Figure PCTKR2019005262-appb-I000008
이다. 에너지가 제1 및 제2 트랜스포머(T1,T2)를 통해 전달되는 힘이 동일하다면, 위상
Figure PCTKR2019005262-appb-I000009
1과
Figure PCTKR2019005262-appb-I000010
2는 서로 동등할 것이다.
Based on the turns ratio relationship of the transformer, the formula and Figure 4b,
Figure PCTKR2019005262-appb-I000005
And
Figure PCTKR2019005262-appb-I000006
Can be calculated. If the output voltage is Vo,
Figure PCTKR2019005262-appb-I000007
ego,
Figure PCTKR2019005262-appb-I000008
to be. If the energy is equal to the force transmitted through the first and second transformers T1 and T2, the phase
Figure PCTKR2019005262-appb-I000009
1 lesson
Figure PCTKR2019005262-appb-I000010
2 will be equivalent to each other.
이에 따라, 본 발명의 전력 변환 장치는 다음과 같은 기술적 효과를 가질 수 있다.Accordingly, the power converter of the present invention may have the following technical effects.
1. 반도체 장치 수 감소 : 2 개의 삼상 멀티 레벨 컨버터를 사용하는 대신 본 발명의 직류-교류 변환부는 2개의 단상 멀티 레벨 컨버터를 사용한다. 결과적으로 총 반도체 장치 수는 2/3로 줄어들어 컨버터의 사이즈를 줄일 수 있다. 디바이스의 전류 용량은 증가하지만 이는 교류-직류 변환부의 회로의 복잡성이 현저히 감소하여 상당 부분 상쇄될 수 있다.1. Reduced number of semiconductor devices: Instead of using two three-phase multi-level converters, the DC-AC converter of the present invention uses two single-phase multi-level converters. As a result, the total number of semiconductor devices can be reduced to two-thirds, thereby reducing the size of the converter. The current capacity of the device is increased, but this can be canceled out in large part by significantly reducing the complexity of the circuit of the AC-DC converter.
2. 갈바닉 절연을 위한 소형 변압기 사용 가능 : 스콧 트랜스포머를 사용하면 시스템의 유효 권선 수가 1/4로 줄어들어 보다 컴팩트 한 시스템을 만들 수 있으며, 이로 인하여 철도 등 특정 애플리케이션에 적용 가능하다. 또한 변압기 설계가 단순해진다.2. Small transformers for galvanic isolation can be used: Scott transformers can be used to make the system more compact by reducing the number of effective turns of the system by a quarter, which makes it suitable for specific applications such as railways. It also simplifies transformer design.
3. 시스템 사이즈 감소 : 기본 주파수를 높게 전력 변환 장치를 작동시키면 중간 주파수로 동작하는 스콧 트랜스포머의 크기(부피와 무게)가 줄어든다.3. Reducing System Size: Operating power converters with higher fundamental frequencies reduces the size (volume and weight) of Scott transformers operating at intermediate frequencies.
4. 정류기 동작 가능 : 본 발명의 스콧 트랜스포머는 서로 다른 코어에 결선된 2개의 변압기를 사용하므로 다이오드 정류기 적용이 가능하다.4. Rectifier Operation: Since the Scott transformer of the present invention uses two transformers connected to different cores, the diode rectifier can be applied.
도 5는 본 발명의 다른 일 실시예에 따른 전력 변환 장치의 전압 파형 그래프이다.5 is a voltage waveform graph of a power conversion apparatus according to another embodiment of the present invention.
도 5를 참조하면, 전압 VT1과 VT2 사이의 위상차가 완벽하지 않고 약간의 위상차가 있더라도 교류-직류 변환부(230)의 각 레그에서 생성된 전압 불평형은 출력 전압에 영향을 미치지 않는다. 단방향 전력 변환 장치의 토폴로지는 실제 구현 시 트랜스포머 턴 비 또는 위상 시프트 불균형 등은 동작에 영향을 주지 않는다. 출력 전압 Vo는 6 펄스 다이오드 정류기의 전형적인 파형을 갖는다.Referring to FIG. 5, even if the phase difference between the voltages VT1 and VT2 is not perfect and there is a slight phase difference, the voltage unbalance generated in each leg of the AC-DC converter 230 does not affect the output voltage. The topology of the unidirectional power converter does not affect the operation of transformer turn ratio or phase shift imbalance in actual implementation. The output voltage Vo has a typical waveform of a 6 pulse diode rectifier.
도 6a 내지 도 6d는 본 발명의 일 실시예에 따른 전력 변환 장치에 양극 그리드 또는 복수의 단극 그리드가 입력될 경우의 동작과 한 극이 고장시의 부분 동작을 나타내는 개념도이다.6A to 6D are conceptual views illustrating an operation when an anode grid or a plurality of single pole grids are input to a power converter according to an embodiment of the present invention, and a partial operation when one pole fails.
도 6a를 참조하면, 양극 그리드(bipolar grid)가 제공되면, 제1 및 제2 멀티 레벨 컨버터는 도시된 바와 같이 직렬로 연결된다. 도 6b를 참조하면, 둘의 멀티 레벨 컨버터 중 하나가 고장난 경우 또는 외부 그리드의 한 극이 고장으로 전원 공급이 안되는 경우의 리던던시 원리를 나타낸다. 문제가 발생된 극은 회로에서 격리되고 다른 하나는 정격 전력의 절반으로 계속 작동한다.Referring to FIG. 6A, when a bipolar grid is provided, the first and second multi level converters are connected in series as shown. Referring to FIG. 6B, a redundancy principle is shown when one of two multi-level converters fails or one pole of an external grid fails to supply power. The faulty pole is isolated from the circuit and the other continues to run at half the rated power.
반면에, 도 6c와 같이 두 단극 그리드(unipolar grid)가 사용 가능하다면 제1 및 제2 멀티 레벨 컨버터는 서로 독립적으로 동작한다 (스콧 트랜스포머와 동기화 됨).On the other hand, if two unipolar grids are available, as shown in Fig. 6C, the first and second multi-level converters operate independently of one another (synchronized with Scott transformer).
도 6d를 참조하면 두 단극 그리드 중 하나가 고장난 경우의 리던던시 원리를 나타낸다. 고장난 극은 회로에서 격리되고 다른 하나는 정격 전력의 절반으로 계속 작동한다.Referring to FIG. 6D, a redundancy principle is shown when one of the two monopole grids fails. The faulty pole is isolated from the circuit and the other continues to run at half the rated power.
도 7a 내지 도 7d는 본 발명의 일 실시예에 따른 전력 변환 장치 및 다른 일 실시예에 따른 전력 변환 장치에서 양극 그리드의 한극 고장시의 부분 동작을 나타내는 도면이다.7A to 7D are diagrams illustrating a partial operation of a positive pole of a positive electrode grid in a power converter according to an embodiment of the present invention and a power converter according to another embodiment.
도 7a 내지 도 7d를 참조하면, 본 발명의 구성의 또 다른 중요한 측면은 도 1 또는 도 3에 도시된 양방향 또는 단방향 전력 변환 장치의 경우에 MVDC 측에서 시스템 레벨의 리던던시를 구현할 수 있다는 것이다.7A to 7D, another important aspect of the configuration of the present invention is that in the case of the bidirectional or unidirectional power converter shown in FIG. 1 or 3, system level redundancy can be implemented on the MVDC side.
중성선이 있는 바이폴라 네트워크를 사용할 수 있으며, 이 경우, 제1 멀티 레벨 컨버터의 DC 단자 P1은 DC+ 극에 접속되고, 제2 멀티 레벨 컨버터의 DC 단자 N2는 DC- 극에 접속되고, 제1 멀티 레벨 컨버터의 DC 단자 N1과 제2 멀티 레벨 컨버터의 DC 단자 P2는 DC0에 접속된다.A bipolar network with a neutral wire can be used, in which case the DC terminal P1 of the first multi-level converter is connected to the DC + pole, the DC terminal N2 of the second multi-level converter is connected to the DC- pole, and the first multi-level DC terminal N1 of the converter and DC terminal P2 of the second multi-level converter are connected to DC0.
MVDC 측에서 하나 또는 적어도 둘의 멀티 레벨 컨버터 중 하나가 고장나는 경우나 외부 그리드의 한 극이 고장으로 전원이 공급되지 않는 경우, 다른 한극을 통하여 절반의 시스템이 비 정상 모드에서도 계속 동작할 수 있다.If one of the one or at least two multi-level converters fails on the MVDC side, or if one pole of the external grid fails to power, the other one pole can continue to operate in half of the system in abnormal mode. .
고장난 멀티 레벨 컨버터는 회로의 나머지 부분과 절연되므로 관련된 트랜스포머 (도 7a 및 도 7c의 경우 제2 트랜스포머(T2))는 작은 권선 누설 인덕턴스를 제공하는 바이 패스 연결 회로로 동작한다. 교류-직류 변환부에서 세개의 레그 중 하나는 기능을 할 수 없지만 나머지 두개의 레그는 단상 DAB와 비슷한 방식으로 계속 작동한다.The failed multi-level converter is isolated from the rest of the circuit, so the associated transformer (second transformer T2 in Figures 7A and 7C) acts as a bypass connection circuit that provides a small winding leakage inductance. In the AC-DC converter, one of the three legs cannot function, but the other two legs continue to operate in a manner similar to a single-phase DAB.
상술한 바와 같이, 본 발명에 따르면, 멀티 레벨 컨버터에서 장애가 발생할 경우에도 정상적인 전원 변환 동작을 수행할 수 있는 효과가 있다.As described above, according to the present invention, even when a failure occurs in the multi-level converter, it is possible to perform a normal power conversion operation.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 쉽게 알 수 있다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, but is defined by the claims below, and the configuration of the present invention may be modified in various ways without departing from the technical spirit of the present invention. It will be apparent to those skilled in the art that the present invention may be changed and modified.

Claims (10)

  1. 입력 직류 전력을 교류 전력으로 각각 변환하는 적어도 둘의 멀티 레벨 컨버터를 갖는 직류-교류 변환부;A DC-AC converter having at least two multi-level converters each converting input DC power into AC power;
    수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작하여 상기 직류-교류 변환부로부터의 적어도 둘의 멀티 레벨 컨버터 각각으로부터의 교류 전력의 전압 레벨을 삼상 교류 전력으로 변압하여 출력하는 스콧 트랜스포머(scott transformer); 및Scott transformer operating at a medium frequency of several hundred Hz to several tens of kHz and converting the voltage level of AC power from each of at least two multi-level converters from the DC-AC converter into three-phase AC power and outputting the three-phase AC power. transformer); And
    상기 스콧 트랜스포머로부터의 삼상 교류 전력을 직류 전력으로 변환하는 교류-직류 변환부AC-DC converter for converting three-phase AC power from the Scott transformer into DC power
    를 포함하는 스콧 트랜스포머를 갖는 전력 변환 장치.Power conversion device having a Scott transformer comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 직류-교류 변환부는 입력된 직류 중간전압(Medium Voltage) 및 양극 그리드(Bipole)의 직류 전력을 교류 중간전압(Medium Voltage) 및 중간 주파수(Medium Frequency)를 갖는 두 개의 단상 교류 전력으로 변환하는 스콧 트랜스포머를 갖는 전력 변환 장치.The DC-AC converter converts input DC power of a medium DC voltage and a bipolar grid into two single-phase AC powers having an AC medium voltage and a medium frequency. Power converter having a transformer.
  3. 제2항에 있어서,The method of claim 2,
    상기 스콧 트랜스포머는 상기 직류-교류 변환부로부터의 교류 전력을 사전에 설정된 권선비에 따라 수kV 이하의 저전압(Low Voltage)의 삼상 교류 전력으로 변환하는 스콧 트랜스포머를 갖는 전력 변환 장치.And the Scott transformer has a Scott transformer for converting AC power from the DC-AC converter into three-phase AC power having a low voltage of several kV or less according to a preset winding ratio.
  4. 제3항에 있어서,The method of claim 3,
    상기 교류-직류 변환부는 상기 스콧 트랜스포머로부터의 교류 전력을 1500V 이하의 저전압(Low Voltage)의 직류 전력으로 변환하는 스콧 트랜스포머를 갖는 전력 변환 장치.And the AC-DC converter has a Scott transformer for converting AC power from the Scott transformer into DC power having a low voltage of 1500V or less.
  5. 제1항에 있어서,The method of claim 1,
    상기 교류-직류 변환부는 서로 직렬 연결된 둘의 반도체 스위치를 각각 가지며 서로 병렬 연결된 셋의 레그(leg)를 포함하는 스콧 트랜스포머를 갖는 전력 변환 장치.And the AC-DC converter has a Scott transformer each having two semiconductor switches connected in series with each other and including three legs connected in parallel with each other.
  6. 제5항에 있어서,The method of claim 5,
    상기 교류-직류 변환부의 상기 셋의 레그는 식스-스텝(six-step) 운전에 의해 동작되고,The sets of legs of the AC-DC converter are operated by six-step operation,
    상기 전력 변환 장치는 양방향 전력 변환 장치인 스콧 트랜스포머를 갖는 전력 변환 장치.The power converter has a Scott transformer which is a bidirectional power converter.
  7. 제1항에 있어서,The method of claim 1,
    상기 교류-직류 변환부는 서로 직렬 연결된 둘의 다이오드를 각각 가지며 서로 병렬 연결된 셋의 레그(leg)를 포함하는 스콧 트랜스포머를 갖는 전력 변환 장치.And the AC-DC converter has a Scott transformer, each having two diodes connected in series with each other and including three legs connected in parallel with each other.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 전력 변환 장치는 단방향 전력 변환 장치인 스콧 트랜스포머를 갖는 전력 변환 장치.The power converter has a Scott transformer which is a unidirectional power converter.
  9. 제1항에 있어서,The method of claim 1,
    상기 직류-교류 변환부 및 상기 교류-직류 변환부 중 적어도 하나는 수백 Hz 내지 수십 kHz의 중간 주파수(Medium Frequency)로 동작하는 스콧 트랜스포머를 갖는 전력 변환 장치.At least one of the DC-AC converter and the AC-DC converter has a Scott transformer operating at a medium frequency of several hundred Hz to several tens of kHz.
  10. 제1항에 있어서,The method of claim 1,
    상기 멀티 레벨 컨버터의 서브 모듈은 하프 브리지, 풀 브리지 또는 하프 브리지와 풀 브리지의 조합으로 구성되는 스콧 트랜스포머를 갖는 전력 변환 장치.The sub-module of the multi-level converter has a Scott transformer consisting of a half bridge, a full bridge or a combination of a half bridge and a full bridge.
PCT/KR2019/005262 2018-05-02 2019-05-02 Power conversion apparatus having scott transformer WO2019212257A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980003789.7A CN111052588B (en) 2018-05-02 2019-05-02 Power conversion device with Scott transformer
US16/634,490 US11025171B2 (en) 2018-05-02 2019-05-02 Power conversion apparatus having Scott-T transformer
EP19796080.0A EP3651343A4 (en) 2018-05-02 2019-05-02 Power conversion apparatus having scott transformer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180050472 2018-05-02
KR10-2018-0050472 2018-05-02
KR1020190049955A KR102235397B1 (en) 2018-05-02 2019-04-29 Power converting apparatus having scott transformer
KR10-2019-0049955 2019-04-29

Publications (1)

Publication Number Publication Date
WO2019212257A1 true WO2019212257A1 (en) 2019-11-07

Family

ID=68386483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005262 WO2019212257A1 (en) 2018-05-02 2019-05-02 Power conversion apparatus having scott transformer

Country Status (1)

Country Link
WO (1) WO2019212257A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589648A2 (en) * 2004-04-22 2005-10-26 Ask Industries S.p.A. A DC/DC three-phase converter
EP2458725A1 (en) 2010-11-30 2012-05-30 ABB Research Ltd. Electric energy conversion system and method for operating same
EP2637296A1 (en) 2012-03-06 2013-09-11 Siemens Aktiengesellschaft HVDC converter station with 2-phase modular multilevel converter and Scott-T 2 to 3 phase transformer
CN106300996A (en) * 2016-08-24 2017-01-04 中铁第勘察设计院集团有限公司 Transformator electric energy two or three phase inversion process
CN106998152A (en) * 2016-01-25 2017-08-01 华北电力大学 Electrical isolation Uniderectional DC-DC converter without Pressure and Control
CN107546983A (en) * 2017-01-17 2018-01-05 湖南大学 A kind of high-power high no-load voltage ratio modularization two-way DC converter of isolated form

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1589648A2 (en) * 2004-04-22 2005-10-26 Ask Industries S.p.A. A DC/DC three-phase converter
EP2458725A1 (en) 2010-11-30 2012-05-30 ABB Research Ltd. Electric energy conversion system and method for operating same
EP2637296A1 (en) 2012-03-06 2013-09-11 Siemens Aktiengesellschaft HVDC converter station with 2-phase modular multilevel converter and Scott-T 2 to 3 phase transformer
CN106998152A (en) * 2016-01-25 2017-08-01 华北电力大学 Electrical isolation Uniderectional DC-DC converter without Pressure and Control
CN106300996A (en) * 2016-08-24 2017-01-04 中铁第勘察设计院集团有限公司 Transformator electric energy two or three phase inversion process
CN107546983A (en) * 2017-01-17 2018-01-05 湖南大学 A kind of high-power high no-load voltage ratio modularization two-way DC converter of isolated form

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651343A4
V.FERNAO PIRES: "A Modular Multilevel Power Converter System for Photovoltaic Applications", POWER ENGINEERING, ENERGY AND ELECTRICAL DRIVES (POWERENG), 2011 INTERNATIONAL CONFERENCE ON, 31 May 2011 (2011-05-31), pages 1 - 5, XP032057245 *

Similar Documents

Publication Publication Date Title
US20190052177A1 (en) Power electronic conversion unit and system
EP3082212B1 (en) Tripolar flexible direct-current power transmission system and method
Friedrich Modern HVDC PLUS application of VSC in modular multilevel converter topology
US9502991B2 (en) Hybrid converter and wind power generating system
EP3238315B1 (en) Modular multi-level converter with thyristor valves
WO2015030359A1 (en) High-voltage direct current converter
Lüth et al. Modular multilevel DC/DC converter architectures for HVDC taps
EP2290799A1 (en) Bi-directional multilevel AC-DC converter arrangements
CN101856979B (en) Electrified railway in-phase power supply device
WO2018056506A1 (en) Voltage source converter comprising hybrid active filter
KR102235397B1 (en) Power converting apparatus having scott transformer
CN102904420A (en) Multi-port current transformer
WO2021010570A1 (en) Dc-dc converter of power conversion system
ES2880973T3 (en) Series compensation device applicable to double circuit line
CN214707171U (en) Low-frequency power transmission system with transformer isolation
WO2018108140A1 (en) Modular power supply system
JP2023526891A (en) power system
WO2019212257A1 (en) Power conversion apparatus having scott transformer
WO2012074311A2 (en) Parallel operating inverter wind power generating system using a current balancer
WO2018145748A1 (en) Parallel connecting of cell modules in a modular multilevel converter by means of interphase transformers
Jones et al. Construction and testing of a 13.8 kV, 750 kVA 3-Phase current compensator using modular switching positions
US20220271536A1 (en) Device for connecting two alternating voltage networks and method for operating the device
WO2023200103A1 (en) Dc-dc converter of power conversion system
WO2023287229A1 (en) Circuit for generating auxiliary power
WO2023146282A1 (en) Power solid-state transformer module and transformer using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019796080

Country of ref document: EP

Effective date: 20200204

NENP Non-entry into the national phase

Ref country code: DE