WO2019146960A1 - Battery pressure detection sensor and terminal including same - Google Patents

Battery pressure detection sensor and terminal including same Download PDF

Info

Publication number
WO2019146960A1
WO2019146960A1 PCT/KR2019/000704 KR2019000704W WO2019146960A1 WO 2019146960 A1 WO2019146960 A1 WO 2019146960A1 KR 2019000704 W KR2019000704 W KR 2019000704W WO 2019146960 A1 WO2019146960 A1 WO 2019146960A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
pattern
layer
electrode layer
Prior art date
Application number
PCT/KR2019/000704
Other languages
French (fr)
Korean (ko)
Inventor
진병수
서인용
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2019146960A1 publication Critical patent/WO2019146960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pressure sensor and a terminal having the battery pressure sensor, and more particularly, The present invention relates to a battery pressure sensing sensor for sensing pressure and a terminal equipped with the same.
  • a battery for power supply is mounted on the portable terminal.
  • a battery using a lithium-based battery is mounted on a portable terminal.
  • the swelling of the battery occurs due to the gas generated by the reaction of the compound material during the charging operation.
  • a typical method of battery control technology is a charge shutdown method according to battery temperature.
  • the charge cutoff method measures the temperature of the battery or the internal temperature of the portable terminal through the thermistor, and stops the charging of the battery when the measured temperature is higher than the reference value.
  • the portable terminal to which the charge cutoff method is applied has a problem that charging time is increased due to repetition of charge and charge interruption since the normal battery is determined to be in an abnormal state.
  • the manufacturing industry is constantly studying techniques for preventing ignition and explosion of a battery while minimizing an increase in the charging time of the battery.
  • An object of the present invention is to provide a terminal equipped with a battery pressure sensing sensor for controlling ignition of a battery based on a resistance value or a capacitance output from a battery pressure sensing sensor to prevent ignition and explosion of the battery.
  • a battery pressure sensor includes an upper electrode layer having an upper electrode pattern, a lower electrode layer disposed below the upper electrode layer, And an elastic layer disposed between the electrode layer, the upper electrode layer, and the lower electrode layer, and the elastic layer is superimposed on the upper electrode pattern and the lower electrode pattern.
  • the adhesive layer may be disposed between the upper electrode layer and the lower electrode layer to bond the upper electrode layer and the lower electrode layer.
  • the adhesive layer may include a receiving hole for receiving the elastic layer.
  • a battery pressure sensor comprising: a lower electrode layer having a first electrode and a second electrode formed thereon; a first electrode disposed on the lower electrode layer, Layer and a top electrode layer disposed on top of the piezoelectric layer.
  • the first electrode and the second electrode include a plurality of linear patterns spaced apart from each other, a linear pattern constituting a second electrode is arranged between the linear patterns constituting the first electrode, and the piezoelectric layer includes a variable resistance material
  • the resistance variable material may be a quantum tunneling composite (QTC).
  • a terminal including a battery pressure sensor according to an exemplary embodiment of the present invention.
  • the terminal is connected to a thermistor terminal connected to a thermistor and a battery and connected to a thermistor terminal.
  • a central processing unit connected to the thermistor terminal and controlling the charging of the battery based on the output value of the battery pressure detection sensor.
  • the thermistor includes an antenna, a USB charging terminal, a central processing unit Power management circuitry.
  • the battery pressure detection sensor outputs a resistance value or a switching event as an output value.
  • the central processing unit charges the battery by varying the charging current of the battery, This switching event can block the charging of the battery.
  • a terminal having a battery pressure sensor according to another embodiment of the present invention.
  • the terminal is disposed over the battery and connected to a sensor terminal.
  • the terminal outputs an output value corresponding to a pressure applied by the swelling of the battery.
  • An AD converter connected to the battery pressure sensor and the sensor terminal for converting the output value of the battery pressure sensor into a digital signal and a central processing unit for controlling the charging of the battery based on the output value converted into the digital signal by the AD converter .
  • the central processing unit can charge the battery when the output value of the AD converter exceeds the preset value, or to charge the battery by changing the charging current of the battery based on the output value of the AD converter and the plurality of reference values.
  • a terminal having a battery pressure sensing sensor comprising: an antenna terminal connected to an antenna; A battery pressure sensor connected to the antenna terminal and arranged to be overlapped with the battery and connected to the antenna terminal for outputting one of a resistance value, a switching event and a capacitance corresponding to the pressure applied by the swelling of the battery as an output value; And a central processing unit for controlling the charging of the battery based on the output value of the detection sensor.
  • the antenna terminal is one of an electronic payment antenna, a wireless power transmission antenna, and a short-range communication antenna.
  • the battery pressure sensor is an antenna for short-range communication connected to an antenna terminal. When the resistance value exceeds the set value, the switching event can be output as the output value.
  • the antenna terminal has a plurality of terminals connected to the plurality of antennas
  • the battery pressure detection sensor is connected to terminals connected to different ones of the plurality of terminals
  • the central processing unit detects the output value of the battery pressure detection sensor as a set value The charging of the battery is blocked and the charging current of the battery is varied based on the output value of the battery pressure detecting sensor and a plurality of reference values to charge the battery.
  • a battery pressure sensor and a terminal equipped with the sensor can detect the resistance value or the capacitance C corresponding to the pressure caused by the swelling of the battery to control charging of the battery, And the blister generated when the abnormal battery is charged can be distinguished from each other.
  • the battery pressure sensor and the terminal having the battery pressure sensor control the charging of the battery based on the output value output from the battery pressure sensor, thereby controlling the charging of the battery in accordance with the bulging information generated in the battery in an abnormal state, And explosion can be prevented.
  • the battery pressure sensor and the terminal having the battery pressure sensor control the charging of the battery based on the output value output from the battery pressure sensor, thereby preventing the charging of the normal battery from being blocked as compared with the conventional technology using the temperature- It is possible to prevent the battery charging time from being increased.
  • FIG 1 and 2 are views for explaining a battery pressure sensing sensor according to a first embodiment of the present invention.
  • 3 and 4 are views for explaining a battery pressure sensing sensor according to a second embodiment of the present invention.
  • FIG 5 and 6 are views for explaining a battery pressure sensing sensor according to a third embodiment of the present invention.
  • FIG. 7 and 8 are views for explaining a battery pressure sensing sensor according to a fourth embodiment of the present invention.
  • FIGS. 9 and 10 are views for explaining a battery pressure sensing sensor according to a fifth embodiment of the present invention.
  • FIG. 11 is a view for explaining a terminal having a battery pressure sensing sensor according to a first embodiment of the present invention.
  • FIG. 12 is a view for explaining a terminal having a battery pressure sensor according to a second embodiment of the present invention.
  • FIG. 13 is a view for explaining a terminal having a battery pressure sensor according to a third embodiment of the present invention.
  • FIG. 14 and 15 are views for explaining a terminal having a battery pressure sensing sensor according to a fourth embodiment of the present invention.
  • the battery pressure sensing sensor according to the first to third embodiments of the present invention is mounted on a device having a built-in battery to sense a pressure change due to swelling of the battery.
  • the pressure sensor is placed over the battery and outputs an output value corresponding to the pressure applied by the swelling of the battery.
  • the battery pressure detection sensor outputs an output value corresponding to the resistance corresponding to the pressure applied by the swelling of the battery.
  • the battery pressure detection sensor is an example of outputting a linear resistance value as an output value.
  • Another example is that the battery pressure detection sensor outputs a switching event which is short-circuited at a resistance value exceeding a set resistance value, as an output value.
  • the battery pressure detection sensor outputs an output value corresponding to the capacitor value corresponding to the pressure applied by the swelling of the battery.
  • the battery pressure detection sensor is an example of outputting a linear capacitor value as an output value. Another example is that the battery pressure detection sensor outputs, as an output value, a switching event that is short-circuited at a capacitor value exceeding the set capacitor value.
  • a battery pressure sensing sensor 100 includes an upper electrode layer 110, an elastic layer 120, a lower electrode layer 130, and an adhesive layer 140 do.
  • the upper electrode layer 110 is formed of a flexible printed circuit board having electrodes formed thereon.
  • the upper electrode layer 110 includes an upper base sheet 111, an upper electrode pattern 113, an upper connection pattern 115, and an upper terminal pattern 117.
  • the upper base sheet 111 is composed of a soft thin sheet.
  • the upper base sheet 111 is made up of a flexible thin sheet having a thickness of about 25 mu m as an example.
  • the upper base sheet 111 is a soft thin sheet of one of polyimide (PI), polyester, glass epoxy, and polyethylene terephthalate.
  • the thin film sheet can be applied to a material used as a base sheet of a flexible printed circuit board.
  • the upper electrode pattern 113 is formed on one surface of the upper base sheet 111.
  • the upper electrode pattern 113 is formed on one surface of the upper base sheet 111 in the direction in which the elastic layer 120 is disposed.
  • the upper electrode pattern 113 is formed of a thin film conductive metal having a predetermined shape.
  • the upper electrode pattern 113 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like.
  • the upper electrode pattern 113 is an example of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the upper electrode pattern 113 may be formed of a transparent electrode material such as ITO.
  • the upper electrode pattern 113 is formed of a circular thin film made of copper and formed on the lower surface of the upper base sheet 111 in the direction in which the elastic layer 120 is disposed.
  • the upper connection pattern 115 is formed on one surface of the upper base sheet 111.
  • the upper connection pattern 115 is formed on the upper surface of the upper base sheet 111 and one surface of the lower surface on which the upper electrode pattern 113 is formed.
  • the upper connection pattern 115 may be formed on the other surface of the upper electrode pattern 113.
  • the upper connection pattern 115 is formed of a linear thin film conductive metal.
  • the upper connection pattern 115 may be formed of the same conductive metal as the upper electrode pattern 113 or may be formed of a different conductive metal.
  • the upper connection pattern 115 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the upper connection pattern 115 may be formed of a transparent electrode material such as ITO.
  • connection pattern 115 One end of the upper connection pattern 115 is connected to the upper electrode pattern 113.
  • the other end of the lower connection pattern 135 is connected to the upper terminal pattern 117.
  • the upper terminal pattern 117 may extend from the upper connection pattern 115 and be formed outside the upper base sheet 111. At this time, a protection sheet 119 for insulation and protection of the upper terminal pattern 117 may be adhered to one surface of the upper terminal pattern 117.
  • the upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 are examples of thin metal conductive metal having a thickness of about 12 mu m.
  • the upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 have been separately described in order to easily describe the battery pressure sensing sensor 100 according to the embodiment of the present invention,
  • the upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 may be integrally formed.
  • the elastic layer 120 is disposed between the upper electrode layer 110 and the lower electrode layer 130.
  • the elastic layer 120 is formed of a material having elasticity.
  • the elastic layer 120 is an elastic polymer including at least one of silicon (Si), polydimethylsiloxane (PDMS), EcoFlex, Nusil, hydrogel, and polyurethane do.
  • the elastic material is mainly made of an insulating material, resistance is not formed between the upper electrode layer 110 and the lower electrode layer 130 even when a pressure due to the swelling of the battery is applied.
  • the elastic layer 120 is formed in a structure having a space (or void).
  • the elastic layer 120 is formed of one of a dot space structure, a meshed structure, and a porous film structure.
  • the elastic layer 120 may be formed in a dot space structure by printing a plurality of dots on one surface of the upper electrode layer 110 or the lower electrode layer 130 through a printing process. A plurality of dots are formed at predetermined intervals.
  • the dot space structure is a structure in which a resistive touch panel is mainly used.
  • the elastic layer 120 may print dots having different thicknesses twice to adjust the switching pressure of the battery pressure detection sensor 100.
  • the elastic layer 120 can change the pattern of a plurality of dots to adjust the open rate of the dot spacers.
  • the elastic layer 120 can adjust the switching pressure of the battery pressure detection sensor 100 through the Open Rate adjustment.
  • the open rate can mean the ratio of the area where the dot is not formed depending on the dot thickness and the interval.
  • the elastic layer 120 may be formed in a mesh structure by repeating the screen printing process. A plurality of elastic lines spaced apart from each other are formed during the screen printing process, and the elastic layer 120 having a net film structure in which a plurality of elastic lines are laminated is formed by repeating the screen printing process.
  • the elastic layer 120 may be formed directly on one surface of the upper electrode layer 110 or the lower electrode layer 130 by screen printing.
  • the elastic layer 120 may be formed of a porous film structure having a plurality of pores by mixing a silver wire with an elastic material.
  • the elastic layer 120 is an example of a porous film structure in which silver (Si) is mixed with silver.
  • the elastic layer 120 may be formed by punching a plurality of holes into the elastic film.
  • the elastic layer 120 is a perforated structure in which a plurality of holes are formed in a polyimide thin film through a punching process.
  • the lower electrode layer 130 is formed of a flexible printed circuit board having electrodes formed thereon.
  • the lower electrode layer 130 includes a lower base sheet 131, a lower electrode pattern 133, a lower connection pattern 135, and a lower terminal pattern 137.
  • the lower electrode layer 130 is disposed below the upper electrode layer 110 so that the lower electrode pattern 133 and the upper electrode pattern 113 overlap each other.
  • the lower base sheet 131 is composed of a soft thin sheet.
  • the lower base sheet 131 is formed of a flexible thin film sheet having a thickness of about 25 mu m as an example.
  • the lower base sheet 131 is a soft thin sheet of one of polyimide, polyester, glass epoxy, and polyethylene terephthalate.
  • the lower electrode pattern 133 is formed on one surface of the lower base sheet 131.
  • the lower electrode pattern 133 is formed on one surface of the upper and lower surfaces of the lower base sheet 131 in the direction in which the elastic layer 120 is disposed.
  • the lower electrode pattern 133 overlaps the upper electrode pattern 113 with the elastic layer 120 interposed therebetween,
  • the lower electrode pattern 133 is formed of a thin film conductive metal having a predetermined shape.
  • the lower electrode pattern 133 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like.
  • the lower electrode pattern 133 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the lower electrode pattern 133 may be formed of a transparent electrode material such as ITO.
  • the lower electrode pattern 133 is formed of a circular thin film made of copper and is formed on the upper surface of the lower base sheet 131 in the direction in which the elastic layer 120 is disposed.
  • the lower connection pattern 135 is formed on one surface of the lower base sheet 131.
  • the lower connection pattern 135 is formed on one surface of the lower base sheet 131 on which the lower electrode pattern 133 is formed.
  • the lower connection pattern 135 may be formed on the other surface of the lower electrode pattern 133.
  • One end of the lower connection pattern 135 is connected to the lower electrode pattern 133.
  • the other end of the lower connection pattern 135 is connected to the lower terminal pattern 137.
  • the lower terminal pattern 137 is formed on one surface of the lower base sheet 131.
  • the lower terminal pattern 137 is formed on one surface of the lower base sheet 131 on which the lower electrode pattern 133 and the lower connection pattern 135 are formed.
  • the lower terminal pattern 137 may be formed on the other surface of the lower electrode pattern 133 and the lower connection pattern 135.
  • the lower terminal patterns 137 may be formed on the same surface as one of the lower electrode patterns 133 and the lower connection patterns 135 when the lower electrode patterns 133 and the lower connection patterns 135 are formed on different surfaces. have.
  • the lower terminal pattern 137 may extend from the lower connection pattern 135 and may be formed outside the lower base sheet 131. At this time, a protection sheet 139 for insulation and protection of the lower terminal pattern 137 may be adhered to one surface of the lower terminal pattern 137.
  • the lower connection pattern 135, the lower terminal pattern 137, and the lower terminal pattern 137 are examples of the thin metal conductive metal having a thickness of about 12 mu m.
  • the lower connection pattern 135, the lower electrode pattern 133, and the lower terminal pattern 137 have been separately described in order to easily describe the battery pressure sensing sensor 100 according to the embodiment of the present invention
  • the lower connection pattern 135, the lower terminal pattern 137, and the lower terminal pattern 137 may be integrally formed.
  • the adhesive layer 140 is disposed between the upper electrode layer 110 and the lower electrode layer 130 to bond the upper electrode layer 110 and the lower electrode layer 130.
  • the adhesive layer 140 is a double-sided adhesive tape having a thickness of about 30 mu m as an example.
  • the adhesive layer 140 is formed with a receiving hole 142 in which the elastic layer 120 is received. Since the elastic layer 120 is accommodated in the accommodation hole 142, the thickness of the battery pressure sensing sensor 100 does not increase.
  • the battery pressure sensing sensor 100 outputs a switching event that is short-circuited at a resistance value exceeding a set resistance value as an output value.
  • the battery pressure sensor 200 includes an upper electrode layer 210, an elastic layer 220, a lower electrode layer 230, an upper adhesive layer 240, And a lower adhesive layer 250.
  • the upper electrode layer 210 and the lower electrode layer 230 are the same as the upper electrode layer 210 and the lower electrode layer 230 of the battery pressure sensing sensor 200 according to the first embodiment and will not be described in detail.
  • the upper electrode layer 210 includes an upper base sheet 211, an upper electrode pattern 213, an upper connection pattern 215, and an upper terminal pattern 217.
  • the lower electrode layer 230 is disposed under the upper electrode layer 210.
  • the lower electrode layer 230 includes a lower base sheet 231, a lower electrode pattern 233, a lower connection pattern 235, and a lower terminal pattern 237.
  • the elastic layer 220 is formed in a perforated structure.
  • the elastic layer 220 may be formed by punching a plurality of holes 222 in the elastic film.
  • the elastic layer 220 may be formed in a porous structure in which a plurality of holes 222 are formed only in a region overlapping the upper electrode pattern 213 and the lower electrode pattern 233.
  • the elastic layer 220 is a perforated structure in which a plurality of holes 222 are formed in a thin film of urethane (Pu) through a punching process. At this time, the thickness of the elastic layer 220 (that is, the thickness of the thin film) is approximately 20 ⁇ ⁇ .
  • the elastic layer 220 can adjust the switching pressure of the battery pressure sensing sensor 200 by varying the diameter of the hole 222 formed in the thin film.
  • the elastic layer 220 may adjust the switching pressure of the battery pressure sensing sensor 200 by adjusting the diameter of the hole and the thickness ratio of the thin film.
  • the upper adhesive layer 240 is disposed between the upper electrode layer 210 and the elastic layer 220.
  • the upper adhesive layer 240 bonds the upper electrode layer 210 and the elastic layer 220.
  • the upper adhesive layer 240 may have a plurality of holes 242 corresponding to the plurality of holes 222 formed in the elastic layer 220.
  • the lower adhesive layer 250 is disposed between the elastic layer 220 and the lower electrode layer 230.
  • the lower adhesive layer 250 bonds the elastic layer 220 and the lower electrode layer 230.
  • the lower adhesive layer 250 may have a plurality of holes 252 corresponding to the plurality of holes 222 formed in the elastic layer 220.
  • the upper adhesive layer 240 and the lower adhesive layer 250 are examples of double-sided adhesive tapes having a thickness of about 5 mu m.
  • the battery pressure sensing sensor 200 outputs a switching event that is short-circuited at a resistance value exceeding a set resistance value, as an output value.
  • a battery pressure sensor includes a lower electrode layer 310, a piezoelectric layer 320, an upper electrode layer 330, a protective layer 340, and an adhesive layer 350 ).
  • the upper electrode layer 330 is composed of a flexible printed circuit board on which a first electrode 312 and a second electrode 316 are formed. To this end, the upper electrode layer 330 includes a base sheet 311, a first electrode 312, and a second electrode 316.
  • the base sheet 311 is composed of a flexible thin sheet.
  • the base sheet 311 is, for example, composed of a flexible thin film sheet having a thickness of approximately 25 ⁇ m to 50 ⁇ m.
  • the base sheet 311 is, for example, a soft thin sheet of one of polyimide, polyester, glass epoxy, and polyethylene terephthalate.
  • the thin film sheet can be applied to a material used as the base sheet 311 of the flexible printed circuit board.
  • the base sheet 311 is a polyimide thin film sheet having a thickness of about 25 ⁇ ⁇ or a thin polyethylene terephthalate sheet having a thickness of about 50 ⁇ ⁇ .
  • the first electrode 312 and the second electrode 316 are formed on one surface of the base sheet 311.
  • the first electrode 312 and the second electrode 316 are formed on one surface of the base sheet 311 in the direction in which the piezoelectric layer 320 is disposed.
  • the first electrode 312 and the second electrode 316 are formed of a thin film conductive metal.
  • the first electrode 312 and the second electrode 316 are formed of a conductive metal having a thickness of about 12 mu m.
  • the first electrode 312 and the second electrode 316 are examples of the conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the first electrode 312 and the second electrode 316 may be formed of a transparent electrode material such as ITO.
  • the first electrode 312 includes a first sensing pattern 313, a first connection pattern 314, and a first terminal pattern 315.
  • the first sensing patterns 313 are composed of a plurality of mutually spaced linear patterns.
  • the first connection pattern 314 is connected to one end of a plurality of linear patterns constituting the first sensing pattern 313.
  • the first terminal pattern 315 is connected to the first sensing pattern 313.
  • the first terminal pattern 315 may extend from the first connection pattern 314 and be formed outside the base sheet 311. At this time, a protective sheet for insulation and protection of the first terminal pattern 315 may be adhered to one surface of the first terminal pattern 315.
  • the second electrode 316 includes a second sensing pattern 317, a second connection pattern 318, and a second terminal pattern 319.
  • the second sensing patterns 317 are composed of a plurality of mutually spaced linear patterns.
  • the second connection pattern 318 is connected to one end of a plurality of linear patterns constituting the second sensing pattern 317.
  • the second terminal pattern 319 is connected to the second sensing pattern 317.
  • the second terminal pattern 319 may extend from the second connection pattern 318 and be formed outside the base sheet 311. At this time, a protective sheet for insulation and protection of the second terminal pattern 319 may be adhered to one surface of the second terminal pattern 319.
  • the linear patterns constituting the first sensing pattern 313 and the second sensing pattern 317 are alternately arranged.
  • a plurality of linear patterns constituting the second sensing pattern 317 are arranged between the plurality of linear patterns constituting the first sensing pattern 313.
  • the piezoelectric layer 320 is disposed on the upper portion of the lower electrode layer 310.
  • the piezoelectric layer 320 is disposed on the first electrode 312 and the second electrode 316 formed on the lower electrode layer 310.
  • the piezoelectric layer 320 is formed of a variable resistance material whose resistance varies depending on a pressure applied in contact with an object.
  • the piezoelectric layer 320 may include a material whose sheet resistance changes depending on a pressure generated when an object is contacted.
  • the piezoelectric layer 320 is an example of a quantum tunneling composite (QTC), which is a composite of a metallic material and a nonconductive elastomer.
  • QTC quantum tunneling composite
  • the piezoelectric layer 320 is a quantum tunneling compound having a thickness of approximately 8 to 10 mu m as an example.
  • the quantum tunneling compound is a variable-resistance material, which is a combination of surface-projecting metal particles in a non-conducting elastomeric binder.
  • the metal particles When the pressure is not applied, the metal particles are separated from each other and can not conduct electricity.
  • the metal particles can be tunneled through the non-conductive elastomeric binder (insulator) adjacent to each other when the pressure is applied.
  • the battery pressure sensing sensor When the battery pressure sensing sensor generates pressure due to the battery swelling, a current flows in a portion where the piezoelectric layer 320 is closely attached.
  • the upper electrode layer 330 and the lower electrode layer 310 are electrically connected by the piezoelectric layer 320.
  • the battery pressure sensing sensor has a variable resistance value because the contact area between the upper electrode layer 330 and the lower electrode layer 310 is changed according to the intensity of the pressure applied to the piezoelectric layer 320.
  • the upper electrode layer 330 is disposed on the piezoelectric layer 320.
  • the upper electrode layer 330 overlaps the first electrode 312 and the second electrode 316 while covering a space between the first electrode 312 and the second electrode 316 of the lower electrode layer 310.
  • the upper electrode layer 330 electrically connects the first electrode 312 and the second electrode 316 when a current flows through the piezoelectric layer 320 as pressure is applied due to battery swelling.
  • the upper electrode layer 330 is formed of a conductive metal.
  • the upper electrode layer 330 is carbon having a thickness of about 5 mu m as an example.
  • the protective layer 340 is disposed on the upper electrode layer 330.
  • the protective layer 340 insulates and protects the upper electrode layer 330.
  • the protective layer 340 is formed of a thin sheet of insulating material.
  • the protective layer 340 is a polyimide (PI) material having a thickness of approximately 25 mu m or a thin sheet of polyethylene terephthalate (PET) material having a thickness of approximately 30 mu m.
  • the adhesive layer 350 is disposed between the lower electrode layer 310 and the protective layer 340 to adhere the lower electrode layer 310 and the protective layer 340.
  • the adhesive layer 350 is formed with a receiving hole 352 in which the piezoelectric layer 320 and the upper electrode layer 330 are accommodated.
  • the thickness of the adhesive layer 350 may be different depending on the thickness of the piezoelectric layer 320 and the upper electrode layer 330.
  • the thickness of the adhesive layer 350 is formed to be thicker than the sum of the thickness of the piezoelectric layer 320 and the thickness of the electrode layer.
  • the adhesive layer 350 is, for example, a double-sided adhesive tape having a thickness of approximately 30 ⁇ m to 50 ⁇ m.
  • the battery pressure sensing sensor according to the third embodiment of the present invention outputs a linear resistance value as an output value.
  • a terminal (hereinafter, referred to as a terminal) having a battery pressure sensing sensor according to an embodiment of the present invention includes all the electronic devices including a battery, such as a portable terminal such as a smart phone, a tablet, an auxiliary battery, .
  • a terminal processes battery pressure sensing signals by connecting battery pressure sensors 100, 200, and 300 to a processor connected to an AD converter.
  • the battery pressure sensing sensors 100, 200, and 300 are connected to the thermistor terminals.
  • the present invention is not limited thereto. If the terminals are connected to the processor to which the AD converter is connected, have.
  • the battery pressure sensor according to the fourth and fifth embodiments of the present invention outputs an output value corresponding to a capacitance (i.e., a capacitance C) corresponding to a pressure applied by the swelling of the battery.
  • the battery pressure detection sensor is an example of outputting a linear capacitance as an output value.
  • a battery pressure sensing sensor 400 includes an upper electrode layer 410, an elastic layer 420, a lower electrode layer 430, and an adhesive layer 440 do.
  • the upper electrode layer 410 is formed of a flexible printed circuit board on which electrodes are formed.
  • the upper electrode layer 410 includes an upper base sheet 411, an upper electrode pattern 413, an upper connection pattern 415, and an upper terminal pattern 417.
  • the upper base sheet 411 is composed of a flexible thin sheet.
  • the upper base sheet 411 is an example of a flexible thin film sheet having a thickness of about 25 mu m.
  • the upper electrode pattern 413 is formed on one surface of the upper base sheet 411.
  • the upper electrode pattern 413 is formed on one surface of the upper base sheet 411 in the direction in which the elastic layer 420 is disposed.
  • the upper electrode pattern 413 is formed of a thin film conductive metal having a predetermined shape.
  • the upper electrode pattern 413 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like.
  • the upper electrode pattern 413 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the upper electrode pattern 413 may be formed of a transparent electrode material such as ITO.
  • the upper electrode pattern 413 is formed of a circular thin film made of copper and formed on the lower surface of the upper base sheet 411 in the direction in which the elastic layer 420 is disposed.
  • the upper connection pattern 415 is formed on one surface of the upper base sheet 411.
  • the upper connection pattern 415 is formed on the upper surface of the upper base sheet 411 and on one surface of the lower surface on which the upper electrode pattern 413 is formed.
  • the upper connection pattern 415 may be formed on the other surface of the upper electrode pattern 413.
  • the upper connection pattern 415 is formed of a linear thin film conductive metal.
  • the upper connection pattern 415 may be formed of the same conductive metal as the upper electrode pattern 413 or may be formed of a different conductive metal.
  • the upper connection pattern 415 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the upper connection pattern 415 may be formed of a transparent electrode material such as ITO.
  • One end of the upper connection pattern 415 is connected to the upper electrode pattern 413.
  • the other end of the lower connection pattern 435 is connected to the upper terminal pattern 417.
  • the upper terminal pattern 417 is formed on one surface of the upper base sheet 411.
  • the upper terminal pattern 417 is formed on the upper surface of the upper base sheet 411 and on one surface of the lower surface on which the upper electrode pattern 413 and the upper connection pattern 415 are formed.
  • the upper terminal pattern 417 may be formed on the other side of the upper electrode pattern 413 and the upper connection pattern 415.
  • the upper terminal pattern 417 may be formed on the same surface as one of the upper electrode pattern 413 and the upper connection pattern 415 when the upper electrode pattern 413 and the upper connection pattern 415 are formed on different surfaces. have.
  • the upper terminal pattern 417 may extend from the upper connection pattern 415 and may be formed outside the upper base sheet 411. At this time, a protective sheet 419 for insulating and protecting the upper terminal pattern 417 may be adhered to one surface of the upper terminal pattern 417.
  • the upper connection pattern 415, the upper terminal pattern 417 and the upper terminal pattern 417 are examples of thin metal conductive metal having a thickness of about 12 mu m.
  • the upper connection pattern 415, the upper electrode pattern 413, and the upper terminal pattern 417 have been separately described to easily describe the battery pressure sensing sensor 400 according to the fourth embodiment of the present invention,
  • the upper connection pattern 415, the upper terminal pattern 417 and the upper terminal pattern 417 may be integrally formed.
  • the elastic layer 420 is disposed between the upper electrode layer 410 and the lower electrode layer 430.
  • the elastic layer 420 is formed of a material having elasticity.
  • the elastic layer 420 is formed of a thin sheet of an elastic material.
  • the elastic layer 420 may be formed by directly printing an elastic material on one surface of the upper electrode layer 410 or the lower electrode layer 430 through a screen printing process.
  • the lower electrode layer 430 is formed of a flexible printed circuit board having electrodes formed thereon.
  • the lower electrode layer 430 includes a lower base sheet 431, a lower electrode pattern 433, a lower connection pattern 435, and a lower terminal pattern 437.
  • the lower electrode layer 430 is disposed under the upper electrode layer 410 so that the lower electrode pattern 433 and the upper electrode pattern 413 overlap each other.
  • the lower base sheet 431 is composed of a soft thin sheet.
  • the lower base sheet 431 is formed of a flexible thin film sheet having a thickness of approximately 25 mu m as an example.
  • the lower electrode pattern 433 is formed on one surface of the lower base sheet 431.
  • the lower electrode pattern 433 is formed on one side of the upper surface and the lower surface of the lower base sheet 431 in the direction in which the elastic layer 420 is disposed.
  • the lower electrode pattern 433 overlaps the upper electrode pattern 413 with the elastic layer 420 therebetween.
  • the lower electrode pattern 433 is formed of a thin film conductive metal of a predetermined shape.
  • the lower electrode pattern 433 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like.
  • the lower electrode pattern 433 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the lower electrode pattern 433 may be formed of a transparent electrode material such as ITO.
  • the lower electrode pattern 433 is formed of a circular thin film made of copper and is formed on the upper surface of the lower base sheet 431 in the direction in which the elastic layer 420 is disposed.
  • the lower connection pattern 435 is formed on one surface of the lower base sheet 431.
  • the lower connection pattern 435 is formed on one surface of the lower base sheet 431 on which the lower electrode pattern 433 is formed.
  • the lower connection pattern 435 may be formed on the other surface of the lower electrode pattern 433.
  • the lower connection pattern 435 is formed of a linear thin film conductive metal.
  • the lower connection pattern 435 may be formed of the same conductive metal as the lower electrode pattern 433 or may be formed of a different conductive metal.
  • the lower connection pattern 435 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt).
  • the lower connection pattern 435 may be formed of a transparent electrode material such as ITO.
  • One end of the lower connection pattern 435 is connected to the lower electrode pattern 433.
  • the other end of the lower connection pattern 435 is connected to the lower terminal pattern 437.
  • the lower terminal pattern 437 is formed on one surface of the lower base sheet 431.
  • the lower terminal pattern 437 is formed on the upper surface of the lower base sheet 431 and the lower surface of the lower surface of the lower base sheet 431 and the lower connection pattern 435.
  • the lower terminal pattern 437 may be formed on the other surface of the lower electrode pattern 433 and the lower connection pattern 435.
  • the lower terminal pattern 437 may be formed on the same surface as one of the lower electrode pattern 433 and the lower connection pattern 435 when the lower electrode pattern 433 and the lower connection pattern 435 are formed on different surfaces. have.
  • the lower terminal pattern 437 may extend from the lower connection pattern 435 and may be formed outside the lower base sheet 431. At this time, a protection sheet 439 for insulation and protection of the lower terminal pattern 437 may be adhered to one surface of the lower terminal pattern 437.
  • the lower connection pattern 435, the lower terminal pattern 437, and the lower terminal pattern 437 are examples of thin metal conductive metal having a thickness of about 12 mu m.
  • the lower connection pattern 435, the lower electrode pattern 433, and the lower terminal pattern 437 are separately described to easily describe the battery pressure sensing sensor 400 according to the fourth embodiment of the present invention,
  • the lower connection pattern 435, the lower terminal pattern 437 and the lower terminal pattern 437 may be integrally formed.
  • the adhesive layer 440 is disposed between the upper electrode layer 410 and the lower electrode layer 430 to bond the upper electrode layer 410 and the lower electrode layer 430.
  • the adhesive layer 440 is a double-sided adhesive tape having a thickness of about 30 mu m as an example.
  • the adhesive layer 440 is formed with a receiving hole 442 in which the elastic layer 420 is received. Since the elastic layer 420 is accommodated in the accommodation hole 442, the thickness of the battery pressure sensing sensor 400 does not increase.
  • a battery pressure sensor 500 includes an upper electrode layer 510, an elastic layer 520, a lower electrode layer 530, an upper adhesive layer 540, And a lower adhesive layer 550.
  • the upper electrode layer 510 and the lower electrode layer 530 are the same as those of the upper electrode layer 510 and the lower electrode layer 530 of the battery pressure sensing sensor 500 according to the fourth embodiment.
  • the upper electrode layer 510 includes an upper base sheet 511, an upper electrode pattern 513, an upper connection pattern 515, and an upper terminal pattern 517.
  • the lower electrode layer 530 is disposed under the upper electrode layer 510.
  • the lower electrode layer 530 includes a lower base sheet 531, a lower electrode pattern 533, a lower connection pattern 535, and a lower terminal pattern 537.
  • the elastic layer 520 is disposed between the upper electrode layer 510 and the lower electrode layer 530.
  • the elastic layer 520 is formed of a material having elasticity.
  • the elastic layer 520 is formed of a thin sheet of an elastic material.
  • the elastic layer 520 may be formed by directly printing an elastic material on one surface of the upper electrode layer 510 or the lower electrode layer 530 through a screen printing process.
  • An upper adhesive layer 540 is disposed between the upper electrode layer 510 and the elastic layer 520.
  • the upper adhesive layer 540 bonds the upper electrode layer 510 and the elastic layer 520.
  • the upper adhesive layer 540 may have a plurality of holes 542 corresponding to the plurality of holes 522 formed in the elastic layer 520.
  • the lower adhesive layer 550 is disposed between the elastic layer 520 and the lower electrode layer 530.
  • the lower adhesive layer 550 bonds the elastic layer 520 and the lower electrode layer 530.
  • the lower adhesive layer 550 may have a plurality of holes 552 corresponding to the plurality of holes 522 formed in the elastic layer 520.
  • the upper adhesive layer 540 and the lower adhesive layer 550 are examples of a double-sided adhesive tape having a thickness of about 5 mu m.
  • a terminal (hereinafter referred to as a terminal) having a battery pressure sensing sensor according to the first embodiment of the present invention can be used as a portable terminal such as a smart phone or a tablet, an auxiliary battery such as a battery pouch, Devices.
  • a terminal processes battery pressure sensing signals by connecting battery pressure sensors 100, 200, and 300 to a processor connected to an AD converter.
  • the battery pressure sensing sensors 100, 200, and 300 are connected to the thermistor terminals.
  • the present invention is not limited thereto. If the terminals are connected to the processor to which the AD converter is connected, have.
  • the terminal according to the first embodiment of the present invention includes a thermistor 610, a thermistor terminal 620, a battery pressure sensing sensor 630, a central processing unit (AP) 640, Circuit 650,
  • the thermistor 610 is mounted on the terminal and outputs a resistance value according to the temperature.
  • the thermistor 610 is a semiconductor device having a property that the resistance value decreases sharply as the internal temperature of the terminal rises.
  • the thermistor 610 is disposed around the main heat generating components such as an antenna built in the terminal, a USB charging terminal, a central processing unit 640, and a power management integrated circuit (PMIC).
  • PMIC power management integrated circuit
  • the thermistor terminals 620 are composed of a pair of terminals 620a and 620b.
  • the thermistor terminal 620 is connected to both ends of the thermistor 610.
  • the thermistor terminal 620 is connected to the central processing unit 640 via a bus.
  • the thermistor terminal 620 is connected to an antenna, a USB charging terminal, a central processing unit 640, and a thermistor 610 disposed around one of the power management circuits.
  • the battery pressure sensing sensor 630 is disposed in a state of overlapping with the battery 10 mounted on the terminal.
  • the battery pressure detection sensor 630 is disposed so as to overlap the battery 10 and the electrode pattern.
  • the battery pressure detection sensor 630 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging.
  • the battery pressure detection sensor 630 outputs a linear resistance value corresponding to the swelling of the battery 10.
  • the battery pressure detection sensor 630 may output a switching event which is short-circuited at a resistance value exceeding a set resistance value as an output value.
  • the battery pressure sensing sensor 630 is connected to the thermistor terminal 620. Both ends of the battery pressure detection sensor 630 are connected to a pair of terminals 620a and 620b constituting the thermistor terminal 620, respectively.
  • the battery pressure detection sensor 630 outputs the output value to the thermistor terminal 620.
  • the thermistor terminal 620 transmits the output value to the central processing unit 640 via the bus.
  • the battery pressure detection sensor 630 is one example of the battery pressure detection sensors 100, 200, and 300 according to the first to third embodiments.
  • the central processing unit 640 is connected to the thermistor terminal 620.
  • the central processing unit 640 receives the output value of the battery pressure detection sensor 630 through the thermistor terminal 620.
  • the central processing unit 640 receives a linear resistance value from the battery pressure detection sensor 630 and an output value of one of the switching events.
  • the central processing unit 640 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 630.
  • the central processing unit 640 controls the charging of the battery in an event mode or a multi-stage mode based on the output value.
  • the central processing unit 640 interrupts the charging of the battery 10 when the output value of the battery pressure detection sensor 630 is a switching event.
  • the central processing unit 640 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10.
  • the central processing unit 640 compares the output value and the reference value and controls the charging of the battery 10. [ The central processing unit 640 controls the charging of the battery 10 stepwise based on a plurality of reference values and an output value.
  • the reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a resistance value.
  • the central processing unit 640 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner.
  • the central processing unit 640 controls the charging current to be gradually increased or decreased according to the linear resistance value so as to charge the battery 10.
  • the battery charging circuit 650 charges the battery 10 under the control of the central processing unit 640.
  • the battery charging circuit 650 turns on / off the charging of the battery 10 under the control of the central processing unit 640.
  • the battery charging circuit 650 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 640.
  • the terminal according to the second embodiment of the present invention includes a battery pressure sensor 400 or 500 connected to a controller of a touch screen panel (TSP) or a processor connected to an AD converter processor to process the battery pressure sensing signal.
  • TSP touch screen panel
  • AD converter AD converter processor
  • the terminal according to the second embodiment of the present invention includes a battery pressure sensing sensor 710, a sensor terminal 720, an AD converter 730, a central processing unit (AP) 740, And a charging circuit 750.
  • the battery pressure sensing sensor 710 is disposed in a superposition with the battery 10 mounted on the terminal.
  • the battery pressure sensing sensor 710 is disposed so that the battery 10 and the electrode pattern overlap.
  • the battery pressure detection sensor 710 outputs a capacitance corresponding to the pressure applied by the battery 10 bulging.
  • the battery pressure detection sensor 710 outputs a linear capacitance corresponding to the swelling of the battery 10.
  • the battery pressure sensing sensor 710 is connected to the sensor terminal 720. Both ends of the battery pressure detection sensor 710 are connected to a pair of terminals 720a and 720b constituting the sensor terminal 720, respectively.
  • the battery pressure detection sensor 710 outputs an output value (i.e., electrostatic capacitance) to the sensor terminal 720.
  • the battery pressure detection sensor 710 is one example of the battery pressure detection sensors 400 and 500 according to the fourth and fifth embodiments.
  • the sensor terminal 720 is connected to the battery pressure detection sensor 710 and the AD converter 730.
  • the sensor terminals 720 are composed of a pair of terminals 720a and 720b.
  • the sensor terminal 720 transmits to the AD converter 730 via the bus.
  • the AD converter 730 receives the capacitance value which is an output value of the battery pressure detection sensors 100, 200 and 400 through the sensor terminal 720.
  • the AD converter 730 converts the electrostatic capacitance, which is analog data, into digital data and transmits the digital data to the central processing unit 740.
  • the central processing unit 740 is connected to the AD converter 730.
  • the central processing unit 740 receives the output value of the battery pressure detection sensor 710 through the AD converter 730.
  • the central processing unit 740 receives a linear capacitance which is an output value of the battery pressure detection sensor 710.
  • the central processing unit 740 is an example of a controller of the touch screen pattern (TSP).
  • the central processing unit 740 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 710.
  • the central processing unit 740 controls the charging of the battery by an event method or a multi-step method based on the output value.
  • the central processing unit 740 compares the output value and the reference value to control charging of the battery 10 if the output value of the battery pressure detection sensor 710 is a linear capacitance.
  • the central processing unit 740 cuts off the charging of the battery 10 when the electrostatic capacity as the output value exceeds the reference value.
  • the central processing unit 740 may control the charging of the battery 10 stepwise based on a plurality of reference values and an output value.
  • the reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a capacitance.
  • the central processing unit 740 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner.
  • the central processing unit 740 controls the charging current to be gradually increased or decreased according to the linear capacitance so as to charge the battery 10.
  • the battery charging circuit 750 charges the battery 10 under the control of the central processing unit 740.
  • the battery charging circuit 750 turns on / off the charging of the battery 10 under the control of the central processing unit 740.
  • the battery charging circuit 750 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 740.
  • the terminal according to the third embodiment of the present invention includes an antenna 810, an antenna terminal 820, a battery pressure detection sensor 830, a central processing unit 840, and a battery charging circuit 850 .
  • the antenna 810 is composed of a single antenna 810 resonating in one frequency band.
  • the antenna 810 is one example of an NFC antenna for short range communication, an MST antenna for electronic payment, and a WPC antenna for wireless power transmission.
  • the antenna terminals 820 are composed of a pair of terminals.
  • the antenna terminal 820 is connected to both ends of the antenna 810.
  • the antenna terminal 820 is connected to the central processing unit 840 via a bus.
  • the battery pressure detection sensor 830 is disposed in an overlapping relation with the battery 10 mounted on the terminal.
  • the battery pressure sensing sensor 830 is disposed so as to overlap the battery 10 and the electrode pattern.
  • the battery pressure detection sensor 830 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging.
  • the battery pressure detection sensor 830 outputs a linear resistance value corresponding to the swelling of the battery 10.
  • the battery pressure detection sensor 830 may output a switching event that is short-circuited at a resistance value exceeding a set resistance value as an output value.
  • the battery pressure detection sensor 830 If the antenna 810 is a short-range communication antenna, the battery pressure detection sensor 830 outputs a switching event as an output value.
  • the battery pressure detection sensor 830 is configured to output a linear resistance value (that is, the structure of the battery pressure detection sensor 300 of the third embodiment)
  • the known frequency of the antenna for the short range communication is incorrect and communication can not be performed. Therefore, if the antenna 810 is an antenna for short-distance communication, the battery pressure detection sensor 830 is constituted by the battery pressure detection sensors 100 and 200 of the first embodiment or the second embodiment.
  • the battery pressure detection sensor 830 is connected to the antenna terminal 820. Both ends of the battery pressure detection sensor 830 are connected to a pair of terminals constituting the antenna terminal 820, respectively.
  • the battery pressure detection sensor 830 outputs the output value to the antenna terminal 820.
  • the antenna terminal 820 transmits the output value to the central processing unit 840 via the bus.
  • the central processing unit 840 is connected to the antenna terminal 820.
  • the central processing unit 840 receives the output value of the battery pressure detection sensor 830 through the antenna terminal 820.
  • the central processing unit 840 receives a linear resistance value from the battery pressure detection sensor 830 and an output value of one of the switching events.
  • the central processing unit 840 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 830.
  • the central processing unit 840 controls the charging of the battery in an event mode or a multistep mode based on the output value.
  • the central processing unit 840 cuts off the charging of the battery 10 when the output value of the battery pressure detection sensor 830 is a switching event.
  • the central processing unit 840 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10.
  • the central processing unit 840 controls the charging of the battery 10 by comparing the output value and the reference value when the output value of the battery pressure detection sensor 830 is a linear resistance value.
  • the central processing unit 840 controls the charging of the battery 10 stepwise based on a plurality of reference values and an output value.
  • the reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a resistance value.
  • the central processing unit 840 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner.
  • the central processing unit 840 controls the charging current to be gradually increased or decreased according to the linear resistance value so as to charge the battery 10.
  • the battery charging circuit 850 charges the battery 10 under the control of the central processing unit 840.
  • the battery charging circuit 850 turns on / off the charging of the battery 10 under the control of the central processing unit 840.
  • the battery charging circuit 850 charges the battery 10 by increasing or decreasing the charge current under the control of the central processing unit 840.
  • a terminal according to a fourth embodiment of the present invention includes a composite antenna 910, an antenna terminal 920, a battery pressure detection sensor 930, a central processing unit 940, and a battery charging circuit 950, .
  • the composite antenna 910 includes a plurality of antennas 910.
  • the composite antenna 910 includes an NFC antenna 912, an MST antenna 914, and a wireless power transmission (WPC) antenna 916 as an example.
  • WPC wireless power transmission
  • the antenna terminal 920 is composed of a plurality of terminals 920a to 920f. Each antenna 910 is connected to a pair of terminals 920a and 920b, 920c and 920d, 920e and 920f.
  • the antenna terminal 920 includes a pair of terminals 920a and 920b connected to the antenna for short-range communication 912, a pair of terminals 920c and 920d connected to the electronic payment antenna 914, And a pair of terminals 920e and 920f connected to the input / output terminals 920a and 920f.
  • the battery pressure detection sensor 930 is arranged to overlap with the battery 10 mounted on the terminal.
  • the battery pressure detection sensor 930 is disposed so that the battery 10 and the electrode pattern overlap.
  • the battery pressure detection sensor 930 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging.
  • the battery pressure detection sensor 930 outputs a linear resistance value corresponding to the swelling of the battery 10.
  • the battery pressure detection sensor 930 may output a switching event that is short-circuited at a resistance value exceeding the set resistance value as an output value.
  • the battery pressure detection sensor 930 is one example of the battery pressure detection sensor 930 of the first to third embodiments.
  • the battery pressure detection sensor 930 may output the capacitance corresponding to the pressure applied by the battery 10 bulging.
  • the battery pressure detection sensor 930 outputs a linear capacitance corresponding to the swelling of the battery 10.
  • the battery pressure detection sensor 930 is connected to the antenna terminal 920. Both ends of the battery pressure detection sensor 930 are connected to terminals connected to different antennas 910 among a plurality of terminals constituting the antenna terminal 920, respectively. Both ends of the battery pressure sensing sensor 930 are connected to terminals to which one end of the electronic settlement antenna 910 is connected and terminals to which the wireless power transmission antenna 910 is connected, respectively.
  • the battery pressure detection sensor 930 outputs the output value to the antenna terminal 920.
  • the antenna terminal 920 transmits the output value to the central processing unit 940 via the bus.
  • the central processing unit 940 is connected to the antenna terminal 920.
  • the central processing unit 940 receives the output value of the battery pressure detection sensor 930 through the antenna terminal 920.
  • the central processing unit 940 receives the output value of one of the linear resistance value, the switching event and the linear capacitance from the battery pressure detection sensor 930.
  • the central processing unit 940 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 930.
  • the central processing unit 940 controls battery charging in an event mode or a multistage manner based on the output value.
  • the central processing unit 940 blocks the charging of the battery 10 based on the output value of the battery pressure detection sensor 930.
  • the central processing unit 940 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10.
  • the central processing unit 940 may determine that the battery 10 can ignite or explode if the electrostatic capacity exceeds the reference electrostatic capacity, and may block the charging of the battery 10.
  • the central processing unit 940 controls the charging of the battery 10 by comparing the output value and the reference value when the output value of the battery pressure detection sensor 930 is a linear resistance value or capacitance.
  • the central processing unit 940 controls the charging of the battery 10 step by step based on a plurality of reference values and output values.
  • the reference value is a value set to prevent ignition and explosion due to swelling of the battery 10 and is a resistance value or a capacitance.
  • the central processing unit 940 varies the charge current of the battery 10 when the charge of the battery is controlled in a multi-step manner.
  • the central processing unit 940 controls the charging current to be gradually increased or decreased according to the linear resistance value or the capacitance to charge the battery 10.
  • the battery charging circuit 950 charges the battery 10 under the control of the central processing unit 940.
  • the battery charging circuit 950 turns on / off the charging of the battery 10 under the control of the central processing unit 940.
  • the battery charging circuit 950 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 940.
  • the battery pressure sensor 930 may be formed integrally with the composite antenna 910.
  • the battery pressure detection sensor 930 is formed on a printed circuit board on which a plurality of antennas 912, 914, and 916 are formed.
  • the battery pressure detection sensor 930 may be formed integrally with the antenna 910 formed with one antenna or thermistor.

Abstract

Provided are a battery pressure detection sensor for outputting a resistance value or a capacitance corresponding to a pressure applied by the swelling of a battery, and a terminal including a battery pressure detection sensor, in which the charging of a battery is controlled on the basis of a resistance value or a capacitance output from the battery pressure detection sensor so that ignition and explosion of the battery are prevented. The provided battery pressure detection sensor comprises: an upper electrode layer including an upper electrode pattern; a lower electrode layer disposed under the upper electrode layer and including a lower electrode pattern arranged to overlap the upper electrode pattern; and an elastic layer disposed between the upper electrode layer and the lower electrode layer, wherein the elastic layer is disposed to overlap the upper electrode pattern and the lower electrode pattern.

Description

배터리 압력 감지 센서 및 이를 구비한 단말기Battery pressure sensor and terminal equipped with it
본 발명은 배터리 압력 감지 센서 및 이를 구비한 단말기에 관한 것으로, 더욱 상세하게는 스마트폰, 태블릿 등의 휴대 단말, 보조배터리, 배터리 파우치 등의 보조 전원 장치에 실장된 배터리의 부풀음(Swelling)에 따른 압력을 감지하는 배터리 압력 감지 센서 및 이를 구비한 단말기에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a battery pressure sensor and a terminal having the battery pressure sensor, and more particularly, The present invention relates to a battery pressure sensing sensor for sensing pressure and a terminal equipped with the same.
휴대 단말에는 전원 공급을 위한 배터리가 실장된다. 휴대 단말에는 주로 리튬계 전지를 사용하는 배터리가 실장된다.A battery for power supply is mounted on the portable terminal. A battery using a lithium-based battery is mounted on a portable terminal.
배터리는 충전 동작시 내부의 화합물질 반응에 의해 발생하는 가스에 의해 부풀음(Swelling)이 발생한다.The swelling of the battery occurs due to the gas generated by the reaction of the compound material during the charging operation.
휴대 단말은 배터리의 부풀음이 발생한 상태에서 내부 온도가 증가하면 발화, 폭발 등이 발생할 수 있다.When the internal temperature of the portable terminal is increased in a state where battery swelling occurs, ignition or explosion may occur.
최근 휴대 단말에 실장된 배터리의 발화, 폭발 등이 빈번하게 발생함에 따라, 제조사들은 배터리의 발화, 폭발 등을 방지하기 위한 다양한 배터리 제어 기술에 대한 연구를 진행하고 있다.2. Description of the Related Art [0002] Recently, as the ignition and explosion of a battery mounted in a mobile terminal frequently occurs, manufacturers are studying various battery control techniques to prevent ignition, explosion, and the like of the battery.
일례로, 배터리 제어 기술 중 대표적인 방식은 배터리 온도에 따른 충전 차단 방식이 있다. 충전 차단 방식은 써미스터를 통해 배터리 온도 또는 휴대 단말의 내부 온도를 측정하고, 측정한 온도가 기준치 이상이면 배터리의 충전을 차단한다.For example, a typical method of battery control technology is a charge shutdown method according to battery temperature. The charge cutoff method measures the temperature of the battery or the internal temperature of the portable terminal through the thermistor, and stops the charging of the battery when the measured temperature is higher than the reference value.
하지만, 배터리는 정상상태에서도 충전시 기준치 이상으로 온도가 상승하는 경우가 빈번히 발생한다. 충전 차단 방식이 적용된 휴대 단말은 정상인 배터리를 비정상 상태로 판단하기 때문에 충전과 충전 차단이 반복되어 배터리의 충전 시간이 증가하는 문제점이 있다.However, even when the battery is in a normal state, the temperature frequently rises above the reference value during charging. The portable terminal to which the charge cutoff method is applied has a problem that charging time is increased due to repetition of charge and charge interruption since the normal battery is determined to be in an abnormal state.
이에, 제조업계에서는 배터리의 충전시간 증가를 최소화하면서 배터리의 발화, 폭발 등을 방지하기 위한 기술을 지속적으로 연구하고 있다.Accordingly, the manufacturing industry is constantly studying techniques for preventing ignition and explosion of a battery while minimizing an increase in the charging time of the battery.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값 또는 정전용량을 출력하도록 한 배터리 압력 감지 센서를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a battery pressure sensor which outputs a resistance value or a capacitance corresponding to a pressure applied by a swelling of a battery.
본 발명은 배터리 압력 감지 센서에서 출력되는 저항값 또는 정전용량을 근거로 배터리의 충전을 제어하여 배터리의 발화 및 폭발을 방지하도록 한 배터리 압력 감지 센서를 구비한 단말기를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a terminal equipped with a battery pressure sensing sensor for controlling ignition of a battery based on a resistance value or a capacitance output from a battery pressure sensing sensor to prevent ignition and explosion of the battery.
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 배터리 압력 감지 센서는 상부 전극 패턴을 구비한 상부 전극층, 상부 전극층의 하부에 배치되고, 상부 전극 패턴과 중첩 배치된 하부 전극 패턴을 구비한 하부 전극층 및 상부 전극층 및 하부 전극층 사이에 배치된 탄성층을 포함하고, 탄성층은 상부 전극 패턴 및 하부 전극 패턴과 중첩 배치된다. 이때, 상부 전극층 및 하부 전극층 사이에 배치되어 상부 전극층 및 하부 전극층을 접착하는 접착층을 더 포함하고, 접착층은 탄성층이 수용되는 수용 홀이 형성될 수 있다.In order to achieve the above object, a battery pressure sensor according to an embodiment of the present invention includes an upper electrode layer having an upper electrode pattern, a lower electrode layer disposed below the upper electrode layer, And an elastic layer disposed between the electrode layer, the upper electrode layer, and the lower electrode layer, and the elastic layer is superimposed on the upper electrode pattern and the lower electrode pattern. The adhesive layer may be disposed between the upper electrode layer and the lower electrode layer to bond the upper electrode layer and the lower electrode layer. The adhesive layer may include a receiving hole for receiving the elastic layer.
상기한 목적을 달성하기 위하여 본 발명의 다른 실시 예에 따른 배터리 압력 감지 센서는 제1 전극 및 제2 전극이 형성된 하부 전극층, 하부 전극층의 상부에 배치되어 제1 전극 및 제2 전극에 중첩된 압전층 및 압전층의 상부에 배치된 상부 전극층을 포함한다. 이때, 제1 전극 및 제2 전극은 상호 이격된 복수의 선형 패턴을 포함하고, 제1 전극을 구성하는 선형 패턴들 사이에 제2 전극을 구성하는 선형 패턴이 배치되고, 압전층은 저항 가변 물질로 구성되고, 저항 가변 물질은 양자 터널링 합성물(QTC: Quantum Tunneling Composite)일 수 있다.According to another aspect of the present invention, there is provided a battery pressure sensor comprising: a lower electrode layer having a first electrode and a second electrode formed thereon; a first electrode disposed on the lower electrode layer, Layer and a top electrode layer disposed on top of the piezoelectric layer. In this case, the first electrode and the second electrode include a plurality of linear patterns spaced apart from each other, a linear pattern constituting a second electrode is arranged between the linear patterns constituting the first electrode, and the piezoelectric layer includes a variable resistance material And the resistance variable material may be a quantum tunneling composite (QTC).
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기는 써미스터에 연결된 써미스터 단자, 배터리와 중첩 배치되어 써미스터 단자에 연결되고, 배터리의 부풀음에 의해 가해지는 압력에 대응되는 출력값을 출력하는 배터리 압력 감지 센서 및 써미스터 단자와 연결되고, 배터리 압력 감지 센서의 출력값을 근거로 배터리의 충전을 제어하는 중앙처리장치를 포함하고, 써미스터는 안테나, USB 충전 단자, 중앙처리장치 및 전력 관리 회로 중 적어도 하나에 배치된다. 이때, 배터리 압력 감지 센서는 저항값 또는 스위칭 이벤트를 출력값으로 출력하고, 중앙처리장치는 배터리 압력 감지 센서의 출력값이 저항값이면 배터리의 충전 전류를 가변하여 배터리를 충전하고, 배터리 압력 감지 센서의 출력값이 스위칭 이벤트이면 배터리의 충전을 차단할 수 있다.According to an aspect of the present invention, there is provided a terminal including a battery pressure sensor according to an exemplary embodiment of the present invention. The terminal is connected to a thermistor terminal connected to a thermistor and a battery and connected to a thermistor terminal. And a central processing unit connected to the thermistor terminal and controlling the charging of the battery based on the output value of the battery pressure detection sensor. The thermistor includes an antenna, a USB charging terminal, a central processing unit Power management circuitry. At this time, the battery pressure detection sensor outputs a resistance value or a switching event as an output value. When the output value of the battery pressure detection sensor is a resistance value, the central processing unit charges the battery by varying the charging current of the battery, This switching event can block the charging of the battery.
상기한 목적을 달성하기 위하여 본 발명의 다른 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기는 배터리와 중첩 배치되어 센서 단자에 연결되고, 배터리의 부풀음에 의해 가해지는 압력에 대응되는 출력값을 출력하는 배터리 압력 감지 센서, 센서 단자와 연결되고, 배터리 압력 감지 센서의 출력값을 디지털 신호로 변환하는 AD 컨버터 및 AD 컨버터에서 디지털 신호로 변환된 출력값을 근거로 배터리의 충전을 제어하는 중앙처리장치를 포함한다. 이때, 중앙처리장치는 AD 컨버터의 출력값이 설정값을 초과하면 배터리의 충전을 차단하거나, AD 컨버터의 출력값과 복수의 기준값을 근거로 배터리의 충전 전류를 가변하여 배터리를 충전할 수 있다.According to another aspect of the present invention, there is provided a terminal having a battery pressure sensor according to another embodiment of the present invention. The terminal is disposed over the battery and connected to a sensor terminal. The terminal outputs an output value corresponding to a pressure applied by the swelling of the battery. An AD converter connected to the battery pressure sensor and the sensor terminal for converting the output value of the battery pressure sensor into a digital signal and a central processing unit for controlling the charging of the battery based on the output value converted into the digital signal by the AD converter . At this time, the central processing unit can charge the battery when the output value of the AD converter exceeds the preset value, or to charge the battery by changing the charging current of the battery based on the output value of the AD converter and the plurality of reference values.
상기한 목적을 달성하기 위하여 본 발명의 다른 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기는 안테나에 연결된 안테나 단자. 배터리와 중첩 배치되어 안테나 단자와 연결되고, 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값, 스위칭 이벤트 및 정전용량 중 하나를 출력값으로 출력하는 배터리 압력 감지 센서 및 안테나 단자와 연결되고, 배터리 압력 감지 센서의 출력값을 근거로 배터리의 충전을 제어하는 중앙처리장치를 포함한다.According to another aspect of the present invention, there is provided a terminal having a battery pressure sensing sensor, comprising: an antenna terminal connected to an antenna; A battery pressure sensor connected to the antenna terminal and arranged to be overlapped with the battery and connected to the antenna terminal for outputting one of a resistance value, a switching event and a capacitance corresponding to the pressure applied by the swelling of the battery as an output value; And a central processing unit for controlling the charging of the battery based on the output value of the detection sensor.
이때, 안테나 단자는 전자결제용 안테나, 무선 전력 전송용 안테나 및 근거리 통신용 안테나 중 하나이고, 배터리 압력 감지 센서는 안테나 단자에 연결된 안테나가 근거리 통신용 안테나이고, 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값이 설정값을 초과하면 스위칭 이벤트를 출력값으로 출력할 수 있다.In this case, the antenna terminal is one of an electronic payment antenna, a wireless power transmission antenna, and a short-range communication antenna. The battery pressure sensor is an antenna for short-range communication connected to an antenna terminal. When the resistance value exceeds the set value, the switching event can be output as the output value.
한편, 안테나 단자는 복수의 안테나에 연결된 복수의 단자를 구비하고, 배터리 압력 감지 센서는 복수의 단자 중 서로 다른 안테나 연결된 단자들에 연결되고, 중앙처리장치는 배터리 압력 감지 센서의 출력값이 설정값을 초과하면 배터리의 충전을 차단하고, 배터리 압력 감지 센서의 출력값과 복수의 기준값을 근거로 배터리의 충전 전류를 가변하여 배터리를 충전할 수 있다.Meanwhile, the antenna terminal has a plurality of terminals connected to the plurality of antennas, and the battery pressure detection sensor is connected to terminals connected to different ones of the plurality of terminals, and the central processing unit detects the output value of the battery pressure detection sensor as a set value The charging of the battery is blocked and the charging current of the battery is varied based on the output value of the battery pressure detecting sensor and a plurality of reference values to charge the battery.
본 발명에 의하면, 배터리 압력 감지 센서 및 이를 구비한 단말기는 배터리의 부풀음에 따른 압력에 대응하는 저항값 또는 정전용량(C)을 감지하여 배터리의 충전을 제어함으로써, 정상 배터리의 충전시 발생하는 부풀음과 비정상 배터리의 충전시 발생하는 부풀음을 구별할 수 있는 효과가 있다.According to the present invention, a battery pressure sensor and a terminal equipped with the sensor can detect the resistance value or the capacitance C corresponding to the pressure caused by the swelling of the battery to control charging of the battery, And the blister generated when the abnormal battery is charged can be distinguished from each other.
또한, 배터리 압력 감지 센서 및 이를 구비한 단말기는 배터리 압력 감지 센서에서 출력된 출력값을 근거로 배터리의 충전을 제어함으로써, 비정상 상태의 배터리에서 발생하는 부풀음 정보에 따라 배터리의 충전을 제어하여 배터리의 발화 및 폭발을 방지할 수 있는 효과가 있다.Also, the battery pressure sensor and the terminal having the battery pressure sensor control the charging of the battery based on the output value output from the battery pressure sensor, thereby controlling the charging of the battery in accordance with the bulging information generated in the battery in an abnormal state, And explosion can be prevented.
또한, 배터리 압력 감지 센서 및 이를 구비한 단말기는 배터리 압력 감지 센서에서 출력된 출력값을 근거로 배터리의 충전을 제어함으로써, 온도 기준의 충전 차단 방식이 적용된 종래 기술에 비해 정상 배터리의 충전 차단을 방지하여 배터리 충전 시간이 증가하는 것을 방지할 수 있는 효과가 있다.In addition, the battery pressure sensor and the terminal having the battery pressure sensor control the charging of the battery based on the output value output from the battery pressure sensor, thereby preventing the charging of the normal battery from being blocked as compared with the conventional technology using the temperature- It is possible to prevent the battery charging time from being increased.
도 1 및 도 2는 본 발명의 제1 실시 예에 따른 배터리 압력 감지 센서를 설명하기 위한 도면.1 and 2 are views for explaining a battery pressure sensing sensor according to a first embodiment of the present invention.
도 3 및 도 4는 본 발명의 제2 실시 예에 따른 배터리 압력 감지 센서를 설명하기 위한 도면.3 and 4 are views for explaining a battery pressure sensing sensor according to a second embodiment of the present invention.
도 5 및 도 6은 본 발명의 제3 실시 예에 따른 배터리 압력 감지 센서를 설명하기 위한 도면.5 and 6 are views for explaining a battery pressure sensing sensor according to a third embodiment of the present invention.
도 7 및 도 8는 본 발명의 제4 실시 예에 따른 배터리 압력 감지 센서를 설명하기 위한 도면.7 and 8 are views for explaining a battery pressure sensing sensor according to a fourth embodiment of the present invention.
도 9 및 도 10은 본 발명의 제5 실시 예에 따른 배터리 압력 감지 센서를 설명하기 위한 도면.9 and 10 are views for explaining a battery pressure sensing sensor according to a fifth embodiment of the present invention.
도 11은 본 발명의 제1 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기를 설명하기 위한 도면.11 is a view for explaining a terminal having a battery pressure sensing sensor according to a first embodiment of the present invention.
도 12는 본 발명의 제2 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기를 설명하기 위한 도면.12 is a view for explaining a terminal having a battery pressure sensor according to a second embodiment of the present invention;
도 13은 본 발명의 제3 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기를 설명하기 위한 도면.13 is a view for explaining a terminal having a battery pressure sensor according to a third embodiment of the present invention.
도 14 및 도 15는 본 발명의 제4 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기를 설명하기 위한 도면.14 and 15 are views for explaining a terminal having a battery pressure sensing sensor according to a fourth embodiment of the present invention;
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to facilitate a person skilled in the art to easily carry out the technical idea of the present invention. . In the drawings, the same reference numerals are used to designate the same or similar components throughout the drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.
본 발명의 제1 실시 예 내지 제3 실시 예에 따른 배터리 압력 감지 센서는 배터리가 내장된 기기에 실장되어 배터리의 부풀음(Swelling)에 따른 압력 변화를 감지한다. 압력 감지 센서는 배터리와 중첩 배치되며, 배터리의 부풀음(Swelling)에 따라 가해지는 압력에 대응되는 출력값을 출력한다.The battery pressure sensing sensor according to the first to third embodiments of the present invention is mounted on a device having a built-in battery to sense a pressure change due to swelling of the battery. The pressure sensor is placed over the battery and outputs an output value corresponding to the pressure applied by the swelling of the battery.
배터리 압력 감지 센서는 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항에 따른 출력값을 출력한다. 배터리 압력 감지 센서는 리니어(linear)한 저항값을 출력값을 출력하는 것을 일례로 한다. 배터리 압력 감지 센서는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭(Switching) 이벤트를 출력값으로 출력하는 것을 다른 일례로 한다.The battery pressure detection sensor outputs an output value corresponding to the resistance corresponding to the pressure applied by the swelling of the battery. The battery pressure detection sensor is an example of outputting a linear resistance value as an output value. Another example is that the battery pressure detection sensor outputs a switching event which is short-circuited at a resistance value exceeding a set resistance value, as an output value.
배터리 압력 감지 센서는 배터리의 부풀음에 의해 가해지는 압력에 대응되는 커패시터값에 따른 출력값을 출력한다. 배터리 압력 감지 센서는 리니어(linear)한 커패시터값을 출력값을 출력하는 것을 일례로 한다. 배터리 압력 감지 센서는 설정 커패시터값을 초과하는 커패시터값에서 쇼트되는 스위칭(Switching) 이벤트를 출력값으로 출력하는 것을 다른 일례로 한다.The battery pressure detection sensor outputs an output value corresponding to the capacitor value corresponding to the pressure applied by the swelling of the battery. The battery pressure detection sensor is an example of outputting a linear capacitor value as an output value. Another example is that the battery pressure detection sensor outputs, as an output value, a switching event that is short-circuited at a capacitor value exceeding the set capacitor value.
도 1 및 도 2를 참조하면, 본 발명의 제1 실시 예에 따른 배터리 압력 감지 센서(100)는 상부 전극층(110), 탄성층(120), 하부 전극층(130) 및 접착층(140)을 포함한다.1 and 2, a battery pressure sensing sensor 100 according to a first embodiment of the present invention includes an upper electrode layer 110, an elastic layer 120, a lower electrode layer 130, and an adhesive layer 140 do.
상부 전극층(110)은 전극이 형성된 연성인쇄회로기판(Flexible Printed Circuit Board)으로 구성된다. 이를 위해, 상부 전극층(110)은 상부 베이스 시트(111), 상부 전극 패턴(113), 상부 연결 패턴(115) 및 상부 단자 패턴(117)을 포함한다.The upper electrode layer 110 is formed of a flexible printed circuit board having electrodes formed thereon. The upper electrode layer 110 includes an upper base sheet 111, an upper electrode pattern 113, an upper connection pattern 115, and an upper terminal pattern 117.
상부 베이스 시트(111)는 연성 박막 시트로 구성된다. 상부 베이스 시트(111)는 대략 25㎛ 정도의 두께를 갖는 연성 박막 시트로 구성되는 것을 일례로 한다.The upper base sheet 111 is composed of a soft thin sheet. The upper base sheet 111 is made up of a flexible thin sheet having a thickness of about 25 mu m as an example.
상부 베이스 시트(111)는 폴리이미드(PI; Polyimide), 폴리에스테르(Polyester), 글라스 에폭시(Glass Epoxy), 폴리에틸렌테레프탈레이트(Polyethylene terephthalate) 중 하나의 연성 박막 시트인 것을 일례로 한다. 이외에도 박막 시트는 연성인쇄회로기판의 베이스 시트로 사용되는 재질이라면 적용할 수 있다.The upper base sheet 111 is a soft thin sheet of one of polyimide (PI), polyester, glass epoxy, and polyethylene terephthalate. In addition, the thin film sheet can be applied to a material used as a base sheet of a flexible printed circuit board.
상부 전극 패턴(113)은 상부 베이스 시트(111)의 일면에 형성된다. 상부 전극 패턴(113)은 상부 베이스 시트(111)의 상면 및 하면 중 탄성층(120)이 배치되는 방향의 한 면에 형성된다.The upper electrode pattern 113 is formed on one surface of the upper base sheet 111. The upper electrode pattern 113 is formed on one surface of the upper base sheet 111 in the direction in which the elastic layer 120 is disposed.
상부 전극 패턴(113)은 소정 형상의 박막 전도성 금속으로 형성된다. 상부 전극 패턴(113)은 원형, 타원형, 사각형, 삼각형 등과 같은 다각형 형상으로 형성될 수 있다. 상부 전극 패턴(113)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 상부 전극 패턴(113)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The upper electrode pattern 113 is formed of a thin film conductive metal having a predetermined shape. The upper electrode pattern 113 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like. The upper electrode pattern 113 is an example of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The upper electrode pattern 113 may be formed of a transparent electrode material such as ITO.
상부 전극 패턴(113)은 구리 재질인 원형 박막으로 형성되고, 탄성층(120)이 배치되는 방향인 상부 베이스 시트(111)의 하면에 형성되는 것을 일례로 한다.The upper electrode pattern 113 is formed of a circular thin film made of copper and formed on the lower surface of the upper base sheet 111 in the direction in which the elastic layer 120 is disposed.
상부 연결 패턴(115)은 상부 베이스 시트(111)의 일면에 형성된다. 상부 연결 패턴(115)은 상부 베이스 시트(111)의 상면 및 하면 중 상부 전극 패턴(113)이 형성된 한 면에 형성된다. 상부 연결 패턴(115)은 상부 전극 패턴(113)과 다른 면에 형성될 수도 있다.The upper connection pattern 115 is formed on one surface of the upper base sheet 111. The upper connection pattern 115 is formed on the upper surface of the upper base sheet 111 and one surface of the lower surface on which the upper electrode pattern 113 is formed. The upper connection pattern 115 may be formed on the other surface of the upper electrode pattern 113.
상부 연결 패턴(115)은 선형의 박막 전도성 금속으로 형성된다. 상부 연결 패턴(115)은 상부 전극 패턴(113)과 동일한 전도성 금속으로 형성되거나, 이종의 전도성 금속으로 형성될 수 있다. 상부 연결 패턴(115)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 상부 연결 패턴(115)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The upper connection pattern 115 is formed of a linear thin film conductive metal. The upper connection pattern 115 may be formed of the same conductive metal as the upper electrode pattern 113 or may be formed of a different conductive metal. The upper connection pattern 115 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The upper connection pattern 115 may be formed of a transparent electrode material such as ITO.
상부 연결 패턴(115)의 일단은 상부 전극 패턴(113)과 연결된다. 하부 연결 패턴(135)의 타단은 상부 단자 패턴(117)과 연결된다.One end of the upper connection pattern 115 is connected to the upper electrode pattern 113. The other end of the lower connection pattern 135 is connected to the upper terminal pattern 117.
상부 단자 패턴(117)은 상부 베이스 시트(111)의 일면에 형성된다. 상부 단자 패턴(117)은 상부 베이스 시트(111)의 상면 및 하면 중 상부 전극 패턴(113) 및 상부 연결 패턴(115)이 형성된 한 면에 형성된다. 상부 단자 패턴(117)은 상부 전극 패턴(113) 및 상부 연결 패턴(115)과 다른 한 면에 형성될 수 있다. 상부 단자 패턴(117)은 상부 전극 패턴(113) 및 상부 연결 패턴(115)이 서로 다른 면에 형성된 경우, 상부 전극 패턴(113) 및 상부 연결 패턴(115) 중 하나와 동일한 면에 형성될 수 있다.The upper terminal pattern 117 is formed on one surface of the upper base sheet 111. The upper terminal pattern 117 is formed on the upper surface of the upper base sheet 111 and the upper surface of the lower electrode pattern 113 and the upper connection pattern 115. The upper terminal pattern 117 may be formed on the other side of the upper electrode pattern 113 and the upper connection pattern 115. [ The upper terminal pattern 117 may be formed on the same surface as one of the upper electrode pattern 113 and the upper connection pattern 115 when the upper electrode pattern 113 and the upper connection pattern 115 are formed on different surfaces. have.
상부 단자 패턴(117)은 상부 연결 패턴(115)에서 연장되어 상부 베이스 시트(111)의 외부에 형성될 수 있다. 이때, 상부 단자 패턴(117)의 일면에는 상부 단자 패턴(117)의 절연 및 보호를 위한 보호 시트(119)가 접착될 수 있다.The upper terminal pattern 117 may extend from the upper connection pattern 115 and be formed outside the upper base sheet 111. At this time, a protection sheet 119 for insulation and protection of the upper terminal pattern 117 may be adhered to one surface of the upper terminal pattern 117.
상부 전극 패턴(113), 상부 연결 패턴(115) 및 상부 단자 패턴(117)은 대략 12㎛ 정도의 두께를 갖는 박막의 도전성 금속인 것을 일례로 한다.The upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 are examples of thin metal conductive metal having a thickness of about 12 mu m.
여기서, 본 발명의 실시 예에 따른 배터리 압력 감지 센서(100)를 용이하게 설명하기 위해서 상부 전극 패턴(113), 상부 연결 패턴(115) 및 상부 단자 패턴(117)을 분리하여 설명하였으나, 실제 제품의 구현 시 상부 전극 패턴(113), 상부 연결 패턴(115) 및 상부 단자 패턴(117)은 일체로 형성될 수 있다.Although the upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 have been separately described in order to easily describe the battery pressure sensing sensor 100 according to the embodiment of the present invention, The upper electrode pattern 113, the upper connection pattern 115, and the upper terminal pattern 117 may be integrally formed.
탄성층(120)은 상부 전극층(110) 및 하부 전극층(130) 사이에 배치된다. 탄성층(120)은 탄성을 갖는 재질로 형성된다. 탄성층(120)은 실리콘(Si), PDMS(Polydimethylsiloxane), 에코플렉스(EcoFlex), 누실(Nusil), 하이드로젤(hydrogel) 및 폴리우레탄(polyurethane) 중 적어도 하나를 포함하는 탄성중합체인 것을 일례로 한다.The elastic layer 120 is disposed between the upper electrode layer 110 and the lower electrode layer 130. The elastic layer 120 is formed of a material having elasticity. The elastic layer 120 is an elastic polymer including at least one of silicon (Si), polydimethylsiloxane (PDMS), EcoFlex, Nusil, hydrogel, and polyurethane do.
탄성층(120)은 상부 전극층(110) 및 하부 전극층(130) 사이에 기재된다. 탄성층(120)은 상부 전극층(110) 및 하부 전극층(130) 사이에 기재되어 상부 전극층(110)과 하부 전극층(130) 사이에 공간(또는 공극)을 형성한다. 탄성층(120)의 두께는 대략 12㎛ 내지 24㎛ 정도로 형성될 수 있다.The elastic layer 120 is described between the upper electrode layer 110 and the lower electrode layer 130. The elastic layer 120 is interposed between the upper electrode layer 110 and the lower electrode layer 130 to form a space (or a gap) between the upper electrode layer 110 and the lower electrode layer 130. The thickness of the elastic layer 120 may be about 12 to 24 mu m.
탄성 재질은 주로 절연성 재질이기 때문에 무기공성 필름 기재로 구성하면, 배터리의 부풀음에 의한 압력이 가해져도 상부 전극층(110)과 하부 전극층(130) 사이에 저항이 형성되지 않는다.Since the elastic material is mainly made of an insulating material, resistance is not formed between the upper electrode layer 110 and the lower electrode layer 130 even when a pressure due to the swelling of the battery is applied.
따라서, 탄성층(120)은 공간(또는 공극)을 갖는 구조로 형성된다. 탄성층(120)은 닷 스페이스(Dot Space) 구조, 그물막(Mesh) 구조 및 기공성 필름 구조 중 하나로 형성된 것을 일례로 한다.Accordingly, the elastic layer 120 is formed in a structure having a space (or void). The elastic layer 120 is formed of one of a dot space structure, a meshed structure, and a porous film structure.
탄성층(120)은 인쇄 공정을 통해 상부 전극층(110) 또는 하부 전극층(130)의 일면에 복수의 닷(Dot)을 인쇄하여 닷 스페이스 구조로 형성될 수 있다. 복수의 닷(Dot)은 상호 간 소정 간격 이격되어 형성된다. 닷 스페이스 구조는 감압식(Resistive) 터치 패널이 주로 사용되는 구조이다.The elastic layer 120 may be formed in a dot space structure by printing a plurality of dots on one surface of the upper electrode layer 110 or the lower electrode layer 130 through a printing process. A plurality of dots are formed at predetermined intervals. The dot space structure is a structure in which a resistive touch panel is mainly used.
탄성층(120)은 서로 다른 두께를 갖는 닷(Dot)을 2회에 걸쳐 인쇄하여 배터리 압력 감지 센서(100)의 스위칭 압력을 조정할 수 있다.The elastic layer 120 may print dots having different thicknesses twice to adjust the switching pressure of the battery pressure detection sensor 100. [
탄성층(120)은 복수의 닷의 패턴을 변경하여 닷 스페이서의 Open Rate를 조정할 수 있다. 탄성층(120)은 Open Rate 조정을 통해 배터리 압력 감지 센서(100)의 스위칭 압력을 조정할 수 있다. 여기서, Open Rate는 닷의 두께, 간격에 따라 닷이 형성되지 않는 영역의 비율을 의미할 수 있다.The elastic layer 120 can change the pattern of a plurality of dots to adjust the open rate of the dot spacers. The elastic layer 120 can adjust the switching pressure of the battery pressure detection sensor 100 through the Open Rate adjustment. Here, the open rate can mean the ratio of the area where the dot is not formed depending on the dot thickness and the interval.
탄성층(120)은 스크린 프린팅 공정을 반복하여 그물막 구조로 형성될 수 있다. 스크린 프린팅 공정시 서로 이격된 복수의 탄성 라인이 형성되며, 스크린 프린팅 공정을 반복하여 복수의 탄성 라인이 적층된 그물막 구조의 탄성층(120)이 형성된다. 탄성층(120)은 상부 전극층(110) 또는 하부 전극층(130)의 일면에 직접 스크린 프린팅을 통해 형성될 수도 있다.The elastic layer 120 may be formed in a mesh structure by repeating the screen printing process. A plurality of elastic lines spaced apart from each other are formed during the screen printing process, and the elastic layer 120 having a net film structure in which a plurality of elastic lines are laminated is formed by repeating the screen printing process. The elastic layer 120 may be formed directly on one surface of the upper electrode layer 110 or the lower electrode layer 130 by screen printing.
탄성층(120)은 탄성 재질에 은사(Silver wire)를 혼합되어 복수의 기공을 갖는 기공성 필름 구조로 형성될 수 있다. 탄성층(120)은 실리콘(Si)에 은사를 혼합한 기공성 필름 구조인 것을 일례로 한다.The elastic layer 120 may be formed of a porous film structure having a plurality of pores by mixing a silver wire with an elastic material. The elastic layer 120 is an example of a porous film structure in which silver (Si) is mixed with silver.
탄성층(120)은 탄성 필름에 복수의 홀을 타공하여 타공 구조로 형성될 수 있다. 탄성층(120)은 펀칭 공정을 통해 폴리이미드 박막 필름에 복수의 홀을 타공한 타공 구조인 것을 일례로 한다.The elastic layer 120 may be formed by punching a plurality of holes into the elastic film. The elastic layer 120 is a perforated structure in which a plurality of holes are formed in a polyimide thin film through a punching process.
하부 전극층(130)은 전극이 형성된 연성인쇄회로기판(Flexible Printed Circuit Board)으로 구성된다. 이를 위해, 하부 전극층(130)은 하부 베이스 시트(131), 하부 전극 패턴(133), 하부 연결 패턴(135) 및 하부 단자 패턴(137)을 포함한다. 하부 전극층(130)은 하부 전극 패턴(133)과 상부 전극 패턴(113)이 중첩되도록 상부 전극층(110)의 하부에 배치된다.The lower electrode layer 130 is formed of a flexible printed circuit board having electrodes formed thereon. The lower electrode layer 130 includes a lower base sheet 131, a lower electrode pattern 133, a lower connection pattern 135, and a lower terminal pattern 137. The lower electrode layer 130 is disposed below the upper electrode layer 110 so that the lower electrode pattern 133 and the upper electrode pattern 113 overlap each other.
하부 베이스 시트(131)는 연성 박막 시트로 구성된다. 하부 베이스 시트(131)는 대략 25㎛ 정도의 두께를 갖는 연성 박막 시트로 구성되는 것을 일례로 한다. 여기서, 하부 베이스 시트(131)는 폴리이미드, 폴리에스테르, 글라스 에폭시(Glass Epoxy), 폴리에틸렌테레프탈레이트 중 하나의 연성 박막 시트인 것을 일례로 한다. The lower base sheet 131 is composed of a soft thin sheet. The lower base sheet 131 is formed of a flexible thin film sheet having a thickness of about 25 mu m as an example. Here, the lower base sheet 131 is a soft thin sheet of one of polyimide, polyester, glass epoxy, and polyethylene terephthalate.
하부 전극 패턴(133)은 하부 베이스 시트(131)의 일면에 형성된다. 하부 전극 패턴(133)은 하부 베이스 시트(131)의 상면 및 하면 중 탄성층(120)이 배치되는 방향의 한 면에 형성된다. 하부 전극 패턴(133)은 탄성층(120)을 사이에 두고 상부 전극 패턴(113)과 중첩된다,The lower electrode pattern 133 is formed on one surface of the lower base sheet 131. The lower electrode pattern 133 is formed on one surface of the upper and lower surfaces of the lower base sheet 131 in the direction in which the elastic layer 120 is disposed. The lower electrode pattern 133 overlaps the upper electrode pattern 113 with the elastic layer 120 interposed therebetween,
하부 전극 패턴(133)은 소정 형상의 박막 전도성 금속으로 형성된다. 하부 전극 패턴(133)은 원형, 타원형, 사각형, 삼각형 등과 같은 다각형 형상으로 형성될 수 있다. 하부 전극 패턴(133)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 하부 전극 패턴(133)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The lower electrode pattern 133 is formed of a thin film conductive metal having a predetermined shape. The lower electrode pattern 133 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like. The lower electrode pattern 133 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The lower electrode pattern 133 may be formed of a transparent electrode material such as ITO.
하부 전극 패턴(133)은 구리 재질인 원형 박막으로 형성되고, 탄성층(120)이 배치되는 방향인 하부 베이스 시트(131)의 상면에 형성되는 것을 일례로 한다.The lower electrode pattern 133 is formed of a circular thin film made of copper and is formed on the upper surface of the lower base sheet 131 in the direction in which the elastic layer 120 is disposed.
하부 연결 패턴(135)은 하부 베이스 시트(131)의 일면에 형성된다. 하부 연결 패턴(135)은 하부 베이스 시트(131)의 상면 및 하면 중 하부 전극 패턴(133)이 형성된 한 면에 형성된다. 하부 연결 패턴(135)은 하부 전극 패턴(133)과 다른 면에 형성될 수도 있다.The lower connection pattern 135 is formed on one surface of the lower base sheet 131. The lower connection pattern 135 is formed on one surface of the lower base sheet 131 on which the lower electrode pattern 133 is formed. The lower connection pattern 135 may be formed on the other surface of the lower electrode pattern 133.
하부 연결 패턴(135)은 선형의 박막 전도성 금속으로 형성된다. 하부 연결 패턴(135)은 하부 전극 패턴(133)과 동일한 전도성 금속으로 형성되거나, 이종의 전도성 금속으로 형성될 수 있다. 하부 연결 패턴(135)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 하부 연결 패턴(135)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The lower connection pattern 135 is formed of a linear thin film conductive metal. The lower connection pattern 135 may be formed of the same conductive metal as the lower electrode pattern 133 or may be formed of a different conductive metal. The lower connection pattern 135 is one of a conductive metal such as copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The lower connection pattern 135 may be formed of a transparent electrode material such as ITO.
하부 연결 패턴(135)의 일단은 하부 전극 패턴(133)과 연결된다. 하부 연결 패턴(135)의 타단은 하부 단자 패턴(137)과 연결된다.One end of the lower connection pattern 135 is connected to the lower electrode pattern 133. The other end of the lower connection pattern 135 is connected to the lower terminal pattern 137.
하부 단자 패턴(137)은 하부 베이스 시트(131)의 일면에 형성된다. 하부 단자 패턴(137)은 하부 베이스 시트(131)의 상면 및 하면 중 하부 전극 패턴(133) 및 하부 연결 패턴(135)이 형성된 한 면에 형성된다. 하부 단자 패턴(137)은 하부 전극 패턴(133) 및 하부 연결 패턴(135)과 다른 한 면에 형성될 수 있다. 하부 단자 패턴(137)은 하부 전극 패턴(133) 및 하부 연결 패턴(135)이 서로 다른 면에 형성된 경우, 하부 전극 패턴(133) 및 하부 연결 패턴(135) 중 하나와 동일한 면에 형성될 수 있다.The lower terminal pattern 137 is formed on one surface of the lower base sheet 131. The lower terminal pattern 137 is formed on one surface of the lower base sheet 131 on which the lower electrode pattern 133 and the lower connection pattern 135 are formed. The lower terminal pattern 137 may be formed on the other surface of the lower electrode pattern 133 and the lower connection pattern 135. The lower terminal patterns 137 may be formed on the same surface as one of the lower electrode patterns 133 and the lower connection patterns 135 when the lower electrode patterns 133 and the lower connection patterns 135 are formed on different surfaces. have.
하부 단자 패턴(137)은 하부 연결 패턴(135)에서 연장되어 하부 베이스 시트(131)의 외부에 형성될 수 있다. 이때, 하부 단자 패턴(137)의 일면에는 하부 단자 패턴(137)의 절연 및 보호를 위한 보호 시트(139)가 접착될 수 있다.The lower terminal pattern 137 may extend from the lower connection pattern 135 and may be formed outside the lower base sheet 131. At this time, a protection sheet 139 for insulation and protection of the lower terminal pattern 137 may be adhered to one surface of the lower terminal pattern 137.
하부 연결 패턴(135), 하부 단자 패턴(137) 및 하부 단자 패턴(137)은 대략 12㎛ 정도의 두께를 갖는 박막의 도전성 금속인 것을 일례로 한다.The lower connection pattern 135, the lower terminal pattern 137, and the lower terminal pattern 137 are examples of the thin metal conductive metal having a thickness of about 12 mu m.
여기서, 본 발명의 실시 예에 따른 배터리 압력 감지 센서(100)를 용이하게 설명하기 위해서 하부 연결 패턴(135), 하부 전극 패턴(133) 및 하부 단자 패턴(137)이 분리하여 설명하였으나, 실제 제품의 구현 시 하부 연결 패턴(135), 하부 단자 패턴(137) 및 하부 단자 패턴(137)은 일체로 형성될 수 있다.Although the lower connection pattern 135, the lower electrode pattern 133, and the lower terminal pattern 137 have been separately described in order to easily describe the battery pressure sensing sensor 100 according to the embodiment of the present invention, The lower connection pattern 135, the lower terminal pattern 137, and the lower terminal pattern 137 may be integrally formed.
접착층(140)은 상부 전극층(110) 및 하부 전극층(130) 사이에 배치되어 상부 전극층(110) 및 하부 전극층(130)을 접착한다. 접착층(140)은 대략 30㎛ 정도의 두께를 갖는 양면 접착 테이프인 것을 일례로 한다.The adhesive layer 140 is disposed between the upper electrode layer 110 and the lower electrode layer 130 to bond the upper electrode layer 110 and the lower electrode layer 130. The adhesive layer 140 is a double-sided adhesive tape having a thickness of about 30 mu m as an example.
접착층(140)은 탄성층(120)이 수용되는 수용 홀(142)이 형성된다. 수용 홀(142) 내에 탄성층(120)이 수용 배치되기 때문에, 배터리 압력 감지 센서(100)의 두께가 증가하지 않는다.The adhesive layer 140 is formed with a receiving hole 142 in which the elastic layer 120 is received. Since the elastic layer 120 is accommodated in the accommodation hole 142, the thickness of the battery pressure sensing sensor 100 does not increase.
상술한 본 발명의 제1 실시 예에 따른 배터리 압력 감지 센서(100)는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭(Switching) 이벤트를 출력값으로 출력한다.The battery pressure sensing sensor 100 according to the first embodiment of the present invention outputs a switching event that is short-circuited at a resistance value exceeding a set resistance value as an output value.
도 3 및 도 4를 참조하면, 본 발명의 제2 실시 예에 따른 배터리 압력 감지 센서(200)는 상부 전극층(210), 탄성층(220), 하부 전극층(230), 상부 접착층(240) 및 하부 접착층(250)을 포함한다. 여기서, 상부 전극층(210) 및 하부 전극층(230)은 상술한 제1 실시 예에 따른 배터리 압력 감지 센서(200)의 상부 전극층(210) 및 하부 전극층(230)과 동일하므로 상세한 설명을 생략한다.3 and 4, the battery pressure sensor 200 according to the second embodiment of the present invention includes an upper electrode layer 210, an elastic layer 220, a lower electrode layer 230, an upper adhesive layer 240, And a lower adhesive layer 250. The upper electrode layer 210 and the lower electrode layer 230 are the same as the upper electrode layer 210 and the lower electrode layer 230 of the battery pressure sensing sensor 200 according to the first embodiment and will not be described in detail.
상부 전극층(210)은 상부 베이스 시트(211), 상부 전극 패턴(213), 상부 연결 패턴(215) 및 상부 단자 패턴(217)을 포함한다.The upper electrode layer 210 includes an upper base sheet 211, an upper electrode pattern 213, an upper connection pattern 215, and an upper terminal pattern 217.
하부 전극층(230)은 상부 전극층(210)의 하부에 배치된다. 하부 전극층(230)은 하부 베이스 시트(231), 하부 전극 패턴(233), 하부 연결 패턴(235) 및 하부 단자 패턴(237)을 포함한다.The lower electrode layer 230 is disposed under the upper electrode layer 210. The lower electrode layer 230 includes a lower base sheet 231, a lower electrode pattern 233, a lower connection pattern 235, and a lower terminal pattern 237.
탄성층(220)은 타공 구조로 형성된다. 탄성층(220)은 탄성 필름에 복수의 홀(222)을 타공하여 타공 구조로 형성될 수 있다. 탄성층(220)은 상부 전극 패턴(213) 및 하부 전극 패턴(233)과 중첩되는 영역만 복수의 홀(222)이 형성된 타공 구조로 형성될 수 있다.The elastic layer 220 is formed in a perforated structure. The elastic layer 220 may be formed by punching a plurality of holes 222 in the elastic film. The elastic layer 220 may be formed in a porous structure in which a plurality of holes 222 are formed only in a region overlapping the upper electrode pattern 213 and the lower electrode pattern 233. [
탄성층(220)은 펀칭 공정을 통해 우레탄(Pu) 재질의 박막 필름에 복수의 홀(222)을 타공한 타공 구조인 것을 일례로 한다. 이때, 탄성층(220)의 두께(즉, 박막 필름의 두께)는 대략 20㎛ 정도인 것을 일례로 한다.The elastic layer 220 is a perforated structure in which a plurality of holes 222 are formed in a thin film of urethane (Pu) through a punching process. At this time, the thickness of the elastic layer 220 (that is, the thickness of the thin film) is approximately 20 占 퐉.
탄성층(220)은 박막 필름에 타공되는 홀(222)의 직경을 가변하여 배터리 압력 감지 센서(200)의 스위칭 압력을 조정할 수 있다. 탄성층(220)은 홀의 직경과 박막 필름의 두께 비를 조절하여 배터리 압력 감지 센서(200)의 스위칭 압력을 조정할 수 있다.The elastic layer 220 can adjust the switching pressure of the battery pressure sensing sensor 200 by varying the diameter of the hole 222 formed in the thin film. The elastic layer 220 may adjust the switching pressure of the battery pressure sensing sensor 200 by adjusting the diameter of the hole and the thickness ratio of the thin film.
상부 접착층(240)은 상부 전극층(210) 및 탄성층(220) 사이에 배치된다. 상부 접착층(240)은 상부 전극층(210) 및 탄성층(220)을 접착한다. 상부 접착층(240)은 탄성층(220)에 형성된 복수의 홀(222)에 대응되는 복수의 홀(242)이 형성될 수 있다.The upper adhesive layer 240 is disposed between the upper electrode layer 210 and the elastic layer 220. The upper adhesive layer 240 bonds the upper electrode layer 210 and the elastic layer 220. The upper adhesive layer 240 may have a plurality of holes 242 corresponding to the plurality of holes 222 formed in the elastic layer 220.
하부 접착층(250)은 탄성층(220) 및 하부 전극층(230) 사이에 배치된다. 하부 접착층(250)은 탄성층(220) 및 하부 전극층(230)을 접착한다. 하부 접착층(250)은 탄성층(220)에 형성된 복수의 홀(222)에 대응되는 복수의 홀(252)이 형성될 수 있다.The lower adhesive layer 250 is disposed between the elastic layer 220 and the lower electrode layer 230. The lower adhesive layer 250 bonds the elastic layer 220 and the lower electrode layer 230. The lower adhesive layer 250 may have a plurality of holes 252 corresponding to the plurality of holes 222 formed in the elastic layer 220.
상부 접착층(240) 및 하부 접착층(250)은 대략 5㎛ 정도의 두께를 갖는 양면 접착 테이프인 것을 일례로 한다.The upper adhesive layer 240 and the lower adhesive layer 250 are examples of double-sided adhesive tapes having a thickness of about 5 mu m.
상술한 본 발명의 제2 실시 예에 따른 배터리 압력 감지 센서(200)는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭(Switching) 이벤트를 출력값으로 출력한다.The battery pressure sensing sensor 200 according to the second embodiment of the present invention outputs a switching event that is short-circuited at a resistance value exceeding a set resistance value, as an output value.
도 5 및 도 6을 참조하면, 본 발명의 제3 실시 예에 따른 배터리 압력 감지 센서는 하부 전극층(310), 압전층(320), 상부 전극층(330), 보호층(340) 및 접착층(350)을 포함한다. 5 and 6, a battery pressure sensor according to a third embodiment of the present invention includes a lower electrode layer 310, a piezoelectric layer 320, an upper electrode layer 330, a protective layer 340, and an adhesive layer 350 ).
상부 전극층(330)은 제1 전극(312) 및 제2 전극(316)이 형성된 연성인쇄회로기판으로 구성된다. 이를 위해, 상부 전극층(330)은 베이스 시트(311), 제1 전극(312) 및 제2 전극(316)을 포함한다.The upper electrode layer 330 is composed of a flexible printed circuit board on which a first electrode 312 and a second electrode 316 are formed. To this end, the upper electrode layer 330 includes a base sheet 311, a first electrode 312, and a second electrode 316.
베이스 시트(311)는 연성 박막 시트로 구성된다. 베이스 시트(311)는 대략 25㎛ 내지 50㎛ 정도의 두께를 갖는 연성 박막 시트로 구성되는 것을 일례로 한다.The base sheet 311 is composed of a flexible thin sheet. The base sheet 311 is, for example, composed of a flexible thin film sheet having a thickness of approximately 25 μm to 50 μm.
베이스 시트(311)는 폴리이미드, 폴리에스테르, 글라스 에폭시, 폴리에틸렌테레프탈레이트 중 하나의 연성 박막 시트인 것을 일례로 한다. 이외에도 박막 시트는 연성인쇄회로기판의 베이스 시트(311)로 사용되는 재질이라면 적용할 수 있다. 베이스 시트(311)는 대략 25㎛ 정도의 두께를 폴리이미드 박막 시트이거나, 대략 50㎛ 정도의 두께를 갖는 폴리에틸렌테레프탈레이트 박막 시트인 것을 일례로 한다.The base sheet 311 is, for example, a soft thin sheet of one of polyimide, polyester, glass epoxy, and polyethylene terephthalate. In addition, the thin film sheet can be applied to a material used as the base sheet 311 of the flexible printed circuit board. The base sheet 311 is a polyimide thin film sheet having a thickness of about 25 占 퐉 or a thin polyethylene terephthalate sheet having a thickness of about 50 占 퐉.
제1 전극(312) 및 제2 전극(316)은 베이스 시트(311)의 일면에 형성된다. 제1 전극(312) 및 제2 전극(316)은 베이스 시트(311)의 상면 및 하면 중 압전층(320)이 배치되는 방향의 한 면에 형성된다.The first electrode 312 and the second electrode 316 are formed on one surface of the base sheet 311. The first electrode 312 and the second electrode 316 are formed on one surface of the base sheet 311 in the direction in which the piezoelectric layer 320 is disposed.
제1 전극(312) 및 제2 전극(316)은 박막 전도성 금속으로 형성된다. 제1 전극(312) 및 제2 전극(316)은 대략 12㎛ 정도의 두께를 갖는 전도성 금속으로 형성된다. 제1 전극(312) 및 제2 전극(316)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 제1 전극(312) 및 제2 전극(316)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The first electrode 312 and the second electrode 316 are formed of a thin film conductive metal. The first electrode 312 and the second electrode 316 are formed of a conductive metal having a thickness of about 12 mu m. The first electrode 312 and the second electrode 316 are examples of the conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The first electrode 312 and the second electrode 316 may be formed of a transparent electrode material such as ITO.
제1 전극(312)은 제1 감지 패턴(313), 제1 연결 패턴(314) 및 제1 단자 패턴(315)을 포함한다. 제1 감지 패턴(313)은 상호 이격된 복수의 선형 패턴으로 구성된다. 제1 연결 패턴(314)은 제1 감지 패턴(313)을 구성하는 복수의 선형 패턴들의 일단에 연결된다. 제1 단자 패턴(315)은 제1 감지 패턴(313)과 연결된다. 제1 단자 패턴(315)은 제1 연결 패턴(314)에서 연장되어 베이스 시트(311)의 외부에 형성될 수 있다. 이때, 제1 단자 패턴(315)의 일면에는 제1 단자 패턴(315)의 절연 및 보호를 위한 보호 시트가 접착될 수 있다.The first electrode 312 includes a first sensing pattern 313, a first connection pattern 314, and a first terminal pattern 315. The first sensing patterns 313 are composed of a plurality of mutually spaced linear patterns. The first connection pattern 314 is connected to one end of a plurality of linear patterns constituting the first sensing pattern 313. The first terminal pattern 315 is connected to the first sensing pattern 313. The first terminal pattern 315 may extend from the first connection pattern 314 and be formed outside the base sheet 311. At this time, a protective sheet for insulation and protection of the first terminal pattern 315 may be adhered to one surface of the first terminal pattern 315.
제2 전극(316)은 제2 감지 패턴(317), 제2 연결 패턴(318) 및 제2 단자 패턴(319)을 포함한다. 제2 감지 패턴(317)은 상호 이격된 복수의 선형 패턴으로 구성된다. 제2 연결 패턴(318)은 제2 감지 패턴(317)을 구성하는 복수의 선형 패턴들의 일단에 연결된다. 제2 단자 패턴(319)은 제2 감지 패턴(317)과 연결된다. 제2 단자 패턴(319)은 제2 연결 패턴(318)에서 연장되어 베이스 시트(311)의 외부에 형성될 수 있다. 이때, 제2 단자 패턴(319)의 일면에는 제2 단자 패턴(319)의 절연 및 보호를 위한 보호 시트가 접착될 수 있다.The second electrode 316 includes a second sensing pattern 317, a second connection pattern 318, and a second terminal pattern 319. The second sensing patterns 317 are composed of a plurality of mutually spaced linear patterns. The second connection pattern 318 is connected to one end of a plurality of linear patterns constituting the second sensing pattern 317. The second terminal pattern 319 is connected to the second sensing pattern 317. The second terminal pattern 319 may extend from the second connection pattern 318 and be formed outside the base sheet 311. At this time, a protective sheet for insulation and protection of the second terminal pattern 319 may be adhered to one surface of the second terminal pattern 319.
이때, 제1 감지 패턴(313) 및 제2 감지 패턴(317)을 구성하는 선형 패턴들은 교대로 배치된다. 제1 감지 패턴(313)을 구성하는 복수의 선형 패턴들 사이에 제2 감지 패턴(317)을 구성하는 복수의 선형 패턴이 배치된다.At this time, the linear patterns constituting the first sensing pattern 313 and the second sensing pattern 317 are alternately arranged. A plurality of linear patterns constituting the second sensing pattern 317 are arranged between the plurality of linear patterns constituting the first sensing pattern 313. [
압전층(320)은 하부 전극층(310)의 상부에 배치된다. 압전층(320)은 하부 전극층(310)에 형성된 제1 전극(312) 및 제2 전극(316) 상부에 배치된다. 압전층(320)은 물체와의 접촉에 따라 가해지는 압력에 의해 저항이 가변하는 저항 가변 물질로 형성된다. 압전층(320)은 물체의 접촉 시 발생하는 압력에 따라 면저항(Sheet Resistance)이 변하는 물질을 포함하여 구성될 수 있다. 압전층(320)은 금속성 물질 및 비전도성 탄성 중합체의 합성물인 양자 터널링 합성물(QTC: Quantum Tunneling Composite)을 포함하는 것을 일례로 한다. 압전층(320)은 대략 8㎛ 내지 10㎛ 정도의 두께를 갖는 양자 터널링 합성물인 것을 일례로 한다.The piezoelectric layer 320 is disposed on the upper portion of the lower electrode layer 310. The piezoelectric layer 320 is disposed on the first electrode 312 and the second electrode 316 formed on the lower electrode layer 310. The piezoelectric layer 320 is formed of a variable resistance material whose resistance varies depending on a pressure applied in contact with an object. The piezoelectric layer 320 may include a material whose sheet resistance changes depending on a pressure generated when an object is contacted. The piezoelectric layer 320 is an example of a quantum tunneling composite (QTC), which is a composite of a metallic material and a nonconductive elastomer. The piezoelectric layer 320 is a quantum tunneling compound having a thickness of approximately 8 to 10 mu m as an example.
양자 터널링 합성물은 저항 가변 물질로 부전도 탄성 바인더(non-conducting elastomeric binder) 내에 표면 돌기 구조의 금속 입자를 조합한 것이다. 금속 입자들은 압력이 인가되지 않을 때에는 서로 이격된 상태에 있어 전기를 전도할 수 없다. 금속 입자들은 압력이 인가될 때는 서로 인접하여 부전도 탄성 바인더(절연체)를 통해 터널링할 수 있다.The quantum tunneling compound is a variable-resistance material, which is a combination of surface-projecting metal particles in a non-conducting elastomeric binder. When the pressure is not applied, the metal particles are separated from each other and can not conduct electricity. The metal particles can be tunneled through the non-conductive elastomeric binder (insulator) adjacent to each other when the pressure is applied.
배터리 압력 감지 센서는 배터리 부풀음이 발생하여 압력이 가해지면 압전층(320)이 밀착된 부분에서 전류가 흐른다. 상부 전극층(330) 및 하부 전극층(310)은 압전층(320)에 의해 전기적으로 연결된다. 배터리 압력 감지 센서는 압전층(320)에 가해지는 압력의 세기에 따라 상부 전극층(330) 및 하부 전극층(310) 간의 접촉 면적이 달라지므로 가변 저항 값을 가지게 된다.When the battery pressure sensing sensor generates pressure due to the battery swelling, a current flows in a portion where the piezoelectric layer 320 is closely attached. The upper electrode layer 330 and the lower electrode layer 310 are electrically connected by the piezoelectric layer 320. The battery pressure sensing sensor has a variable resistance value because the contact area between the upper electrode layer 330 and the lower electrode layer 310 is changed according to the intensity of the pressure applied to the piezoelectric layer 320. [
상부 전극층(330)은 압전층(320)의 상부에 배치된다. 상부 전극층(330)은 하부 전극층(310)의 제1 전극(312) 및 제2 전극(316) 사이의 이격 공간을 커버하면서 제1 전극(312) 및 제2 전극(316)과 중첩된다. 상부 전극층(330)은 배터리 부풀음이 발생하여 압력이 가해짐에 따라 압전층(320)에 전류가 흐르면, 제1 전극(312) 및 제2 전극(316)을 전기적으로 연결한다. 상부 전극층(330)은 전도성 금속으로 형성된다, 상부 전극층(330)은 대략 5㎛ 정도의 두께를 갖는 카본인 것을 일례로 한다.The upper electrode layer 330 is disposed on the piezoelectric layer 320. The upper electrode layer 330 overlaps the first electrode 312 and the second electrode 316 while covering a space between the first electrode 312 and the second electrode 316 of the lower electrode layer 310. [ The upper electrode layer 330 electrically connects the first electrode 312 and the second electrode 316 when a current flows through the piezoelectric layer 320 as pressure is applied due to battery swelling. The upper electrode layer 330 is formed of a conductive metal. The upper electrode layer 330 is carbon having a thickness of about 5 mu m as an example.
보호층(340)은 상부 전극층(330)의 상부에 배치된다. 보호층(340)은 상부 전극층(330)을 절연 및 보호한다. 보호층(340)은 절연 재질의 박막 시트로 형성된다. 보호층(340)은 대략 25㎛ 정도의 두께를 갖는 폴리이미드(PI) 재질 또는 대략 30㎛ 정도의 두께를 갖는 폴리에틸렌테레프탈레이트(PET) 재질의 박막 시트인 것을 일례로 한다.The protective layer 340 is disposed on the upper electrode layer 330. The protective layer 340 insulates and protects the upper electrode layer 330. The protective layer 340 is formed of a thin sheet of insulating material. The protective layer 340 is a polyimide (PI) material having a thickness of approximately 25 mu m or a thin sheet of polyethylene terephthalate (PET) material having a thickness of approximately 30 mu m.
접착층(350)은 하부 전극층(310) 및 보호층(340) 사이에 배치되어, 하부 전극층(310) 및 보호층(340)을 접착한다. 접착층(350)은 압전층(320) 및 상부 전극층(330)이 수용되는 수용 홀(352)이 형성된다. 접착층(350)의 두께는 압전층(320) 및 상부 전극층(330)의 두께에 따라 다르게 형성될 수 있다. 접착층(350) 두께는 압전층(320) 두께 및 전극층 두께를 합산한 두께보다 두껍게 형성된다. 접착층(350)은 대략 30㎛ 내지 50㎛ 정도의 두께를 갖는 양면 접착 테이프인 것을 일례로 한다.The adhesive layer 350 is disposed between the lower electrode layer 310 and the protective layer 340 to adhere the lower electrode layer 310 and the protective layer 340. The adhesive layer 350 is formed with a receiving hole 352 in which the piezoelectric layer 320 and the upper electrode layer 330 are accommodated. The thickness of the adhesive layer 350 may be different depending on the thickness of the piezoelectric layer 320 and the upper electrode layer 330. The thickness of the adhesive layer 350 is formed to be thicker than the sum of the thickness of the piezoelectric layer 320 and the thickness of the electrode layer. The adhesive layer 350 is, for example, a double-sided adhesive tape having a thickness of approximately 30 μm to 50 μm.
상술한 본 발명의 제3 실시 예에 따른 배터리 압력 감지 센서는 리니어(linear)한 저항값을 출력값을 출력한다.The battery pressure sensing sensor according to the third embodiment of the present invention outputs a linear resistance value as an output value.
본 발명의 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기(이하, 단말기)는 스마트폰, 태블릿 등의 휴대 단말, 보조배터리, 배터리 파우치 등의 보조 전원 장치 등과 같이 배터리를 구비한 모든 전자 기기들을 포함한다.A terminal (hereinafter, referred to as a terminal) having a battery pressure sensing sensor according to an embodiment of the present invention includes all the electronic devices including a battery, such as a portable terminal such as a smart phone, a tablet, an auxiliary battery, .
본 발명의 실시 예에 따른 단말기는 배터리 압력 감지 센서(100, 200, 300)을 AD 컨버터가 연결된 처리기(processor)에 연결하여 배터리 압력 감지 신호를 처리한다. 이하에서는 써미스터 단자에 배터리 압력 감지 센서(100, 200, 300)가 연결된 것을 예로 들어 설명하였으나 이에 한정되지 않고 AD 컨버터가 연결된 처리기와 연결된 단자라면 배터리 압력 감지 센서(100, 200, 300)을 연결할 수 있다.A terminal according to an embodiment of the present invention processes battery pressure sensing signals by connecting battery pressure sensors 100, 200, and 300 to a processor connected to an AD converter. In the following description, the battery pressure sensing sensors 100, 200, and 300 are connected to the thermistor terminals. However, the present invention is not limited thereto. If the terminals are connected to the processor to which the AD converter is connected, have.
본 발명의 제4 실시 예 및 제5 실시 예에 따른 배터리 압력 감지 센서는 배터리의 부풀음에 의해 가해지는 압력에 대응되는 정전용량(즉, 커패시턴스(C))에 따른 출력값을 출력한다. 배터리 압력 감지 센서는 리니어(linear)한 정전용량을 출력값으로 출력하는 것을 일례로 한다.The battery pressure sensor according to the fourth and fifth embodiments of the present invention outputs an output value corresponding to a capacitance (i.e., a capacitance C) corresponding to a pressure applied by the swelling of the battery. The battery pressure detection sensor is an example of outputting a linear capacitance as an output value.
도 7 및 도 8을 참조하면, 본 발명의 제4 실시 예에 따른 배터리 압력 감지 센서(400)는 상부 전극층(410), 탄성층(420), 하부 전극층(430) 및 접착층(440)을 포함한다.7 and 8, a battery pressure sensing sensor 400 according to a fourth embodiment of the present invention includes an upper electrode layer 410, an elastic layer 420, a lower electrode layer 430, and an adhesive layer 440 do.
상부 전극층(410)은 전극이 형성된 연성인쇄회로기판(Flexible Printed Circuit Board)으로 구성된다. 이를 위해, 상부 전극층(410)은 상부 베이스 시트(411), 상부 전극 패턴(413), 상부 연결 패턴(415) 및 상부 단자 패턴(417)을 포함한다.The upper electrode layer 410 is formed of a flexible printed circuit board on which electrodes are formed. The upper electrode layer 410 includes an upper base sheet 411, an upper electrode pattern 413, an upper connection pattern 415, and an upper terminal pattern 417.
상부 베이스 시트(411)는 연성 박막 시트로 구성된다. 상부 베이스 시트(411)는 대략 25㎛ 정도의 두께를 갖는 연성 박막 시트로 구성되는 것을 일례로 한다.The upper base sheet 411 is composed of a flexible thin sheet. The upper base sheet 411 is an example of a flexible thin film sheet having a thickness of about 25 mu m.
상부 전극 패턴(413)은 상부 베이스 시트(411)의 일면에 형성된다. 상부 전극 패턴(413)은 상부 베이스 시트(411)의 상면 및 하면 중 탄성층(420)이 배치되는 방향의 한 면에 형성된다.The upper electrode pattern 413 is formed on one surface of the upper base sheet 411. The upper electrode pattern 413 is formed on one surface of the upper base sheet 411 in the direction in which the elastic layer 420 is disposed.
상부 전극 패턴(413)은 소정 형상의 박막 전도성 금속으로 형성된다. 상부 전극 패턴(413)은 원형, 타원형, 사각형, 삼각형 등과 같은 다각형 형상으로 형성될 수 있다. 상부 전극 패턴(413)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 상부 전극 패턴(413)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The upper electrode pattern 413 is formed of a thin film conductive metal having a predetermined shape. The upper electrode pattern 413 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like. The upper electrode pattern 413 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The upper electrode pattern 413 may be formed of a transparent electrode material such as ITO.
상부 전극 패턴(413)은 구리 재질인 원형 박막으로 형성되고, 탄성층(420)이 배치되는 방향인 상부 베이스 시트(411)의 하면에 형성되는 것을 일례로 한다.The upper electrode pattern 413 is formed of a circular thin film made of copper and formed on the lower surface of the upper base sheet 411 in the direction in which the elastic layer 420 is disposed.
상부 연결 패턴(415)은 상부 베이스 시트(411)의 일면에 형성된다. 상부 연결 패턴(415)은 상부 베이스 시트(411)의 상면 및 하면 중 상부 전극 패턴(413)이 형성된 한 면에 형성된다. 상부 연결 패턴(415)은 상부 전극 패턴(413)과 다른 면에 형성될 수도 있다.The upper connection pattern 415 is formed on one surface of the upper base sheet 411. The upper connection pattern 415 is formed on the upper surface of the upper base sheet 411 and on one surface of the lower surface on which the upper electrode pattern 413 is formed. The upper connection pattern 415 may be formed on the other surface of the upper electrode pattern 413.
상부 연결 패턴(415)은 선형의 박막 전도성 금속으로 형성된다. 상부 연결 패턴(415)은 상부 전극 패턴(413)과 동일한 전도성 금속으로 형성되거나, 이종의 전도성 금속으로 형성될 수 있다. 상부 연결 패턴(415)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 상부 연결 패턴(415)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The upper connection pattern 415 is formed of a linear thin film conductive metal. The upper connection pattern 415 may be formed of the same conductive metal as the upper electrode pattern 413 or may be formed of a different conductive metal. The upper connection pattern 415 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The upper connection pattern 415 may be formed of a transparent electrode material such as ITO.
상부 연결 패턴(415)의 일단은 상부 전극 패턴(413)과 연결된다. 하부 연결 패턴(435)의 타단은 상부 단자 패턴(417)과 연결된다.One end of the upper connection pattern 415 is connected to the upper electrode pattern 413. The other end of the lower connection pattern 435 is connected to the upper terminal pattern 417.
상부 단자 패턴(417)은 상부 베이스 시트(411)의 일면에 형성된다. 상부 단자 패턴(417)은 상부 베이스 시트(411)의 상면 및 하면 중 상부 전극 패턴(413) 및 상부 연결 패턴(415)이 형성된 한 면에 형성된다. 상부 단자 패턴(417)은 상부 전극 패턴(413) 및 상부 연결 패턴(415)과 다른 한 면에 형성될 수 있다. 상부 단자 패턴(417)은 상부 전극 패턴(413) 및 상부 연결 패턴(415)이 서로 다른 면에 형성된 경우, 상부 전극 패턴(413) 및 상부 연결 패턴(415) 중 하나와 동일한 면에 형성될 수 있다.The upper terminal pattern 417 is formed on one surface of the upper base sheet 411. The upper terminal pattern 417 is formed on the upper surface of the upper base sheet 411 and on one surface of the lower surface on which the upper electrode pattern 413 and the upper connection pattern 415 are formed. The upper terminal pattern 417 may be formed on the other side of the upper electrode pattern 413 and the upper connection pattern 415. The upper terminal pattern 417 may be formed on the same surface as one of the upper electrode pattern 413 and the upper connection pattern 415 when the upper electrode pattern 413 and the upper connection pattern 415 are formed on different surfaces. have.
상부 단자 패턴(417)은 상부 연결 패턴(415)에서 연장되어 상부 베이스 시트(411)의 외부에 형성될 수 있다. 이때, 상부 단자 패턴(417)의 일면에는 상부 단자 패턴(417)의 절연 및 보호를 위한 보호 시트(419)가 접착될 수 있다.The upper terminal pattern 417 may extend from the upper connection pattern 415 and may be formed outside the upper base sheet 411. At this time, a protective sheet 419 for insulating and protecting the upper terminal pattern 417 may be adhered to one surface of the upper terminal pattern 417.
상부 연결 패턴(415), 상부 단자 패턴(417) 및 상부 단자 패턴(417)은 대략 12㎛ 정도의 두께를 갖는 박막의 도전성 금속인 것을 일례로 한다.The upper connection pattern 415, the upper terminal pattern 417 and the upper terminal pattern 417 are examples of thin metal conductive metal having a thickness of about 12 mu m.
여기서, 본 발명의 제4 실시 예에 따른 배터리 압력 감지 센서(400)를 용이하게 설명하기 위해서 상부 연결 패턴(415), 상부 전극 패턴(413) 및 상부 단자 패턴(417)이 분리하여 설명하였으나, 실제 제품의 구현 시 상부 연결 패턴(415), 상부 단자 패턴(417) 및 상부 단자 패턴(417)은 일체로 형성될 수 있다.Although the upper connection pattern 415, the upper electrode pattern 413, and the upper terminal pattern 417 have been separately described to easily describe the battery pressure sensing sensor 400 according to the fourth embodiment of the present invention, The upper connection pattern 415, the upper terminal pattern 417 and the upper terminal pattern 417 may be integrally formed.
탄성층(420)은 상부 전극층(410) 및 하부 전극층(430) 사이에 배치된다. 탄성층(420)은 탄성을 갖는 재질로 형성된다.The elastic layer 420 is disposed between the upper electrode layer 410 and the lower electrode layer 430. The elastic layer 420 is formed of a material having elasticity.
탄성층(420)은 탄성 재질의 박막 시트로 형성된다. 탄성층(420)은 스크린 프린팅 공정을 통해 탄성 재질을 상부 전극층(410) 또는 하부 전극층(430)의 일면에 직접 인쇄하여 형성될 수도 있다.The elastic layer 420 is formed of a thin sheet of an elastic material. The elastic layer 420 may be formed by directly printing an elastic material on one surface of the upper electrode layer 410 or the lower electrode layer 430 through a screen printing process.
하부 전극층(430)은 전극이 형성된 연성인쇄회로기판(Flexible Printed Circuit Board)으로 구성된다. 이를 위해, 하부 전극층(430)은 하부 베이스 시트(431), 하부 전극 패턴(433), 하부 연결 패턴(435) 및 하부 단자 패턴(437)을 포함한다. 하부 전극층(430)은 하부 전극 패턴(433)과 상부 전극 패턴(413)이 중첩되도록 상부 전극층(410)의 하부에 배치된다.The lower electrode layer 430 is formed of a flexible printed circuit board having electrodes formed thereon. The lower electrode layer 430 includes a lower base sheet 431, a lower electrode pattern 433, a lower connection pattern 435, and a lower terminal pattern 437. The lower electrode layer 430 is disposed under the upper electrode layer 410 so that the lower electrode pattern 433 and the upper electrode pattern 413 overlap each other.
하부 베이스 시트(431)는 연성 박막 시트로 구성된다. 하부 베이스 시트(431)는 대략 25㎛ 정도의 두께를 갖는 연성 박막 시트로 구성되는 것을 일례로 한다.The lower base sheet 431 is composed of a soft thin sheet. The lower base sheet 431 is formed of a flexible thin film sheet having a thickness of approximately 25 mu m as an example.
하부 전극 패턴(433)은 하부 베이스 시트(431)의 일면에 형성된다. 하부 전극 패턴(433)은 하부 베이스 시트(431)의 상면 및 하면 중 탄성층(420)이 배치되는 방향의 한 면에 형성된다. 하부 전극 패턴(433)은 탄성층(420)을 사이에 두고 상부 전극 패턴(413)과 중첩된다,The lower electrode pattern 433 is formed on one surface of the lower base sheet 431. The lower electrode pattern 433 is formed on one side of the upper surface and the lower surface of the lower base sheet 431 in the direction in which the elastic layer 420 is disposed. The lower electrode pattern 433 overlaps the upper electrode pattern 413 with the elastic layer 420 therebetween.
하부 전극 패턴(433)은 소정 형상의 박막 전도성 금속으로 형성된다. 하부 전극 패턴(433)은 원형, 타원형, 사각형, 삼각형 등과 같은 다각형 형상으로 형성될 수 있다. 하부 전극 패턴(433)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 하부 전극 패턴(433)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The lower electrode pattern 433 is formed of a thin film conductive metal of a predetermined shape. The lower electrode pattern 433 may be formed in a polygonal shape such as a circle, an ellipse, a rectangle, a triangle, or the like. The lower electrode pattern 433 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The lower electrode pattern 433 may be formed of a transparent electrode material such as ITO.
하부 전극 패턴(433)은 구리 재질인 원형 박막으로 형성되고, 탄성층(420)이 배치되는 방향인 하부 베이스 시트(431)의 상면에 형성되는 것을 일례로 한다.The lower electrode pattern 433 is formed of a circular thin film made of copper and is formed on the upper surface of the lower base sheet 431 in the direction in which the elastic layer 420 is disposed.
하부 연결 패턴(435)은 하부 베이스 시트(431)의 일면에 형성된다. 하부 연결 패턴(435)은 하부 베이스 시트(431)의 상면 및 하면 중 하부 전극 패턴(433)이 형성된 한 면에 형성된다. 하부 연결 패턴(435)은 하부 전극 패턴(433)과 다른 면에 형성될 수도 있다.The lower connection pattern 435 is formed on one surface of the lower base sheet 431. The lower connection pattern 435 is formed on one surface of the lower base sheet 431 on which the lower electrode pattern 433 is formed. The lower connection pattern 435 may be formed on the other surface of the lower electrode pattern 433.
하부 연결 패턴(435)은 선형의 박막 전도성 금속으로 형성된다. 하부 연결 패턴(435)은 하부 전극 패턴(433)과 동일한 전도성 금속으로 형성되거나, 이종의 전도성 금속으로 형성될 수 있다. 하부 연결 패턴(435)은 구리(Cu), 은(Ag), 니켈(Ni), 백금(Pt) 중 하나의 전도성 금속인 것을 일례로 한다. 하부 연결 패턴(435)은 ITO 등의 투명 전극 재료로 형성될 수도 있다.The lower connection pattern 435 is formed of a linear thin film conductive metal. The lower connection pattern 435 may be formed of the same conductive metal as the lower electrode pattern 433 or may be formed of a different conductive metal. The lower connection pattern 435 is a conductive metal of one of copper (Cu), silver (Ag), nickel (Ni), and platinum (Pt). The lower connection pattern 435 may be formed of a transparent electrode material such as ITO.
하부 연결 패턴(435)의 일단은 하부 전극 패턴(433)과 연결된다. 하부 연결 패턴(435)의 타단은 하부 단자 패턴(437)과 연결된다.One end of the lower connection pattern 435 is connected to the lower electrode pattern 433. The other end of the lower connection pattern 435 is connected to the lower terminal pattern 437.
하부 단자 패턴(437)은 하부 베이스 시트(431)의 일면에 형성된다. 하부 단자 패턴(437)은 하부 베이스 시트(431)의 상면 및 하면 중 하부 전극 패턴(433) 및 하부 연결 패턴(435)이 형성된 한 면에 형성된다. 하부 단자 패턴(437)은 하부 전극 패턴(433) 및 하부 연결 패턴(435)과 다른 한 면에 형성될 수 있다. 하부 단자 패턴(437)은 하부 전극 패턴(433) 및 하부 연결 패턴(435)이 서로 다른 면에 형성된 경우, 하부 전극 패턴(433) 및 하부 연결 패턴(435) 중 하나와 동일한 면에 형성될 수 있다.The lower terminal pattern 437 is formed on one surface of the lower base sheet 431. The lower terminal pattern 437 is formed on the upper surface of the lower base sheet 431 and the lower surface of the lower surface of the lower base sheet 431 and the lower connection pattern 435. The lower terminal pattern 437 may be formed on the other surface of the lower electrode pattern 433 and the lower connection pattern 435. The lower terminal pattern 437 may be formed on the same surface as one of the lower electrode pattern 433 and the lower connection pattern 435 when the lower electrode pattern 433 and the lower connection pattern 435 are formed on different surfaces. have.
하부 단자 패턴(437)은 하부 연결 패턴(435)에서 연장되어 하부 베이스 시트(431)의 외부에 형성될 수 있다. 이때, 하부 단자 패턴(437)의 일면에는 하부 단자 패턴(437)의 절연 및 보호를 위한 보호 시트(439)가 접착될 수 있다.The lower terminal pattern 437 may extend from the lower connection pattern 435 and may be formed outside the lower base sheet 431. At this time, a protection sheet 439 for insulation and protection of the lower terminal pattern 437 may be adhered to one surface of the lower terminal pattern 437.
하부 연결 패턴(435), 하부 단자 패턴(437) 및 하부 단자 패턴(437)은 대략 12㎛ 정도의 두께를 갖는 박막의 도전성 금속인 것을 일례로 한다.The lower connection pattern 435, the lower terminal pattern 437, and the lower terminal pattern 437 are examples of thin metal conductive metal having a thickness of about 12 mu m.
여기서, 본 발명의 제4 실시 예에 따른 배터리 압력 감지 센서(400)를 용이하게 설명하기 위해서 하부 연결 패턴(435), 하부 전극 패턴(433) 및 하부 단자 패턴(437)이 분리하여 설명하였으나, 실제 제품의 구현 시 하부 연결 패턴(435), 하부 단자 패턴(437) 및 하부 단자 패턴(437)은 일체로 형성될 수 있다.Although the lower connection pattern 435, the lower electrode pattern 433, and the lower terminal pattern 437 are separately described to easily describe the battery pressure sensing sensor 400 according to the fourth embodiment of the present invention, The lower connection pattern 435, the lower terminal pattern 437 and the lower terminal pattern 437 may be integrally formed.
접착층(440)은 상부 전극층(410) 및 하부 전극층(430) 사이에 배치되어 상부 전극층(410) 및 하부 전극층(430)을 접착한다. 접착층(440)은 대략 30㎛ 정도의 두께를 갖는 양면 접착 테이프인 것을 일례로 한다.The adhesive layer 440 is disposed between the upper electrode layer 410 and the lower electrode layer 430 to bond the upper electrode layer 410 and the lower electrode layer 430. The adhesive layer 440 is a double-sided adhesive tape having a thickness of about 30 mu m as an example.
접착층(440)은 탄성층(420)이 수용되는 수용 홀(442)이 형성된다. 수용 홀(442) 내에 탄성층(420)이 수용 배치되기 때문에, 배터리 압력 감지 센서(400)의 두께가 증가하지 않는다.The adhesive layer 440 is formed with a receiving hole 442 in which the elastic layer 420 is received. Since the elastic layer 420 is accommodated in the accommodation hole 442, the thickness of the battery pressure sensing sensor 400 does not increase.
도 9 및 도 10을 참조하면, 본 발명의 제5 실시 예에 따른 배터리 압력 감지 센서(500)는 상부 전극층(510), 탄성층(520), 하부 전극층(530), 상부 접착층(540) 및 하부 접착층(550)을 포함한다. 여기서, 상부 전극층(510) 및 하부 전극층(530)은 상술한 제4 실시 예에 따른 배터리 압력 감지 센서(500)의 상부 전극층(510) 및 하부 전극층(530)과 동일하므로 상세한 설명을 생략한다.9 and 10, a battery pressure sensor 500 according to a fifth embodiment of the present invention includes an upper electrode layer 510, an elastic layer 520, a lower electrode layer 530, an upper adhesive layer 540, And a lower adhesive layer 550. The upper electrode layer 510 and the lower electrode layer 530 are the same as those of the upper electrode layer 510 and the lower electrode layer 530 of the battery pressure sensing sensor 500 according to the fourth embodiment.
상부 전극층(510)은 상부 베이스 시트(511), 상부 전극 패턴(513), 상부 연결 패턴(515) 및 상부 단자 패턴(517)을 포함한다.The upper electrode layer 510 includes an upper base sheet 511, an upper electrode pattern 513, an upper connection pattern 515, and an upper terminal pattern 517.
하부 전극층(530)은 상부 전극층(510)의 하부에 배치된다. 하부 전극층(530)은 하부 베이스 시트(531), 하부 전극 패턴(533), 하부 연결 패턴(535) 및 하부 단자 패턴(537)을 포함한다.The lower electrode layer 530 is disposed under the upper electrode layer 510. The lower electrode layer 530 includes a lower base sheet 531, a lower electrode pattern 533, a lower connection pattern 535, and a lower terminal pattern 537.
탄성층(520)은 상부 전극층(510) 및 하부 전극층(530) 사이에 배치된다. 탄성층(520)은 탄성을 갖는 재질로 형성된다.The elastic layer 520 is disposed between the upper electrode layer 510 and the lower electrode layer 530. The elastic layer 520 is formed of a material having elasticity.
탄성층(520)은 탄성 재질의 박막 시트로 형성된다. 탄성층(520)은 스크린 프린팅 공정을 통해 탄성 재질을 상부 전극층(510) 또는 하부 전극층(530)의 일면에 직접 인쇄하여 형성될 수도 있다.The elastic layer 520 is formed of a thin sheet of an elastic material. The elastic layer 520 may be formed by directly printing an elastic material on one surface of the upper electrode layer 510 or the lower electrode layer 530 through a screen printing process.
상부 접착층(540)은 상부 전극층(510) 및 탄성층(520) 사이에 배치된다. 상부 접착층(540)은 상부 전극층(510) 및 탄성층(520)을 접착한다. 상부 접착층(540)은 탄성층(520)에 형성된 복수의 홀(522)에 대응되는 복수의 홀(542)이 형성될 수 있다.An upper adhesive layer 540 is disposed between the upper electrode layer 510 and the elastic layer 520. The upper adhesive layer 540 bonds the upper electrode layer 510 and the elastic layer 520. The upper adhesive layer 540 may have a plurality of holes 542 corresponding to the plurality of holes 522 formed in the elastic layer 520.
하부 접착층(550)은 탄성층(520) 및 하부 전극층(530) 사이에 배치된다. 하부 접착층(550)은 탄성층(520) 및 하부 전극층(530)을 접착한다. 하부 접착층(550)은 탄성층(520)에 형성된 복수의 홀(522)에 대응되는 복수의 홀(552)이 형성될 수 있다.The lower adhesive layer 550 is disposed between the elastic layer 520 and the lower electrode layer 530. The lower adhesive layer 550 bonds the elastic layer 520 and the lower electrode layer 530. The lower adhesive layer 550 may have a plurality of holes 552 corresponding to the plurality of holes 522 formed in the elastic layer 520.
상부 접착층(540) 및 하부 접착층(550)은 대략 5㎛ 정도의 두께를 갖는 양면 접착 테이프인 것을 일례로 한다.The upper adhesive layer 540 and the lower adhesive layer 550 are examples of a double-sided adhesive tape having a thickness of about 5 mu m.
본 발명의 제1 실시 예에 따른 배터리 압력 감지 센서를 구비한 단말기(이하, 단말기)는 스마트폰, 태블릿 등의 휴대 단말, 보조배터리, 배터리 파우치 등의 보조 전원 장치 등과 같이 배터리를 구비한 모든 전자 기기들을 포함한다.A terminal (hereinafter referred to as a terminal) having a battery pressure sensing sensor according to the first embodiment of the present invention can be used as a portable terminal such as a smart phone or a tablet, an auxiliary battery such as a battery pouch, Devices.
본 발명의 실시 예에 따른 단말기는 배터리 압력 감지 센서(100, 200, 300)을 AD 컨버터가 연결된 처리기(processor)에 연결하여 배터리 압력 감지 신호를 처리한다. 이하에서는 써미스터 단자에 배터리 압력 감지 센서(100, 200, 300)가 연결된 것을 예로 들어 설명하였으나 이에 한정되지 않고 AD 컨버터가 연결된 처리기와 연결된 단자라면 배터리 압력 감지 센서(100, 200, 300)을 연결할 수 있다.A terminal according to an embodiment of the present invention processes battery pressure sensing signals by connecting battery pressure sensors 100, 200, and 300 to a processor connected to an AD converter. In the following description, the battery pressure sensing sensors 100, 200, and 300 are connected to the thermistor terminals. However, the present invention is not limited thereto. If the terminals are connected to the processor to which the AD converter is connected, have.
도 11을 참조하면, 본 발명의 제1 실시 예에 따른 단말기는 써미스터(610), 써미스터 단자(620), 배터리 압력 감지 센서(630), 중앙처리장치(640, AP; Application Processor) 및 배터리 충전 회로(650)를 포함한다.11, the terminal according to the first embodiment of the present invention includes a thermistor 610, a thermistor terminal 620, a battery pressure sensing sensor 630, a central processing unit (AP) 640, Circuit 650,
써미스터(610)는 단말기에 실장되어 온도에 따른 저항값을 출력한다. 써미스터(610)는 단말기의 내부 온도가 상승함에 따라 저항값이 급격히 감소하는 성질을 갖는 반도체 소자이다. 써미스터(610)는 단말기에 내장된 안테나, USB 충전 단자, 중앙처리장치(640), 전력 관리 회로(PMIC; Power management integrated circuit) 등의 주요 발열 부품의 주변에 배치된다.The thermistor 610 is mounted on the terminal and outputs a resistance value according to the temperature. The thermistor 610 is a semiconductor device having a property that the resistance value decreases sharply as the internal temperature of the terminal rises. The thermistor 610 is disposed around the main heat generating components such as an antenna built in the terminal, a USB charging terminal, a central processing unit 640, and a power management integrated circuit (PMIC).
써미스터 단자(620)는 한 쌍으로 단자(620a, 620b)로 구성된다. 써미스터 단자(620)는 써미스터(610)의 양단과 연결된다. 써미스터 단자(620)는 버스를 통해 중앙처리장치(640)와 연결된다. 써미스터 단자(620)는 안테나, USB 충전 단자, 중앙처리장치(640), 전력 관리 회로 중 하나의 주변에 배치된 써미스터(610)와 연결된 것을 일례로 한다.The thermistor terminals 620 are composed of a pair of terminals 620a and 620b. The thermistor terminal 620 is connected to both ends of the thermistor 610. The thermistor terminal 620 is connected to the central processing unit 640 via a bus. The thermistor terminal 620 is connected to an antenna, a USB charging terminal, a central processing unit 640, and a thermistor 610 disposed around one of the power management circuits.
배터리 압력 감지 센서(630)는 단말기에 실장된 배터리(10)와 중첩되어 배치된다. 배터리 압력 감지 센서(630)는 배터리(10)와 전극 패턴이 중첩되도록 배치된다. 배터리 압력 감지 센서(630)는 배터리(10) 부풀음에 의해 가해지는 압력에 대응되는 저항값을 출력한다.The battery pressure sensing sensor 630 is disposed in a state of overlapping with the battery 10 mounted on the terminal. The battery pressure detection sensor 630 is disposed so as to overlap the battery 10 and the electrode pattern. The battery pressure detection sensor 630 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging.
배터리 압력 감지 센서(630)는 배터리(10)의 부풀음에 대응되는 리니어(linear)한 저항값을 출력한다. 배터리 압력 감지 센서(630)는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭 이벤트를 출력값으로 출력할 수도 있다.The battery pressure detection sensor 630 outputs a linear resistance value corresponding to the swelling of the battery 10. The battery pressure detection sensor 630 may output a switching event which is short-circuited at a resistance value exceeding a set resistance value as an output value.
배터리 압력 감지 센서(630)는 써미스터 단자(620)와 연결된다. 배터리 압력 감지 센서(630)의 양단은 써미스터 단자(620)를 구성하는 한 쌍의 단자(620a, 620b)에 각각 연결된다. 배터리 압력 감지 센서(630)는 출력값을 써미스터 단자(620)로 출력한다. 써미스터 단자(620)는 버스를 통해 출력값을 중앙처리장치(640)로 전송한다.The battery pressure sensing sensor 630 is connected to the thermistor terminal 620. Both ends of the battery pressure detection sensor 630 are connected to a pair of terminals 620a and 620b constituting the thermistor terminal 620, respectively. The battery pressure detection sensor 630 outputs the output value to the thermistor terminal 620. The thermistor terminal 620 transmits the output value to the central processing unit 640 via the bus.
여기서, 배터리 압력 감지 센서(630)는 상술한 제1 실시 예 내지 제3 실시 예에 따른 배터리 압력 감지 센서(100, 200, 300) 중 하나인 것을 일례로 한다.Here, the battery pressure detection sensor 630 is one example of the battery pressure detection sensors 100, 200, and 300 according to the first to third embodiments.
중앙처리장치(640)는 써미스터 단자(620)에 연결된다. 중앙처리장치(640)는 써미스터 단자(620)를 통해 배터리 압력 감지 센서(630)의 출력값을 전송받는다. 중앙처리장치(640)는 배터리 압력 감지 센서(630)로부터 리니어한 저항값 및 스위칭 이벤트 중 하나의 출력값을 전송받는다.The central processing unit 640 is connected to the thermistor terminal 620. The central processing unit 640 receives the output value of the battery pressure detection sensor 630 through the thermistor terminal 620. [ The central processing unit 640 receives a linear resistance value from the battery pressure detection sensor 630 and an output value of one of the switching events.
중앙처리장치(640)는 배터리 압력 감지 센서(630)로부터 전송받은 출력값을 근거로 배터리(10)의 충전을 제어한다. 중앙처리장치(640)는 출력값을 근거로 이벤트 방식 또는 다단계 방식으로 배터리 충전을 제어한다.The central processing unit 640 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 630. The central processing unit 640 controls the charging of the battery in an event mode or a multi-stage mode based on the output value.
중앙처리장치(640)는 배터리 압력 감지 센서(630)의 출력값이 스위칭 이벤트이면 배터리(10)의 충전을 차단한다. 중앙처리장치(640)는 스위칭 이벤트인 출력값을 수신하면 배터리(10)의 발화, 폭발이 발생할 수 있는 상태로 판단하여 배터리(10)의 충전을 차단한다.The central processing unit 640 interrupts the charging of the battery 10 when the output value of the battery pressure detection sensor 630 is a switching event. When the central processing unit 640 receives the output value of the switching event, the central processing unit 640 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10.
중앙처리장치(640)는 배터리 압력 감지 센서(630)의 출력값이 리니어한 저항값이면 출력값과 기준값을 비교하여 배터리(10)의 충전을 제어한다. 중앙처리장치(640)는 복수의 기준값과 출력값을 근거로 배터리(10)의 충전을 단계적으로 제어한다. 기준값은 배터리(10) 부풀음에 의한 발화, 폭발을 방지하기 위해 설정된 값으로 저항값인 것을 일례로 한다.When the output value of the battery pressure detection sensor 630 is a linear resistance value, the central processing unit 640 compares the output value and the reference value and controls the charging of the battery 10. [ The central processing unit 640 controls the charging of the battery 10 stepwise based on a plurality of reference values and an output value. The reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a resistance value.
중앙처리장치(640)는 다단계 방식으로 배터리 충전을 제어하는 경우 배터리(10)의 충전 전류를 가변한다. 중앙처리장치(640)는 리니어한 저항값에 따라 충전 전류를 단계적으로 증감시켜 배터리(10)를 충전하도록 제어한다.The central processing unit 640 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner. The central processing unit 640 controls the charging current to be gradually increased or decreased according to the linear resistance value so as to charge the battery 10.
배터리 충전 회로(650)는 중앙처리장치(640)의 제어에 따라 배터리(10)를 충전한다. 배터리 충전 회로(650)는 중앙처리장치(640)의 제어에 따라 배터리(10)의 충전을 온(On)/오프(Off)한다. 배터리 충전 회로(650)는 중앙처리장치(640)의 제어에 따라 충전 전류를 증감시켜 배터리(10)를 충전한다.The battery charging circuit 650 charges the battery 10 under the control of the central processing unit 640. The battery charging circuit 650 turns on / off the charging of the battery 10 under the control of the central processing unit 640. The battery charging circuit 650 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 640.
본 발명의 제2 실시 예에 따른 단말기는 배터리 압력 감지 센서(400, 500)를 터치 스크린 패널(TSP; Touch Screen Panel)의 컨트롤러 또는 정전용량을 입력으로 받아 처리할 수 있는 AD 컨버터가 연결된 처리기(processor)에 연결하여 배터리 압력 감지 신호를 처리한다. The terminal according to the second embodiment of the present invention includes a battery pressure sensor 400 or 500 connected to a controller of a touch screen panel (TSP) or a processor connected to an AD converter processor to process the battery pressure sensing signal.
도 12를 참조하면, 본 발명의 제2 실시 예에 따른 단말기는 배터리 압력 감지 센서(710), 센서 단자(720), AD 컨버터(730), 중앙처리장치(740, AP; Application Processor) 및 배터리 충전 회로(750)를 포함한다.12, the terminal according to the second embodiment of the present invention includes a battery pressure sensing sensor 710, a sensor terminal 720, an AD converter 730, a central processing unit (AP) 740, And a charging circuit 750.
배터리 압력 감지 센서(710)는 단말기에 실장된 배터리(10)와 중첩되어 배치된다. 배터리 압력 감지 센서(710)는 배터리(10)와 전극 패턴이 중첩되도록 배치된다. 배터리 압력 감지 센서(710)는 배터리(10) 부풀음에 의해 가해지는 압력에 대응되는 정전용량을 출력한다. 배터리 압력 감지 센서(710)는 배터리(10)의 부풀음에 대응되는 리니어(linear)한 정전용량을 출력한다.The battery pressure sensing sensor 710 is disposed in a superposition with the battery 10 mounted on the terminal. The battery pressure sensing sensor 710 is disposed so that the battery 10 and the electrode pattern overlap. The battery pressure detection sensor 710 outputs a capacitance corresponding to the pressure applied by the battery 10 bulging. The battery pressure detection sensor 710 outputs a linear capacitance corresponding to the swelling of the battery 10.
배터리 압력 감지 센서(710)는 센서 단자(720)와 연결된다. 배터리 압력 감지 센서(710)의 양단은 센서 단자(720)를 구성하는 한 쌍의 단자(720a, 720b)에 각각 연결된다. 배터리 압력 감지 센서(710)는 출력값(즉, 정전용량)을 센서 단자(720)로 출력한다.The battery pressure sensing sensor 710 is connected to the sensor terminal 720. Both ends of the battery pressure detection sensor 710 are connected to a pair of terminals 720a and 720b constituting the sensor terminal 720, respectively. The battery pressure detection sensor 710 outputs an output value (i.e., electrostatic capacitance) to the sensor terminal 720.
여기서, 배터리 압력 감지 센서(710)는 상술한 제4 실시 예 및 제5 실시 예에 따른 배터리 압력 감지 센서(400, 500) 중 하나인 것을 일례로 한다.Here, the battery pressure detection sensor 710 is one example of the battery pressure detection sensors 400 and 500 according to the fourth and fifth embodiments.
센서 단자(720)는 배터리 압력 감지 센서(710) 및 AD 컨버터(730)와 연결된다. 센서 단자(720)는 한 쌍으로 단자(720a, 720b)로 구성된다. 센서 단자(720)는 버스를 통해 AD 컨버터(730)로 전송한다.The sensor terminal 720 is connected to the battery pressure detection sensor 710 and the AD converter 730. The sensor terminals 720 are composed of a pair of terminals 720a and 720b. The sensor terminal 720 transmits to the AD converter 730 via the bus.
AD 컨버터(730)는 센서 단자(720)를 통해 배터리 압력 감지 센서(100, 200, 400)의 출력값인 정전용량을 전송받는다. AD 컨버터(730)는 아날로그 데이터인 정전용량을 디지털 데이터로 변환하여 중앙처리장치(740)로 전송한다.The AD converter 730 receives the capacitance value which is an output value of the battery pressure detection sensors 100, 200 and 400 through the sensor terminal 720. The AD converter 730 converts the electrostatic capacitance, which is analog data, into digital data and transmits the digital data to the central processing unit 740.
중앙처리장치(740)는 AD 컨버터(730)에 연결된다. 중앙처리장치(740)는 AD 컨버터(730)를 통해 배터리 압력 감지 센서(710)의 출력값을 전송받는다. 중앙처리장치(740)는 배터리 압력 감지 센서(710)의 출력값인 리니어한 정전용량을 전송받는다. 여기서, 중앙처리장치(740)는 터치스크린패턴(TSP)의 컨트롤러인 것을 일례로 한다.The central processing unit 740 is connected to the AD converter 730. The central processing unit 740 receives the output value of the battery pressure detection sensor 710 through the AD converter 730. The central processing unit 740 receives a linear capacitance which is an output value of the battery pressure detection sensor 710. Here, the central processing unit 740 is an example of a controller of the touch screen pattern (TSP).
중앙처리장치(740)는 배터리 압력 감지 센서(710)로부터 전송받은 출력값을 근거로 배터리(10)의 충전을 제어한다. 중앙처리장치(740)는 출력값을 근거로 이벤트 방식 또는 다단계 방식으로 배터리 충전을 제어한다.The central processing unit 740 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 710. The central processing unit 740 controls the charging of the battery by an event method or a multi-step method based on the output value.
중앙처리장치(740)는 배터리 압력 감지 센서(710)의 출력값이 리니어한 정전용량이면 출력값과 기준값을 비교하여 배터리(10)의 충전을 제어한다. 중앙처리장치(740)는 출력값인 정전용량이 기준값을 초과하면 배터리(10)의 충전을 차단한다.The central processing unit 740 compares the output value and the reference value to control charging of the battery 10 if the output value of the battery pressure detection sensor 710 is a linear capacitance. The central processing unit 740 cuts off the charging of the battery 10 when the electrostatic capacity as the output value exceeds the reference value.
중앙처리장치(740)는 복수의 기준값과 출력값을 근거로 배터리(10)의 충전을 단계적으로 제어할 수도 있다. 기준값은 배터리(10) 부풀음에 의한 발화, 폭발을 방지하기 위해 설정된 값으로 정전용량인 것을 일례로 한다.The central processing unit 740 may control the charging of the battery 10 stepwise based on a plurality of reference values and an output value. The reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a capacitance.
중앙처리장치(740)는 다단계 방식으로 배터리 충전을 제어하는 경우 배터리(10)의 충전 전류를 가변한다. 중앙처리장치(740)는 리니어한 정전용량에 따라 충전 전류를 단계적으로 증감시켜 배터리(10)를 충전하도록 제어한다.The central processing unit 740 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner. The central processing unit 740 controls the charging current to be gradually increased or decreased according to the linear capacitance so as to charge the battery 10.
배터리 충전 회로(750)는 중앙처리장치(740)의 제어에 따라 배터리(10)를 충전한다. 배터리 충전 회로(750)는 중앙처리장치(740)의 제어에 따라 배터리(10)의 충전을 온(On)/오프(Off)한다. 배터리 충전 회로(750)는 중앙처리장치(740)의 제어에 따라 충전 전류를 증감시켜 배터리(10)를 충전한다.The battery charging circuit 750 charges the battery 10 under the control of the central processing unit 740. The battery charging circuit 750 turns on / off the charging of the battery 10 under the control of the central processing unit 740. The battery charging circuit 750 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 740.
도 13을 참조하면, 본 발명의 제3 실시 예에 따른 단말기는 안테나(810), 안테나 단자(820), 배터리 압력 감지 센서(830), 중앙처리장치(840) 및 배터리 충전 회로(850)를 포함한다.13, the terminal according to the third embodiment of the present invention includes an antenna 810, an antenna terminal 820, a battery pressure detection sensor 830, a central processing unit 840, and a battery charging circuit 850 .
안테나(810)는 하나의 주파수 대역에 공진하는 단일 안테나(810)로 구성된다. 안테나(810)는 근거리 통신용(NFC) 안테나, 전자결제용(MST) 안테나 및 무선 전력 전송용(WPC) 안테나 중 하나인 것을 일례로 한다.The antenna 810 is composed of a single antenna 810 resonating in one frequency band. The antenna 810 is one example of an NFC antenna for short range communication, an MST antenna for electronic payment, and a WPC antenna for wireless power transmission.
안테나 단자(820)는 한 쌍으로 단자로 구성된다. 안테나 단자(820)는 안테나(810)의 양단과 연결된다. 안테나 단자(820)는 버스를 통해 중앙처리장치(840)와 연결된다.The antenna terminals 820 are composed of a pair of terminals. The antenna terminal 820 is connected to both ends of the antenna 810. The antenna terminal 820 is connected to the central processing unit 840 via a bus.
배터리 압력 감지 센서(830)는 단말기에 실장된 배터리(10)와 중첩되어 배치된다. 배터리 압력 감지 센서(830)는 배터리(10)와 전극 패턴이 중첩되도록 배치된다. 배터리 압력 감지 센서(830)는 배터리(10) 부풀음에 의해 가해지는 압력에 대응되는 저항값을 출력한다.The battery pressure detection sensor 830 is disposed in an overlapping relation with the battery 10 mounted on the terminal. The battery pressure sensing sensor 830 is disposed so as to overlap the battery 10 and the electrode pattern. The battery pressure detection sensor 830 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging.
배터리 압력 감지 센서(830)는 배터리(10)의 부풀음에 대응되는 리니어(linear)한 저항값을 출력한다. 배터리 압력 감지 센서(830)는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭 이벤트를 출력값으로 출력할 수도 있다.The battery pressure detection sensor 830 outputs a linear resistance value corresponding to the swelling of the battery 10. The battery pressure detection sensor 830 may output a switching event that is short-circuited at a resistance value exceeding a set resistance value as an output value.
안테나(810)가 근거리 통신용 안테나이면, 배터리 압력 감지 센서(830)는 스위칭 이벤트를 출력값으로 출력한다. 배터리 압력 감지 센서(830)가 리니어한 저항값을 출력하도록 구성되면(즉, 제3 실시 예의 배터리 압력 감지 센서(300) 구조), 근거리 통신용 안테나의 공지 주파수가 틀어져 통신 수행이 불가능하다. 따라서, 안테나(810)가 근거리 통신용 안테나이면, 배터리 압력 감지 센서(830)는 제1 실시 예 또는 제2 실시 예의 배터리 압력 감지 센서(100, 200)로 구성된다.If the antenna 810 is a short-range communication antenna, the battery pressure detection sensor 830 outputs a switching event as an output value. When the battery pressure detection sensor 830 is configured to output a linear resistance value (that is, the structure of the battery pressure detection sensor 300 of the third embodiment), the known frequency of the antenna for the short range communication is incorrect and communication can not be performed. Therefore, if the antenna 810 is an antenna for short-distance communication, the battery pressure detection sensor 830 is constituted by the battery pressure detection sensors 100 and 200 of the first embodiment or the second embodiment.
배터리 압력 감지 센서(830)는 안테나 단자(820)와 연결된다. 배터리 압력 감지 센서(830)의 양단은 안테나 단자(820)를 구성하는 한 쌍의 단자에 각각 연결된다. 배터리 압력 감지 센서(830)는 출력값을 안테나 단자(820)로 출력한다. 안테나 단자(820)는 버스를 통해 출력값을 중앙처리장치(840)로 전송한다.The battery pressure detection sensor 830 is connected to the antenna terminal 820. Both ends of the battery pressure detection sensor 830 are connected to a pair of terminals constituting the antenna terminal 820, respectively. The battery pressure detection sensor 830 outputs the output value to the antenna terminal 820. The antenna terminal 820 transmits the output value to the central processing unit 840 via the bus.
중앙처리장치(840)는 안테나 단자(820)에 연결된다. 중앙처리장치(840)는 안테나 단자(820)를 통해 배터리 압력 감지 센서(830)의 출력값을 전송받는다. 중앙처리장치(840)는 배터리 압력 감지 센서(830)로부터 리니어한 저항값 및 스위칭 이벤트 중 하나의 출력값을 전송받는다.The central processing unit 840 is connected to the antenna terminal 820. The central processing unit 840 receives the output value of the battery pressure detection sensor 830 through the antenna terminal 820. The central processing unit 840 receives a linear resistance value from the battery pressure detection sensor 830 and an output value of one of the switching events.
중앙처리장치(840)는 배터리 압력 감지 센서(830)로부터 전송받은 출력값을 근거로 배터리(10)의 충전을 제어한다. 중앙처리장치(840)는 출력값을 근거로 이벤트 방식 또는 다단계 방식으로 배터리 충전을 제어한다.The central processing unit 840 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 830. The central processing unit 840 controls the charging of the battery in an event mode or a multistep mode based on the output value.
중앙처리장치(840)는 배터리 압력 감지 센서(830)의 출력값이 스위칭 이벤트이면 배터리(10)의 충전을 차단한다. 중앙처리장치(840)는 스위칭 이벤트인 출력값을 수신하면 배터리(10)의 발화, 폭발이 발생할 수 있는 상태로 판단하여 배터리(10)의 충전을 차단한다.The central processing unit 840 cuts off the charging of the battery 10 when the output value of the battery pressure detection sensor 830 is a switching event. When the central processing unit 840 receives the output value as the switching event, the central processing unit 840 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10.
중앙처리장치(840)는 배터리 압력 감지 센서(830)의 출력값이 리니어한 저항값이면 출력값과 기준값을 비교하여 배터리(10)의 충전을 제어한다. 중앙처리장치(840)는 복수의 기준값과 출력값을 근거로 배터리(10)의 충전을 단계적으로 제어한다. 기준값은 배터리(10) 부풀음에 의한 발화, 폭발을 방지하기 위해 설정된 값으로 저항값인 것을 일례로 한다.The central processing unit 840 controls the charging of the battery 10 by comparing the output value and the reference value when the output value of the battery pressure detection sensor 830 is a linear resistance value. The central processing unit 840 controls the charging of the battery 10 stepwise based on a plurality of reference values and an output value. The reference value is a value set to prevent ignition and explosion due to swelling of the battery 10, and is an example of a resistance value.
중앙처리장치(840)는 다단계 방식으로 배터리 충전을 제어하는 경우 배터리(10)의 충전 전류를 가변한다. 중앙처리장치(840)는 리니어한 저항값에 따라 충전 전류를 단계적으로 증감시켜 배터리(10)를 충전하도록 제어한다.The central processing unit 840 varies the charging current of the battery 10 when the battery charging is controlled in a multi-step manner. The central processing unit 840 controls the charging current to be gradually increased or decreased according to the linear resistance value so as to charge the battery 10.
배터리 충전 회로(850)는 중앙처리장치(840)의 제어에 따라 배터리(10)를 충전한다. 배터리 충전 회로(850)는 중앙처리장치(840)의 제어에 따라 배터리(10)의 충전을 온(On)/오프(Off)한다. 배터리 충전 회로(850)는 중앙처리장치(840)의 제어에 따라 충전 전류를 증감시켜 배터리(10)를 충전한다.The battery charging circuit 850 charges the battery 10 under the control of the central processing unit 840. The battery charging circuit 850 turns on / off the charging of the battery 10 under the control of the central processing unit 840. The battery charging circuit 850 charges the battery 10 by increasing or decreasing the charge current under the control of the central processing unit 840. [
도 14를 참조하면, 본 발명의 제4 실시 예에 따른 단말기는 복합 안테나(910), 안테나 단자(920), 배터리 압력 감지 센서(930), 중앙처리장치(940) 및 배터리 충전 회로(950)를 포함한다.14, a terminal according to a fourth embodiment of the present invention includes a composite antenna 910, an antenna terminal 920, a battery pressure detection sensor 930, a central processing unit 940, and a battery charging circuit 950, .
복합 안테나(910)는 복수의 안테나(910)를 포함한다. 복합 안테나(910)는 근거리 통신용(NFC) 안테나(912), 전자결제용(MST) 안테나(914) 및 무선 전력 전송용(WPC) 안테나(916)를 포함하는 것을 일례로 한다.The composite antenna 910 includes a plurality of antennas 910. The composite antenna 910 includes an NFC antenna 912, an MST antenna 914, and a wireless power transmission (WPC) antenna 916 as an example.
안테나 단자(920)는 복수의 단자(920a 내지 920f)로 구성된다. 각 안테나(910)에는 한 쌍의 단자(920a 및 920b, 920c 및 920d, 920e 및 920f)가 연결된다. The antenna terminal 920 is composed of a plurality of terminals 920a to 920f. Each antenna 910 is connected to a pair of terminals 920a and 920b, 920c and 920d, 920e and 920f.
안테나 단자(920)는 근거리 통신용 안테나(912)에 연결된 한 쌍의 단자(920a, 920b), 전자결제용 안테나(914)에 연결된 한 쌍의 단자(920c, 920d) 및 무선 전력 전송용 안테나(916)에 연결된 한 쌍의 단자(920e, 920f)를 포함하여 총 6개의 단자로 구성되는 것을 일례로 한다.The antenna terminal 920 includes a pair of terminals 920a and 920b connected to the antenna for short-range communication 912, a pair of terminals 920c and 920d connected to the electronic payment antenna 914, And a pair of terminals 920e and 920f connected to the input / output terminals 920a and 920f.
배터리 압력 감지 센서(930)는 단말기에 실장된 배터리(10)와 중첩되어 배치된다. 배터리 압력 감지 센서(930)는 배터리(10)와 전극 패턴이 중첩되도록 배치된다.The battery pressure detection sensor 930 is arranged to overlap with the battery 10 mounted on the terminal. The battery pressure detection sensor 930 is disposed so that the battery 10 and the electrode pattern overlap.
배터리 압력 감지 센서(930)는 배터리(10) 부풀음에 의해 가해지는 압력에 대응되는 저항값을 출력한다. 배터리 압력 감지 센서(930)는 배터리(10)의 부풀음에 대응되는 리니어(linear)한 저항값을 출력한다. 배터리 압력 감지 센서(930)는 설정 저항값을 초과하는 저항값에서 쇼트되는 스위칭 이벤트를 출력값으로 출력할 수도 있다. 배터리 압력 감지 센서(930)는 제1 실시 예 내지 제3 실시 예의 배터리 압력 감지 센서(930) 중 하나인 것을 일례로 한다.The battery pressure detection sensor 930 outputs a resistance value corresponding to the pressure applied by the battery 10 bulging. The battery pressure detection sensor 930 outputs a linear resistance value corresponding to the swelling of the battery 10. The battery pressure detection sensor 930 may output a switching event that is short-circuited at a resistance value exceeding the set resistance value as an output value. The battery pressure detection sensor 930 is one example of the battery pressure detection sensor 930 of the first to third embodiments.
배터리 압력 감지 센서(930)는 배터리(10) 부풀음에 의해 가해지는 압력에 대응되는 정전용량을 출력할 수도 있다. 배터리 압력 감지 센서(930)는 배터리(10)의 부풀음에 대응되는 리니어(linear)한 정전용량을 출력한다.The battery pressure detection sensor 930 may output the capacitance corresponding to the pressure applied by the battery 10 bulging. The battery pressure detection sensor 930 outputs a linear capacitance corresponding to the swelling of the battery 10.
배터리 압력 감지 센서(930)는 안테나 단자(920)와 연결된다. 배터리 압력 감지 센서(930)의 양단은 안테나 단자(920)를 구성하는 복수의 단자 중에서 서로 다른 안테나(910)에 연결된 단자들에 각각 연결된다. 배터리 압력 감지 센서(930)의 양단은 전자결제용 안테나(910)의 일단이 연결된 단자 및 무선 전력 전송용 안테나(910)가 연결된 단자에 각각 연결되는 것을 일례로 한다. 배터리 압력 감지 센서(930)는 출력값을 안테나 단자(920)로 출력한다. 안테나 단자(920)는 버스를 통해 출력값을 중앙처리장치(940)로 전송한다.The battery pressure detection sensor 930 is connected to the antenna terminal 920. Both ends of the battery pressure detection sensor 930 are connected to terminals connected to different antennas 910 among a plurality of terminals constituting the antenna terminal 920, respectively. Both ends of the battery pressure sensing sensor 930 are connected to terminals to which one end of the electronic settlement antenna 910 is connected and terminals to which the wireless power transmission antenna 910 is connected, respectively. The battery pressure detection sensor 930 outputs the output value to the antenna terminal 920. The antenna terminal 920 transmits the output value to the central processing unit 940 via the bus.
중앙처리장치(940)는 안테나 단자(920)에 연결된다. 중앙처리장치(940)는 안테나 단자(920)를 통해 배터리 압력 감지 센서(930)의 출력값을 전송받는다. 중앙처리장치(940)는 배터리 압력 감지 센서(930)로부터 리니어한 저항값, 스위칭 이벤트 및 리니어한 정전용량 중 하나의 출력값을 전송받는다.The central processing unit 940 is connected to the antenna terminal 920. The central processing unit 940 receives the output value of the battery pressure detection sensor 930 through the antenna terminal 920. The central processing unit 940 receives the output value of one of the linear resistance value, the switching event and the linear capacitance from the battery pressure detection sensor 930.
중앙처리장치(940)는 배터리 압력 감지 센서(930)로부터 전송받은 출력값을 근거로 배터리(10)의 충전을 제어한다. 중앙처리장치(940)는 출력값을 근거로 이벤트 방식 또는 다단계 방식으로 배터리 충전을 제어한다.The central processing unit 940 controls the charging of the battery 10 based on the output value received from the battery pressure detection sensor 930. The central processing unit 940 controls battery charging in an event mode or a multistage manner based on the output value.
중앙처리장치(940)는 배터리 압력 감지 센서(930)의 출력값을 근거로 배터리(10)의 충전을 차단한다. 중앙처리장치(940)는 스위칭 이벤트인 출력값을 수신하면 배터리(10)의 발화, 폭발이 발생할 수 있는 상태로 판단하여 배터리(10)의 충전을 차단한다. 이때, 중앙처리장치(940)는 정전용량이 기준 정전용량을 초과하면 배터리(10)의 발화, 폭발이 발생할 수 있는 상태로 판단하여 배터리(10)의 충전을 차단할 수도 있다.The central processing unit 940 blocks the charging of the battery 10 based on the output value of the battery pressure detection sensor 930. When the central processing unit 940 receives the output value as the switching event, the central processing unit 940 determines that the battery 10 can ignite and explode and blocks the charging of the battery 10. At this time, the central processing unit 940 may determine that the battery 10 can ignite or explode if the electrostatic capacity exceeds the reference electrostatic capacity, and may block the charging of the battery 10. [
중앙처리장치(940)는 배터리 압력 감지 센서(930)의 출력값이 리니어한 저항값 또는 정전용량이면 출력값과 기준값을 비교하여 배터리(10)의 충전을 제어한다. 중앙처리장치(940)는 복수의 기준값과 출력값을 근거로 배터리(10)의 충전을 단계적으로 제어한다. 기준값은 배터리(10) 부풀음에 의한 발화, 폭발을 방지하기 위해 설정된 값으로 저항값 또는 정전용량인 것을 일례로 한다.The central processing unit 940 controls the charging of the battery 10 by comparing the output value and the reference value when the output value of the battery pressure detection sensor 930 is a linear resistance value or capacitance. The central processing unit 940 controls the charging of the battery 10 step by step based on a plurality of reference values and output values. The reference value is a value set to prevent ignition and explosion due to swelling of the battery 10 and is a resistance value or a capacitance.
중앙처리장치(940)는 다단계 방식으로 배터리 충전을 제어하는 경우 배터리(10)의 충전 전류를 가변한다. 중앙처리장치(940)는 리니어한 저항값 또는 정전용량에 따라 충전 전류를 단계적으로 증감시켜 배터리(10)를 충전하도록 제어한다.The central processing unit 940 varies the charge current of the battery 10 when the charge of the battery is controlled in a multi-step manner. The central processing unit 940 controls the charging current to be gradually increased or decreased according to the linear resistance value or the capacitance to charge the battery 10.
배터리 충전 회로(950)는 중앙처리장치(940)의 제어에 따라 배터리(10)를 충전한다. 배터리 충전 회로(950)는 중앙처리장치(940)의 제어에 따라 배터리(10)의 충전을 온(On)/오프(Off)한다. 배터리 충전 회로(950)는 중앙처리장치(940)의 제어에 따라 충전 전류를 증감시켜 배터리(10)를 충전한다.The battery charging circuit 950 charges the battery 10 under the control of the central processing unit 940. The battery charging circuit 950 turns on / off the charging of the battery 10 under the control of the central processing unit 940. The battery charging circuit 950 charges the battery 10 by increasing or decreasing the charging current under the control of the central processing unit 940.
한편, 도 15을 참조하면, 배터리 압력 감지 센서(930)는 복합 안테나(910)와 일체로 형성될 수도 있다. 배터리 압력 감지 센서(930)는 복수의 안테나들(912, 914, 916)이 형성된 인쇄회로기판상에 형성된다. 배터리 압력 감지 센서(930)는 하나의 안테나 또는 써미스터가 형성된 안테나(910)와 일체로 형성될 수도 있다.Referring to FIG. 15, the battery pressure sensor 930 may be formed integrally with the composite antenna 910. The battery pressure detection sensor 930 is formed on a printed circuit board on which a plurality of antennas 912, 914, and 916 are formed. The battery pressure detection sensor 930 may be formed integrally with the antenna 910 formed with one antenna or thermistor.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but many variations and modifications may be made without departing from the scope of the present invention. It will be understood that the invention may be practiced.

Claims (20)

  1. 상부 전극 패턴을 구비한 상부 전극층;An upper electrode layer having an upper electrode pattern;
    상기 상부 전극층의 하부에 배치되고, 상기 상부 전극 패턴과 중첩 배치된 하부 전극 패턴을 구비한 하부 전극층; 및A lower electrode layer disposed under the upper electrode layer and having a lower electrode pattern superimposed on the upper electrode pattern; And
    상기 상부 전극층 및 상기 하부 전극층 사이에 배치된 탄성층을 포함하고,And an elastic layer disposed between the upper electrode layer and the lower electrode layer,
    상기 탄성층은 상기 상부 전극 패턴 및 상기 하부 전극 패턴과 중첩 배치된 배터리 압력 감지 센서.Wherein the elastic layer is overlapped with the upper electrode pattern and the lower electrode pattern.
  2. 제1항에 있어서,The method according to claim 1,
    상기 탄성층은 복수의 닷(Dot)이 상호 이격 배치된 닷 스페이스 구조, 복수의 선형 패턴이 적층된 그물막 구조, 복수의 기공이 형성된 기공성 필름 구조 및 탄성 박막 시트에 복수의 홀이 타공된 타공 구조 중 하나의 구조인 배터리 압력 감지 센서.The elastic layer includes a dot space structure in which a plurality of dots are spaced apart from each other, a net membrane structure in which a plurality of linear patterns are stacked, a porous film structure in which a plurality of pores are formed, One structure of the structure is the battery pressure sensor.
  3. 제1항에 있어서,The method according to claim 1,
    상기 상부 전극층 및 상기 하부 전극층 사이에 배치되어 상기 상부 전극층 및 상기 하부 전극층을 접착하는 접착층을 더 포함하고,And an adhesive layer disposed between the upper electrode layer and the lower electrode layer and adhering the upper electrode layer and the lower electrode layer,
    상기 접착층은 상기 탄성층이 수용되는 수용 홀이 형성된 배터리 압력 감지 센서.Wherein the adhesive layer includes a receiving hole for receiving the elastic layer.
  4. 제1 전극 및 제2 전극이 형성된 하부 전극층;A lower electrode layer having a first electrode and a second electrode formed thereon;
    상기 하부 전극층의 상부에 배치되어 상기 제1 전극 및 상기 제2 전극에 중첩된 압전층; 및A piezoelectric layer disposed on the lower electrode layer and superimposed on the first electrode and the second electrode; And
    상기 압전층의 상부에 배치된 상부 전극층을 포함하는 배터리 압력 감지 센서.And a top electrode layer disposed on top of the piezoelectric layer.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제1 전극 및 상기 제2 전극은 상호 이격된 복수의 선형 패턴을 포함하고, 상기 제1 전극을 구성하는 선형 패턴들 사이에 상기 제2 전극을 구성하는 선형 패턴이 배치된 배터리 압력 감지 센서.Wherein the first electrode and the second electrode comprise a plurality of linear patterns spaced apart from each other and a linear pattern constituting the second electrode is disposed between the linear patterns constituting the first electrode.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 압전층은 저항 가변 물질로 구성되고, 상기 상부 전극층은 카본이고,Wherein the piezoelectric layer is made of a variable resistance material, the upper electrode layer is carbon,
    상기 저항 가변 물질은 양자 터널링 합성물(QTC: Quantum Tunneling Composite)인 배터리 압력 감지 센서.Wherein the resistance variable material is a Quantum Tunneling Composite (QTC).
  7. 제4항에 있어서,5. The method of claim 4,
    상기 상부 전극층의 상부에 배치된 보호층; 및A protective layer disposed on the upper electrode layer; And
    상기 하부 전극층 및 상기 보호층 사이에 배치되어 상기 하부 전극층 및 상기 보호층을 접착하는 접착층을 더 포함하고,And an adhesion layer disposed between the lower electrode layer and the protection layer and bonding the lower electrode layer and the protection layer,
    상기 접착층은 상기 압전층 및 상기 상부 전극층이 수용되는 수용 홀이 형성된 배터리 압력 감지 센서.Wherein the adhesive layer has a receiving hole for receiving the piezoelectric layer and the upper electrode layer.
  8. 배터리를 구비한 단말기에 있어서,In a terminal equipped with a battery,
    상기 단말기에 실장된 써미스터에 연결된 써미스터 단자;A thermistor terminal connected to the thermistor mounted on the terminal;
    상기 배터리와 중첩 배치되어 상기 써미스터 단자에 연결되고, 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 출력값을 출력하는 배터리 압력 감지 센서; 및A battery pressure sensor connected to the thermistor terminal and arranged to be overlapped with the battery and outputting an output value corresponding to a pressure applied by the swelling of the battery; And
    상기 써미스터 단자와 연결되고, 상기 배터리 압력 감지 센서의 출력값을 근거로 상기 배터리의 충전을 제어하는 중앙처리장치를 포함하고,And a central processing unit connected to the thermistor terminal for controlling charging of the battery based on an output value of the battery pressure detecting sensor,
    상기 써미스터는 안테나, USB 충전 단자, 상기 중앙처리장치 및 전력 관리 회로 중 적어도 하나에 배치된 단말기.Wherein the thermistor is disposed in at least one of an antenna, a USB charging terminal, the central processing unit, and a power management circuit.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 배터리 압력 감지 센서는 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값을 출력값으로 출력하고,Wherein the battery pressure detection sensor outputs a resistance value corresponding to a pressure applied by the swelling of the battery as an output value,
    상기 중앙처리장치는 상기 배터리 압력 감지 센서의 출력값이 저항값이면 상기 배터리의 충전 전류를 가변하여 상기 배터리를 충전하는 단말기.Wherein the central processing unit varies the charge current of the battery to charge the battery when the output value of the battery pressure detection sensor is a resistance value.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 배터리 압력 감지 센서는 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값이 설정값을 초과하면 스위칭 이벤트를 출력값으로 출력하고,Wherein the battery pressure detection sensor outputs a switching event as an output value when a resistance value corresponding to a pressure applied by the swelling of the battery exceeds a set value,
    상기 중앙처리장치는 상기 배터리 압력 감지 센서의 출력값이 스위칭 이벤트이면 상기 배터리의 충전을 차단하는 단말기.Wherein the central processing unit cuts off charging of the battery when an output value of the battery pressure detection sensor is a switching event.
  11. 배터리를 구비한 단말기에 있어서,In a terminal equipped with a battery,
    상기 배터리와 중첩 배치되어 센서 단자에 연결되고, 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 출력값을 출력하는 배터리 압력 감지 센서;A battery pressure detection sensor connected to the sensor terminal in a superposed relationship with the battery and outputting an output value corresponding to a pressure applied by the swelling of the battery;
    상기 센서 단자와 연결되고, 상기 배터리 압력 감지 센서의 출력값을 디지털 신호로 변환하는 AD 컨버터; 및An AD converter connected to the sensor terminal and converting an output value of the battery pressure sensor into a digital signal; And
    상기 AD 컨버터에서 디지털 신호로 변환된 출력값을 근거로 상기 배터리의 충전을 제어하는 중앙처리장치를 포함하는 단말기.And a central processing unit for controlling charging of the battery based on an output value converted into a digital signal by the AD converter.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 배터리 압력 감지 센서는 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 정전용량을 출력값으로 출력하는 단말기.Wherein the battery pressure detection sensor outputs a capacitance corresponding to a pressure applied by the swelling of the battery as an output value.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 중앙처리장치는 상기 AD 컨버터에서 디지털 신호로 변환된 출력값이 설정값을 초과하면 상기 배터리의 충전을 차단하는 단말기.Wherein the central processing unit cuts off charging of the battery when an output value converted into a digital signal by the AD converter exceeds a set value.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 중앙처리장치는 상기 AD 컨버터에서 디지털 신호로 변환된 출력값과 복수의 기준값을 근거로 상기 배터리의 충전 전류를 가변하여 상기 배터리를 충전하는 단말기.Wherein the central processing unit varies the charge current of the battery based on an output value converted into a digital signal by the AD converter and a plurality of reference values to charge the battery.
  15. 배터리를 구비한 단말기에 있어서,In a terminal equipped with a battery,
    상기 단말기에 실장된 안테나에 연결된 안테나 단자;An antenna terminal connected to the antenna mounted on the terminal;
    상기 배터리와 중첩 배치되어 상기 안테나 단자와 연결되고, 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값, 스위칭 이벤트 및 정전용량 중 하나를 출력값으로 출력하는 배터리 압력 감지 센서; 및A battery pressure detecting sensor connected to the antenna terminal and disposed in a superposed relationship with the battery, for outputting one of a resistance value, a switching event and a capacitance corresponding to a pressure applied by the swelling of the battery as an output value; And
    상기 안테나 단자와 연결되고, 상기 배터리 압력 감지 센서의 출력값을 근거로 상기 배터리의 충전을 제어하는 중앙처리장치를 포함하는 단말기.And a central processing unit connected to the antenna terminal and controlling charging of the battery based on an output value of the battery pressure detecting sensor.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 안테나 단자는 전자결제용 안테나, 무선 전력 전송용 안테나 및 근거리 통신용 안테나 중 하나에 연결된 단말기.Wherein the antenna terminal is connected to one of an electronic payment antenna, a wireless power transmission antenna, and a short-range communication antenna.
  17. 제16항에 있어서,17. The method of claim 16,
    상기 배터리 압력 감지 센서는 상기 안테나 단자에 연결된 안테나가 근거리 통신용 안테나이고, 상기 배터리의 부풀음에 의해 가해지는 압력에 대응되는 저항값이 설정값을 초과하면 스위칭 이벤트를 출력값으로 출력하는 단말기.Wherein the antenna connected to the antenna terminal is a short-range communication antenna and outputs a switching event as an output value when a resistance value corresponding to a pressure applied by the swelling of the battery exceeds a set value.
  18. 제15항에 있어서,16. The method of claim 15,
    상기 안테나 단자는 복수의 안테나에 연결된 복수의 단자를 구비하고, 상기 배터리 압력 감지 센서는 상기 복수의 단자 중 서로 다른 안테나 연결된 단자들에 연결된 단말기.Wherein the antenna terminal has a plurality of terminals connected to a plurality of antennas, and the battery pressure detection sensor is connected to terminals of different ones of the plurality of terminals.
  19. 제15항에 있어서,16. The method of claim 15,
    상기 중앙처리장치는,The central processing unit,
    상기 배터리 압력 감지 센서의 출력값이 설정값을 초과하면 상기 배터리의 충전을 차단하는 단말기.And for blocking the charging of the battery when the output value of the battery pressure detection sensor exceeds a set value.
  20. 제15항에 있어서,16. The method of claim 15,
    상기 중앙처리장치는,The central processing unit,
    상기 배터리 압력 감지 센서의 출력값과 복수의 기준값을 근거로 상기 배터리의 충전 전류를 가변하여 상기 배터리를 충전하는 단말기.Wherein the charging current of the battery is varied based on an output value of the battery pressure sensor and a plurality of reference values to charge the battery.
PCT/KR2019/000704 2018-01-24 2019-01-17 Battery pressure detection sensor and terminal including same WO2019146960A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0008828 2018-01-24
KR20180008827 2018-01-24
KR10-2018-0008827 2018-01-24
KR20180008828 2018-01-24

Publications (1)

Publication Number Publication Date
WO2019146960A1 true WO2019146960A1 (en) 2019-08-01

Family

ID=67395556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000704 WO2019146960A1 (en) 2018-01-24 2019-01-17 Battery pressure detection sensor and terminal including same

Country Status (2)

Country Link
KR (1) KR102175734B1 (en)
WO (1) WO2019146960A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178628A (en) * 2021-04-19 2021-07-27 河南利威新能源科技有限公司 Lithium ion battery module and health state monitoring method thereof
DE102020202857A1 (en) 2020-03-05 2021-09-09 HELLA GmbH & Co. KGaA Device and method for thermal monitoring of a battery
US11322806B2 (en) * 2019-09-13 2022-05-03 Hutchinson Technology Incorporated Sensored battery electrode
CN114430079A (en) * 2021-01-21 2022-05-03 东莞新能安科技有限公司 Battery pack and power consumption device
CN114981630A (en) * 2020-06-03 2022-08-30 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
CN115855324A (en) * 2022-12-26 2023-03-28 厦门大学 Thin film pressure sensor for detecting expansion of lithium battery cell and preparation method thereof
US11791521B2 (en) 2019-09-13 2023-10-17 Hutchinson Technology Incorporated Electrode tabs and methods of forming

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230085008A (en) * 2021-12-06 2023-06-13 주식회사 엘지에너지솔루션 Battery pressure measuring sensor and apparatus for measuring pressure of battery including the same
KR20230097686A (en) * 2021-12-24 2023-07-03 주식회사 엘지에너지솔루션 Battery system
KR20230142248A (en) 2022-04-01 2023-10-11 주식회사 엘지에너지솔루션 Pouch-type Battery Cell Comprising FPCB

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162527A (en) * 1997-11-26 1999-06-18 Yuasa Corp Sensor and secondary battery device equipped with sensor
JP2009076265A (en) * 2007-09-19 2009-04-09 Panasonic Corp Battery pack
US20130122332A1 (en) * 2011-11-16 2013-05-16 Nxp B.V. In-cell battery management device
KR101717062B1 (en) * 2016-04-15 2017-03-16 크루셜텍 (주) High sensitivity touch force sensing apparatus
KR20170092048A (en) * 2016-02-02 2017-08-10 주식회사 아모센스 Touch Pressure Sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022509A (en) * 1996-06-28 1998-01-23 Omron Corp Sensor device
US6809280B2 (en) * 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
KR100964175B1 (en) * 2008-05-19 2010-06-17 주식회사 에스피엠탈로스 The sensor to sense a explosion of battery
KR101248410B1 (en) * 2011-04-28 2013-04-02 경희대학교 산학협력단 Electrostatic capacitance-type pressure sensor using nanofiber web
KR101534252B1 (en) * 2013-05-09 2015-07-08 (주)와이즈산전 driver circuit and Offset Compensation Method for pressure sensor
KR101602832B1 (en) * 2014-05-15 2016-03-11 주식회사 아이티엠반도체 Package of battery protection circuits having NFC antenna and battery pack including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162527A (en) * 1997-11-26 1999-06-18 Yuasa Corp Sensor and secondary battery device equipped with sensor
JP2009076265A (en) * 2007-09-19 2009-04-09 Panasonic Corp Battery pack
US20130122332A1 (en) * 2011-11-16 2013-05-16 Nxp B.V. In-cell battery management device
KR20170092048A (en) * 2016-02-02 2017-08-10 주식회사 아모센스 Touch Pressure Sensor
KR101717062B1 (en) * 2016-04-15 2017-03-16 크루셜텍 (주) High sensitivity touch force sensing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322806B2 (en) * 2019-09-13 2022-05-03 Hutchinson Technology Incorporated Sensored battery electrode
US11791521B2 (en) 2019-09-13 2023-10-17 Hutchinson Technology Incorporated Electrode tabs and methods of forming
DE102020202857A1 (en) 2020-03-05 2021-09-09 HELLA GmbH & Co. KGaA Device and method for thermal monitoring of a battery
WO2021175704A1 (en) 2020-03-05 2021-09-10 Leoni Bordnetz-Systeme Gmbh Device and method for thermally monitoring a battery
CN114981630A (en) * 2020-06-03 2022-08-30 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
EP4071452A4 (en) * 2020-06-03 2023-07-26 LG Energy Solution, Ltd. Battery cell pressure measuring apparatus and method
CN114981630B (en) * 2020-06-03 2024-03-19 株式会社Lg新能源 Battery cell pressure measurement apparatus and method
CN114430079A (en) * 2021-01-21 2022-05-03 东莞新能安科技有限公司 Battery pack and power consumption device
CN113178628A (en) * 2021-04-19 2021-07-27 河南利威新能源科技有限公司 Lithium ion battery module and health state monitoring method thereof
CN113178628B (en) * 2021-04-19 2023-03-10 河南利威新能源科技有限公司 Lithium ion battery module and health state monitoring method thereof
CN115855324A (en) * 2022-12-26 2023-03-28 厦门大学 Thin film pressure sensor for detecting expansion of lithium battery cell and preparation method thereof
CN115855324B (en) * 2022-12-26 2024-04-30 厦门大学 Film pressure sensor for detecting expansion of lithium battery core and preparation method thereof

Also Published As

Publication number Publication date
KR102175734B1 (en) 2020-11-06
KR20190090340A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2019146960A1 (en) Battery pressure detection sensor and terminal including same
WO2017003001A1 (en) Electric shock-preventing contactor and portable electronic device having same
WO2020027398A1 (en) Display apparatus
WO2015072775A1 (en) Flexible printed circuit board and method for manufacturing same
WO2015190753A1 (en) Multi-input pad for simultaneously sensing capacitive touch and induced electromagnetic field input and input system
WO2016080625A1 (en) Electric shock protection member and mobile electronic device equipped with same
WO2019143209A1 (en) Electronic device comprising antenna and method for transmitting or receiving signal
WO2016080624A1 (en) Electric shock protection member and mobile electronic device equipped with same
WO2020251242A1 (en) Electronic device including force sensor
WO2020149658A2 (en) Touch sensor panel and touch input device
WO2021172880A1 (en) Electronic device comprising coaxial cable
WO2022103023A1 (en) Electronic device comprising housing
WO2020116968A1 (en) Antenna module which includes signal line exposed to outside through one face of printed circuit board and includes conductive member electrically connected to signal line, and electronic device including same
WO2021225324A1 (en) Electronic device comprising antenna
WO2015037853A1 (en) Touch panel
WO2022154347A1 (en) Antenna and electronic device comprising same
WO2021118301A1 (en) Printed circuit board and electronic device including the same
WO2021025500A1 (en) Pen input device comprising battery and method for operating same
WO2020231053A1 (en) Electronic device comprising sensor module
WO2016122245A1 (en) Portable electronic device with embedded electric shock protection function
WO2016204419A1 (en) Touch screen panel touch sensor comprising power coil pattern for electronic pen, manufacturing method therefor, and touch screen panel comprising same
WO2021246682A1 (en) Printed circuit board transmitting high-frequency band signal, and electronic device comprising same
WO2022103062A1 (en) Electronic device comprising antenna and stylus pen
WO2018111046A1 (en) Object detection sensor and vehicle safety unit including same
WO2022019684A1 (en) Battery and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744528

Country of ref document: EP

Kind code of ref document: A1