WO2016000221A1 - A system for charging battery of at least one electrical vehicle - Google Patents

A system for charging battery of at least one electrical vehicle Download PDF

Info

Publication number
WO2016000221A1
WO2016000221A1 PCT/CN2014/081477 CN2014081477W WO2016000221A1 WO 2016000221 A1 WO2016000221 A1 WO 2016000221A1 CN 2014081477 W CN2014081477 W CN 2014081477W WO 2016000221 A1 WO2016000221 A1 WO 2016000221A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
voltage
battery
charging
output
Prior art date
Application number
PCT/CN2014/081477
Other languages
French (fr)
Inventor
Dawei YAO
Xiaobo Yang
Yao Chen
Original Assignee
Abb Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ltd filed Critical Abb Technology Ltd
Priority to PCT/CN2014/081477 priority Critical patent/WO2016000221A1/en
Priority to CN201490000986.6U priority patent/CN205565845U/en
Publication of WO2016000221A1 publication Critical patent/WO2016000221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/17Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the field of system for charging a battery of an electrical vehicle, and more particularly to a system for charging a battery of at least one electrical vehicle.
  • FIG 1 is a block diagram showing a conventional EV charger unit by CHAdeMo, Technical Specification of Quick Charger for Electric Vehicle,Jan 31,2012..As shown in figure 1,the EV charger unit 1 includes an AC/DC converter 10 and a DC/DC converter 11 that are linked in series.
  • An EV charging station may comprise at least one EV charger unit so that it can charge the battery of at least one electrical vehicle.
  • the EV charging station can be defined as two types:AC bus based station and DC bus based station.
  • Figures 2 and 3 respectively show a conventional AC bus based EV charging station and a conventional DC bus based EV charging station.As shown in figure 2, the AC bus based EV charging station 2 includes at least one EV charger unit 20 that is coupled to the AC bus bar 21.
  • the AC-DC converter 200 used in each EV charger unit 20 is called distributed AC/DC converter considering that they are distributed with the EV charger units 20 in the AC bus based EV charging station 2.
  • FIG. 1 also teaches the AC bus based EV charging station.
  • the DC bus based EV charging station 3 includes at least one EV charger unit 30 that share the same AC/DC converter 300 but each of them comprises separate DC/DC converter 301.
  • the input of the DC/DC converter 301 is coupled to the output of the AC/DC converter 300 via a DC bus bar 31.
  • the AC/DC converter 300 is utilized to replace the distributed AC/DC converters 200 and thus it is called central AC/DC converter.
  • a system for charging a battery of at least one electric vehicle comprising: a first converter,being adapted for supplying a first DC voltage;at least one transformer;at least one second converter,each of which is coupled to an output of the respective one of the at least one transformer for supplying a second DC voltage;and a first controller; wherein:an output of the first converter is arranged to be connected with output of the respective one of the second converters in series so that supplying a combination of the first DC voltage and the second DC voltage as charging voltage respectively for the electrical vehicle batteries;and the first controller is adapted for controlling the second converter in consideration of measurement of charging current to the electrical vehicle battery to which it supplies the charging voltage thereby adjusting the second DC voltage in response to the electrical vehicle battery.
  • the total number of the electrical vehicle battery that can be charged at the same time has correlation with the number of the second converter.
  • Figure 1 is a block diagram showing a conventional EV charger unit by CHAdeMo;
  • Figures 2 and 3 respectively show a conventional AC bus based EV charging station and a conventional DC bus based EV charging station;
  • Figure 4 illustrates an embodiment of a system for charging a battery of at least one electrical vehicle according to present invention
  • Figure 5 shows a combination of the first converter and of the second converters according to an embodiment of present invention.
  • Figure 6 illustrates another embodiment of a system for charging a battery of at least one electrical vehicle according to present invention.
  • Figure 4 illustrates an embodiment of a system for charging a battery of at least one electrical vehicle according to present invention.
  • the system for charging a battery of at least one electric vehicle 4 comprises a first converter 40,ten second converters 410-419,ten transformers 420 -429 and a first controller 43.
  • the skilled person should understand the number of the second converter and the number of the transformer may be equal to or above one,which depends on practical design according to the required amount of EV battery to be charged at the same time.
  • the transformers 420- 429 are there for the purpose of electrical isolation (or galvanic isolation) between the inputs of the first converter 40 and the second converters 420-429 and thus the input voltages of them are floating with respective to each other.
  • the first converter 40 can supply a first DC voltage U1 as a part of the charging voltage to the battery of the electrical vehicle by rectifying an AC voltage from an external AC power supply.An AC side of the first converter 40 can be coupled to an external distribution network though a main transformer for receiving the power fed from the external AC power supply,and the DC side of the first converter 40 has a first and a second output terminals 40a,40b which are respectively coupled with a first and a second pole 44a,44b of a DC bus 44 and supplies the first DC voltage U1 to the DC bus 44.
  • Each of the second converters 410-419 can supply a second DC voltage U2 by rectifying an AC voltage from the external AC supply as another part of the charging voltage to the battery of the electrical vehicle that is coupled thereto.An AC side of each of the second converters 410-419 can be coupled to the external distribution network through the main transformer for receiving the power fed from the external AC power supply,and the DC side of each of the second converters 410-419 has a first and a second output terminals 410a,410b-419a,419b and supplies the second DC voltage U2 through the their output terminals 410a,410b-419a,419b.
  • the output of the first converter 40 is connected with output of each of the second converters 410-419 in series so that supplying a combination of the first DC voltage U1 and the second DC voltage U2 to the battery of the electrical vehicle,and the charging power is fed to the electrical vehicle battery through two channels in parallel from the external AC power supply,the first converter and the second converter.
  • the second output terminal 410b of the second converter 41 is coupled to the first pole 44a of the DC bus 44.
  • the second DC voltage U2 supplied by the second converter 410 is imposed on the first DC voltage U1 supplied by the first converter 40 such that the EV battery charging voltage U1+U2 is supplied between the first output terminal 410a of the first converter 410 and the second pole 44b of the DC bus 44.
  • This principle may apply to a combination of the first converter 40 and any of the other second converters 411-419.From a point of view of power flow indicated by the arrow,the first converter 40 and
  • the total number of the electrical vehicle battery that can be charged at the same time has correlation with the number of the second converter 41.
  • the number of the second converter 41 is ten,and the total number of the electrical vehicle battery is ten.
  • the EV battery charging system of present invention is helpful for decreasing the converter capacity while maintaining the charging capacity.It follows that the EV battery charging system cost involving power conversion is reduced.
  • Figure 5 shows a combination of the first converter and of the second converters according to an embodiment of present invention.
  • the first converter 40 may be of a full bridge,and each of its legs 401,402,403 has two series-connected controllable switches S1,S2,S3,S4,S5,S6;the controllable switches are used for controlling the commutation of the legs with certain pattern (for example.firing angle control,modulation index control,etc.) set by a second controller (not shown) to supply a stable output of the first DC voltage U1 by rectifying the AC voltage from an external AC power supply.
  • VSC Voltage Source Converter
  • the second converter 410 may also be of a full bridge,and each of its legs 4100,4101, 4102 has two series-connected controllable switches T1,T2,T3,T4,T5,T6;the controllable switches are used for controlling the commutation of the legs with certain pattern (for example.firing angle control,modulation index control,etc.) set by the first controller 43 to supply a stable output of the second DC voltage U2 positive or negative.
  • certain pattern for example.firing angle control,modulation index control,etc.
  • thyristor based Line Commutated Converter can be used as the second converter 410-419.
  • the thyristor based converter is used as the second converter,not only for the large current capability,but also for blocking reversing current from the EV battery (unidirectional current characteristic of thyristor) and the larger DC voltage adjustment capabilities.
  • a thyristor converter can generate either positive or negative DC voltages (depending on the operation mode:as rectifier or as inverter),which means the battery voltage in EV can be either higher or lower than the first DC voltage V1.
  • the similar function could be also realized by IGBT based converter (for example 2-quadant H bridge VSC converter,but more semiconductors (with high current low voltage) are needed).
  • IGBT based converter for example 2-quadant H bridge VSC converter,but more semiconductors (with high current low voltage) are needed.
  • buck DC/DC converter solution high voltage high current
  • This disadvantage of buck DC/DC converter solution may result in larger DC/DC ratio (thus higher dimensioning of central converters and larger buck DC/DC converters) or modified topology with more semiconductors to prevent reverse charging.
  • the EV battery charging system has a diode between output of the second converter 410 and EV battery so as to block back-charging by the battery.
  • the first converter 40 will work in rectifier mode and convert AC voltage to 450V DC voltage.
  • the second converter 410 will work in rectifier mode and convert AC voltage to 50V DC voltage.
  • a 50kW charging capacity is realized by using 5kW AC/DC converter.
  • the driving signals of the second converter 410 by the first controller 43,its DC voltage output,the second DC voltage V2,can follow the charging capacity demand.For example,voltage of EV battery will increase during charging.Then the driving signal angle of the second converter 410 can be decreased to increase the second DC voltage U2 to maintain the charging current.
  • the second converter 410 can be operated in inverter mode (firing angel bigger than 90 degrees) to meet EV requirement.
  • the voltage reference of the first converter 40 is a function of voltages of EV batteries,for example according to the average value
  • the distributed first and second converters can block the DC fault current when there is a DC short circuit fault on the DC bus 44,by which the EV battery is protected.
  • the IGBT based first converter can also provide power filter and/or STATCOM function of AC network,which may be helpful to satisfy the grid interference standards.
  • Figure 6 illustrates another embodiment of a system for charging a battery of at least one electrical vehicle according to present invention.
  • the system for charging a battery of at least one electrical vehicle 6 further includes an inverter 60.Inputs of the inverter 60 is coupled to the first pole and the second pole 44a,44b of the DC bus 44 for receiving input power at the first DC voltage U1 and converting the first DC voltage U1 to an AC voltage,and outputs of the inverter 60 are coupled to the inputs of each of the transformers 420-429 for supplying the AC voltage to each of the transformers 420-429 which in turn supply the transformed AC voltage to the respective one of the second converters 410-419.
  • the capacity of the inverter 60 amounts to the total capacity for all of the second converters 410-419.
  • the output of the first converter 40 is connected with output of each of the second converters 410-419 in series so that supplying a combination of the first DC voltage U1 and the second DC voltage U2 to the battery of the electrical vehicle,th
  • one possible solution is to use high frequency converter transforms 420-429 and high frequency inverter 60 and to form an internal high frequency common AC bus for all the transformers to reduce the footprint/weight/cost of the transformers.
  • the first converter 40 can be replaced with a battery system or solar PV generation system,or PV plus battery system.
  • a battery system or solar PV generation system,or PV plus battery system By this replacement,it is helpful for decreasing dependency of charging infrastructure on network,decreasing the negative impact of charging operation on network,and reducing power absorbing from AC network.
  • EV charging facility can be implemented in remote areas such as roadside with weak network (or even with no network).

Abstract

It provides a system for charging a battery of at least one electric vehicle, comprising: a first converter, being adapted for supplying a first DC voltage; at least one transformer; at least one second converter, each of which is coupled to an output of the respective one of the at least one transformer for supplying a second DC voltage; and a first controller; wherein: an output of the first converter is arranged to be connected with output of the respective one of the second converters in series so that supplying a combination of the first DC voltage and the second DC voltage as charging voltage respectively for the electrical vehicle batteries; and the first controller is adapted for controlling the second converter in consideration of measurement of charging current to the electrical vehicle battery to which it supplies the charging voltage thereby adjusting the second DC voltage in response to the electrical vehicle battery. By having the electrical vehicle battery charging system, the total number of the electrical vehicle battery that can be charged at the same time has correlation with the number of the second converter

Description

A SYSTEM FOR CHARGING BATTERY OF AT LEAST ONE ELECTRICAL  VEHICLE Technical Field
The invention relates to the field of system for charging a battery of an electrical vehicle, and more particularly to a system for charging a battery of at least one electrical vehicle.
Background Art
With the development of electrical vehicle (EV),EV chargers are designed and central  charging stations are constructed globally for electrical vehicles.PCT application  WO2012/119300 A1 discloses an EV charger unit.According to figure 1 of  WO2012/119300 A1,standard IGBT bridges are adopted in EV charger unit for AC-DC  conversions,and then DC-DC converters will be used to match the desired voltage level of  batteries.
Figure 1 is a block diagram showing a conventional EV charger unit by CHAdeMo, Technical Specification of Quick Charger for Electric Vehicle,Jan 31,2012..As shown in  figure 1,the EV charger unit 1 includes an AC/DC converter 10 and a DC/DC converter 11  that are linked in series.
An EV charging station may comprise at least one EV charger unit so that it can charge the  battery of at least one electrical vehicle.Dependent on the type of the bus bar,the EV  charging station can be defined as two types:AC bus based station and DC bus based  station.Figures 2 and 3 respectively show a conventional AC bus based EV charging  station and a conventional DC bus based EV charging station.As shown in figure 2,the  AC bus based EV charging station 2 includes at least one EV charger unit 20 that is  coupled to the AC bus bar 21.The AC-DC converter 200 used in each EV charger unit 20  is called distributed AC/DC converter considering that they are distributed with the EV  charger units 20 in the AC bus based EV charging station 2.Description concerning  figures 2 and 3 of WO2012/119300 A1 also teaches the AC bus based EV charging station. As shown in figure 3,the DC bus based EV charging station 3 includes at least one EV  charger unit 30 that share the same AC/DC converter 300 but each of them comprises  separate DC/DC converter 301.The input of the DC/DC converter 301 is coupled to the  output of the AC/DC converter 300 via a DC bus bar 31.As compared with figure 2,in  the DC bus based EV charging station,the AC/DC converter 300 is utilized to replace the  distributed AC/DC converters 200 and thus it is called central AC/DC converter.
In both AC based and DC based EV charging station solutions,all converters used as EV  charger are full-power converter.Take a 50kW x 10 charging station as an example,the  total capacity of the converter system is 1000 kW which is actually doubled (50kW x 10  for AC/DC stage,50kW x 10 for DC/DC stage).The full power-converter brings high cost, high losses and large foot print/weight.
Brief Summary of the Invention
It is therefore an objective of the invention to provide A system for charging a battery of at  least one electric vehicle,comprising:a first converter,being adapted for supplying a first  DC voltage;at least one transformer;at least one second converter,each of which is  coupled to an output of the respective one of the at least one transformer for supplying a  second DC voltage;and a first controller;wherein:an output of the first converter is  arranged to be connected with output of the respective one of the second converters in  series so that supplying a combination of the first DC voltage and the second DC voltage  as charging voltage respectively for the electrical vehicle batteries;and the first controller  is adapted for controlling the second converter in consideration of measurement of  charging current to the electrical vehicle battery to which it supplies the charging voltage  thereby adjusting the second DC voltage in response to the electrical vehicle battery.
By having the electrical vehicle battery charging system,the total number of the electrical  vehicle battery that can be charged at the same time has correlation with the number of the  second converter.
Brief Description of the Drawings
The subject matter of the invention will be explained in more detail in the following text  with reference to preferred exemplary embodiments which are illustrated in the drawings, in which:
Figure 1 is a block diagram showing a conventional EV charger unit by CHAdeMo;
Figures 2 and 3 respectively show a conventional AC bus based EV charging station and a  conventional DC bus based EV charging station;
Figure 4 illustrates an embodiment of a system for charging a battery of at least one  electrical vehicle according to present invention;
Figure 5 shows a combination of the first converter and of the second converters according  to an embodiment of present invention;and
Figure 6 illustrates another embodiment of a system for charging a battery of at least one  electrical vehicle according to present invention.
The reference symbols used in the drawings,and their meanings,are listed in summary  form in the list of reference symbols.In principle,identical parts are provided with the  same reference symbols in the figures.
Preferred Embodiments of the Invention
Figure 4 illustrates an embodiment of a system for charging a battery of at least one  electrical vehicle according to present invention.As shown in figure 4,the system for  charging a battery of at least one electric vehicle 4 comprises a first converter 40,ten  second converters 410-419,ten transformers 420 -429 and a first controller 43.The skilled  person should understand the number of the second converter and the number of the  transformer may be equal to or above one,which depends on practical design according to  the required amount of EV battery to be charged at the same time.The transformers 420- 429 are there for the purpose of electrical isolation (or galvanic isolation) between the  inputs of the first converter 40 and the second converters 420-429 and thus the input  voltages of them are floating with respective to each other.
The first converter 40 can supply a first DC voltage U1 as a part of the charging voltage to  the battery of the electrical vehicle by rectifying an AC voltage from an external AC power  supply.An AC side of the first converter 40 can be coupled to an external distribution  network though a main transformer for receiving the power fed from the external AC  power supply,and the DC side of the first converter 40 has a first and a  second output  terminals  40a,40b which are respectively coupled with a first and a  second pole  44a,44b  of a DC bus 44 and supplies the first DC voltage U1 to the DC bus 44.
Each of the second converters 410-419 can supply a second DC voltage U2 by rectifying  an AC voltage from the external AC supply as another part of the charging voltage to the  battery of the electrical vehicle that is coupled thereto.An AC side of each of the second  converters 410-419 can be coupled to the external distribution network through the main  transformer for receiving the power fed from the external AC power supply,and the DC  side of each of the second converters 410-419 has a first and a second output terminals  410a,410b-419a,419b and supplies the second DC voltage U2 through the their output  terminals 410a,410b-419a,419b.
The output of the first converter 40 is connected with output of each of the second  converters 410-419 in series so that supplying a combination of the first DC voltage U1  and the second DC voltage U2 to the battery of the electrical vehicle,and the charging  power is fed to the electrical vehicle battery through two channels in parallel from the  external AC power supply,the first converter and the second converter.In particular  considering the combination of the first converter 40 and one of the second converter 410  as an example,the second output terminal 410b of the second converter 41 is coupled to  the first pole 44a of the DC bus 44.When charging a EV battery,the second DC voltage  U2 supplied by the second converter 410 is imposed on the first DC voltage U1 supplied  by the first converter 40 such that the EV battery charging voltage U1+U2 is supplied  between the first output terminal 410a of the first converter 410 and the second pole 44b of  the DC bus 44.This principle may apply to a combination of the first converter 40 and any  of the other second converters 411-419.From a point of view of power flow indicated by  the arrow,the first converter 40 and one of the second converters 410 work together to  supply the charging power for one electrical vehicle battery B0,the first converter 40 and  another of the second converters 411 work together to supply the charging voltage for  another electrical vehicle battery B1,so forth concerning the other second converter 412- 419 and the other electrical vehicle battery B2-B9.The first controller 40 can control the  second converter  410,411...419 by setting drive signals in consideration of measurement  of charging current to the electrical vehicle battery to which it supplies the charging  voltage thereby adjusting the second DC voltage U2 in response to the electrical vehicle  battery.In particular,the first controller 43 can control the second converter 410 in  consideration of measurement of charging current to the electrical battery B0 thereby  adjusting its second DC voltage U2 in response to the electrical vehicle battery B0 voltage, the first controller 43 can control the second converter 411 in consideration of  measurement of charging current to the electrical battery B1 thereby adjusting its second  DC voltage U2 in response to the electrical vehicle battery B1 voltage,so forth concerning  the other second converter 412-219 and the other electrical vehicle battery B2-B9.A  current measuring device can be used for the measurement of the charging current,which  can be disposed at the output of each of the second converters 410-419.
By having the electrical vehicle battery charging system according to figure 4,the total  number of the electrical vehicle battery that can be charged at the same time has  correlation with the number of the second converter 41.For example,from the illustration  of figure 4,the number of the second converter 41 is ten,and the total number of the  electrical vehicle battery is ten.The skilled person should understand the number of the  second converter 41 may be equal to or above one,so forth with the number of the  electrical vehicle battery.Assuming the required charging capacity for the electrical  vehicle battery is 50 kW and the number of electrical vehicle battery can be charged at the  same time is ten,the total charging capacity for the system is 50kW x 10=500 kW.As  above mentioned,electrical power is supplied via the first converter 40 and the second  converter 410,...,419 in parallel to the electrical vehicle batteries,the system total  capacity can be distributed among the first converter and the second converters 410-419. For example,the capacity for the first converter 40 may amount to 450 kW,and the  capacity for each of the second converters 410-419 may amount to 5 kW.As compared  with the conventional electrical vehicle battery charging station with charging capacity of  50kW x 10=500 kW,the total capacity of the converters according to the embodiment of  present invention is lowered at 500 kW that is smaller than that of 1000 kW of the  conventional.In summary,the EV battery charging system of present invention is helpful  for decreasing the converter capacity while maintaining the charging capacity.It follows  that the EV battery charging system cost involving power conversion is reduced.
Figure 5 shows a combination of the first converter and of the second converters according  to an embodiment of present invention.As shown in figure 5,the first converter 40 may be  of a full bridge,and each of its  legs  401,402,403 has two series-connected controllable  switches S1,S2,S3,S4,S5,S6;the controllable switches are used for controlling the  commutation of the legs with certain pattern (for example.firing angle control,modulation  index control,etc.) set by a second controller (not shown) to supply a stable output of the  first DC voltage U1 by rectifying the AC voltage from an external AC power supply.A  two-level Voltage Source Converter (VSC) based on IGBT is used as the first converter 40. The second converter 410 may also be of a full bridge,and each of its  legs  4100,4101, 4102 has two series-connected controllable switches T1,T2,T3,T4,T5,T6;the  controllable switches are used for controlling the commutation of the legs with certain  pattern (for example.firing angle control,modulation index control,etc.) set by the first  controller 43 to supply a stable output of the second DC voltage U2 positive or negative. For example,6-pulse thyristor based Line Commutated Converter (LCC) can be used as  the second converter 410-419.The thyristor based converter is used as the second  converter,not only for the large current capability,but also for blocking reversing current  from the EV battery (unidirectional current characteristic of thyristor) and the larger DC  voltage adjustment capabilities.A thyristor converter can generate either positive or  negative DC voltages (depending on the operation mode:as rectifier or as inverter),which  means the battery voltage in EV can be either higher or lower than the first DC voltage V1. As alternative,the similar function could be also realized by IGBT based converter (for  example 2-quadant H bridge VSC converter,but more semiconductors (with high current  low voltage) are needed).However,For buck DC/DC converter solution (high voltage high  current),it is required that battery voltage in EV should be always lower than the input DC  voltage,otherwise the EV charger will lose the control ability of DC charging current and  be reverse charged by EV,due to the antiparallel diode.This disadvantage of buck DC/DC  converter solution may result in larger DC/DC ratio (thus higher dimensioning of central  converters and larger buck DC/DC converters) or modified topology with more  semiconductors to prevent reverse charging.In addressing this problem,instead according  to the embodiment of present invention,the EV battery charging system has a diode  between output of the second converter 410 and EV battery so as to block back-charging  by the battery.
Assuming the DC bus 44 requires a stable 450V DC voltage and EV battery requires 500V  DC voltage to generate 100A DC current for fast charging.To satisfy the charging  requirement,the first converter 40 will work in rectifier mode and convert AC voltage to  450V DC voltage.The second converter 410 will work in rectifier mode and convert AC  voltage to 50V DC voltage.A 50kW charging capacity is realized by using 5kW AC/DC  converter.With changing the driving signals of the second converter 410 by the first  controller 43,its DC voltage output,the second DC voltage V2,can follow the charging  capacity demand.For example,voltage of EV battery will increase during charging.Then  the driving signal angle of the second converter 410 can be decreased to increase the  second DC voltage U2 to maintain the charging current.When the voltage of EV battery is  lower than of DC bus 44,the second converter 410 can be operated in inverter mode (firing  angel bigger than 90 degrees) to meet EV requirement.When charging at least one EV,the  voltage reference of the first converter 40 is a function of voltages of EV batteries,for  example according to the average value of EV batteries’voltage.And the first controller  43 for controlling the second converters 410 -419 can adjust their outputs,the second DC  voltages U2 accordingly to satisfy the required charging demand (charging current).This  brings following advantages:broader input/output voltage ratio,higher redundancy and  flexible adaptability for various EV battery voltage level of the EV battery charging system  because of its two-stage voltage control;and decreased output harmonic because it uses  controllable converter rather than diode rectifier at its output stage.
In addition,the distributed first and second converters (IGBT based VSC or thyristor based  LCC) can block the DC fault current when there is a DC short circuit fault on the DC bus  44,by which the EV battery is protected.
Preferably,to decrease the cost of the transformer,one possible solution is to use high  frequency converter transforms 420 -429 and to form an internal high frequency common  AC bus for all the transformers to reduce the footprint/weight/cost of the transformers. This is also helpful to reduce the harmonics generated by thyristor converter and confine  the harmonics inside the EV battery charging system.Regarding the power quality issue, the IGBT based first converter can also provide power filter and/or STATCOM function of  AC network,which may be helpful to satisfy the grid interference standards.
Figure 6 illustrates another embodiment of a system for charging a battery of at least one  electrical vehicle according to present invention.As compared with the embodiment  according to figure 4,the system for charging a battery of at least one electrical vehicle 6  further includes an inverter 60.Inputs of the inverter 60 is coupled to the first pole and the  second pole  44a,44b of the DC bus 44 for receiving input power at the first DC voltage U1  and converting the first DC voltage U1 to an AC voltage,and outputs of the inverter 60  are coupled to the inputs of each of the transformers 420-429 for supplying the AC  voltage to each of the transformers 420-429 which in turn supply the transformed AC  voltage to the respective one of the second converters 410-419.The capacity of the  inverter 60 amounts to the total capacity for all of the second converters 410-419.The  output of the first converter 40 is connected with output of each of the second converters  410-419 in series so that supplying a combination of the first DC voltage U1 and the  second DC voltage U2 to the battery of the electrical vehicle,thus the charging power is  fed to the electrical vehicle battery through one channel of the first converter 40,of which  a portion is centralized on the inverter 60 and distributed among the second converters 410  -419.Assuming the required charging capacity for the electrical vehicle battery is 50 kW  and the number of electrical vehicle battery can be charged at the same time is ten,the total  charging capacity for the system is 50kW x 10=500 kW.The capacity for the first  converter 40 may amount to 500 kW,and the capacity for the inverter 60 amounts to 50  kW,and each of the second converters 410-419 may amount to 5 kW.As compared with  the conventional electrical vehicle battery charging station with charging capacity of  50kW x 10=500 kW,the total capacity of the converters according to the embodiment of  present invention is lowered at 600 kW that is smaller than that of 1000 kW of the  conventional.The EV battery charging system of present invention is helpful for  decreasing the converter capacity while maintaining the charging capacity.It follows that  the EV battery charging system cost involving power conversion is reduced.
Preferably,to decrease the cost of the transformer,one possible solution is to use high  frequency converter transforms 420-429 and high frequency inverter 60 and to form an  internal high frequency common AC bus for all the transformers to reduce the  footprint/weight/cost of the transformers.
As an alternative to the embodiments of present invention,the first converter 40 can be  replaced with a battery system or solar PV generation system,or PV plus battery system. By this replacement,it is helpful for decreasing dependency of charging infrastructure on  network,decreasing the negative impact of charging operation on network,and reducing  power absorbing from AC network.Thus,EV charging facility can be implemented in  remote areas such as roadside with weak network (or even with no network).
Though the present invention has been described on the basis of some preferred  embodiments,those skilled in the art should appreciate that those embodiments should by  no way limit the scope of the present invention.Without departing from the spirit and  concept of the present invention,any variations and modifications to the embodiments  should be within the apprehension of those with ordinary knowledge and skills in the art, and therefore fall in the scope of the present invention which is defined by the  accompanied claims.

Claims (10)

  1. A system for charging a battery of at least one electric vehicle,comprising:
    a first converter,being adapted for supplying a first DC voltage;
    at least one transformer;
    at least one second converter,each of which is coupled to an output of the respective  one of the at least one transformer for supplying a second DC voltage;and
    a first controller;
    wherein:
    an output of the first converter is arranged to be connected with output of the respective  one of the second converters in series so that supplying a combination of the first DC  voltage and the second DC voltage as charging voltage respectively for the electrical  vehicle batteries;and
    the first controller is adapted for controlling the second converter in consideration of  measurement of charging current to the electrical vehicle battery to which it supplies the  charging voltage thereby adjusting the second DC voltage in response to the electrical  vehicle battery.
  2. The system for charging a battery of at least one electric vehicle according to claim  1,wherein:
    the second converter is of a full bridge,each of its legs having two series-connected  controllable switches;and
    the first controller for the second converter is adapted to set drive signals of the  controllable switches to the second converter to achieve the second DC voltage positive or  negative.
  3. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,wherein:
    the second converter is thyristor-based.
  4. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,wherein:
    the second converter is IGBT-based.
  5. The system for charging a battery of at least one electric vehicle according to claim  4,wherein:
    the second converter further comprises:
    a diode,being arranged between output of the second converter and the battery of the  respective one of the electric vehicle so as to block back-charging by the battery.
  6. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,wherein:
    an input of the first converter and an input of each of the second converters are adapted  to be coupled to an external AC voltage source;
    wherein:
    the first converter is adapted for supplying the first DC voltage by rectifying an AC  voltage from the external AC voltage source;and
    the second converter is adapted for supplying the second DC voltage by rectifying an  AC voltage from the external AC voltage source.
  7. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,wherein:
    further comprising:
    an inverter,its input being coupled to output of the first converter and its output being  coupled to input of the transformer;
    wherein:
    an input of the first converter can be coupled to an external AC voltage source;
    the first converter supplies the first DC voltage by rectifying an AC voltage to the  inverter;and
    the second converter supplies the second DC voltage by rectifying an AC voltage from  the transformer.
  8. The system for charging a battery of at least one electric vehicle according to  claims 7 wherein:
    both of the transformer and the inverter are operable at high frequency.
  9. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,further comprising:
    a second controller;
    wherein:
    the first converter is of a full bridge,each of its legs having two series-connected  controllable switches;and
    the second controller is adapted for controlling the first converter to achieve a stable  output of the first DC voltage based on EV battery voltages.
  10. The system for charging a battery of at least one electric vehicle according to claim  1 or 2,wherein:
    the first converter is replaced by a battery system or solar PV generation system,or PV  plus battery system.
PCT/CN2014/081477 2014-07-02 2014-07-02 A system for charging battery of at least one electrical vehicle WO2016000221A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/081477 WO2016000221A1 (en) 2014-07-02 2014-07-02 A system for charging battery of at least one electrical vehicle
CN201490000986.6U CN205565845U (en) 2014-07-02 2014-07-02 System for a battery charges for giving at least one electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081477 WO2016000221A1 (en) 2014-07-02 2014-07-02 A system for charging battery of at least one electrical vehicle

Publications (1)

Publication Number Publication Date
WO2016000221A1 true WO2016000221A1 (en) 2016-01-07

Family

ID=55018300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081477 WO2016000221A1 (en) 2014-07-02 2014-07-02 A system for charging battery of at least one electrical vehicle

Country Status (2)

Country Link
CN (1) CN205565845U (en)
WO (1) WO2016000221A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422372A (en) * 2020-12-22 2021-09-21 北京信息科技大学 Integrated charging station for transformer substation and control method
US11362525B2 (en) * 2017-12-29 2022-06-14 Lianghuan FENG Full direct-current boost/buck power transmission system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599884A (en) * 2017-10-30 2018-01-19 安徽和义新能源汽车充电设备有限公司 A kind of quick charger used for electric vehicle
DE102019211553A1 (en) * 2019-08-01 2021-02-04 Audi Ag Bidirectional DC wallbox for electric vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278316A (en) * 1989-04-19 1990-11-14 Fuji Electric Co Ltd Controller for power unit
DE29712483U1 (en) * 1997-07-09 1997-12-04 T Leistungselektronik Gmbh As Power supply unit for direct current, in particular for battery charging
CN2622904Y (en) * 2003-05-21 2004-06-30 付电明 Large power charging station
CN103107583A (en) * 2013-01-24 2013-05-15 中国电力科学研究院 Electric vehicle charging station main circuit topology structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278316A (en) * 1989-04-19 1990-11-14 Fuji Electric Co Ltd Controller for power unit
DE29712483U1 (en) * 1997-07-09 1997-12-04 T Leistungselektronik Gmbh As Power supply unit for direct current, in particular for battery charging
CN2622904Y (en) * 2003-05-21 2004-06-30 付电明 Large power charging station
CN103107583A (en) * 2013-01-24 2013-05-15 中国电力科学研究院 Electric vehicle charging station main circuit topology structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362525B2 (en) * 2017-12-29 2022-06-14 Lianghuan FENG Full direct-current boost/buck power transmission system and method
CN113422372A (en) * 2020-12-22 2021-09-21 北京信息科技大学 Integrated charging station for transformer substation and control method

Also Published As

Publication number Publication date
CN205565845U (en) 2016-09-07

Similar Documents

Publication Publication Date Title
US9893633B1 (en) Modular multilevel DC-DC converter and associated method of use
CN107251398B (en) DC-DC converter
US10179515B2 (en) System for charging battery of electric vehicle including a controller connected to at least one switch
US8824179B2 (en) Soft-switching high voltage power converter
Liu et al. A single-phase PFC rectifier with wide output voltage and low-frequency ripple power decoupling
CN108072826B (en) Synthetic test circuit for testing performance of sub-modules in power compensator and test method thereof
Suresh et al. A novel dual-leg DC-DC converter for wide range DC-AC conversion
CN101499675A (en) Charging circuit and power supply system
WO2012037964A1 (en) Series - connected dc / dc converter for controlling the power flow in a hvdc power transmission system
KR102543641B1 (en) Power conversion apparatus
WO2016000221A1 (en) A system for charging battery of at least one electrical vehicle
Wang et al. Topology and control method of a single-cell matrix-type solid-state transformer
JP6454540B2 (en) Power converter
KR101027988B1 (en) Serial type compensating rectifier and Uninterruptible Power Supply having that
CN108199603B (en) Multi-winding time-sharing power supply isolation flyback direct current chopper type single-stage multi-input inverter
CN112350607A (en) Three-phase power supply device with bidirectional power conversion
Komeda et al. An Isolated Single-Phase AC-DC Converter basedon a Dual Active Bridge Converter and an Active Energy Buffer Circuit
JP5931345B2 (en) Uninterruptible power supply system
Gorla et al. Analysis and implementation of a three-phase matrix-based isolated AC-DC converter with transformer leakage energy management
RU2540966C1 (en) Static converter
Kabalcı Solid state transformers with multilevel inverters
Das et al. A comparative analysis of PI and PID controlled bidirectional DC-DC converter with conventional bidirectional DC-DC converter
Iwata et al. Isolated bidirectional single-phase AC/DC converter using a soft-switching technique
KR101592227B1 (en) Circuit for controlling dc bus imbalance of energy storage system
CN109687433B (en) Flexible transformer substation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896568

Country of ref document: EP

Kind code of ref document: A1