WO2018151110A1 - Power supply circuit - Google Patents

Power supply circuit Download PDF

Info

Publication number
WO2018151110A1
WO2018151110A1 PCT/JP2018/004933 JP2018004933W WO2018151110A1 WO 2018151110 A1 WO2018151110 A1 WO 2018151110A1 JP 2018004933 W JP2018004933 W JP 2018004933W WO 2018151110 A1 WO2018151110 A1 WO 2018151110A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
vehicle
diode
modules
Prior art date
Application number
PCT/JP2018/004933
Other languages
French (fr)
Japanese (ja)
Inventor
光央 近藤
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2018568538A priority Critical patent/JP6949886B2/en
Priority to TW107105660A priority patent/TWI669883B/en
Publication of WO2018151110A1 publication Critical patent/WO2018151110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power supply circuit that supplies electric power to a load provided in a vehicle.
  • a vehicle that uses only an engine as a drive source
  • a vehicle that uses only a motor as a drive source
  • a vehicle that uses an engine and a motor as drive sources hybrid vehicle
  • a vehicle using a motor as a drive source such as an electric vehicle or a hybrid vehicle is provided with a power supply circuit that supplies electric power to a load such as a motor.
  • the power supply circuit includes a power supply module.
  • the power supply module includes a power supply (for example, a secondary battery) and a switch element connected in series to the power supply.
  • the withstand voltage of the switch element is set in consideration of the voltage applied to the load by the power feeding circuit.
  • the power supply circuit may have a plurality of power supply modules connected in series.
  • the withstand voltage required for the switch element included in each of the plurality of power supply modules is set in consideration of the voltage applied to the load by the power feeding circuit.
  • the same type of power module may be used even if the type of vehicle is different.
  • the number of power supply modules included in the power supply circuit may vary depending on the type of vehicle. Thereby, the output of a motor can be varied for every kind of vehicle.
  • the power source is a secondary battery, the maximum distance that can be traveled by one charge can be varied for each type of vehicle.
  • a switch having a withstand voltage required when the number of power supply modules is the maximum It is conceivable to use an element. In this case, when the number of power supply modules is smaller than the maximum number, a switching element having a withstand voltage higher than the minimum withstand voltage originally necessary may be used for the power supply circuit.
  • the higher the withstand voltage of the switch element the higher the resistance of the switch element in the ON state. Therefore, the higher the withstand voltage of the switch element, the greater the amount of heat generated by the switch element during energization. Therefore, when a switch element having a withstand voltage sufficiently higher than the originally required withstand voltage is used, more heat countermeasures are required than when a switch element having a minimum withstand voltage that is originally required is used. Is required.
  • Japanese Patent Application Laid-Open No. 2015-91200 discloses a vehicle on which a plurality of battery packs (corresponding to the above-described power supply modules) are detachably mounted.
  • Each of the plurality of battery packs includes a secondary battery, a battery pack side switch element, and a BMS (Battery Management System).
  • the battery pack side switch element is a switch element that blocks output from the secondary battery to the outside.
  • the battery pack side switch element is connected in series to the secondary battery. BMS controls charging / discharging of a secondary battery.
  • an ECU Engine Control Unit
  • a vehicle side switch element are provided in the vehicle.
  • the ECU communicates with an information communication circuit included in the BMS.
  • the vehicle-side switch element is controlled on / off by the ECU.
  • the ECU turns on the vehicle side switch element when the battery pack side switch elements of all the battery packs (battery modules) are on. Accordingly, a switch element having a minimum withstand voltage can be used as the battery pack side switch element while preventing damage to the battery pack side switch element due to a potential difference between both ends of the battery side switch element.
  • An object of the present invention is to provide a power supply circuit that prevents overvoltage to a switch element connected in series with a power supply while ensuring versatility of the power supply module.
  • the inventor of the present application examined a configuration in which communication between the power supply module and the vehicle is not necessary in order to ensure versatility of the power supply module. Then, further studies were made focusing on the configuration of the power supply circuit itself. As a result, they have come to know that a diode arranged in parallel with the power supply module may be provided. The present invention has been completed based on such findings.
  • the power supply circuit of the present invention is a power supply circuit that includes a plurality of power supply modules connected in series and supplies power to a load included in the vehicle.
  • Each of the plurality of power supply modules includes a power supply for supplying power and a switch element connected in series to the power supply.
  • the power supply circuit further includes a plurality of diodes connected in parallel one by one to each of the plurality of power supply modules.
  • Each of the plurality of diodes allows a current to flow from a first connection point connecting the diode and the negative electrode of the power supply to a second connection point connecting the diode and the positive electrode of the power supply. However, it is configured not to allow current to flow from the second connection point toward the first connection point.
  • the timing at which the plurality of switch elements are turned on or off may be shifted due to some cause.
  • the switch element may require a response time. Therefore, it is difficult to completely synchronize the on / off operations of a plurality of switch elements. As a result, the timing at which the plurality of switch elements are turned on or off may be shifted. In addition, when any of the plurality of switch elements fails (short-circuit), the timing at which the plurality of switch elements are turned on or off is shifted.
  • the switch element may be damaged due to a potential difference between both ends of the switch element in the off state. For this reason, when a diode is not provided, the switch element is required to have a high withstand voltage.
  • the power supply circuit of the present invention includes a plurality of diodes connected in parallel one by one to each of the plurality of switch elements.
  • a connection point connected to the negative electrode of the power supply is defined as a first connection point
  • a connection point connected to the positive electrode of the power supply is defined as a second connection point.
  • the diode allows current to flow from the first connection point toward the second connection point, but does not allow current to flow from the second connection point toward the first connection point. Therefore, when only one of the plurality of switch elements is turned off for some reason, a current flows through a diode connected in parallel with the switch element in the off state.
  • the potential difference between both ends of the switch element in the off state can be reduced to substantially the same level as the output voltage of one power source. Therefore, a switch element having the same withstand voltage can be used regardless of the number of power supply modules included in the power supply circuit. That is, overvoltage to the switch element can be prevented while ensuring the versatility of the power supply module.
  • the diode is connected not only in parallel to the switch element but also in parallel to the power supply, the withstand voltage required for the diode can be reduced.
  • the power supply circuit of the present invention preferably has the following configuration.
  • the switch element is an electrically controllable switch element.
  • the power supply circuit of the present invention preferably has the following configuration. At least one power supply module among the plurality of power supply modules is detachable from the vehicle body of the vehicle.
  • the power supply module can be attached to and detached from the vehicle body, the versatility of the power supply module can be improved.
  • the power supply circuit of the present invention preferably has the following configuration.
  • Each of at least one of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
  • the versatility of the power supply module can be further improved.
  • a vehicle including a conventional power supply circuit that does not have a diode and in which a power supply module of the power supply circuit is detachably mounted instead of the conventional power supply module, a vehicle in which the power supply module and the diode are integrated can be mounted on this vehicle.
  • the “at least one power supply module” in the above (4) may be the same as the “at least one power supply module” in the above (3), and is one of the “at least one power supply module” in the above (3). Part.
  • the power feeding circuit of the present invention preferably has the following configuration.
  • Each of at least two of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
  • the at least two power supply modules can be individually attached to and detached from the vehicle body.
  • the plurality of power supply modules are not integrated. Therefore, the same power supply module can be used for vehicles having different numbers of power supply modules. Thus, the versatility of the power supply module can be further improved. Further, when any of the plurality of power supply modules fails, only the failed power supply module can be replaced.
  • the “at least two power supply modules” in the above (5) may be the same as the “at least one power supply module” in the above (4), and one of the “at least one power supply module” in the above (4). Part.
  • the power supply circuit of the present invention preferably has the following configuration.
  • Each of at least two of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
  • the at least two power supply modules can be integrally attached to and detached from the vehicle body.
  • the power supply module is compared with a case where at least two power supply modules can be individually attached to and detached from the vehicle main body. It is possible to reduce the number of connection parts for attaching to and detaching from the vehicle body. Therefore, attachment / detachment can be performed more easily.
  • the “at least two power supply modules” in the above (6) may be the same as the “at least one power supply module” in the above (4), and one of the “at least one power supply module” in the above (4). Part.
  • the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supply modules is detachable from the vehicle body including the diode connected in parallel with the power supply module.
  • the diode when replacing the power supply module, the diode can be used as it is without being replaced. Accordingly, the cost of the diode can be reduced. Further, since the detachable element does not include a diode, the detachable element can be reduced in size.
  • the “at least one power supply module” in the above (7) may be the same as the “at least one power supply module” in the above (3), and one of the “at least one power supply module” in the above (3). Part.
  • the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supplies included in the plurality of power supply modules is detachable from the vehicle body of the vehicle. Each of at least one of the plurality of power supplies included in the plurality of power supply modules includes the switch element included in the power supply module including the power supply, and the diode connected in parallel with the power supply. It can be attached to and detached from the main body.
  • the diode and the switch element when the power supply is replaced, the diode and the switch element can be used as they are without being replaced. Accordingly, the cost of the diode and the switch element can be reduced. Moreover, since the element to be attached / detached does not include the diode and the switch element, the element to be attached / detached can be reduced in size.
  • the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supply modules is not detachable from the vehicle body of the vehicle.
  • the vibration resistance and impact resistance required for the power supply module can be reduced as compared with the case where the power supply module is removable.
  • the power module can be reduced in size while ensuring the versatility of the power module.
  • the power supply circuit of the present invention preferably has the following configuration.
  • the power source included in each of the plurality of power supply modules is a power storage device capable of storing power or a power generation device capable of generating power.
  • This configuration can improve the versatility of the power supply module.
  • a diode is an element having a characteristic that allows current flow in a single direction.
  • a plurality of diodes are connected in parallel to each of a plurality of power supply modules, that is, a plurality of diodes are connected in parallel to a plurality of power supply modules. But there is.
  • an electrically controllable switch element is a switch element whose on / off is controlled by an electric signal.
  • the power supply circuit of the present invention it is possible to prevent overvoltage to the switch elements connected in series with the power supply while ensuring the versatility of the power supply module.
  • FIG. 1 is a diagram illustrating a usage state of a power feeding circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a usage state of a power feeding circuit of a specific example of the embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a state in which one of the plurality of power supply modules is removed from the vehicle body.
  • FIG. 4 is a circuit diagram in the case where the timing for switching off a plurality of switch elements is shifted.
  • FIG. 5 is a circuit diagram obtained by removing the diode from FIG.
  • FIG. 6 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a usage state of a power feeding circuit according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a usage state of a power feeding circuit of a specific example of the embodiment of the present invention.
  • FIG. 3 is a circuit diagram
  • FIG. 7 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
  • FIG. 8 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
  • FIG. 9 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
  • FIG. 10 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
  • the power feeding circuit 1 supplies power to the load 20 provided in the vehicle 30.
  • the power feeding circuit 1 includes a plurality (two in FIG. 1) of power supply modules 12 and 12 connected in series.
  • Each of the plurality of power supply modules 12 and 12 includes a power supply 121 that supplies power and a switch element 122 connected in series to the power supply 121.
  • the power feeding circuit 1 further includes a plurality of diodes 14 and 14 connected in parallel one by one to each of the plurality of power supply modules 12 and 12.
  • the first connection point 132 connects the diode 14 and the negative electrode of the power supply 121.
  • connection point connected to the negative electrode of the power source 121 is a first connection point 132
  • connection point connected to the positive electrode of the power source 121 is a second connection point.
  • Each of the plurality of diodes 14 and 14 allows current to flow from the first connection point 132 toward the second connection point 131, but current flows from the second connection point 131 toward the first connection point 132. It is configured not to allow this.
  • the timing at which the plurality of switch elements are turned on or off may be shifted due to some cause.
  • the switch element may require a response time. Therefore, it is difficult to completely synchronize the on / off operations of a plurality of switch elements. As a result, the timing at which the plurality of switch elements are turned on or off may be shifted. In addition, when any of the plurality of switch elements fails (short-circuit), the timing at which the plurality of switch elements are turned on or off is shifted.
  • the switch element may be damaged due to a potential difference between both ends of the switch element in the off state. For this reason, when a diode is not provided, the switch element is required to have a high withstand voltage.
  • the power supply circuit 1 of the present invention includes a plurality of diodes 14 and 14 connected in parallel to each of the plurality of switch elements 122 and 122.
  • the diode 14 allows current to flow from the first connection point 132 toward the second connection point 131, but does not allow current to flow from the second connection point 131 toward the first connection point 132. Therefore, when only one of the plurality of switch elements 122 and 122 is turned off for some reason, a current flows through the diode 14 connected in parallel with the switch element 122 in the off state. Thereby, the potential difference between both ends of the switch element 122 in the off state can be reduced to substantially the same level as the output voltage of one power supply 121. Therefore, the switch element 122 having the same withstand voltage can be used regardless of the number of power supply modules 12 included in the power supply circuit 1. That is, overvoltage to the switch element 122 can be prevented while ensuring the versatility of the power supply module 12.
  • the diode 14 is connected not only in parallel to the switch element 122 but also in parallel to the power source 121, the withstand voltage required for the diode 14 can be reduced.
  • the power feeding circuit 10 is an example of the power feeding circuit 1 of the above-described embodiment.
  • the power feeding circuit 10 supplies power to a load 20 provided in the vehicle (vehicle) 30.
  • the vehicle (vehicle) 30 is, for example, a motorcycle.
  • the load 20 of the vehicle 30 is not particularly limited as long as it is driven by being supplied with electric power.
  • the load 20 may be a device including an electrolytic capacitor and a resistor as shown in FIG. 2, for example.
  • the load 20 may be a motor used as a drive source of the vehicle 30.
  • the load 20 may be a starter motor for starting the engine, for example.
  • the starter motor does not correspond to a motor as a drive source of the vehicle 30.
  • the load 20 may be, for example, a safety part (meter, horn, light, etc.).
  • the load 20 may be a seat heater, for example.
  • the vehicle 30 is not particularly limited as long as the vehicle 30 uses the motor as a drive source.
  • the vehicle 30 may be a vehicle (electric vehicle) using only a motor as a drive source, or may be a vehicle (hybrid vehicle) using an engine and a motor as drive sources.
  • the vehicle 30 may use a motor as a drive source or may not use a motor as a drive source.
  • the vehicle 30 may be a vehicle (engine vehicle) having only an engine as a drive source, a vehicle (electric vehicle) having only a motor as a drive source, It may be a vehicle (hybrid vehicle) using a motor as a drive source.
  • the power feeding circuit 10 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B.
  • the plurality of power supply modules 12A and 12B are connected in series.
  • the diode 14A is connected in parallel to the power supply module 12A.
  • the diode 14B is connected in parallel to the power supply module 12B. That is, the plurality of diodes 14A and 14B are connected in series.
  • the power supply module 12A and the diode 14A are connected by two connection points 131A and 132A.
  • the power supply module 12B and the diode 14B are connected by two connection points 131B and 132B.
  • the power supply modules 12A and 12B are an example of the power supply module 12 of the above-described embodiment.
  • the diodes 14A and 14B are an example of the diode 14 of the above-described embodiment.
  • the connection points 131A and 131B are an example of the connection point 131 of the above-described embodiment.
  • the connection points 132A and 132B are an example of the connection point 132 of the above-described embodiment.
  • the connection points 131A and 131B correspond to the second connection point of the present invention, and the connection points 132A and 132B correspond to the first connection point of the present invention.
  • the power supply module 12A includes a power supply 121A and a switch element 122A.
  • the power supply module 12B includes a power supply 121B and a switch element 122B.
  • the switch element 122A is connected in series to the power source 121A.
  • the switch element 122B is connected in series to the power source 121B.
  • the power supplies 121A and 121B are an example of the power supply 121 of the above-described embodiment.
  • the switch elements 122A and 122B are an example of the switch element 122 of the above-described embodiment.
  • the power supplies 121A and 121B are DC power supplies.
  • the power supplies 121A and 121B are not particularly limited as long as they can supply power.
  • Each of the power supplies 121A and 121B has a positive electrode and a negative electrode as a pair of terminals.
  • the power supplies 121A and 121B have the same configuration.
  • the power supplies 121A and 121B may have different configurations.
  • the power supplies 121A and 121B may be power storage devices capable of storing electric power.
  • a primary battery or a secondary battery may be used.
  • the secondary battery may be, for example, a lead storage battery or a lithium ion battery.
  • Another example of the electricity storage device may be a capacitor (capacitor) or a super capacitor (ultra capacitor).
  • a super capacitor is an electric double layer capacitor.
  • Another example of the electricity storage device may be a stabilized power source.
  • the stabilized power supply is a DC power supply having a function of stabilizing the output voltage.
  • the stabilized power supply includes, for example, a secondary battery, and may be configured to stabilize the output voltage of the secondary battery.
  • the power supplies 121A and 121B may be power generation devices that can generate power without storing power.
  • a fuel cell that generates power by a chemical reaction of fuel may be used.
  • the fuel is, for example, hydrogen, hydrocarbon, alcohol or the like.
  • Another example of the power generation device may be a solar cell that converts solar light energy into electric power.
  • the power source 121A (121B) may be a single unit or a plurality of power source elements that can supply power.
  • the power supply 121A (121B) when the power supply 121A (121B) is a secondary battery, the power supply 121A (121B) may be a cell (power supply element) or an assembled battery including a plurality of cells.
  • the plurality of power supply elements may be connected in series, may be connected in parallel, or may be connected in combination of series and parallel.
  • the switch elements 122A and 122B can be switched between a state in which a current flows and a state in which the current flow is interrupted.
  • the switch elements 122A and 122B are not particularly limited as long as they can be electrically controlled. “Electrically controllable” means that on / off is controlled by an electrical signal. That is, the switch elements 122A and 122B may be relays.
  • the switch elements 122A and 122B have the same configuration.
  • the switch elements 122A and 122B may have different configurations.
  • the switch elements 122A and 122B may be, for example, electromagnetic relays (EMS: electro-magnetic relays) or semiconductor relays (SSR: solid-state relays).
  • the semiconductor relay may be, for example, a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor: metal oxide semiconductor field effect transistor). MOSFET is a kind of field effect transistor.
  • the semiconductor relay may be another field effect transistor, bipolar transistor, or IGBT (insulated gate bipolar transistor).
  • the switch elements 122A and 122B may be contact relays having mechanical contacts such as electromagnetic relays, or may be contactless relays having no mechanical contacts such as semiconductor relays.
  • the electromagnetic relay is also referred to as a mechanical relay.
  • the switch element 122A is connected to the positive electrode of the power source 121A.
  • the switch element 122A is disposed between the power source 121A and the connection point 131A.
  • the connection point 131A is a connection point that connects the positive electrode of the power source 121A and the diode 14A.
  • the switch element 122B is connected to the positive electrode of the power source 121B.
  • the switch element 122B is disposed between the power source 121B and the connection point 131B.
  • the connection point 131B is a connection point that connects the positive electrode of the power source 121B and the diode 14B.
  • FIG. 2 illustration of a control device that electrically controls the switch elements 122A and 122B is omitted.
  • the switch element 122A is controlled by the control device so that, for example, it is turned on in a situation where the power supply 121A can be used and turned off in a situation where the power supply 121A cannot be used.
  • the control device that electrically controls the switch elements 122A and 122B may be, for example, a BMS (battery management system).
  • the diodes 14A and 14B have the same configuration.
  • the diodes 14A and 14B may have different configurations.
  • the diodes 14A and 14B may be semiconductor diodes, for example.
  • the diodes 14A and 14B may be diodes other than the semiconductor diode (for example, a bipolar vacuum tube).
  • Each of the diodes 14A and 14B has an anode and a cathode as a pair of terminals.
  • the diode 14A is configured to allow current to flow from the anode to the cathode in the diode 14A, but not to allow current to flow from the cathode to the anode in the diode 14A.
  • diode 14B only allows current flow from the anode to the cathode.
  • connection point 131A connects the diode 14A and the positive electrode of the power supply 121A
  • connection point 132A connects the diode 14A and the negative electrode of the power supply 121A.
  • the cathode of the diode 14A is connected to the connection point 131A.
  • the anode of the diode 14A is connected to the electrical connection point 132A. That is, the diode 14A allows current to flow from the connection point 132A toward the connection point 131A, but does not allow current to flow from the connection point 131A to the connection point 132A.
  • connection point 131B connects the diode 14B and the positive electrode of the power supply 121B
  • connection point 132B connects the diode 14B and the negative electrode of the power supply 121B.
  • the cathode of the diode 14B is connected to the connection point 131B.
  • the anode of the diode 14B is connected to the connection point 132B. That is, the diode 14B allows current to flow from the connection point 132B to the connection point 131B, but does not allow current to flow from the connection point 131B to the connection point 132B.
  • the vehicle 30 includes a vehicle body 31, a plurality of power supply modules 12A and 12B, and a plurality of diodes 14A and 14B.
  • the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B and the plurality of diodes 14 ⁇ / b> A and 14 ⁇ / b> B are not included in the vehicle main body 31.
  • the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B are detachable from the vehicle main body 31.
  • Vehicle 30 has connectors 161A, 162A, 163A, and 164A in order to make power supply module 12A detachable from vehicle body 31.
  • the connector 161A is connected to a connection point 131A connected to the positive electrode of the power source 121A.
  • the connector 162A is connected to a connection point 132A connected to the negative electrode of the power source 121A.
  • the connectors 161A and 162A are integrated with the power supply module 12A.
  • the connector 161A is detachably connected to the connector 163A.
  • Connector 162A is detachably connected to connector 164A.
  • the connectors 163A and 164A are integrally provided on the vehicle main body 31, respectively.
  • the connectors 161A and 162A can be attached to and detached from the connectors 163A and 164A included in the vehicle main body 31 integrally with the power supply module 12A.
  • the state where the connector 161A is connected to the connector 163A and the connector 162A is connected to the connector 164A is the state where the power supply module 12A is attached to the vehicle main body 31.
  • the vehicle 30 includes connectors 161B, 162B, 163B, and 164B in order to make the power supply module 12B detachable from the vehicle main body 31.
  • Connector 161B is connected to connection point 131B connected to the positive electrode of power supply 121B.
  • the connectors 161B and 162B are integrated with the power supply module 12B.
  • the connector 162B is connected to a connection point 132B connected to the negative electrode of the power source 121B.
  • Connector 161B is detachably connected to connector 163B.
  • Connector 162B is detachably connected to connector 164B.
  • the connectors 163B and 164B are provided integrally with the vehicle main body 31, respectively.
  • the connectors 161B and 162B can be attached to and detached from the connectors 163B and 164B included in the vehicle main body 31 integrally with the power supply module 12B.
  • the state where the connector 161B is connected to the connector 163B and the connector 162B is connected to the connector 164B is a state where the power supply module 12B is attached to the vehicle body 31.
  • connection points 131A and 132A connecting the power supply module 12A and the diode 14A are connected to the two connectors 161A and 162A, respectively. Therefore, the power supply module 12A can be attached to and detached from the vehicle main body 31 integrally with the diode 14A.
  • Two connection points 131B and 132B connecting the power supply module 12B and the diode 14B are connected to two connectors 161B and 162B, respectively. Therefore, the power supply module 12B can be attached to and detached from the vehicle body 31 integrally with the diode 14B. That is, each of the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with a diode connected in parallel to the power supply module.
  • Connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to connectors 161A and 162B, respectively.
  • the connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 31, respectively.
  • connection points 132A and 131B between the power supply module 12A and the power supply module 12B are connected to connectors 162A and 161B, respectively.
  • the connectors 162A and 161B are detachably connected to connectors 164A and 163B provided on the vehicle main body 31, respectively.
  • the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B can be individually attached to and detached from the vehicle body 31. That is, the element including the power supply module 12A and the diode 14A and the element including the power supply module 12B and the diode 14B can be individually attached to and detached from the vehicle body 31. Therefore, as shown in FIG. 3, the power supply module 12 ⁇ / b> A and the diode 14 ⁇ / b> A can be removed from the vehicle main body 31 with the power supply module 12 ⁇ / b> B and the diode 14 ⁇ / b> B attached to the vehicle main body 31.
  • the two connectors 161A and 162A connected to one power supply module 12A may be integrated so as to be attached / detached only at the same time, or may be separated so that they can be attached / detached individually.
  • the two connectors 161B and 162B connected to one power supply module 12B may be integrated so as to be attached / detached only at the same time, or may be separated so that they can be attached / detached individually.
  • Connectors 161A to 164A and 161B to 164B are DC connectors.
  • the connection structure between the connector 161A and the connector 163A is not particularly limited.
  • the connection structure may be, for example, a plug-in type or other than the plug-in type.
  • the connector 161A can be attached to and detached from the connector 163A without using a tool.
  • the connector 161A may be detachable from the connector 163A using a tool.
  • the connection structure between the connector 162A and the connector 164A is the same as the connection structure between the connector 161A and the connector 163A. Therefore, the power supply module 12A can be attached to and detached from the vehicle body 31 without using a tool.
  • the connection structure between the connector 161B and the connector 163B and the connection structure between the connector 162B and the connector 164B are the same as the connection structure between the connector 161A and the connector 163A.
  • the vehicle body 31 may support the power supply module 12A directly or indirectly at a place other than the connectors 163A and 164A.
  • the vehicle body 31 may support the power supply module 12B directly or indirectly at a place other than the connectors 163B and 164B.
  • the support mode may be, for example, only contact.
  • the mode of support may be a mode in which, for example, the element including the power supply module is detachably held on the vehicle main body 31 using the action of magnetic force.
  • the mode of support may be a mode in which the element including the power supply module is detachably held on the vehicle main body 31 using a fitting structure of the convex part and the concave part.
  • the mode of support may be a mode of detachably holding on the element including the power supply module and the vehicle main body 31, for example, using a screwing structure.
  • the power feeding circuit 10 may include connectors 161A and 162B.
  • the vehicle main body 31 and the power supply module 12A may be configured to be able to charge the power source 121A in a state where the power supply module 12A is attached to the vehicle main body 31.
  • the power source module 12A may be configured to be able to charge the power source 121A in a state where it is detached from the vehicle main body 31.
  • the power source 121B is a chargeable power storage device.
  • Each of the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B is preferably detachable from a vehicle main body of a vehicle different from the vehicle 30. Thereby, the versatility of power supply modules 12A and 12B can be improved.
  • the power supply circuit 10 When the plurality of power supply modules 12A and 12B are attached to the vehicle main body 31, the power supply circuit 10 is connected to the load 20.
  • the voltage of the power feeding circuit 10 in a state where the power feeding circuit 10 is connected to the load 20 will be described.
  • FIG. 4 the voltage of the power feeding circuit 10 when both of the plurality of switch elements 122A and 122B are in the on state will be described.
  • the output voltage of the power supply 121A is V S.
  • the output voltage of the power supply 121B is also V S.
  • the voltage at the connection point 132B is V 0 .
  • V 0 may be 0V or may not be 0V.
  • the voltage at the negative electrode of the power supply 121B is V 0
  • the voltage at the positive electrode of the power supply 121B is V 0 + V S. Therefore, the voltage at the connection point 131B is V 0 + V S.
  • the connection point 131B has a higher voltage than the connection point 132B.
  • the diode 14B does not allow a current to flow from the connection point 131B toward the connection point 132B. Therefore, no current flows through the diode 14B.
  • the voltage at the connection point 132A is V 0 + V S.
  • the voltage at the negative electrode of the power source 121A is V 0 + V S
  • the voltage at the positive electrode of the power source 121A is V 0 + 2V S. Therefore, the voltage at the connection point 131A is V 0 + 2V S.
  • the connection point 131A has a higher voltage than the connection point 132A. As described above, the diode 14A does not allow a current to flow from the connection point 131A toward the connection point 132A. Therefore, no current flows through the diode 14A.
  • the plurality of switch elements 122A and 122B are controlled so that the timings at which they are turned off coincide with each other. However, the timing at which the plurality of switch elements 122A and 122B are switched off may be shifted due to some cause.
  • FIG. 4 shows a state where the switch element 122B is not yet turned off when the switch element 122A is turned off. As shown in FIG. 4, the voltage of the power feeding circuit 10 immediately after only the switch element 122A among the plurality of switch elements 122A and 122B is switched off will be described.
  • the output voltage of the power supply 121A is V S.
  • the output voltage of the power supply 121B is also V S.
  • the voltage at the connection point 132B is V 0 .
  • the voltage of the electric circuit in which the power supply module 12B and the diode 14B are connected in parallel is the same as when both the switch elements 122A and 122B described above are on. No current flows through the diode 14B.
  • the voltage at the connection point 132A is V 0 + V S. Since the switch element 122A has just been turned off, the voltage at the negative electrode of the power supply 121A is V 0 + V S , and the voltage at the positive electrode of the power supply 121A is V 0 + 2V S. Since the switch element 122A is off, no current flows from the power source 121A to the connection point 131A. As described above, the diode 14A allows a current to flow from the connection point 132A toward the connection point 131A. Therefore, a current flows from the connection point 132A to the connection point 131A via the diode 14A. The voltage at the connection point 131A is V 0 + V S. Therefore, the potential difference between both ends of the off-state switch element 122A is V S.
  • FIG. 5 shows a power supply circuit 90 in which the diodes 14A and 14B are removed from the power supply circuit 10 of FIG.
  • the power supply modules 92A and 92B shown in FIG. 5 have the same configuration as the power supply modules 12A and 12B.
  • the power supplies 921A and 921B shown in FIG. 5 have the same configuration as the power supplies 121A and 121B.
  • the switch elements 922A and 922B shown in FIG. 5 have the same configuration as the switch elements 122A and 122B.
  • the connectors 961A and 961B shown in FIG. 5 have the same configuration as the connectors 161A and 161B.
  • Connectors 962A and 962B shown in FIG. 5 have the same configuration as the connectors 162A and 162B.
  • FIG. 5 shows a state immediately after only the switch element 922A of the plurality of switch elements 922A and 922B is switched off. The voltage of the power feeding circuit 90 at this time will be described.
  • the output voltage of the power supply 921A is V S.
  • the output voltage of the power supply 921B is also V S.
  • the voltage at the connector 962B is V 0 .
  • the voltage at the negative electrode of the power source 921B is V 0
  • the voltage at the positive electrode of the power source 921B is V 0 + V S.
  • the voltage at the negative electrode of the power source 921A is V 0 + V S
  • the voltage at the positive electrode of the power source 921A is V 0 + 2V S. Since the switch element 922A is in the OFF state, no current flows from the power feeding circuit 90 to the load 20.
  • the voltage at the connector 961A is a V 0. Therefore, the potential difference between both ends of the off-state switch element 922A is 2V S.
  • the potential difference between both ends of the switch elements in the off state is all the power supply circuits have. It is almost the same as the total output voltage of the power supply.
  • the power supply circuit 10 of the specific example of the present embodiment when the timing at which the plurality of switch elements 122A and 122B are switched off is shifted, the potential difference between both ends of the switch element in the off state is connected in parallel with the diode. It becomes almost the same as the output voltage of one power source.
  • any switch element that can withstand the voltage of one power supply connected in parallel with the diode, regardless of the total voltage when mounted on the vehicle, can prevent the switch element in the off state from being damaged due to the potential difference between both ends. Can be prevented.
  • switch elements having the same withstand voltage can be used, so that the versatility of the power supply module can be improved.
  • the versatility of the power supply module can be improved.
  • the versatility of the power supply module can be further improved. Specifically, for example, it is assumed that there is a vehicle including a conventional power supply circuit that does not have a diode and in which a power supply module of the power supply circuit is detachably mounted. Instead of the conventional power supply module, a vehicle in which the power supply module and the diode are integrated can be mounted on this vehicle.
  • the multiple power supply modules can be individually attached to and detached from the vehicle body, the multiple power supply modules are not integrated. Therefore, the same power supply module can be used for vehicles having different numbers of power supply modules. Thus, the versatility of the power supply module can be further improved. Further, when any of the plurality of power supply modules fails, only the failed power supply module can be replaced.
  • the switch elements 122A and 122B are connected to the positive electrodes of the power supplies 121A and 121B, respectively.
  • each of the plurality of switch elements may be connected to the negative electrode of the power supply of the power supply module including the switch element, or may be connected to the positive electrode.
  • FIG. 6 shows an example in which the switch element is connected to the negative electrode of the power source.
  • the power supply circuit 210 illustrated in FIG. 6 includes a plurality of power supply modules 212A and 212B.
  • the power supply module 212A includes a power supply 121A and a switch element 122A connected to the negative electrode of the power supply 121A.
  • the switch element 122A is connected to a connection point 132A that connects the negative electrode of the power source 121A and the diode 14A.
  • the power supply module 212B includes a power supply 121B and a switch element 122B connected to the negative electrode of the power supply 121B.
  • the switch element 122B is connected to a connection point 132B that connects the negative electrode of the power source 121B and the diode 14B. Since the voltage of the power feeding circuit 210 when the timing at which the switch elements 122A and 122B are switched off is shifted depends on the circuit configuration of the load 20, it cannot be clearly described as in the specific example of the embodiment. However, also in this modified example, as in the specific example of the embodiment, when the timing at which the plurality of switch elements are turned off is shifted, the potential difference between both ends of the switch element in the off state is set as the output voltage of one power supply. It can be reduced to almost the same level.
  • the power supply circuit 10 of the specific example of the embodiment has two power supply modules.
  • the power supply circuit of the present invention may have more than two power supply modules.
  • the plurality of power supplies included in the power feeding circuit may include two power supplies having different configurations, or may have the same configuration.
  • the different power supply configurations include not only the different types of power sources mentioned in the specific example of the embodiment but also the cases where the sizes are different and the materials are different.
  • the configuration of the power source is different. For example, when the material of the portion related to the accumulation of power is different, the charge capacity is different, the discharge capacity is different, the charge rate is 100 %, The charge characteristics are different, the discharge characteristics are different, and the like.
  • the plurality of switch elements included in the power supply circuit may include two switch elements having different configurations, or may have the same configuration.
  • the plurality of power supply modules included in the power feeding circuit may include two power supply modules having different configurations, or may have the same configuration.
  • the plurality of diodes included in the power feeding circuit may include two diodes having different configurations, or may have the same configuration.
  • a part of the plurality of connectors (connectors 164A and 163B) for connecting the power supply module 12A and the power supply module 12A in series is provided in the vehicle main body 31.
  • a part of the plurality of connectors for making the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B individually attachable to and detachable from the vehicle body 31 is provided on the vehicle body 31.
  • none of the connectors for connecting the power supply modules in series need be provided on the vehicle body.
  • FIG. 7 shows an example in which none of the connectors for connecting the power supply modules in series is provided on the vehicle body.
  • a power supply circuit 310 illustrated in FIG. 7 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively.
  • the connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to the connectors 161A and 162B, respectively.
  • the connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 331, respectively.
  • connection points 132A and 131B between the power module 12A and the power module 12B are connected to the connectors 362A and 361B.
  • Connector 362A is detachably connected to connector 361B.
  • the connectors 362A and 361B are not provided on the vehicle main body 331.
  • the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B included in the power feeding circuit 10 are detachable from the vehicle body 31.
  • the power supply circuit of the present invention is not limited to this configuration. In the present invention, only a part of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body.
  • at least one power supply module among the plurality of power supply modules included in the power feeding circuit may be detachable from the vehicle body.
  • At least one of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body.
  • all of the plurality of power supply modules included in the power feeding circuit may be detachable from the vehicle body.
  • all of the plurality of diodes included in the power feeding circuit cannot be attached to or detached from the vehicle body.
  • the connector may not be used for connection between the power supply module and the vehicle load.
  • a wiring that connects the power supply module and the vehicle load may be connected by welding, screws, or the like.
  • the vibration resistance and impact resistance required for the power supply module can be reduced as compared with the case where the power supply module is detachable. Thereby, the power module can be reduced in size while ensuring the versatility of the power module.
  • the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with the diodes 14A and 14B, respectively. Furthermore, the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B can be individually attached to and detached from the vehicle body 31.
  • each of at least two of the plurality of power supply modules included in the power supply circuit is detachable from the vehicle body integrally with a diode connected in parallel to the power supply module. In this case, the configuration is not limited to the above.
  • the at least two power supply modules may be integrally attached to and detached from the vehicle body.
  • all of the plurality of power supply modules included in the power feeding circuit may be integrally removable from the vehicle body. Since at least two power supply modules can be integrally attached to and detached from the vehicle body, the following effects can be obtained. Compared to the case where at least two power supply modules can be individually attached to and detached from the vehicle body, the number of connection portions for attaching and detaching the power supply module to and from the vehicle body can be reduced. Therefore, attachment / detachment can be performed more easily.
  • FIG. 8 shows an example in which a plurality of power supply modules can be integrally attached to and detached from the vehicle body.
  • the power supply circuit 410 illustrated in FIG. 8 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively.
  • the connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to the connectors 161A and 162B, respectively.
  • the connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 31, respectively.
  • connection points 132A and 131B between the power supply module 12A and the power supply module 12B are not connected to the connector. Therefore, the plurality of power supply modules 12 ⁇ / b> A and 12 ⁇ / b> B can be integrally attached to and detached from the vehicle main body 431.
  • the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with the diodes 14A and 14B, respectively.
  • the power supply circuit of the present invention is not limited to this configuration.
  • each of at least one of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body including a diode connected in parallel with the power supply module.
  • only a part of the plurality of power supply modules may be detachable from the vehicle body including a diode connected in parallel with the power supply module.
  • At least one of the plurality of diodes included in the power feeding circuit is not attachable to and detachable from the vehicle body.
  • all of the plurality of power supply modules may be detachable from the vehicle body including a plurality of diodes. In this case, all of the plurality of diodes included in the power feeding circuit cannot be attached to and detached from the vehicle body.
  • the at least two power modules are individually It can be attached to and detached from the vehicle body. Since the power supply module can be attached to and detached from the vehicle body including a diode connected in parallel with the power supply module, the following effects can be obtained.
  • the diode When replacing the power supply module, the diode can be used as it is without being replaced. Accordingly, the cost of the diode can be reduced. Further, since the detachable element does not include a diode, the detachable element can be reduced in size.
  • FIG. 9 shows an example in which a plurality of power supply modules can be attached to and detached from a vehicle body including a plurality of diodes.
  • a power supply circuit 510 illustrated in FIG. 9 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively.
  • a connector 561A and a connector 563A that are detachably connected are arranged between the power supply module 12A and the connection point 131A.
  • a connector 562A and a connector 564A that are detachably connected are disposed between the power supply module 12A and the connection point 132A.
  • Connectors 563A and 564A are included in vehicle body 531.
  • the power supply module 12A can be attached to and detached from the vehicle main body 531 including the diode 14A.
  • a connector 561B and a connector 563B that are detachably connected are disposed between the power supply module 12B and the connection point 131B.
  • a connector 562B and a connector 564B that are detachably connected are arranged between the power supply module 12B and the connection point 132B.
  • Connectors 563B and 564B are included in vehicle body 531. Therefore, the power supply module 12B can be attached to and detached from the vehicle main body 531 including the diode 14B. Further, the two power supply modules 12A and 12B can be attached to and detached from the vehicle main body 531 individually.
  • At least one of the plurality of power supplies included in the plurality of power supply modules may be detachable from the vehicle body without being integrated with the switch element. That is, each of at least one of the plurality of power supplies is detachable from a vehicle body including a switch element included in a power supply module including the power supply and a diode connected in parallel with the power supply. Also good. For example, all of the plurality of power supplies may be detachable from the vehicle body without being integrated with the switch element. For example, only a part of the plurality of power supplies may be detachable from the vehicle body without being integrated with the switch element.
  • the power supply module including the remaining power supply may be detachable from the vehicle body including the diode.
  • the power supply module including the remaining power supply may be detachable from the vehicle body integrally with the diode.
  • the power supply module including the remaining power supply may be detachable from the vehicle body.
  • the power supply is detachable from the vehicle main body including the switch element included in the power supply module including the power supply and the diode connected in parallel with the power supply, thereby obtaining the following effects.
  • the diode and the switch element can be used as they are without replacement. Accordingly, the cost of the diode and the switch element can be reduced.
  • the element to be attached / detached does not include the diode and the switch element, the element to be attached / detached can be reduced in size.
  • FIG. 10 shows an example in which a plurality of power supplies can be attached to and detached from a vehicle body including a plurality of switch elements and a plurality of diodes.
  • a power supply circuit 610 shown in FIG. 10 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively.
  • a connector 661A and a connector 663A that are detachably connected are disposed between the power source 121A and the switch element 122A.
  • the switch element 122A is disposed between the connector 663A and the connection point 131A.
  • a connector 662A and a connector 664A that are detachably connected are arranged between the power source 121A and the connection point 132A.
  • the connectors 663A and 664A are included in the vehicle main body 631. Therefore, the power supply 121A is detachable from the vehicle main body 631 including the switch element 122A and the diode 14A. As shown in FIG. 6, when the switch element 122A is connected to the negative electrode of the power source 121A, the switch element 122A is disposed between the connector 664A and the connection point 132A. Further, a connector 661B and a connector 663B that are detachably connected are disposed between the power source 121B and the switch element 122B.
  • a connector 662B and a connector 664B are detachably connected between the power supply 121B and the connection point 132B.
  • the connectors 663B and 664B are included in the vehicle main body 631. Therefore, the power source 121B can be attached to and detached from the vehicle main body 631 including the switch element 122B and the diode 14B.
  • the two power supplies 121A and 121B can be attached to and detached from the vehicle main body 631 individually.
  • the connectors 161A to 164A and 161B to 164B are used in order to make the power supply modules 12A and 12B detachable from the vehicle body 31.
  • the connector may not be used when the power supply module is detachable from the vehicle body.
  • the power supply module when the power supply module can be attached to and detached from the vehicle body, it is preferable that the power supply module can be attached and detached without using a tool regardless of whether or not the connector is used.
  • the vehicle may be one that travels on land, may travel on water, may travel in water, or may travel in the air.
  • Vehicles that travel on land are, for example, four-wheel vehicles, two-wheel vehicles, three-wheelers, snowmobiles, and the like.
  • a vehicle traveling on land may have more than four wheels.
  • the four-wheeled vehicle is, for example, a passenger car, an ATV (All Terrain Vehicle), a ROV (Recreational Off-highway Vehicle), a golf cart, a forklift, or the like.
  • the two-wheeled vehicle may have two wheels lined up in the front-rear direction, or may have two wheels lined up in the left-right direction.
  • Examples of the former include motorcycles (motorcycles), scooters, mopeds, bicycles, and the like.
  • the tricycle may have two front wheels or two rear wheels.
  • Vehicles that travel on the water are, for example, ships, water bikes, and the like.
  • the vehicle that travels underwater is, for example, a submersible craft.
  • Vehicles that travel in the air are, for example, airplanes, helicopters, drones, and the like.
  • the power supply circuit of the present invention may be capable of supplying power to a load provided in a vehicle and may be capable of supplying power to a load provided in a device other than the vehicle.
  • connection terminals 161A to 164A and 161B to 164B in the basic application correspond to the connectors 161A to 164A and 161B to 164B in the present specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The purpose of the power supply circuit according to the present invention is to prevent overvoltage to a switching element connected in series with a power source, while ensuring the versatility of a power source module. A power supply circuit (1) is provided with a plurality of serially connected power source modules (12), and supplies power to a load (20) provided in a vehicle (30). The plurality of power source modules (12) each include a power source (121) and a switching element (122). The power supply circuit (1) is provided with a plurality of diodes (14) that are connected in parallel with the respective power source modules (12) on one-to-one basis. Each of the diodes (14) permits a flow of electric current from a first connection point (132) for connecting the diode (14) and a negative electrode of the power source (121) to each other, to a second connection point (131) for connecting the diode (14) and a positive electrode of the power source (121) to each other, but do not permit a flow of electric current from the second connection point (131) to the first connection point (132).

Description

給電回路Power supply circuit
 本発明は、車両が備える負荷に対して電力を供給する給電回路に関する。 The present invention relates to a power supply circuit that supplies electric power to a load provided in a vehicle.
 車両には、エンジンのみを駆動源とする車両の他に、モータのみを駆動源とする車両(電動車両)や、エンジンおよびモータを駆動源とする車両(ハイブリッド車両)がある。
 電動車両やハイブリッド車両のような駆動源としてモータを用いる車両には、モータ等の負荷に対して電力を供給する給電回路が設けられている。
In addition to a vehicle that uses only an engine as a drive source, there are a vehicle (electric vehicle) that uses only a motor as a drive source, and a vehicle that uses an engine and a motor as drive sources (hybrid vehicle).
A vehicle using a motor as a drive source such as an electric vehicle or a hybrid vehicle is provided with a power supply circuit that supplies electric power to a load such as a motor.
 給電回路は、電源モジュールを備える。電源モジュールは、電源(例えば二次電池)と、電源に対して直列に接続されたスイッチ素子とを備える。スイッチ素子の耐電圧は、給電回路が負荷に印加する電圧を考慮して設定される。 The power supply circuit includes a power supply module. The power supply module includes a power supply (for example, a secondary battery) and a switch element connected in series to the power supply. The withstand voltage of the switch element is set in consideration of the voltage applied to the load by the power feeding circuit.
 給電回路が負荷に印加する電圧を大きくするために、給電回路は、直列に接続された複数の電源モジュールを有する場合がある。この場合、複数の電源モジュールの各々が備えるスイッチ素子に求められる耐電圧は、給電回路が負荷に印加する電圧を考慮して設定される。 In order to increase the voltage applied to the load by the power supply circuit, the power supply circuit may have a plurality of power supply modules connected in series. In this case, the withstand voltage required for the switch element included in each of the plurality of power supply modules is set in consideration of the voltage applied to the load by the power feeding circuit.
 車両の種類が異なっても、同じ種類の電源モジュールが使用される場合がある。その場合、車両の種類によって、給電回路が有する電源モジュールの数が異なる場合がある。それにより、車両の種類ごとにモータの出力を異ならせることができる。また、電源が二次電池の場合には、車両の種類ごとに1回の充電で走行できる最大距離を異ならせることができる。 ∙ The same type of power module may be used even if the type of vehicle is different. In that case, the number of power supply modules included in the power supply circuit may vary depending on the type of vehicle. Thereby, the output of a motor can be varied for every kind of vehicle. When the power source is a secondary battery, the maximum distance that can be traveled by one charge can be varied for each type of vehicle.
 車両の種類によって給電回路が有する電源モジュールの数が異なる場合、電源モジュールの汎用性を高めるために、スイッチ素子として、例えば、電源モジュールの数が最大の場合に必要とされる耐電圧を有するスイッチ素子を使用することが考えられる。この場合、電源モジュールの数が最大数より少ない場合、本来必要な最低限の耐電圧よりも高い耐電圧を有するスイッチ素子が給電回路に使用されることがある。 When the number of power supply modules included in the power supply circuit varies depending on the type of vehicle, in order to enhance the versatility of the power supply module, for example, a switch having a withstand voltage required when the number of power supply modules is the maximum It is conceivable to use an element. In this case, when the number of power supply modules is smaller than the maximum number, a switching element having a withstand voltage higher than the minimum withstand voltage originally necessary may be used for the power supply circuit.
 ここで、スイッチ素子の耐電圧が高くなるほど、オン状態でのスイッチ素子の抵抗が高くなる。そのため、スイッチ素子の耐電圧が高くなるほど、通電時のスイッチ素子の発熱量が大きくなる。したがって、本来必要な耐電圧よりも十分に高い耐電圧を有するスイッチ素子を用いた場合には、本来必要な最低限の耐電圧を有するスイッチ素子を用いた場合と比べて、より多くの熱対策が必要になる。 Here, the higher the withstand voltage of the switch element, the higher the resistance of the switch element in the ON state. Therefore, the higher the withstand voltage of the switch element, the greater the amount of heat generated by the switch element during energization. Therefore, when a switch element having a withstand voltage sufficiently higher than the originally required withstand voltage is used, more heat countermeasures are required than when a switch element having a minimum withstand voltage that is originally required is used. Is required.
 なお、電源モジュールの数に応じて異なる耐電圧を有するスイッチ素子を用いた場合は、発熱量を抑えることができるものの、電源モジュールの汎用性が低下する。 In addition, when a switch element having a withstand voltage different depending on the number of power supply modules is used, the heat generation amount can be suppressed, but the versatility of the power supply module is reduced.
 特開2015-91200号公報には、複数のバッテリパック(上述の電源モジュールに相当)が着脱可能に搭載された車両が開示されている。複数のバッテリパックの各々は、二次電池と、バッテリパック側スイッチ素子と、BMS(Battery Management System)とを備える。バッテリパック側スイッチ素子は、二次電池から外部への出力を遮断するスイッチ素子である。バッテリパック側スイッチ素子は、二次電池に対して直列に接続されている。BMSは、二次電池の充放電を制御する。 Japanese Patent Application Laid-Open No. 2015-91200 discloses a vehicle on which a plurality of battery packs (corresponding to the above-described power supply modules) are detachably mounted. Each of the plurality of battery packs includes a secondary battery, a battery pack side switch element, and a BMS (Battery Management System). The battery pack side switch element is a switch element that blocks output from the secondary battery to the outside. The battery pack side switch element is connected in series to the secondary battery. BMS controls charging / discharging of a secondary battery.
 上記公報では、ECU(Engine Control Unit)と、車両側スイッチ素子とが、車両に設けられている。ECUは、BMSが備える情報通信回路と通信を行う。車両側スイッチ素子は、ECUにより、オン/オフが制御される。 In the above publication, an ECU (Engine Control Unit) and a vehicle side switch element are provided in the vehicle. The ECU communicates with an information communication circuit included in the BMS. The vehicle-side switch element is controlled on / off by the ECU.
 上記公報では、ECUが、全てのバッテリパック(電池モジュール)のバッテリパック側スイッチ素子がオンである場合に、車両側スイッチ素子をオンにする。これにより、バッテリ側スイッチ素子の両端の電位差によるバッテリパック側スイッチ素子の破損を防ぎつつ、最低限の耐電圧を有するスイッチ素子をバッテリパック側スイッチ素子として用いることができる。 In the above publication, the ECU turns on the vehicle side switch element when the battery pack side switch elements of all the battery packs (battery modules) are on. Accordingly, a switch element having a minimum withstand voltage can be used as the battery pack side switch element while preventing damage to the battery pack side switch element due to a potential difference between both ends of the battery side switch element.
特開2015-91200号公報Japanese Patent Laying-Open No. 2015-91200
 しかしながら、上記公報では、BMSとECUとの間で、通信が必要になる。そのため、電源モジュール(バッテリパック)の汎用性が低い。 However, in the above publication, communication is required between the BMS and the ECU. Therefore, the versatility of the power module (battery pack) is low.
 本発明の目的は、電源モジュールの汎用性を確保しつつ、電源に対して直列に接続されたスイッチ素子への過電圧を防止する給電回路を提供することである。 An object of the present invention is to provide a power supply circuit that prevents overvoltage to a switch element connected in series with a power supply while ensuring versatility of the power supply module.
 本願の発明者は、電源モジュールの汎用性を確保するために、電源モジュールと車両との間での通信が不要になる構成について検討した。そして、給電回路の構成そのものに着目して、さらに検討を進めた。その結果、電源モジュールと並列に配置されるダイオードを設ければよいとの知見を得るに至った。本発明は、このような知見に基づいて完成されたものである。 The inventor of the present application examined a configuration in which communication between the power supply module and the vehicle is not necessary in order to ensure versatility of the power supply module. Then, further studies were made focusing on the configuration of the power supply circuit itself. As a result, they have come to know that a diode arranged in parallel with the power supply module may be provided. The present invention has been completed based on such findings.
 (1)本発明の給電回路は、直列に接続された複数の電源モジュールを備え、車両が備える負荷に対して電力を供給する給電回路である。前記複数の電源モジュールの各々は、電力を供給する電源と、前記電源に対して直列に接続されたスイッチ素子とを含む。給電回路は、さらに、前記複数の電源モジュールの各々に対して、1つずつ並列に接続された複数のダイオードを備える。前記複数のダイオードの各々は、当該ダイオードと前記電源の負極とを接続する第1接続点から、当該ダイオードと前記電源の正極とを接続する第2接続点に向かって電流が流れることを許容するが、前記第2接続点から前記第1接続点に向かって電流が流れることを許容しないように構成されている。 (1) The power supply circuit of the present invention is a power supply circuit that includes a plurality of power supply modules connected in series and supplies power to a load included in the vehicle. Each of the plurality of power supply modules includes a power supply for supplying power and a switch element connected in series to the power supply. The power supply circuit further includes a plurality of diodes connected in parallel one by one to each of the plurality of power supply modules. Each of the plurality of diodes allows a current to flow from a first connection point connecting the diode and the negative electrode of the power supply to a second connection point connecting the diode and the positive electrode of the power supply. However, it is configured not to allow current to flow from the second connection point toward the first connection point.
 複数のスイッチ素子を備える給電回路において、何等かの原因により、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれる場合がある。スイッチ素子は応答時間を必要とする場合がある。そのため、複数のスイッチ素子のオン/オフ動作を完全に同期させることは難しい。その結果、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれることがある。また、複数のスイッチ素子の何れかが故障(ショート)した場合にも、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれることになる。 In a power supply circuit including a plurality of switch elements, the timing at which the plurality of switch elements are turned on or off may be shifted due to some cause. The switch element may require a response time. Therefore, it is difficult to completely synchronize the on / off operations of a plurality of switch elements. As a result, the timing at which the plurality of switch elements are turned on or off may be shifted. In addition, when any of the plurality of switch elements fails (short-circuit), the timing at which the plurality of switch elements are turned on or off is shifted.
 何等かの原因により、複数のスイッチ素子のうちの何れか1つだけがオフに切り換わった場合を想定する。仮に、ダイオードがスイッチ素子に対して並列に接続されていない場合、オフ状態のスイッチ素子の両端の電位差は、1つの電源の出力電圧よりも大きくなる。オフ状態のスイッチ素子の両端の電位差は、複数の電源の出力電圧の合計とほぼ同じになる場合がある。よって、オフ状態のスイッチ素子の両端の電位差に起因してこのスイッチ素子が破損するおそれがある。そのため、ダイオードが設けられていない場合、スイッチ素子には高い耐電圧が求められる。 Suppose a case where only one of a plurality of switch elements is switched off for some reason. If the diode is not connected in parallel to the switch element, the potential difference between both ends of the switch element in the off state is larger than the output voltage of one power supply. The potential difference between both ends of the switch element in the off state may be substantially the same as the sum of the output voltages of the plurality of power supplies. Therefore, the switch element may be damaged due to a potential difference between both ends of the switch element in the off state. For this reason, when a diode is not provided, the switch element is required to have a high withstand voltage.
 一方、本発明の給電回路は、複数のスイッチ素子の各々に対して1つずつ並列に接続された複数のダイオードを備える。ダイオードと電源モジュールとを接続する2つの接続点のうち、電源の負極に接続された接続点を第1接続点とし、電源の正極に接続された接続点を第2接続点とする。ダイオードは、第1接続点から第2接続点に向かって電流が流れることを許容するが、第2接続点から第1接続点に向かって電流が流れることを許容しない。そのため、何等かの原因により、複数のスイッチ素子のうちの何れか1つだけがオフに切り換わった場合、オフ状態のスイッチ素子と並列に接続されたダイオードに電流が流れる。それにより、オフ状態のスイッチ素子の両端の電位差を、1つの電源の出力電圧とほぼ同じ程度まで低減できる。したがって、給電回路が有する電源モジュールの数に関わらず、同じ耐電圧のスイッチ素子を使用できる。つまり、電源モジュールの汎用性を確保しつつ、スイッチ素子への過電圧を防止することができる。 On the other hand, the power supply circuit of the present invention includes a plurality of diodes connected in parallel one by one to each of the plurality of switch elements. Of the two connection points connecting the diode and the power supply module, a connection point connected to the negative electrode of the power supply is defined as a first connection point, and a connection point connected to the positive electrode of the power supply is defined as a second connection point. The diode allows current to flow from the first connection point toward the second connection point, but does not allow current to flow from the second connection point toward the first connection point. Therefore, when only one of the plurality of switch elements is turned off for some reason, a current flows through a diode connected in parallel with the switch element in the off state. Thereby, the potential difference between both ends of the switch element in the off state can be reduced to substantially the same level as the output voltage of one power source. Therefore, a switch element having the same withstand voltage can be used regardless of the number of power supply modules included in the power supply circuit. That is, overvoltage to the switch element can be prevented while ensuring the versatility of the power supply module.
 また、ダイオードは、スイッチ素子に対して並列に接続されているだけでなく、電源に対しても並列に接続されているので、ダイオードに必要な耐電圧を低くすることができる。 Also, since the diode is connected not only in parallel to the switch element but also in parallel to the power supply, the withstand voltage required for the diode can be reduced.
 (2)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記スイッチ素子は、電気的に制御可能なスイッチ素子である。 (2) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. The switch element is an electrically controllable switch element.
 (3)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールのうちの少なくとも1つの電源モジュールは、前記車両の車両本体に対して着脱可能である。 (3) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. At least one power supply module among the plurality of power supply modules is detachable from the vehicle body of the vehicle.
 この構成によると、電源モジュールが車両本体に対して着脱可能であるため、電源モジュールの汎用性を高めることができる。 According to this configuration, since the power supply module can be attached to and detached from the vehicle body, the versatility of the power supply module can be improved.
 (4)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールのうちの少なくとも1つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能である。 (4) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. Each of at least one of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
 この構成によると、電源モジュールとダイオードが一体的に車両本体に対して着脱可能であるため、電源モジュールの汎用性をより高めることができる。具体的には、例えば、ダイオードを有さない従来の給電回路を備えた車両であって、給電回路の電源モジュールが着脱可能に搭載される車両があるとする。この車両に、従来の電源モジュールの代わりに、電源モジュールとダイオードが一体化されたものを搭載することができる。
 なお、上記(4)における「少なくとも1つの電源モジュール」は、上記(3)における「少なくとも1つの電源モジュール」と同じであってもよく、上記(3)における「少なくとも1つの電源モジュール」の一部であってもよい。
According to this configuration, since the power supply module and the diode can be integrally attached to and detached from the vehicle body, the versatility of the power supply module can be further improved. Specifically, for example, it is assumed that there is a vehicle including a conventional power supply circuit that does not have a diode and in which a power supply module of the power supply circuit is detachably mounted. Instead of the conventional power supply module, a vehicle in which the power supply module and the diode are integrated can be mounted on this vehicle.
The “at least one power supply module” in the above (4) may be the same as the “at least one power supply module” in the above (3), and is one of the “at least one power supply module” in the above (3). Part.
 (5)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能である。前記少なくとも2つの電源モジュールは、個別に、前記車両本体に対して着脱可能である。 (5) According to another aspect, the power feeding circuit of the present invention preferably has the following configuration. Each of at least two of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module. The at least two power supply modules can be individually attached to and detached from the vehicle body.
 この構成によると、少なくとも2つの電源モジュールが個別に車両本体に対して着脱可能であるため、複数の電源モジュールは一体化されない。よって、電源モジュールの数が異なる車両にも、同じ電源モジュールを使用することができる。このように、電源モジュールの汎用性をより高めることができる。また、複数の電源モジュールのいずれかが故障した場合に、故障した電源モジュールだけを交換できる。
 なお、上記(5)における「少なくとも2つの電源モジュール」は、上記(4)における「少なくとも1つの電源モジュール」と同じであってもよく、上記(4)における「少なくとも1つの電源モジュール」の一部であってもよい。
According to this configuration, since at least two power supply modules can be individually attached to and detached from the vehicle body, the plurality of power supply modules are not integrated. Therefore, the same power supply module can be used for vehicles having different numbers of power supply modules. Thus, the versatility of the power supply module can be further improved. Further, when any of the plurality of power supply modules fails, only the failed power supply module can be replaced.
The “at least two power supply modules” in the above (5) may be the same as the “at least one power supply module” in the above (4), and one of the “at least one power supply module” in the above (4). Part.
 (6)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能である。前記少なくとも2つの電源モジュールは、一体的に、前記車両本体に対して着脱可能である。 (6) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. Each of at least two of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module. The at least two power supply modules can be integrally attached to and detached from the vehicle body.
 この構成によると、少なくとも2つの電源モジュールが一体的に車両本体に対して着脱可能であるため、少なくとも2つの電源モジュールが個別に車両本体に対して着脱可能である場合に比べて、電源モジュールを車両本体に着脱するための接続部分の数を少なくできる。そのため、着脱をより容易に行うことができる。
 なお、上記(6)における「少なくとも2つの電源モジュール」は、上記(4)における「少なくとも1つの電源モジュール」と同じであってもよく、上記(4)における「少なくとも1つの電源モジュール」の一部であってもよい。
According to this configuration, since at least two power supply modules can be integrally attached to and detached from the vehicle main body, the power supply module is compared with a case where at least two power supply modules can be individually attached to and detached from the vehicle main body. It is possible to reduce the number of connection parts for attaching to and detaching from the vehicle body. Therefore, attachment / detachment can be performed more easily.
The “at least two power supply modules” in the above (6) may be the same as the “at least one power supply module” in the above (4), and one of the “at least one power supply module” in the above (4). Part.
 (7)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールのうちの少なくとも1つの電源モジュールの各々は、当該電源モジュールと並列に接続される前記ダイオードを含む前記車両本体に対して着脱可能である。 (7) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supply modules is detachable from the vehicle body including the diode connected in parallel with the power supply module.
 この構成によると、電源モジュールを交換する場合に、ダイオードは交換せずにそのまま使用できる。
その分、ダイオードのコストを削減できる。また、着脱する要素がダイオードを含まないことにより、着脱する要素を小型化できる。
 なお、上記(7)における「少なくとも1つの電源モジュール」は、上記(3)における「少なくとも1つの電源モジュール」と同じであってもよく、上記(3)における「少なくとも1つの電源モジュール」の一部であってもよい。
According to this configuration, when replacing the power supply module, the diode can be used as it is without being replaced.
Accordingly, the cost of the diode can be reduced. Further, since the detachable element does not include a diode, the detachable element can be reduced in size.
The “at least one power supply module” in the above (7) may be the same as the “at least one power supply module” in the above (3), and one of the “at least one power supply module” in the above (3). Part.
 (8)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールが有する複数の電源のうちの少なくとも1つの電源は、前記車両の車両本体に対して着脱可能である。前記複数の電源モジュールが有する複数の電源のうちの少なくとも1つの電源の各々は、当該電源を含む前記電源モジュールが有する前記スイッチ素子、および、当該電源と並列に接続される前記ダイオードを含む前記車両本体に対して着脱可能である。 (8) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supplies included in the plurality of power supply modules is detachable from the vehicle body of the vehicle. Each of at least one of the plurality of power supplies included in the plurality of power supply modules includes the switch element included in the power supply module including the power supply, and the diode connected in parallel with the power supply. It can be attached to and detached from the main body.
 この構成によると、電源を交換する場合に、ダイオードとスイッチ素子は交換せずにそのまま使用できる。その分、ダイオードとスイッチ素子のコストを削減できる。また、着脱する要素がダイオードとスイッチ素子を含まないことにより、着脱する要素を小型化できる。 According to this configuration, when the power supply is replaced, the diode and the switch element can be used as they are without being replaced. Accordingly, the cost of the diode and the switch element can be reduced. Moreover, since the element to be attached / detached does not include the diode and the switch element, the element to be attached / detached can be reduced in size.
 (9)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールの少なくとも1つは、前記車両の車両本体に対して着脱不能である。 (9) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. At least one of the plurality of power supply modules is not detachable from the vehicle body of the vehicle.
 この構成によると、電源モジュールを着脱可能とする場合に比べて、電源モジュールに求められる耐振動性および耐衝撃性を下げることができる。それにより、電源モジュールの汎用性を確保しつつ、電源モジュールを小型化できる。 According to this configuration, the vibration resistance and impact resistance required for the power supply module can be reduced as compared with the case where the power supply module is removable. Thereby, the power module can be reduced in size while ensuring the versatility of the power module.
 (10)他の観点によれば、本発明の給電回路は、以下の構成を有することが好ましい。前記複数の電源モジュールの各々が有する前記電源が、電力を蓄積可能な蓄電デバイス、または、発電可能な発電デバイスである。 (10) According to another aspect, the power supply circuit of the present invention preferably has the following configuration. The power source included in each of the plurality of power supply modules is a power storage device capable of storing power or a power generation device capable of generating power.
 この構成により、電源モジュールの汎用性をより高めることができる。 This configuration can improve the versatility of the power supply module.
 <用語の定義>
 ダイオードとは、単一方向の電流の流れを許容する特性を有する素子である。
<Definition of terms>
A diode is an element having a characteristic that allows current flow in a single direction.
 本発明において、複数のダイオードが、複数の電源モジュールの各々に対して、1つずつ並列に接続されるとは、複数のダイオードが、複数の電源モジュールに対して、それぞれ並列に接続されることでもある。 In the present invention, a plurality of diodes are connected in parallel to each of a plurality of power supply modules, that is, a plurality of diodes are connected in parallel to a plurality of power supply modules. But there is.
 本発明において、電気的に制御可能なスイッチ素子とは、電気信号によりオン/オフが制御されるスイッチ素子のことである。 In the present invention, an electrically controllable switch element is a switch element whose on / off is controlled by an electric signal.
 本発明の給電回路によると、電源モジュールの汎用性を確保しつつ、電源に対して直列に接続されたスイッチ素子への過電圧を防止できる。 According to the power supply circuit of the present invention, it is possible to prevent overvoltage to the switch elements connected in series with the power supply while ensuring the versatility of the power supply module.
図1は、本発明の実施形態の給電回路の使用状態を示す図である。FIG. 1 is a diagram illustrating a usage state of a power feeding circuit according to an embodiment of the present invention. 図2は、本発明の実施形態の具体例の給電回路の使用状態を示す図である。FIG. 2 is a diagram illustrating a usage state of a power feeding circuit of a specific example of the embodiment of the present invention. 図3は、複数の電源モジュールの1つが車両本体から取り外された状態を示す回路図である。FIG. 3 is a circuit diagram showing a state in which one of the plurality of power supply modules is removed from the vehicle body. 図4は、複数のスイッチ素子のオフに切り換わるタイミングがずれた場合の回路図である。FIG. 4 is a circuit diagram in the case where the timing for switching off a plurality of switch elements is shifted. 図5は、図4からダイオードを除いた回路図である。FIG. 5 is a circuit diagram obtained by removing the diode from FIG. 図6は、本発明の実施形態の変更例の給電回路の使用状態を示す回路図である。FIG. 6 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention. 図7は、本発明の実施形態の変更例の給電回路の使用状態を示す回路図である。FIG. 7 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention. 図8は、本発明の実施形態の変更例の給電回路の使用状態を示す回路図である。FIG. 8 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention. 図9は、本発明の実施形態の変更例の給電回路の使用状態を示す回路図である。FIG. 9 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention. 図10は、本発明の実施形態の変更例の給電回路の使用状態を示す回路図である。FIG. 10 is a circuit diagram illustrating a usage state of a power feeding circuit according to a modification of the embodiment of the present invention.
 <本発明の実施形態>
 本発明の実施形態の給電回路1は、車両30が備える負荷20に対して電力を供給する。給電回路1は、直列に接続された複数(図1では2つ)の電源モジュール12、12を備える。複数の電源モジュール12、12の各々は、電力を供給する電源121と、電源121に対して直列に接続されたスイッチ素子122とを含む。給電回路1は、さらに、複数の電源モジュール12、12の各々に対して、1つずつ並列に接続された複数のダイオード14、14を備える。第1接続点132は、当該ダイオード14と電源121の負極とを接続する。ダイオード14と電源モジュール12とを接続する2つの接続点のうち、電源121の負極に接続された接続点を第1接続点132とし、電源121の正極に接続された接続点を第2接続点131とする。複数のダイオード14、14の各々は、第1接続点132から第2接続点131に向かって電流が流れることを許容するが、第2接続点131から第1接続点132に向かって電流が流れることを許容しないように構成されている。
<Embodiment of the present invention>
The power feeding circuit 1 according to the embodiment of the present invention supplies power to the load 20 provided in the vehicle 30. The power feeding circuit 1 includes a plurality (two in FIG. 1) of power supply modules 12 and 12 connected in series. Each of the plurality of power supply modules 12 and 12 includes a power supply 121 that supplies power and a switch element 122 connected in series to the power supply 121. The power feeding circuit 1 further includes a plurality of diodes 14 and 14 connected in parallel one by one to each of the plurality of power supply modules 12 and 12. The first connection point 132 connects the diode 14 and the negative electrode of the power supply 121. Of the two connection points connecting the diode 14 and the power supply module 12, the connection point connected to the negative electrode of the power source 121 is a first connection point 132, and the connection point connected to the positive electrode of the power source 121 is a second connection point. 131. Each of the plurality of diodes 14 and 14 allows current to flow from the first connection point 132 toward the second connection point 131, but current flows from the second connection point 131 toward the first connection point 132. It is configured not to allow this.
 複数のスイッチ素子を備える給電回路において、何等かの原因により、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれる場合がある。スイッチ素子は応答時間を必要とする場合がある。そのため、複数のスイッチ素子のオン/オフ動作を完全に同期させることは難しい。その結果、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれることがある。また、複数のスイッチ素子の何れかが故障(ショート)した場合にも、複数のスイッチ素子がオンまたはオフに切り換わるタイミングがずれることになる。 In a power supply circuit including a plurality of switch elements, the timing at which the plurality of switch elements are turned on or off may be shifted due to some cause. The switch element may require a response time. Therefore, it is difficult to completely synchronize the on / off operations of a plurality of switch elements. As a result, the timing at which the plurality of switch elements are turned on or off may be shifted. In addition, when any of the plurality of switch elements fails (short-circuit), the timing at which the plurality of switch elements are turned on or off is shifted.
 何等かの原因により、複数のスイッチ素子のうちの何れか1つだけがオフに切り換わった場合を想定する。仮に、ダイオードがスイッチ素子に対して並列に接続されていない場合、オフ状態のスイッチ素子の両端の電位差は、1つの電源の出力電圧よりも大きくなる。オフ状態のスイッチ素子の両端の電位差は、複数の電源の出力電圧の合計とほぼ同じになる場合がある。よって、オフ状態のスイッチ素子の両端の電位差に起因してこのスイッチ素子が破損するおそれがある。そのため、ダイオードが設けられていない場合、スイッチ素子には高い耐電圧が求められる。 Suppose a case where only one of a plurality of switch elements is switched off for some reason. If the diode is not connected in parallel to the switch element, the potential difference between both ends of the switch element in the off state is larger than the output voltage of one power supply. The potential difference between both ends of the switch element in the off state may be substantially the same as the sum of the output voltages of the plurality of power supplies. Therefore, the switch element may be damaged due to a potential difference between both ends of the switch element in the off state. For this reason, when a diode is not provided, the switch element is required to have a high withstand voltage.
 一方、本発明の給電回路1は、複数のスイッチ素子122、122の各々に対して1つずつ並列に接続された複数のダイオード14、14を備える。ダイオード14は、第1接続点132から第2接続点131に向かって電流が流れることを許容するが、第2接続点131から第1接続点132に向かって電流が流れることを許容しない。そのため、何等かの原因により、複数のスイッチ素子122、122のうちの何れか1つだけがオフに切り換わった場合、オフ状態のスイッチ素子122と並列に接続されたダイオード14に電流が流れる。それにより、オフ状態のスイッチ素子122の両端の電位差を、1つの電源121の出力電圧とほぼ同じ程度まで低減できる。したがって、給電回路1が有する電源モジュール12の数に関わらず、同じ耐電圧のスイッチ素子122を使用できる。つまり、電源モジュール12の汎用性を確保しつつ、スイッチ素子122への過電圧を防止することができる。 On the other hand, the power supply circuit 1 of the present invention includes a plurality of diodes 14 and 14 connected in parallel to each of the plurality of switch elements 122 and 122. The diode 14 allows current to flow from the first connection point 132 toward the second connection point 131, but does not allow current to flow from the second connection point 131 toward the first connection point 132. Therefore, when only one of the plurality of switch elements 122 and 122 is turned off for some reason, a current flows through the diode 14 connected in parallel with the switch element 122 in the off state. Thereby, the potential difference between both ends of the switch element 122 in the off state can be reduced to substantially the same level as the output voltage of one power supply 121. Therefore, the switch element 122 having the same withstand voltage can be used regardless of the number of power supply modules 12 included in the power supply circuit 1. That is, overvoltage to the switch element 122 can be prevented while ensuring the versatility of the power supply module 12.
 また、ダイオード14は、スイッチ素子122に対して並列に接続されているだけでなく、電源121に対しても並列に接続されているので、ダイオード14に必要な耐電圧を低くすることができる。 Further, since the diode 14 is connected not only in parallel to the switch element 122 but also in parallel to the power source 121, the withstand voltage required for the diode 14 can be reduced.
 <本発明の実施形態の具体例>
 次に、本発明の実施形態の具体例について、図2~図4を用いて説明する。基本的に、本発明の実施形態の具体例は、上述した本発明の実施形態の特徴を全て有している。上述した本発明の実施形態と同じ部位についての説明は省略する。
<Specific Examples of Embodiments of the Present Invention>
Next, specific examples of the embodiment of the present invention will be described with reference to FIGS. Basically, specific examples of embodiments of the present invention have all the features of the embodiments of the present invention described above. A description of the same parts as those of the above-described embodiment of the present invention will be omitted.
 給電回路10は、上述の実施形態の給電回路1の一例である。給電回路10は、車両(ビークル)30が備える負荷20に対して電力を供給する。車両(ビークル)30は、例えば、自動二輪車である。 The power feeding circuit 10 is an example of the power feeding circuit 1 of the above-described embodiment. The power feeding circuit 10 supplies power to a load 20 provided in the vehicle (vehicle) 30. The vehicle (vehicle) 30 is, for example, a motorcycle.
 車両30が有する負荷20は、電力が供給されることによって駆動されるものであれば、特に限定されない。負荷20は、例えば、図2に示すような、電解コンデンサと抵抗器を含む装置であってもよい。負荷20は、例えば、車両30の駆動源として用いられるモータであってもよい。負荷20は、例えば、エンジンを始動させるためのスターターモータであってもよい。スターターモータは、車両30の駆動源としてのモータには該当しない。負荷20は、例えば、保安部品(メーター、ホーン、ライトなど)であってもよい。また、負荷20は、例えば、シートヒーターであってもよい。 The load 20 of the vehicle 30 is not particularly limited as long as it is driven by being supplied with electric power. The load 20 may be a device including an electrolytic capacitor and a resistor as shown in FIG. 2, for example. For example, the load 20 may be a motor used as a drive source of the vehicle 30. The load 20 may be a starter motor for starting the engine, for example. The starter motor does not correspond to a motor as a drive source of the vehicle 30. The load 20 may be, for example, a safety part (meter, horn, light, etc.). The load 20 may be a seat heater, for example.
 負荷20が駆動源としてのモータの場合、車両30は、モータを駆動源として用いるものであれば、特に限定されない。具体的には、例えば、車両30は、モータのみを駆動源とする車両(電動車両)であってもよいし、エンジンおよびモータを駆動源とする車両(ハイブリッド車両)であってもよい。 When the load 20 is a motor as a drive source, the vehicle 30 is not particularly limited as long as the vehicle 30 uses the motor as a drive source. Specifically, for example, the vehicle 30 may be a vehicle (electric vehicle) using only a motor as a drive source, or may be a vehicle (hybrid vehicle) using an engine and a motor as drive sources.
 負荷20が駆動源としてのモータでない場合、車両30は、モータを駆動源として用いるものであってもよく、モータを駆動源として用いるものでなくてもよい。具体的には、例えば、車両30は、エンジンのみ駆動源とする車両(エンジン車両)であってもよいし、モータのみを駆動源とする車両(電動車両)であってもよいし、エンジンおよびモータを駆動源とする車両(ハイブリッド車両)であってもよい。 When the load 20 is not a motor as a drive source, the vehicle 30 may use a motor as a drive source or may not use a motor as a drive source. Specifically, for example, the vehicle 30 may be a vehicle (engine vehicle) having only an engine as a drive source, a vehicle (electric vehicle) having only a motor as a drive source, It may be a vehicle (hybrid vehicle) using a motor as a drive source.
 給電回路10は、複数の電源モジュール12A、12Bと、複数のダイオード14A、14Bとを備える。複数の電源モジュール12A、12Bは、直列に接続されている。ダイオード14Aは、電源モジュール12Aに対して、並列に接続されている。ダイオード14Bは、電源モジュール12Bに対して、並列に接続されている。つまり、複数のダイオード14A、14Bは、直列に接続されている。電源モジュール12Aとダイオード14Aは、2つの接続点131A、132Aによって接続されている。電源モジュール12Bとダイオード14Bは、2つの接続点131B、132Bによって接続されている。 The power feeding circuit 10 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B. The plurality of power supply modules 12A and 12B are connected in series. The diode 14A is connected in parallel to the power supply module 12A. The diode 14B is connected in parallel to the power supply module 12B. That is, the plurality of diodes 14A and 14B are connected in series. The power supply module 12A and the diode 14A are connected by two connection points 131A and 132A. The power supply module 12B and the diode 14B are connected by two connection points 131B and 132B.
 電源モジュール12A、12Bは、上述の実施形態の電源モジュール12の一例である。ダイオード14A、14Bは、上述の実施形態のダイオード14の一例である。接続点131A、131Bは、上述の実施形態の接続点131の一例である。接続点132A、132Bは、上述の実施形態の接続点132の一例である。接続点131A、131Bは、本発明の第2接続点に相当し、接続点132A、132Bは、本発明の第1接続点に相当する。 The power supply modules 12A and 12B are an example of the power supply module 12 of the above-described embodiment. The diodes 14A and 14B are an example of the diode 14 of the above-described embodiment. The connection points 131A and 131B are an example of the connection point 131 of the above-described embodiment. The connection points 132A and 132B are an example of the connection point 132 of the above-described embodiment. The connection points 131A and 131B correspond to the second connection point of the present invention, and the connection points 132A and 132B correspond to the first connection point of the present invention.
 電源モジュール12Aは、電源121Aと、スイッチ素子122Aとを含む。電源モジュール12Bは、電源121Bと、スイッチ素子122Bとを含む。スイッチ素子122Aは、電源121Aに直列に接続されている。スイッチ素子122Bは、電源121Bに直列に接続されている。電源121A、121Bは、上述の実施形態の電源121の一例である。スイッチ素子122A、122Bは、上述の実施形態のスイッチ素子122の一例である。 The power supply module 12A includes a power supply 121A and a switch element 122A. The power supply module 12B includes a power supply 121B and a switch element 122B. The switch element 122A is connected in series to the power source 121A. The switch element 122B is connected in series to the power source 121B. The power supplies 121A and 121B are an example of the power supply 121 of the above-described embodiment. The switch elements 122A and 122B are an example of the switch element 122 of the above-described embodiment.
 電源121A、121Bは、直流電源である。電源121A、121Bは、電力を供給できるものであれば特に限定されない。電源121A、121Bの各々は、1対の端子として、正極と負極を有する。電源121A、121Bは、互いに同じ構成である。電源121A、121Bは、互いに異なる構成であってもよい。 The power supplies 121A and 121B are DC power supplies. The power supplies 121A and 121B are not particularly limited as long as they can supply power. Each of the power supplies 121A and 121B has a positive electrode and a negative electrode as a pair of terminals. The power supplies 121A and 121B have the same configuration. The power supplies 121A and 121B may have different configurations.
 電源121A、121Bは、電力を蓄積可能な蓄電デバイスであってもよい。蓄電デバイスの例としては、一次電池、または、二次電池であってもよい。二次電池は、例えば、鉛蓄電池であってもよく、リチウムイオン電池であってもよい。蓄電デバイスの他の例としては、キャパシタ(コンデンサ)、または、スーパーキャパシタ(ウルトラキャパシタ)であってもよい。スーパーキャパシタとは、電気二重層キャパシタである。蓄電デバイスの他の例としては、安定化電源であってもよい。安定化電源は、出力電圧を安定化させる機能を有する直流電源である。安定化電源は、例えば、二次電池を含んでおり、二次電池の出力電圧を安定化させるように構成されていてもよい。 The power supplies 121A and 121B may be power storage devices capable of storing electric power. As an example of the electricity storage device, a primary battery or a secondary battery may be used. The secondary battery may be, for example, a lead storage battery or a lithium ion battery. Another example of the electricity storage device may be a capacitor (capacitor) or a super capacitor (ultra capacitor). A super capacitor is an electric double layer capacitor. Another example of the electricity storage device may be a stabilized power source. The stabilized power supply is a DC power supply having a function of stabilizing the output voltage. The stabilized power supply includes, for example, a secondary battery, and may be configured to stabilize the output voltage of the secondary battery.
 電源121A、121Bは、電力を蓄えずに発電可能な発電デバイスであってもよい。発電デバイスの例としては、例えば、燃料の化学反応によって発電する燃料電池であってもよい。燃料は、例えば、水素、炭化水素、アルコール等である。発電デバイスの他の例としては、例えば、太陽の光エネルギーを電力に変換する太陽電池であってもよい。 The power supplies 121A and 121B may be power generation devices that can generate power without storing power. As an example of the power generation device, for example, a fuel cell that generates power by a chemical reaction of fuel may be used. The fuel is, for example, hydrogen, hydrocarbon, alcohol or the like. Another example of the power generation device may be a solar cell that converts solar light energy into electric power.
 電源121A(121B)は、単体でも電力を供給できる電源素子を複数備えたものであってもよい。例えば、電源121A(121B)が二次電池の場合、電源121A(121B)は、セル(電源素子)であってもよく、複数のセルからなる組電池であってもよい。複数の電源素子は、直列に接続されていてもよく、並列に接続されていてもよく、直列と並列を組み合わせて接続されていてもよい。 The power source 121A (121B) may be a single unit or a plurality of power source elements that can supply power. For example, when the power supply 121A (121B) is a secondary battery, the power supply 121A (121B) may be a cell (power supply element) or an assembled battery including a plurality of cells. The plurality of power supply elements may be connected in series, may be connected in parallel, or may be connected in combination of series and parallel.
 スイッチ素子122A、122Bは、電流が流れる状態と電流の流れを遮断する状態とに切り換え可能である。スイッチ素子122A、122Bは、電気的に制御可能であれば特に限定されない。電気的に制御可能とは、電気信号によりオン/オフが制御されることをいう。つまり、スイッチ素子122A、122Bは、リレーであればよい。スイッチ素子122A、122Bは、互いに同じ構成である。スイッチ素子122A、122Bは、互いに異なる構成であってもよい。 The switch elements 122A and 122B can be switched between a state in which a current flows and a state in which the current flow is interrupted. The switch elements 122A and 122B are not particularly limited as long as they can be electrically controlled. “Electrically controllable” means that on / off is controlled by an electrical signal. That is, the switch elements 122A and 122B may be relays. The switch elements 122A and 122B have the same configuration. The switch elements 122A and 122B may have different configurations.
 スイッチ素子122A、122Bは、例えば、電磁リレー(EMS:electro-magnetic relay)であってもよく、半導体リレー(SSR:solid-state relay)であってもよい。半導体リレーは、例えば、MOSFET(Metal-Oxide Semiconductor Field-Effect Transistor:金属酸化物半導体電界効果トランジスタ)でもよい。MOSFETは、電界効果トランジスタの一種である。半導体リレーは、その他の電界効果トランジスタ、バイポーラトランジスタ、IGBT(絶縁ゲートバイポーラトランジスタ)であってもよい。 The switch elements 122A and 122B may be, for example, electromagnetic relays (EMS: electro-magnetic relays) or semiconductor relays (SSR: solid-state relays). The semiconductor relay may be, for example, a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor: metal oxide semiconductor field effect transistor). MOSFET is a kind of field effect transistor. The semiconductor relay may be another field effect transistor, bipolar transistor, or IGBT (insulated gate bipolar transistor).
 スイッチ素子122A、122Bは、例えば電磁リレーのような機械的な接点を有する接点リレーであってもよく、例えば半導体リレーのような機械的な接点を有さない無接点リレーであってもよい。なお、電磁リレーは、機械式リレー(mechanical relay)ともいう。 The switch elements 122A and 122B may be contact relays having mechanical contacts such as electromagnetic relays, or may be contactless relays having no mechanical contacts such as semiconductor relays. The electromagnetic relay is also referred to as a mechanical relay.
 スイッチ素子122Aは、電源121Aの正極に接続されている。スイッチ素子122Aは、電源121Aと接続点131Aとの間に配置されている。接続点131Aは、電源121Aの正極とダイオード14Aとを接続する接続点である。スイッチ素子122Bは、電源121Bの正極に接続されている。スイッチ素子122Bは、電源121Bと接続点131Bとの間に配置されている。接続点131Bは、電源121Bの正極とダイオード14Bとを接続する接続点である。 The switch element 122A is connected to the positive electrode of the power source 121A. The switch element 122A is disposed between the power source 121A and the connection point 131A. The connection point 131A is a connection point that connects the positive electrode of the power source 121A and the diode 14A. The switch element 122B is connected to the positive electrode of the power source 121B. The switch element 122B is disposed between the power source 121B and the connection point 131B. The connection point 131B is a connection point that connects the positive electrode of the power source 121B and the diode 14B.
 図2では、スイッチ素子122A、122Bを電気的に制御する制御装置の図示を省略している。スイッチ素子122Aは、制御装置によって、例えば、電源121Aが使用可能な状況ではオンになり、電源121Aが使用不能な状況ではオフになるように制御される。電源121A、121Bがリチウムイオン電池の場合、スイッチ素子122A、122Bを電気的に制御する制御装置は、例えば、BMS(バッテリーマネージメントシステム)であってもよい。 In FIG. 2, illustration of a control device that electrically controls the switch elements 122A and 122B is omitted. The switch element 122A is controlled by the control device so that, for example, it is turned on in a situation where the power supply 121A can be used and turned off in a situation where the power supply 121A cannot be used. When the power supplies 121A and 121B are lithium ion batteries, the control device that electrically controls the switch elements 122A and 122B may be, for example, a BMS (battery management system).
 ダイオード14A、14Bは、互いに同じ構成である。ダイオード14A、14Bは、互いに異なる構成であってもよい。ダイオード14A、14Bは、例えば、半導体ダイオードであってもよい。ダイオード14A、14Bは、半導体ダイオード以外のダイオード(例えば、二極真空管)であってもよい。ダイオード14A、14Bの各々は、1対の端子として、アノードとカソードを有する。ダイオード14Aは、ダイオード14Aの内部をアノードからカソードに電流が流れることを許容するが、ダイオード14Aの内部をカソードからアノードに電流が流れることは許容しないように構成されている。ダイオード14Aと同じく、ダイオード14Bも、アノードからカソードへの電流の流れのみを許容する。 The diodes 14A and 14B have the same configuration. The diodes 14A and 14B may have different configurations. The diodes 14A and 14B may be semiconductor diodes, for example. The diodes 14A and 14B may be diodes other than the semiconductor diode (for example, a bipolar vacuum tube). Each of the diodes 14A and 14B has an anode and a cathode as a pair of terminals. The diode 14A is configured to allow current to flow from the anode to the cathode in the diode 14A, but not to allow current to flow from the cathode to the anode in the diode 14A. Like diode 14A, diode 14B only allows current flow from the anode to the cathode.
 ダイオード14Aと電源モジュール12Aを接続する2つの接続点131A、132Aのうち、接続点131Aは、ダイオード14Aと電源121Aの正極とを接続し、接続点132Aは、ダイオード14Aと電源121Aの負極とを接続する。ダイオード14Aのカソードは、接続点131Aに接続されている。ダイオード14Aのアノードは、電接続点132Aに接続されている。つまり、ダイオード14Aは、接続点132Aから接続点131Aに向かって電流が流れることを許容するが、接続点131Aから接続点132Aに向かって電流が流れることを許容しない。 Of the two connection points 131A and 132A connecting the diode 14A and the power supply module 12A, the connection point 131A connects the diode 14A and the positive electrode of the power supply 121A, and the connection point 132A connects the diode 14A and the negative electrode of the power supply 121A. Connecting. The cathode of the diode 14A is connected to the connection point 131A. The anode of the diode 14A is connected to the electrical connection point 132A. That is, the diode 14A allows current to flow from the connection point 132A toward the connection point 131A, but does not allow current to flow from the connection point 131A to the connection point 132A.
 ダイオード14Bと電源モジュール12Bを接続する2つの接続点131B、132Bのうち、接続点131Bは、ダイオード14Bと電源121Bの正極とを接続し、接続点132Bは、ダイオード14Bと電源121Bの負極とを接続する。ダイオード14Bのカソードは、接続点131Bに接続されている。ダイオード14Bのアノードは、接続点132Bに接続されている。つまり、ダイオード14Bは、接続点132Bから接続点131Bに向かって電流が流れることを許容するが、接続点131Bから接続点132Bに向かって電流が流れることを許容しない。 Of the two connection points 131B and 132B connecting the diode 14B and the power supply module 12B, the connection point 131B connects the diode 14B and the positive electrode of the power supply 121B, and the connection point 132B connects the diode 14B and the negative electrode of the power supply 121B. Connecting. The cathode of the diode 14B is connected to the connection point 131B. The anode of the diode 14B is connected to the connection point 132B. That is, the diode 14B allows current to flow from the connection point 132B to the connection point 131B, but does not allow current to flow from the connection point 131B to the connection point 132B.
 車両30は、車両本体31と、複数の電源モジュール12A、12Bと、複数のダイオード14A、14Bとを有する。本実施形態の具体例において、複数の電源モジュール12A、12Bおよび複数のダイオード14A、14Bは、車両本体31に含まれない。複数の電源モジュール12A、12Bは、車両本体31に対して着脱可能である。 The vehicle 30 includes a vehicle body 31, a plurality of power supply modules 12A and 12B, and a plurality of diodes 14A and 14B. In the specific example of the present embodiment, the plurality of power supply modules 12 </ b> A and 12 </ b> B and the plurality of diodes 14 </ b> A and 14 </ b> B are not included in the vehicle main body 31. The plurality of power supply modules 12 </ b> A and 12 </ b> B are detachable from the vehicle main body 31.
 車両30は、電源モジュール12Aを車両本体31に着脱可能とするために、コネクタ161A、162A、163A、164Aを有する。コネクタ161Aは、電源121Aの正極に接続された接続点131Aに接続されている。コネクタ162Aは、電源121Aの負極に接続された接続点132Aに接続されている。コネクタ161A、162Aは、電源モジュール12Aと一体化されている。コネクタ161Aは、コネクタ163Aに着脱可能に接続される。コネクタ162Aは、コネクタ164Aに着脱可能に接続される。コネクタ163A、164Aは、それぞれ、車両本体31に一体的に設けられている。そのため、コネクタ161A、162Aは、電源モジュール12Aと一体的に、車両本体31に含まれるコネクタ163A、164Aに対して着脱可能である。図2に示すように、コネクタ161Aがコネクタ163Aに接続され、かつ、コネクタ162Aがコネクタ164Aに接続された状態が、電源モジュール12Aが車両本体31に取り付けられた状態である。 Vehicle 30 has connectors 161A, 162A, 163A, and 164A in order to make power supply module 12A detachable from vehicle body 31. The connector 161A is connected to a connection point 131A connected to the positive electrode of the power source 121A. The connector 162A is connected to a connection point 132A connected to the negative electrode of the power source 121A. The connectors 161A and 162A are integrated with the power supply module 12A. The connector 161A is detachably connected to the connector 163A. Connector 162A is detachably connected to connector 164A. The connectors 163A and 164A are integrally provided on the vehicle main body 31, respectively. Therefore, the connectors 161A and 162A can be attached to and detached from the connectors 163A and 164A included in the vehicle main body 31 integrally with the power supply module 12A. As shown in FIG. 2, the state where the connector 161A is connected to the connector 163A and the connector 162A is connected to the connector 164A is the state where the power supply module 12A is attached to the vehicle main body 31.
 車両30は、電源モジュール12Bを車両本体31に着脱可能とするために、コネクタ161B、162B、163B、164Bを有する。コネクタ161Bは、電源121Bの正極に接続された接続点131Bに接続されている。コネクタ161B、162Bは、電源モジュール12Bと一体化されている。コネクタ162Bは、電源121Bの負極に接続された接続点132Bに接続されている。コネクタ161Bは、コネクタ163Bに着脱可能に接続される。コネクタ162Bは、コネクタ164Bに着脱可能に接続される。コネクタ163B、164Bは、それぞれ、車両本体31に一体的に設けられている。そのため、コネクタ161B、162Bは、電源モジュール12Bと一体的に、車両本体31に含まれるコネクタ163B、164Bに対して着脱可能である。図2および図3に示すように、コネクタ161Bがコネクタ163Bに接続され、かつ、コネクタ162Bがコネクタ164Bに接続された状態が、電源モジュール12Bが車両本体31に取り付けられた状態である。 The vehicle 30 includes connectors 161B, 162B, 163B, and 164B in order to make the power supply module 12B detachable from the vehicle main body 31. Connector 161B is connected to connection point 131B connected to the positive electrode of power supply 121B. The connectors 161B and 162B are integrated with the power supply module 12B. The connector 162B is connected to a connection point 132B connected to the negative electrode of the power source 121B. Connector 161B is detachably connected to connector 163B. Connector 162B is detachably connected to connector 164B. The connectors 163B and 164B are provided integrally with the vehicle main body 31, respectively. Therefore, the connectors 161B and 162B can be attached to and detached from the connectors 163B and 164B included in the vehicle main body 31 integrally with the power supply module 12B. As shown in FIGS. 2 and 3, the state where the connector 161B is connected to the connector 163B and the connector 162B is connected to the connector 164B is a state where the power supply module 12B is attached to the vehicle body 31.
 電源モジュール12Aとダイオード14Aとを接続する2つの接続点131A、132Aは、2つのコネクタ161A、162Aにそれぞれ接続されている。そのため、電源モジュール12Aは、ダイオード14Aと一体的に、車両本体31に対して着脱可能である。電源モジュール12Bとダイオード14Bとを接続する2つの接続点131B、132Bは、2つのコネクタ161B、162Bにそれぞれ接続されている。そのため、電源モジュール12Bは、ダイオード14Bと一体的に、車両本体31に対して着脱可能である。つまり、複数の電源モジュール12A、12Bの各々は、当該電源モジュールに並列に接続されたダイオードと一体的に、車両本体31に対して着脱可能である。そのため、図3に示すように、電源モジュール12Aを車両本体31から取り外したとき、電源モジュール12Aに対して並列に接続されているダイオード14Aも車両本体31から取り外される。 The two connection points 131A and 132A connecting the power supply module 12A and the diode 14A are connected to the two connectors 161A and 162A, respectively. Therefore, the power supply module 12A can be attached to and detached from the vehicle main body 31 integrally with the diode 14A. Two connection points 131B and 132B connecting the power supply module 12B and the diode 14B are connected to two connectors 161B and 162B, respectively. Therefore, the power supply module 12B can be attached to and detached from the vehicle body 31 integrally with the diode 14B. That is, each of the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with a diode connected in parallel to the power supply module. Therefore, as shown in FIG. 3, when the power supply module 12 </ b> A is removed from the vehicle body 31, the diode 14 </ b> A connected in parallel to the power supply module 12 </ b> A is also removed from the vehicle body 31.
 直列に接続された複数の電源モジュール12A、12Bの両側にある接続点131A、132Bは、コネクタ161A、162Bにそれぞれ接続されている。コネクタ161A、162Bは、車両本体31に設けられたコネクタ163A、164Bにそれぞれ着脱可能に接続される。それに加えて、電源モジュール12Aと電源モジュール12Bとの間の接続点132A、131Bは、コネクタ162A、161Bにそれぞれ接続されている。コネクタ162A、161Bは、車両本体31に設けられたコネクタ164A、163Bにそれぞれ着脱可能に接続される。そのため、複数の電源モジュール12A、12Bは、個別に、車両本体31に対して着脱可能である。つまり、電源モジュール12Aとダイオード14Aとを含む要素と、電源モジュール12Bとダイオード14Bとを含む要素とは、個別に、車両本体31に対して着脱可能である。そのため、図3に示すように、電源モジュール12Bとダイオード14Bが車両本体31に取り付けられた状態で、電源モジュール12Aとダイオード14Aを車両本体31から取り外すことができる。 Connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to connectors 161A and 162B, respectively. The connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 31, respectively. In addition, connection points 132A and 131B between the power supply module 12A and the power supply module 12B are connected to connectors 162A and 161B, respectively. The connectors 162A and 161B are detachably connected to connectors 164A and 163B provided on the vehicle main body 31, respectively. Therefore, the plurality of power supply modules 12 </ b> A and 12 </ b> B can be individually attached to and detached from the vehicle body 31. That is, the element including the power supply module 12A and the diode 14A and the element including the power supply module 12B and the diode 14B can be individually attached to and detached from the vehicle body 31. Therefore, as shown in FIG. 3, the power supply module 12 </ b> A and the diode 14 </ b> A can be removed from the vehicle main body 31 with the power supply module 12 </ b> B and the diode 14 </ b> B attached to the vehicle main body 31.
 1つの電源モジュール12Aに接続された2つのコネクタ161A、162Aは、同時にのみ着脱されるように一体化されていてもよく、個別に着脱できるように分離していてもよい。1つの電源モジュール12Bに接続された2つのコネクタ161B、162Bは、同時にのみ着脱されるように一体化されていてもよく、個別に着脱できるように分離していてもよい。 The two connectors 161A and 162A connected to one power supply module 12A may be integrated so as to be attached / detached only at the same time, or may be separated so that they can be attached / detached individually. The two connectors 161B and 162B connected to one power supply module 12B may be integrated so as to be attached / detached only at the same time, or may be separated so that they can be attached / detached individually.
 コネクタ161A~164A、161B~164Bは、直流用のコネクタである。コネクタ161Aとコネクタ163Aとの接続構造は、特に限定されない。接続構造は、例えば、差し込み式であってもよく、差し込み式以外であってもよい。コネクタ161Aは、工具を使わず、コネクタ163Aに着脱可能である。コネクタ161Aは、工具を使用して、コネクタ163Aに着脱可能であってもよい。コネクタ162Aとコネクタ164Aとの接続構造も、コネクタ161Aとコネクタ163Aとの接続構造と同様である。よって、電源モジュール12Aは工具を使わず、車両本体31に対して着脱可能である。また、コネクタ161Bとコネクタ163Bとの接続構造、および、コネクタ162Bとコネクタ164Bとの接続構造も、コネクタ161Aとコネクタ163Aとの接続構造と同様である。 Connectors 161A to 164A and 161B to 164B are DC connectors. The connection structure between the connector 161A and the connector 163A is not particularly limited. The connection structure may be, for example, a plug-in type or other than the plug-in type. The connector 161A can be attached to and detached from the connector 163A without using a tool. The connector 161A may be detachable from the connector 163A using a tool. The connection structure between the connector 162A and the connector 164A is the same as the connection structure between the connector 161A and the connector 163A. Therefore, the power supply module 12A can be attached to and detached from the vehicle body 31 without using a tool. The connection structure between the connector 161B and the connector 163B and the connection structure between the connector 162B and the connector 164B are the same as the connection structure between the connector 161A and the connector 163A.
 車両本体31は、コネクタ163A、164A以外の箇所で、電源モジュール12Aを直接または間接的に支持してもよい。車両本体31は、コネクタ163B、164B以外の箇所で、電源モジュール12Bを直接または間接的に支持してもよい。支持の態様は、例えば、接触だけであってもよい。支持の態様は、例えば、磁力の作用を利用して、電源モジュールを含む要素を、車両本体31に着脱可能に保持する態様であってもよい。支持の態様は、凸部と凹部の嵌め込み構造を利用して、電源モジュールを含む要素を、車両本体31に着脱可能に保持する態様であってもよい。支持の態様は、例えば、ねじ止め構造を利用して、電源モジュールを含む要素、車両本体31に着脱可能に保持する態様であってもよい。 The vehicle body 31 may support the power supply module 12A directly or indirectly at a place other than the connectors 163A and 164A. The vehicle body 31 may support the power supply module 12B directly or indirectly at a place other than the connectors 163B and 164B. The support mode may be, for example, only contact. The mode of support may be a mode in which, for example, the element including the power supply module is detachably held on the vehicle main body 31 using the action of magnetic force. The mode of support may be a mode in which the element including the power supply module is detachably held on the vehicle main body 31 using a fitting structure of the convex part and the concave part. The mode of support may be a mode of detachably holding on the element including the power supply module and the vehicle main body 31, for example, using a screwing structure.
 図2の給電回路10の表示は、コネクタ161A、162Bを含まない表示となっている。しかし、給電回路10は、コネクタ161A、162Bを含んでもよい。 2 is a display that does not include the connectors 161A and 162B. However, the power feeding circuit 10 may include connectors 161A and 162B.
 電源121Aが充電可能な蓄電デバイスの場合、車両本体31および電源モジュール12Aは、電源モジュール12Aが車両本体31に取り付けられた状態で、電源121Aを充電可能に構成されていてもよい。また、電源121Aが充電可能な蓄電デバイスの場合、電源モジュール12Aは、車両本体31から取り外された状態で電源121Aを充電可能に構成されていてもよい。電源121Bが充電可能な蓄電デバイスの場合も同様である。 When the power source 121A is a chargeable storage device, the vehicle main body 31 and the power supply module 12A may be configured to be able to charge the power source 121A in a state where the power supply module 12A is attached to the vehicle main body 31. In the case where the power source 121A is a chargeable power storage device, the power source module 12A may be configured to be able to charge the power source 121A in a state where it is detached from the vehicle main body 31. The same applies to the case where the power source 121B is a chargeable power storage device.
 複数の電源モジュール12A、12Bの各々は、車両30とは異なる種類の車両の車両本体にも着脱可能であることが好ましい。これにより、電源モジュール12A、12Bの汎用性を向上できる。 Each of the plurality of power supply modules 12 </ b> A and 12 </ b> B is preferably detachable from a vehicle main body of a vehicle different from the vehicle 30. Thereby, the versatility of power supply modules 12A and 12B can be improved.
 複数の電源モジュール12A、12Bが車両本体31に取り付けられているとき、給電回路10は負荷20に接続されている。以下、給電回路10が負荷20に接続された状態における給電回路10の電圧について説明する。まず、図4に示すように、複数のスイッチ素子122A、122Bの両方がオン状態の場合の給電回路10の電圧について説明する。 When the plurality of power supply modules 12A and 12B are attached to the vehicle main body 31, the power supply circuit 10 is connected to the load 20. Hereinafter, the voltage of the power feeding circuit 10 in a state where the power feeding circuit 10 is connected to the load 20 will be described. First, as shown in FIG. 4, the voltage of the power feeding circuit 10 when both of the plurality of switch elements 122A and 122B are in the on state will be described.
 電源121Aの出力電圧を、VSとする。電源121Bの出力電圧も、VSとする。接続点132Bにおける電圧を、V0とする。V0は、0Vであってもよく、0Vでなくてもよい。電源121Bの負極における電圧は、V0であり、電源121Bの正極における電圧は、V0+VSである。よって、接続点131Bにおける電圧は、V0+VSである。接続点131Bは、接続点132Bよりも電圧が高い。上述したように、ダイオード14Bは、接続点131Bから接続点132Bに向かって電流が流れることを許容しない。そのため、ダイオード14Bには電流は流れない。 Assume that the output voltage of the power supply 121A is V S. The output voltage of the power supply 121B is also V S. The voltage at the connection point 132B is V 0 . V 0 may be 0V or may not be 0V. The voltage at the negative electrode of the power supply 121B is V 0 , and the voltage at the positive electrode of the power supply 121B is V 0 + V S. Therefore, the voltage at the connection point 131B is V 0 + V S. The connection point 131B has a higher voltage than the connection point 132B. As described above, the diode 14B does not allow a current to flow from the connection point 131B toward the connection point 132B. Therefore, no current flows through the diode 14B.
 接続点132Aにおける電圧は、V0+VSである。電源121Aの負極における電圧は、V0+VSであり、電源121Aの正極における電圧は、V0+2VSである。よって、接続点131Aにおける電圧は、V0+2VSである。接続点131Aは、接続点132Aよりも電圧が高い。上述したように、ダイオード14Aは、接続点131Aから接続点132Aに向かって電流が流れることを許容しない。そのため、ダイオード14Aには電流は流れない。 The voltage at the connection point 132A is V 0 + V S. The voltage at the negative electrode of the power source 121A is V 0 + V S , and the voltage at the positive electrode of the power source 121A is V 0 + 2V S. Therefore, the voltage at the connection point 131A is V 0 + 2V S. The connection point 131A has a higher voltage than the connection point 132A. As described above, the diode 14A does not allow a current to flow from the connection point 131A toward the connection point 132A. Therefore, no current flows through the diode 14A.
 複数のスイッチ素子122A、122Bは、オフに切り換わるタイミングが一致するように制御される。しかし、何らかの原因により、複数のスイッチ素子122A、122Bがオフに切り換えわるタイミングがずれる場合がある。図4は、スイッチ素子122Aがオフに切り換わったときに、スイッチ素子122Bがまだオフに切り換わっていない状態を示している。図4に示すように、複数のスイッチ素子122A、122Bのうちスイッチ素子122Aだけがオフに切り換わった直後の給電回路10の電圧について説明する。 The plurality of switch elements 122A and 122B are controlled so that the timings at which they are turned off coincide with each other. However, the timing at which the plurality of switch elements 122A and 122B are switched off may be shifted due to some cause. FIG. 4 shows a state where the switch element 122B is not yet turned off when the switch element 122A is turned off. As shown in FIG. 4, the voltage of the power feeding circuit 10 immediately after only the switch element 122A among the plurality of switch elements 122A and 122B is switched off will be described.
 電源121Aの出力電圧を、VSとする。電源121Bの出力電圧も、VSとする。接続点132Bにおける電圧を、V0とする。電源モジュール12Bとダイオード14Bが並列に接続された電気回路の電圧は、上述したスイッチ素子122A、122Bの両方がオンの場合と同じである。ダイオード14Bには電流は流れない。 Assume that the output voltage of the power supply 121A is V S. The output voltage of the power supply 121B is also V S. The voltage at the connection point 132B is V 0 . The voltage of the electric circuit in which the power supply module 12B and the diode 14B are connected in parallel is the same as when both the switch elements 122A and 122B described above are on. No current flows through the diode 14B.
 接続点132Aにおける電圧は、V0+VSである。スイッチ素子122Aがオフになった直後であるため、電源121Aの負極における電圧は、V0+VSであり、電源121Aの正極における電圧は、V0+2VSである。スイッチ素子122Aがオフのため、電源121Aから接続点131Aに電流は流れない。上述したように、ダイオード14Aは、接続点132Aから接続点131Aに向かって電流が流れることを許容する。そのため、接続点132Aから接続点131Aにダイオード14Aを介して電流が流れる。接続点131Aにおける電圧は、V0+VSである。したがって、オフ状態のスイッチ素子122Aの両端の電位差は、VSである。 The voltage at the connection point 132A is V 0 + V S. Since the switch element 122A has just been turned off, the voltage at the negative electrode of the power supply 121A is V 0 + V S , and the voltage at the positive electrode of the power supply 121A is V 0 + 2V S. Since the switch element 122A is off, no current flows from the power source 121A to the connection point 131A. As described above, the diode 14A allows a current to flow from the connection point 132A toward the connection point 131A. Therefore, a current flows from the connection point 132A to the connection point 131A via the diode 14A. The voltage at the connection point 131A is V 0 + V S. Therefore, the potential difference between both ends of the off-state switch element 122A is V S.
 実際には、ダイオード14Aを電流が流れる際、ダイオード14Aの内部抵抗による電圧降下が生じる。しかし、ダイオード14Aの内部抵抗による電圧降下量は、出力電圧VSに比べて大幅に小さいので、ここでは、内部抵抗による電圧降下量を無視して説明した。また、コネクタ161B、162Aおよび配線の内部抵抗による電圧降下量も、同様の理由により、無視して説明した。 Actually, when a current flows through the diode 14A, a voltage drop occurs due to the internal resistance of the diode 14A. However, since the amount of voltage drop due to the internal resistance of the diode 14A is much smaller than the output voltage V S , the voltage drop amount due to the internal resistance is ignored here. Further, the voltage drops due to the internal resistances of the connectors 161B and 162A and the wiring are also ignored for the same reason.
 詳細な説明は省略するが、複数のスイッチ素子122A、122Bのうちスイッチ素子122Bだけがオフに切り換わった直後は、オフ状態のスイッチ素子122Bの両端の電位差が、VSとほぼ同じになる。 Although a detailed description is omitted, immediately after only the switch element 122B of the plurality of switch elements 122A and 122B is turned off, the potential difference between both ends of the switch element 122B in the off state is substantially the same as V S.
 ここで、図4と比較するため、図5に、図4の給電回路10からダイオード14A、14Bを除いた給電回路90を示す。図5に示す電源モジュール92A、92Bは、電源モジュール12A、12Bと同じ構成である。図5に示す電源921A、921Bは、電源121A、121Bと同じ構成である。図5に示すスイッチ素子922A、922Bは、スイッチ素子122A、122Bと同じ構成である。図5に示すコネクタ961A、961Bは、コネクタ161A、161Bと同じ構成である。図5に示すコネクタ962A、962Bは、コネクタ162A、162Bと同じ構成である。 Here, for comparison with FIG. 4, FIG. 5 shows a power supply circuit 90 in which the diodes 14A and 14B are removed from the power supply circuit 10 of FIG. The power supply modules 92A and 92B shown in FIG. 5 have the same configuration as the power supply modules 12A and 12B. The power supplies 921A and 921B shown in FIG. 5 have the same configuration as the power supplies 121A and 121B. The switch elements 922A and 922B shown in FIG. 5 have the same configuration as the switch elements 122A and 122B. The connectors 961A and 961B shown in FIG. 5 have the same configuration as the connectors 161A and 161B. Connectors 962A and 962B shown in FIG. 5 have the same configuration as the connectors 162A and 162B.
 図5は、複数のスイッチ素子922A、922Bのうちスイッチ素子922Aだけがオフに切り換わった直後の状態を示している。このときの給電回路90の電圧について説明する。 FIG. 5 shows a state immediately after only the switch element 922A of the plurality of switch elements 922A and 922B is switched off. The voltage of the power feeding circuit 90 at this time will be described.
 電源921Aの出力電圧を、VSとする。電源921Bの出力電圧も、VSとする。コネクタ962Bにおける電圧を、V0とする。電源921Bの負極における電圧は、V0であり、電源921Bの正極における電圧は、V0+VSである。電源921Aの負極における電圧は、V0+VSであり、電源921Aの正極における電圧は、V0+2VSである。スイッチ素子922Aがオフ状態のため、給電回路90から負荷20に電流は流れない。コネクタ961Aにおける電圧は、V0である。そのため、オフ状態のスイッチ素子922Aの両端の電位差は、2VSである。 The output voltage of the power supply 921A is V S. The output voltage of the power supply 921B is also V S. The voltage at the connector 962B is V 0 . The voltage at the negative electrode of the power source 921B is V 0 , and the voltage at the positive electrode of the power source 921B is V 0 + V S. The voltage at the negative electrode of the power source 921A is V 0 + V S , and the voltage at the positive electrode of the power source 921A is V 0 + 2V S. Since the switch element 922A is in the OFF state, no current flows from the power feeding circuit 90 to the load 20. The voltage at the connector 961A is a V 0. Therefore, the potential difference between both ends of the off-state switch element 922A is 2V S.
 このように、ダイオードを設けない構成の給電回路90において、複数のスイッチ素子922A、922Bがオフに切り換わるタイミングがずれた場合、オフ状態のスイッチ素子の両端の電位差は、給電回路が有する全ての電源の出力電圧の合計とほぼ同じになる。一方、本実施形態の具体例の給電回路10において、複数のスイッチ素子122A、122Bがオフに切り換わるタイミングがずれた場合、オフ状態のスイッチ素子の両端の電位差は、ダイオードと並列に接続された1つの電源の出力電圧とほぼ同じになる。したがって、車両搭載時の総電圧に関わらず、ダイオードと並列に接続された1つの電源の電圧に耐えられるスイッチ素子であれば、オフ状態のスイッチ素子が両端の電位差に起因して破損するのを防ぐことができる。その結果、給電回路が有する電源モジュールの数に関わらず、同じ耐電圧のスイッチ素子を使うことができるため、電源モジュールの汎用性を高められる。 As described above, in the power feeding circuit 90 having no diode, when the timings at which the plurality of switch elements 922A and 922B are turned off are shifted, the potential difference between both ends of the switch elements in the off state is all the power supply circuits have. It is almost the same as the total output voltage of the power supply. On the other hand, in the power supply circuit 10 of the specific example of the present embodiment, when the timing at which the plurality of switch elements 122A and 122B are switched off is shifted, the potential difference between both ends of the switch element in the off state is connected in parallel with the diode. It becomes almost the same as the output voltage of one power source. Therefore, any switch element that can withstand the voltage of one power supply connected in parallel with the diode, regardless of the total voltage when mounted on the vehicle, can prevent the switch element in the off state from being damaged due to the potential difference between both ends. Can be prevented. As a result, regardless of the number of power supply modules included in the power supply circuit, switch elements having the same withstand voltage can be used, so that the versatility of the power supply module can be improved.
 本発明の実施形態の具体例は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。 The specific example of the embodiment of the present invention has the following effect in addition to the effect of the embodiment of the present invention described above.
 電源モジュールが車両本体に対して着脱可能であるため、電源モジュールの汎用性を高めることができる。 Since the power supply module is detachable from the vehicle body, the versatility of the power supply module can be improved.
 電源モジュールとダイオードが一体的に車両本体に対して着脱可能であるため、電源モジュールの汎用性をより高めることができる。具体的には、例えば、ダイオードを有さない従来の給電回路を備えた車両であって、給電回路の電源モジュールが着脱可能に搭載される車両があるとする。この車両に、従来の電源モジュールの代わりに、電源モジュールとダイオードが一体化されたものを搭載することができる。 Since the power supply module and the diode can be integrally attached to and detached from the vehicle body, the versatility of the power supply module can be further improved. Specifically, for example, it is assumed that there is a vehicle including a conventional power supply circuit that does not have a diode and in which a power supply module of the power supply circuit is detachably mounted. Instead of the conventional power supply module, a vehicle in which the power supply module and the diode are integrated can be mounted on this vehicle.
 複数の電源モジュールが個別に車両本体に対して着脱可能であるため、複数の電源モジュールは一体化されない。よって、電源モジュールの数が異なる車両にも、同じ電源モジュールを使用することができる。このように、電源モジュールの汎用性をより高めることができる。また、複数の電源モジュールのいずれかが故障した場合に、故障した電源モジュールだけを交換できる。 Since multiple power supply modules can be individually attached to and detached from the vehicle body, the multiple power supply modules are not integrated. Therefore, the same power supply module can be used for vehicles having different numbers of power supply modules. Thus, the versatility of the power supply module can be further improved. Further, when any of the plurality of power supply modules fails, only the failed power supply module can be replaced.
 <本発明の実施形態の変更例>
 本発明は、上述した実施形態およびその具体例に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。上述の実施形態、実施形態の具体例、および後述する変更例は、適宜組み合わせて実施可能である。
<Modification of Embodiment of the Present Invention>
The present invention is not limited to the above-described embodiments and specific examples thereof, and various modifications are possible as long as they are described in the claims. Hereinafter, a modified example of the embodiment of the present invention will be described. In addition, about what has the same structure as the structure mentioned above, the description is abbreviate | omitted suitably using the same code | symbol. The above-described embodiments, specific examples of the embodiments, and modifications described below can be implemented in appropriate combination.
 ◆変更例1
 実施形態の具体例において、スイッチ素子122A、122Bは、それぞれ、電源121A、121Bの正極に接続されている。しかし、本発明において、複数のスイッチ素子の各々は、このスイッチ素子が含まれる電源モジュールの電源の負極に接続されてもよく、正極に接続されてもよい。
◆ Change example 1
In the specific example of the embodiment, the switch elements 122A and 122B are connected to the positive electrodes of the power supplies 121A and 121B, respectively. However, in the present invention, each of the plurality of switch elements may be connected to the negative electrode of the power supply of the power supply module including the switch element, or may be connected to the positive electrode.
 図6は、スイッチ素子が電源の負極に接続された一例を示す。図6に示す給電回路210は、複数の電源モジュール212A、212Bを有する。電源モジュール212Aは、電源121Aと、電源121Aの負極に接続されたスイッチ素子122Aとを有する。スイッチ素子122Aは、電源121Aの負極とダイオード14Aとを接続する接続点132Aに接続される。電源モジュール212Bは、電源121Bと、電源121Bの負極に接続されたスイッチ素子122Bとを有する。スイッチ素子122Bは、電源121Bの負極とダイオード14Bとを接続する接続点132Bに接続される。スイッチ素子122A、122Bがオフに切り換わるタイミングがずれた場合の給電回路210の電圧は、負荷20の回路構成に依存するため、実施形態の具体例のように明確に記載することはできない。しかし、この変更例でも、実施形態の具体例と同様に、複数のスイッチ素子がオフに切り換わるタイミングがずれた場合に、オフ状態のスイッチ素子の両端の電位差を、1つの電源の出力電圧とほぼ同じ程度まで低減できる。 FIG. 6 shows an example in which the switch element is connected to the negative electrode of the power source. The power supply circuit 210 illustrated in FIG. 6 includes a plurality of power supply modules 212A and 212B. The power supply module 212A includes a power supply 121A and a switch element 122A connected to the negative electrode of the power supply 121A. The switch element 122A is connected to a connection point 132A that connects the negative electrode of the power source 121A and the diode 14A. The power supply module 212B includes a power supply 121B and a switch element 122B connected to the negative electrode of the power supply 121B. The switch element 122B is connected to a connection point 132B that connects the negative electrode of the power source 121B and the diode 14B. Since the voltage of the power feeding circuit 210 when the timing at which the switch elements 122A and 122B are switched off is shifted depends on the circuit configuration of the load 20, it cannot be clearly described as in the specific example of the embodiment. However, also in this modified example, as in the specific example of the embodiment, when the timing at which the plurality of switch elements are turned off is shifted, the potential difference between both ends of the switch element in the off state is set as the output voltage of one power supply. It can be reduced to almost the same level.
 ◆変更例2
 実施形態の具体例の給電回路10が有する電源モジュールの数は2つである。しかし、本発明の給電回路が有する電源モジュールの数は、2つより多くてもよい。
◆ Change example 2
The power supply circuit 10 of the specific example of the embodiment has two power supply modules. However, the power supply circuit of the present invention may have more than two power supply modules.
 ◆変更例3
 本発明において、給電回路が有する複数の電源は、互いに異なる構成の2つの電源を含んでいてもよく、互いに同じ構成であってもよい。電源の構成が異なるとは、実施形態の具体例で挙げた電源の種別が異なることだけでなく、例えば、サイズが異なる場合や、材料が異なる場合などを含む。複数の電源がいずれも蓄電デバイスの場合、電源の構成が異なるとは、例えば、電力の蓄積に関連する部分の材料が異なる場合、充電容量が異なる場合、放電容量が異なる場合、充電率が100%の状態の電圧が異なる場合、充電特性が異なる場合、放電特性が異なる場合等を含む。
◆ Change example 3
In the present invention, the plurality of power supplies included in the power feeding circuit may include two power supplies having different configurations, or may have the same configuration. The different power supply configurations include not only the different types of power sources mentioned in the specific example of the embodiment but also the cases where the sizes are different and the materials are different. When all of the plurality of power sources are power storage devices, the configuration of the power source is different. For example, when the material of the portion related to the accumulation of power is different, the charge capacity is different, the discharge capacity is different, the charge rate is 100 %, The charge characteristics are different, the discharge characteristics are different, and the like.
 本発明において、給電回路が有する複数のスイッチ素子は、互いに異なる構成の2つのスイッチ素子を含んでいてもよく、互いに同じ構成であってもよい。本発明において、給電回路が有する複数の電源モジュールは、互いに異なる構成の2つの電源モジュールを含んでいてもよく、互いに同じ構成であってもよい。本発明において、給電回路が有する複数のダイオードは、互いに異なる構成の2つのダイオードを含んでいてもよく、互いに同じ構成であってもよい。 In the present invention, the plurality of switch elements included in the power supply circuit may include two switch elements having different configurations, or may have the same configuration. In the present invention, the plurality of power supply modules included in the power feeding circuit may include two power supply modules having different configurations, or may have the same configuration. In the present invention, the plurality of diodes included in the power feeding circuit may include two diodes having different configurations, or may have the same configuration.
 ◆変更例4
 実施形態の具体例では、電源モジュール12Aと電源モジュール12Aを直列に接続するための複数のコネクタの一部(コネクタ164A、163B)が、車両本体31に設けられている。言い換えると、複数の電源モジュール12A、12Bを、個別に、車両本体31に対して着脱可能とするための複数のコネクタの一部が、車両本体31に設けられている。しかし、本発明において、電源モジュール同士を直列に接続するためのコネクタがいずれも車両本体に設けられなくてもよい。
◆ Modification 4
In the specific example of the embodiment, a part of the plurality of connectors ( connectors 164A and 163B) for connecting the power supply module 12A and the power supply module 12A in series is provided in the vehicle main body 31. In other words, a part of the plurality of connectors for making the plurality of power supply modules 12 </ b> A and 12 </ b> B individually attachable to and detachable from the vehicle body 31 is provided on the vehicle body 31. However, in the present invention, none of the connectors for connecting the power supply modules in series need be provided on the vehicle body.
 図7は、電源モジュール同士を直列に接続するためのコネクタがいずれも車両本体に設けられていない一例を示す。図7に示す給電回路310は、複数の電源モジュール12A、12Bと、複数の電源モジュール12A、12Bに対してそれぞれ並列に接続された複数のダイオード14A、14Bとを備える。実施形態の具体例と同様に、直列に接続された複数の電源モジュール12A、12Bの両側にある接続点131A、132Bは、コネクタ161A、162Bにそれぞれ接続されている。コネクタ161A、162Bは、車両本体331に設けられたコネクタ163A、164Bにそれぞれ着脱可能に接続される。実施形態の具体例と異なり、電源モジュール12Aと電源モジュール12Bとの間にある接続点132A、131Bは、コネクタ362A、361Bに接続されている。コネクタ362Aは、コネクタ361Bに着脱可能に接続される。コネクタ362A、361Bは、車両本体331に設けられていない。以上の構成により、複数の電源モジュール12A、12Bは、個別に、車両本体31に対して着脱可能である。 FIG. 7 shows an example in which none of the connectors for connecting the power supply modules in series is provided on the vehicle body. A power supply circuit 310 illustrated in FIG. 7 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively. Similarly to the specific example of the embodiment, the connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to the connectors 161A and 162B, respectively. The connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 331, respectively. Unlike the specific example of the embodiment, the connection points 132A and 131B between the power module 12A and the power module 12B are connected to the connectors 362A and 361B. Connector 362A is detachably connected to connector 361B. The connectors 362A and 361B are not provided on the vehicle main body 331. With the above configuration, the plurality of power supply modules 12 </ b> A and 12 </ b> B can be individually attached to and detached from the vehicle body 31.
 ◆変更例5
 実施形態の具体例において、給電回路10が有する複数の電源モジュール12A、12Bは、車両本体31に対して着脱可能である。
 しかし、本発明の給電回路は、この構成に限らない。本発明において、給電回路が有する複数の電源モジュールのうち一部の電源モジュールだけが、車両本体に対して着脱可能であってもよい。実施形態の具体例とこの変更例を合わせると、本発明において、給電回路が有する複数の電源モジュールのうちの少なくとも1つの電源モジュールは、車両本体に対して着脱可能であってもよい。
◆ Change example 5
In the specific example of the embodiment, the plurality of power supply modules 12 </ b> A and 12 </ b> B included in the power feeding circuit 10 are detachable from the vehicle body 31.
However, the power supply circuit of the present invention is not limited to this configuration. In the present invention, only a part of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body. When the specific example of the embodiment is combined with this modification, in the present invention, at least one power supply module among the plurality of power supply modules included in the power feeding circuit may be detachable from the vehicle body.
 本発明において、給電回路が有する複数の電源モジュールの少なくとも1つは、車両本体に対して着脱不能であってもよい。例えば、給電回路が有する複数の電源モジュールが全て、車両本体に対して着脱不能であってもよい。この場合、給電回路が有する複数のダイオードも全て、車両本体に対して着脱不能である。電源モジュールが車両本体に対して着脱不能である場合、電源モジュールと車両の負荷との接続に、コネクタが使用されなくてよい。電源モジュールが車両本体に対して着脱不能である場合、例えば、電源モジュールと車両の負荷とを接続する配線が、溶接やネジなどで接続されてもよい。給電回路が有する複数の電源モジュールの少なくとも1つは、車両本体に対して着脱不能である場合、以下の効果が得られる。電源モジュールを着脱可能とする場合に比べて、電源モジュールに求められる耐振動性および耐衝撃性を下げることができる。それにより、電源モジュールの汎用性を確保しつつ、電源モジュールを小型化できる。 In the present invention, at least one of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body. For example, all of the plurality of power supply modules included in the power feeding circuit may be detachable from the vehicle body. In this case, all of the plurality of diodes included in the power feeding circuit cannot be attached to or detached from the vehicle body. When the power supply module is not attachable to and detachable from the vehicle body, the connector may not be used for connection between the power supply module and the vehicle load. When the power supply module is not detachable from the vehicle body, for example, a wiring that connects the power supply module and the vehicle load may be connected by welding, screws, or the like. When at least one of the plurality of power supply modules included in the power supply circuit is not attachable to and detachable from the vehicle body, the following effects are obtained. The vibration resistance and impact resistance required for the power supply module can be reduced as compared with the case where the power supply module is detachable. Thereby, the power module can be reduced in size while ensuring the versatility of the power module.
 ◆変更例6
 実施形態の具体例において、複数の電源モジュール12A、12Bは、それぞれ、ダイオード14A、14Bと一体的に車両本体31に対して着脱可能である。さらに、複数の電源モジュール12A、12Bは、個別に、車両本体31に対して着脱可能である。
 しかし、本発明において、給電回路が有する複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々が、当該電源モジュールに並列に接続されたダイオードと一体的に、車両本体に対して着脱可能である場合、上記の構成に限らない。この少なくとも2つの電源モジュールは、一体的に、車両本体に対して着脱可能であってもよい。
例えば、給電回路が有する複数の電源モジュールが全て、一体的に、車両本体に対して着脱可能であってもよい。少なくとも2つの電源モジュールが一体的に車両本体に対して着脱可能であることにより、以下の効果が得られる。少なくとも2つの電源モジュールが個別に車両本体に対して着脱可能である場合に比べて、電源モジュールを車両本体に着脱するための接続部分の数を少なくできる。そのため、着脱をより容易に行うことができる。
◆ Modification 6
In the specific example of the embodiment, the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with the diodes 14A and 14B, respectively. Furthermore, the plurality of power supply modules 12 </ b> A and 12 </ b> B can be individually attached to and detached from the vehicle body 31.
However, in the present invention, each of at least two of the plurality of power supply modules included in the power supply circuit is detachable from the vehicle body integrally with a diode connected in parallel to the power supply module. In this case, the configuration is not limited to the above. The at least two power supply modules may be integrally attached to and detached from the vehicle body.
For example, all of the plurality of power supply modules included in the power feeding circuit may be integrally removable from the vehicle body. Since at least two power supply modules can be integrally attached to and detached from the vehicle body, the following effects can be obtained. Compared to the case where at least two power supply modules can be individually attached to and detached from the vehicle body, the number of connection portions for attaching and detaching the power supply module to and from the vehicle body can be reduced. Therefore, attachment / detachment can be performed more easily.
 図8は、複数の電源モジュールが、一体的に、車両本体に対して着脱可能な一例を示す。図8に示す給電回路410は、複数の電源モジュール12A、12Bと、複数の電源モジュール12A、12Bに対してそれぞれ並列に接続された複数のダイオード14A、14Bとを備える。実施形態の具体例と同様に、直列に接続された複数の電源モジュール12A、12Bの両側にある接続点131A、132Bは、コネクタ161A、162Bにそれぞれ接続されている。コネクタ161A、162Bは、車両本体31に設けられたコネクタ163A、164Bにそれぞれ着脱可能に接続される。実施形態の具体例と異なり、電源モジュール12Aと電源モジュール12Bとの間にある接続点132A、131Bは、コネクタに接続されていない。そのため、複数の電源モジュール12A、12Bは、一体的に、車両本体431に対して着脱可能である。 FIG. 8 shows an example in which a plurality of power supply modules can be integrally attached to and detached from the vehicle body. The power supply circuit 410 illustrated in FIG. 8 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively. Similarly to the specific example of the embodiment, the connection points 131A and 132B on both sides of the plurality of power supply modules 12A and 12B connected in series are connected to the connectors 161A and 162B, respectively. The connectors 161A and 162B are detachably connected to connectors 163A and 164B provided on the vehicle main body 31, respectively. Unlike the specific example of the embodiment, the connection points 132A and 131B between the power supply module 12A and the power supply module 12B are not connected to the connector. Therefore, the plurality of power supply modules 12 </ b> A and 12 </ b> B can be integrally attached to and detached from the vehicle main body 431.
 ◆変更例7
 実施形態の具体例において、複数の電源モジュール12A、12Bは、それぞれ、ダイオード14A、14Bと一体的に車両本体31に対して着脱可能である。
 しかし、本発明の給電回路は、この構成に限らない。本発明において、給電回路が有する複数の電源モジュールのうちの少なくとも1つの電源モジュールの各々は、当該電源モジュールと並列に接続されるダイオードを含む車両本体に対して着脱可能であってもよい。例えば、複数の電源モジュールのうちの一部の電源モジュールだけが、当該電源モジュールと並列に接続されるダイオードを含む車両本体に対して着脱可能であってもよい。この場合、給電回路が有する複数のダイオードのうち少なくとも1つのダイオードは、車両本体に対して着脱不能である。また、例えば、複数の電源モジュールが全て、複数のダイオードを含む車両本体に対して着脱可能であってもよい。この場合、給電回路が有する複数のダイオードが全て、車両本体に対して着脱不能である。複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々が、当該電源モジュールと並列に接続されるダイオードを含む車両本体に対して、着脱可能である場合、この少なくとも2つの電源モジュールは、個別に、車両本体に対して着脱可能である。電源モジュールが、当該電源モジュールと並列に接続されるダイオードを含む車両本体に対して着脱可能であることにより、以下の効果が得られる。電源モジュールを交換する場合に、ダイオードは交換せずにそのまま使用できる。その分、ダイオードのコストを削減できる。また、着脱する要素がダイオードを含まないことにより、着脱する要素を小型化できる。
◆ Change example 7
In the specific example of the embodiment, the plurality of power supply modules 12A and 12B can be attached to and detached from the vehicle main body 31 integrally with the diodes 14A and 14B, respectively.
However, the power supply circuit of the present invention is not limited to this configuration. In the present invention, each of at least one of the plurality of power supply modules included in the power supply circuit may be detachable from the vehicle body including a diode connected in parallel with the power supply module. For example, only a part of the plurality of power supply modules may be detachable from the vehicle body including a diode connected in parallel with the power supply module. In this case, at least one of the plurality of diodes included in the power feeding circuit is not attachable to and detachable from the vehicle body. Further, for example, all of the plurality of power supply modules may be detachable from the vehicle body including a plurality of diodes. In this case, all of the plurality of diodes included in the power feeding circuit cannot be attached to and detached from the vehicle body. When at least two of the plurality of power modules are detachable from the vehicle body including a diode connected in parallel with the power modules, the at least two power modules are individually It can be attached to and detached from the vehicle body. Since the power supply module can be attached to and detached from the vehicle body including a diode connected in parallel with the power supply module, the following effects can be obtained. When replacing the power supply module, the diode can be used as it is without being replaced. Accordingly, the cost of the diode can be reduced. Further, since the detachable element does not include a diode, the detachable element can be reduced in size.
 図9は、複数の電源モジュールが、複数のダイオードを含む車両本体に対して着脱可能な一例を示す。図9に示す給電回路510は、複数の電源モジュール12A、12Bと、複数の電源モジュール12A、12Bに対してそれぞれ並列に接続された複数のダイオード14A、14Bとを備える。電源モジュール12Aと接続点131Aとの間に、着脱可能に接続されたコネクタ561Aとコネクタ563Aが配置される。電源モジュール12Aと接続点132Aとの間に、着脱可能に接続されたコネクタ562Aとコネクタ564Aが配置される。コネクタ563A、564Aは、車両本体531に含まれる。そのため、電源モジュール12Aは、ダイオード14Aを含む車両本体531に対して着脱可能である。また、電源モジュール12Bと接続点131Bとの間に、着脱可能に接続されたコネクタ561Bとコネクタ563Bが配置される。電源モジュール12Bと接続点132Bとの間に、着脱可能に接続されたコネクタ562Bとコネクタ564Bが配置される。コネクタ563B、564Bは、車両本体531に含まれる。そのため、電源モジュール12Bは、ダイオード14Bを含む車両本体531に対して着脱可能である。また、2つの電源モジュール12A、12Bは、個別に、車両本体531に対して着脱可能である。 FIG. 9 shows an example in which a plurality of power supply modules can be attached to and detached from a vehicle body including a plurality of diodes. A power supply circuit 510 illustrated in FIG. 9 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively. A connector 561A and a connector 563A that are detachably connected are arranged between the power supply module 12A and the connection point 131A. A connector 562A and a connector 564A that are detachably connected are disposed between the power supply module 12A and the connection point 132A. Connectors 563A and 564A are included in vehicle body 531. Therefore, the power supply module 12A can be attached to and detached from the vehicle main body 531 including the diode 14A. Further, a connector 561B and a connector 563B that are detachably connected are disposed between the power supply module 12B and the connection point 131B. A connector 562B and a connector 564B that are detachably connected are arranged between the power supply module 12B and the connection point 132B. Connectors 563B and 564B are included in vehicle body 531. Therefore, the power supply module 12B can be attached to and detached from the vehicle main body 531 including the diode 14B. Further, the two power supply modules 12A and 12B can be attached to and detached from the vehicle main body 531 individually.
 ◆変更例8
 本発明において、複数の電源モジュールが有する複数の電源のうちの少なくとも1つの電源は、スイッチ素子と一体化せずに、車両本体に対して着脱可能であってもよい。つまり、複数の電源のうちの少なくとも1つの電源の各々は、当該電源を含む電源モジュールが有するスイッチ素子、および、当該電源と並列に接続されるダイオードを含む車両本体に対して着脱可能であってもよい。例えば、複数の電源が全て、スイッチ素子と一体化せずに、車両本体に対して着脱可能であってもよい。例えば、複数の電源の内の一部の電源だけが、スイッチ素子と一体化せずに、車両本体に対して着脱可能であってもよい。この場合、残りの電源を含む電源モジュールは、ダイオードを含む車両本体に対して着脱可能であってもよい。残りの電源を含む電源モジュールは、ダイオードと一体的に、車両本体に対して着脱可能であってもよい。残りの電源を含む電源モジュールは、車両本体に対して着脱不能であってもよい。電源が、当該電源を含む前記電源モジュールが有するスイッチ素子、および、当該電源と並列に接続されるダイオードを含む車両本体に対して着脱可能であることにより、以下の効果が得られる。電源を交換する場合に、ダイオードとスイッチ素子は交換せずにそのまま使用できる。その分、ダイオードとスイッチ素子のコストを削減できる。また、着脱する要素がダイオードとスイッチ素子を含まないことにより、着脱する要素を小型化できる。
◆ Change example 8
In the present invention, at least one of the plurality of power supplies included in the plurality of power supply modules may be detachable from the vehicle body without being integrated with the switch element. That is, each of at least one of the plurality of power supplies is detachable from a vehicle body including a switch element included in a power supply module including the power supply and a diode connected in parallel with the power supply. Also good. For example, all of the plurality of power supplies may be detachable from the vehicle body without being integrated with the switch element. For example, only a part of the plurality of power supplies may be detachable from the vehicle body without being integrated with the switch element. In this case, the power supply module including the remaining power supply may be detachable from the vehicle body including the diode. The power supply module including the remaining power supply may be detachable from the vehicle body integrally with the diode. The power supply module including the remaining power supply may be detachable from the vehicle body. The power supply is detachable from the vehicle main body including the switch element included in the power supply module including the power supply and the diode connected in parallel with the power supply, thereby obtaining the following effects. When replacing the power supply, the diode and the switch element can be used as they are without replacement. Accordingly, the cost of the diode and the switch element can be reduced. Moreover, since the element to be attached / detached does not include the diode and the switch element, the element to be attached / detached can be reduced in size.
 図10は、複数の電源が、複数のスイッチ素子と複数のダイオードを含む車両本体に対して着脱可能な一例を示す。図10に示す給電回路610は、複数の電源モジュール12A、12Bと、複数の電源モジュール12A、12Bに対してそれぞれ並列に接続された複数のダイオード14A、14Bとを備える。電源121Aとスイッチ素子122Aとの間に、着脱可能に接続されたコネクタ661Aとコネクタ663Aが配置される。スイッチ素子122Aは、コネクタ663Aと接続点131Aとの間に配置される。電源121Aと接続点132Aとの間に、着脱可能に接続されたコネクタ662Aとコネクタ664Aが配置される。コネクタ663A、664Aは、車両本体631に含まれる。そのため、電源121Aは、スイッチ素子122Aとダイオード14Aを含む車両本体631に対して着脱可能である。なお、図6のように、スイッチ素子122Aが電源121Aの負極に接続される場合、スイッチ素子122Aは、コネクタ664Aと接続点132Aとの間に配置される。また、電源121Bとスイッチ素子122Bとの間に、着脱可能に接続されたコネクタ661Bとコネクタ663Bが配置される。電源121Bと接続点132Bとの間に、着脱可能に接続されたコネクタ662Bとコネクタ664Bが配置される。コネクタ663B、664Bは、車両本体631に含まれる。そのため、電源121Bは、スイッチ素子122Bとダイオード14Bを含む車両本体631に対して着脱可能である。2つの電源121A、121Bは、個別に、車両本体631に対して着脱可能である。 FIG. 10 shows an example in which a plurality of power supplies can be attached to and detached from a vehicle body including a plurality of switch elements and a plurality of diodes. A power supply circuit 610 shown in FIG. 10 includes a plurality of power supply modules 12A and 12B and a plurality of diodes 14A and 14B connected in parallel to the plurality of power supply modules 12A and 12B, respectively. A connector 661A and a connector 663A that are detachably connected are disposed between the power source 121A and the switch element 122A. The switch element 122A is disposed between the connector 663A and the connection point 131A. A connector 662A and a connector 664A that are detachably connected are arranged between the power source 121A and the connection point 132A. The connectors 663A and 664A are included in the vehicle main body 631. Therefore, the power supply 121A is detachable from the vehicle main body 631 including the switch element 122A and the diode 14A. As shown in FIG. 6, when the switch element 122A is connected to the negative electrode of the power source 121A, the switch element 122A is disposed between the connector 664A and the connection point 132A. Further, a connector 661B and a connector 663B that are detachably connected are disposed between the power source 121B and the switch element 122B. A connector 662B and a connector 664B are detachably connected between the power supply 121B and the connection point 132B. The connectors 663B and 664B are included in the vehicle main body 631. Therefore, the power source 121B can be attached to and detached from the vehicle main body 631 including the switch element 122B and the diode 14B. The two power supplies 121A and 121B can be attached to and detached from the vehicle main body 631 individually.
 ◆変更例9
 上記実施形態の具体例では、電源モジュール12A、12Bを車両本体31に対して着脱可能とするために、コネクタ161A~164A、161B~164Bを使用している。しかし、本発明において、電源モジュールが車両本体に対して着脱可能な場合に、コネクタが使用されなくてもよい。本発明において、電源モジュールが車両本体に対して着脱可能な場合、コネクタが使用されるか否かに関わらず、工具を使用せずに着脱できることが好ましい。
◆ Modification 9
In the specific example of the above embodiment, the connectors 161A to 164A and 161B to 164B are used in order to make the power supply modules 12A and 12B detachable from the vehicle body 31. However, in the present invention, the connector may not be used when the power supply module is detachable from the vehicle body. In the present invention, when the power supply module can be attached to and detached from the vehicle body, it is preferable that the power supply module can be attached and detached without using a tool regardless of whether or not the connector is used.
 ◆変更例10
 本発明において、車両は、陸上を走行するものであってもよく、水上を走行するものであってもよく、水中を走行するものであってもよく、空中を走行するものであってもよい。陸上を走行する車両は、例えば、四輪車(four-wheel vehicle)、二輪車(two-wheel vehicle)、三輪車(three-wheeler)、スノーモービル等である。陸上を走行する車両は、4つより多い車輪を有するものであってもよい。四輪車は、例えば、乗用車、ATV(All Terrain Vehicle:全地形型車両)、ROV(Recreational Off-highway Vehicle)、ゴルフカート、フォークリフト等である。二輪車は、前後方向に並んだ2つの車輪を有するものであってもよく、左右方向に並んだ2つの車輪を有するものであってもよい。前者の例としては、例えば、自動二輪車(モータサイクル)、スクータ、モペット、自転車等である。三輪車は、前輪が2つものであってもよく、後輪が2つものもであってもよい。水上を走行する車両は、例えば、船、水上バイク等である。水中を走行する車両は、例えば、潜水艇等である。空中を走行する車両は、例えば、飛行機、ヘリコプター、ドローン等である。
◆ Change example 10
In the present invention, the vehicle may be one that travels on land, may travel on water, may travel in water, or may travel in the air. . Vehicles that travel on land are, for example, four-wheel vehicles, two-wheel vehicles, three-wheelers, snowmobiles, and the like. A vehicle traveling on land may have more than four wheels. The four-wheeled vehicle is, for example, a passenger car, an ATV (All Terrain Vehicle), a ROV (Recreational Off-highway Vehicle), a golf cart, a forklift, or the like. The two-wheeled vehicle may have two wheels lined up in the front-rear direction, or may have two wheels lined up in the left-right direction. Examples of the former include motorcycles (motorcycles), scooters, mopeds, bicycles, and the like. The tricycle may have two front wheels or two rear wheels. Vehicles that travel on the water are, for example, ships, water bikes, and the like. The vehicle that travels underwater is, for example, a submersible craft. Vehicles that travel in the air are, for example, airplanes, helicopters, drones, and the like.
 ◆変更例11
 本発明の給電回路は、車両に設けられた負荷に電力を供給可能であると共に、車両以外の装置に設けられた負荷に電力を供給可能であってもよい。
◆ Change example 11
The power supply circuit of the present invention may be capable of supplying power to a load provided in a vehicle and may be capable of supplying power to a load provided in a device other than the vehicle.
 なお、本願の基礎出願である特願2017-024641の電池モジュールは、本願明細書の電源モジュールに含まれる。同基礎出願における電池は、本願明細書の電源に含まれる。同基礎出願における接続端子161A~164A、161B~164Bは、本願明細書のコネクタ161A~164A、161B~164Bに相当する。 Note that the battery module of Japanese Patent Application No. 2017-024641 which is the basic application of the present application is included in the power supply module of the present specification. The battery in the basic application is included in the power supply of the present specification. The connection terminals 161A to 164A and 161B to 164B in the basic application correspond to the connectors 161A to 164A and 161B to 164B in the present specification.
 1、10、210、310、410、510、610 給電回路
 12、12A、12B、212A、212B 電源モジュール
 121、121A、121B 電源
 122、122A、122B スイッチ素子
 14、14A、14B ダイオード
 131、131A、131B 接続点(第2接続点)
 132、132A、132B 接続点(第1接続点)
 20 負荷
 30 車両
 31、331、431、531、631 車両本体
1, 10, 210, 310, 410, 510, 610 Power supply circuit 12, 12A, 12B, 212A, 212B Power supply module 121, 121A, 121B Power supply 122, 122A, 122B Switch element 14, 14A, 14B Diode 131, 131A, 131B Connection point (second connection point)
132, 132A, 132B Connection point (first connection point)
20 Load 30 Vehicle 31, 331, 431, 531, 631 Vehicle body

Claims (10)

  1.  直列に接続された複数の電源モジュールを備え、車両が備える負荷に対して電力を供給する給電回路であって、
     前記複数の電源モジュールの各々は、
     電力を供給する電源と、
     前記電源に対して直列に接続されたスイッチ素子とを含み、
     前記複数の電源モジュールの各々に対して、1つずつ並列に接続された複数のダイオードを備え、
     前記複数のダイオードの各々は、当該ダイオードと前記電源の負極とを接続する第1接続点から、当該ダイオードと前記電源の正極とを接続する第2接続点に向かって電流が流れることを許容するが、前記第2接続点から前記第1接続点に向かって電流が流れることを許容しないように構成されている、給電回路。
    A power supply circuit comprising a plurality of power supply modules connected in series and supplying power to a load provided in a vehicle,
    Each of the plurality of power supply modules is
    A power supply for supplying power;
    A switching element connected in series to the power source,
    A plurality of diodes connected in parallel one by one to each of the plurality of power supply modules,
    Each of the plurality of diodes allows a current to flow from a first connection point connecting the diode and the negative electrode of the power supply to a second connection point connecting the diode and the positive electrode of the power supply. However, the power feeding circuit is configured not to allow current to flow from the second connection point toward the first connection point.
  2.  請求項1に記載の給電回路であって、
     前記スイッチ素子は、電気的に制御可能なスイッチ素子である、給電回路。
    The power supply circuit according to claim 1,
    The power supply circuit, wherein the switch element is an electrically controllable switch element.
  3.  請求項1または2に記載の給電回路であって、
     前記複数の電源モジュールのうちの少なくとも1つの電源モジュールは、前記車両の車両本体に対して着脱可能である、給電回路。
    The feed circuit according to claim 1 or 2,
    At least one power supply module among the plurality of power supply modules is detachable from a vehicle body of the vehicle.
  4.  請求項3に記載の給電回路であって、
     前記複数の電源モジュールのうちの少なくとも1つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能である、給電回路。
    The power supply circuit according to claim 3,
    Each of the at least one power supply module among the plurality of power supply modules is a power feeding circuit that is detachably attached to the vehicle main body integrally with the diode connected in parallel to the power supply module.
  5.  請求項4に記載の給電回路であって、
     前記複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能であり、
     前記少なくとも2つの電源モジュールは、個別に、前記車両本体に対して着脱可能である、給電回路。
    The power supply circuit according to claim 4,
    Each of at least two power supply modules of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
    The power supply circuit, wherein the at least two power supply modules can be individually attached to and detached from the vehicle body.
  6.  請求項4に記載の給電回路であって、
     前記複数の電源モジュールのうちの少なくとも2つの電源モジュールの各々は、当該電源モジュールに並列に接続された前記ダイオードと一体的に、前記車両本体に対して着脱可能であり、
     前記少なくとも2つの電源モジュールは、一体的に、前記車両本体に対して着脱可能である、給電回路。
    The power supply circuit according to claim 4,
    Each of at least two power supply modules of the plurality of power supply modules can be attached to and detached from the vehicle body integrally with the diode connected in parallel to the power supply module.
    The power supply circuit, wherein the at least two power supply modules are integrally detachable from the vehicle body.
  7.  請求項3に記載の給電回路であって、
     前記複数の電源モジュールのうちの少なくとも1つの電源モジュールの各々は、当該電源モジュールと並列に接続される前記ダイオードを含む前記車両本体に対して着脱可能である、給電回路。
    The power supply circuit according to claim 3,
    Each of the at least one power supply module of the plurality of power supply modules is detachable from the vehicle body including the diode connected in parallel with the power supply module.
  8.  請求項1~7の何れか1項に記載の給電回路であって、
     前記複数の電源モジュールが有する複数の電源のうちの少なくとも1つの電源は、前記車両の車両本体に対して着脱可能に構成されおり、
     前記複数の電源モジュールが有する複数の電源のうちの少なくとも1つの電源の各々は、当該電源を含む前記電源モジュールが有する前記スイッチ素子、および、当該電源と並列に接続される前記ダイオードを含む前記車両本体に対して着脱可能である、給電回路。
    A power feeding circuit according to any one of claims 1 to 7,
    At least one of the plurality of power supplies included in the plurality of power supply modules is configured to be detachable from the vehicle body of the vehicle,
    Each of at least one of the plurality of power supplies included in the plurality of power supply modules includes the switch element included in the power supply module including the power supply, and the diode connected in parallel with the power supply. A power supply circuit that is detachable from the main body.
  9.  請求項1~8の何れか1項に記載の給電回路であって、
     前記複数の電源モジュールの少なくとも1つは、前記車両の車両本体に対して着脱不能である、給電回路。
    A power feeding circuit according to any one of claims 1 to 8,
    At least one of the plurality of power supply modules is a power supply circuit that is not attachable to and detachable from a vehicle main body of the vehicle.
  10.  請求項1~9の何れか1項に記載の給電回路であって、
     前記複数の電源モジュールの各々が有する前記電源が、電力を蓄積可能な蓄電デバイス、または、発電可能な発電デバイスである、給電回路。
    A power feeding circuit according to any one of claims 1 to 9,
    The power supply circuit, wherein the power source included in each of the plurality of power supply modules is a power storage device capable of storing power or a power generation device capable of generating power.
PCT/JP2018/004933 2017-02-14 2018-02-13 Power supply circuit WO2018151110A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018568538A JP6949886B2 (en) 2017-02-14 2018-02-13 Power supply circuit
TW107105660A TWI669883B (en) 2017-02-14 2018-02-14 Power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024641 2017-02-14
JP2017024641 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018151110A1 true WO2018151110A1 (en) 2018-08-23

Family

ID=63170633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004933 WO2018151110A1 (en) 2017-02-14 2018-02-13 Power supply circuit

Country Status (3)

Country Link
JP (1) JP6949886B2 (en)
TW (1) TWI669883B (en)
WO (1) WO2018151110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269833A1 (en) * 2021-06-23 2022-12-29 株式会社EViP Charge control circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11444301B2 (en) 2018-09-06 2022-09-13 Industrial Technology Research Institute Power supply device, flying tool using same and power supply method thereof
TWI679829B (en) * 2019-01-25 2019-12-11 天揚精密科技股份有限公司 A regulated power supply device for a multi-cell battery pack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161029A (en) * 2006-12-26 2008-07-10 Fdk Corp Electricity accumulation module and electricity accumulation system
JP2015091200A (en) * 2013-11-06 2015-05-11 ヤマハ発動機株式会社 Vehicle and battery pack

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168704B2 (en) * 1992-06-05 2001-05-21 株式会社タツノ・メカトロニクス Electric car
JPH07212980A (en) * 1994-01-13 1995-08-11 Fujitsu Ltd Battery charging and discharging device
JP2001016706A (en) * 1999-01-01 2001-01-19 Ryuzo Shimizu Detachable battery in electric vehicle
JP3069096B1 (en) * 1999-07-28 2000-07-24 廣瀬 徳三 Electric vehicle
JP4979885B2 (en) * 2004-11-02 2012-07-18 パナソニック株式会社 Power supply
FR2897589B1 (en) * 2006-02-21 2008-05-16 J C Decaux Sa AUTOMATIC CYCLE STORAGE SYSTEM
JP4768498B2 (en) * 2006-04-14 2011-09-07 日立コンピュータ機器株式会社 Bidirectional DC-DC converter and power supply device using the same
JP5249079B2 (en) * 2009-02-17 2013-07-31 株式会社 動研 Battery replacement system for electric device
DE102011003724A1 (en) * 2010-04-30 2011-11-03 Energybus E. V. Modular vehicle system, electric vehicle and module for connection to an electric vehicle
JP5665224B2 (en) * 2011-01-14 2015-02-04 株式会社Jsol Battery system
TW201445845A (en) * 2013-05-24 2014-12-01 Td Hitech Energy Inc Parallel discharge regulation device and regulation method thereof
TWI591928B (en) * 2014-03-11 2017-07-11 睿能創意公司 System for changing portable electrical power storage device exchange plans, method in the system, and non-transitory computer readable storage medium
TWI528682B (en) * 2014-05-15 2016-04-01 國立成功大學 Hybrid power supply system for a fuel cell with cascoded configuration
CN105914841B (en) * 2016-06-08 2023-07-28 杭州弘易科技有限公司 Vehicle-mounted power supply management system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161029A (en) * 2006-12-26 2008-07-10 Fdk Corp Electricity accumulation module and electricity accumulation system
JP2015091200A (en) * 2013-11-06 2015-05-11 ヤマハ発動機株式会社 Vehicle and battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022269833A1 (en) * 2021-06-23 2022-12-29 株式会社EViP Charge control circuit
JP7412055B2 (en) 2021-06-23 2024-01-12 和征 榊原 Charging control circuit

Also Published As

Publication number Publication date
JPWO2018151110A1 (en) 2019-11-07
TWI669883B (en) 2019-08-21
JP6949886B2 (en) 2021-10-13
TW201832444A (en) 2018-09-01

Similar Documents

Publication Publication Date Title
US10195929B2 (en) Electrically-driven vehicle
JP6063008B2 (en) Energy storage system and method of operating energy storage system
US9783037B2 (en) Vehicle
JP5789846B2 (en) Power supply device for vehicle and vehicle equipped with this power supply device
JP5484985B2 (en) Power supply device and vehicle equipped with this power supply device
US20160229293A1 (en) Electrically driven vehicle
US11887796B2 (en) Integrated connector having sense and switching conductors for a relay used in a battery module
CN110065402B (en) Vehicle with a steering wheel
CN109070761B (en) Switchable reservoir system for a vehicle
WO2018151110A1 (en) Power supply circuit
US11362524B2 (en) Battery system and a method for use in the battery system
EP2947470B1 (en) Battery management system
JP2015091200A (en) Vehicle and battery pack
WO2012133706A1 (en) Power supply system, power supply device, and vehicle equipped with power supply system or power supply device
CN111740047B (en) Cooling plate for rechargeable energy storage system
TWI832046B (en) Straddle-type vehicle battery pack and straddle-type vehicle
JP7480714B2 (en) Power Distribution Equipment
WO2021141068A1 (en) Power path switching device for vehicle
KR20140005468A (en) Battery pack for electric bicycle
WO2024003753A1 (en) Battery pack for an electric vehicle
JP2022006937A (en) Vehicle travel system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18754910

Country of ref document: EP

Kind code of ref document: A1