WO2015108070A1 - Power conversion device and method for determining state of power conversion device - Google Patents

Power conversion device and method for determining state of power conversion device Download PDF

Info

Publication number
WO2015108070A1
WO2015108070A1 PCT/JP2015/050811 JP2015050811W WO2015108070A1 WO 2015108070 A1 WO2015108070 A1 WO 2015108070A1 JP 2015050811 W JP2015050811 W JP 2015050811W WO 2015108070 A1 WO2015108070 A1 WO 2015108070A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
unit
power
control unit
output
Prior art date
Application number
PCT/JP2015/050811
Other languages
French (fr)
Japanese (ja)
Inventor
伸久 前田
江鳴 毛利
將紀 栗田
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201580003930.5A priority Critical patent/CN105900327B/en
Publication of WO2015108070A1 publication Critical patent/WO2015108070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off

Definitions

  • the present invention relates to a power converter and a state determination method for the power converter.
  • the present invention claims the priority of Japanese Patent Application No. 2014-006676 filed on January 17, 2014, and for the designated countries where weaving by reference of documents is permitted, the contents described in the application are as follows: Is incorporated into this application by reference.
  • Patent Document 1 has a problem that the relay state is determined using a relay having an answer back function.
  • an object of the present invention is to provide a technology capable of determining the state of a relay with a simpler configuration even if the relay has no answer back function.
  • a power converter includes a relay control unit that outputs a drive signal for opening and closing a relay, and a detection that detects the drive signal output from the relay control unit to the relay. And a determination unit that determines a state of the relay based on a control state signal indicating an open / close state of the relay output from the relay control unit, and a detection result of the detection unit.
  • FIG. 5 is a diagram illustrating an example of a functional block of a determination unit 29.
  • FIG. 6 is a diagram illustrating a comparison operation of a comparison unit 43.
  • FIG. 5 is a flowchart illustrating an operation example of a determination unit 29. It is the figure which showed an example of the hardware constitutions which implement
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to a first embodiment of the present invention.
  • the power conversion device includes an inverter device 10 and a regenerative converter device 20.
  • FIG. 1 shows a power source 1 and a load 2 in addition to the power conversion device.
  • the power source 1 is, for example, a three-phase AC power source.
  • the load 2 is, for example, a motor.
  • the inverter device 10 converts AC power supplied from the power source 1 into DC power, converts the converted DC power into AC power, and outputs the AC power to the load 2.
  • the inverter device 10 includes a forward conversion unit 11, a thyristor 12, a resistor 13, capacitive elements 14 and 16, an inverse conversion unit 15, and an inverter control unit 17.
  • the forward conversion unit 11 is connected to the power source 1.
  • the forward conversion unit 11 converts the AC voltage supplied from the power source 1 into a DC voltage and outputs the DC voltage to the DC bus of the inverter device 10.
  • the thyristor 12 is connected in series between the forward conversion unit 11 and the reverse conversion unit 15.
  • a resistor 13 is connected to the thyristor 12 in parallel.
  • the thyristor 12 is turned off when the power source 1 is turned on, and when the voltage of the DC bus of the inverter device 10 becomes equal to or higher than a predetermined voltage due to the charging of the capacitive element 14 (the voltage between the arrows P1 and N1 in FIG. Turn on) That is, the current output from the forward conversion unit 11 flows through the resistor 13 when the power supply 1 is turned on, and then flows through the thyristor 12 when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage. As described above, when the power source 1 is turned on, the current output from the forward conversion unit 11 is caused to flow through the resistor 13, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 14.
  • the thyristor 12 is turned on by, for example, the inverter control unit 17. For example, when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage, the inverter control unit 17 supplies a voltage to the gate of the thyristor 12 and turns on the thyristor 12.
  • the capacitive element 14 is connected to the forward conversion unit 11 in parallel.
  • the capacitive element 14 smoothes the voltage output from the forward conversion unit 11.
  • the capacitive element 14 is an electrolytic capacitor, for example.
  • the reverse conversion unit 15 is connected to the forward conversion unit 11 in parallel.
  • the inverse conversion unit 15 converts the DC voltage output from the forward conversion unit 11 into an AC voltage and outputs the AC voltage to the load 2.
  • the inverse conversion unit 15 has, for example, an IGBT (Insulated Gate Bipolar Transistor) switching element, and turns on and off the IGBT according to control of the inverter control unit 17 to output an AC voltage to the load 2.
  • IGBT Insulated Gate Bipolar Transistor
  • the capacitive element 16 is connected to the inverse conversion unit 15 in parallel.
  • the capacitive element 16 is, for example, a snubber capacitor that absorbs a transient high voltage generated by the on / off operation of the inverse conversion unit 15.
  • the inverter control unit 17 controls the on / off operation of the thyristor 12 as described above. Further, the inverter control unit 17 controls the on / off operation of the inverse conversion unit 15 so that the load 2 performs a desired operation. For example, when the load 2 is a motor and the motor is in a power running state, the inverter control unit 17 controls the inverse conversion unit 15 to convert a DC voltage into an AC voltage having a predetermined frequency and drive the motor. To do. Moreover, although mentioned later, the inverter control part 17 stops the switching operation
  • the regenerative converter device 20 is connected to the inverse conversion unit 15 in parallel.
  • the regenerative converter device 20 converts the regenerative power generated in the load 2 into AC power and outputs it to the power source 1.
  • regenerative converter device 20 when the load 2 is a motor and the motor is in a regenerative state, the motor functions as a generator, and the voltage of the DC bus of the inverter device 10 increases.
  • regenerative converter device 20 When the voltage of the DC bus of inverter device 10 (or regenerative converter device 20) becomes equal to or higher than a predetermined voltage, regenerative converter device 20 has a voltage of DC bus of regenerative converter device 20 (that is, a voltage of DC bus of inverter device 10). Is converted into an AC voltage and output to the power source 1.
  • the electric power output from the regenerative converter device 20 to the power source 1 is supplied to other devices connected to the power source 1, not shown in FIG.
  • Regenerative converter device 20 operates when load 2 is in a regenerative state.
  • the regenerative converter device 20 includes a diode 21, a relay 22, a resistor 23, capacitive elements 24 and 26, an inverse conversion unit 25, a detection unit 27, a relay control unit 28, a determination unit 29, and a converter control unit. 30.
  • the diode 21 is connected in series between the DC bus of the inverter device 10 and the inverse conversion unit 25.
  • the diode 21 is a backflow prevention diode that suppresses a backflow current flowing from the regenerative converter device 20 to the inverter device 10.
  • the relay 22 is connected in series with the capacitive element 24 and is connected in parallel to the inverse conversion unit 25.
  • a resistor 23 is connected in parallel to the relay 22.
  • the relay 22 is a relay that does not have an answer back function.
  • the relay 22 is turned off when the power source 1 is turned on, and turned on when the voltage of the DC bus of the regenerative converter device 20 becomes equal to or higher than a predetermined voltage due to the charging of the capacitive element 24. That is, the current output from the forward conversion unit 11 flows through the resistor 23 when the power supply 1 is turned on, and then flows through the relay 22 when the voltage of the DC bus of the regenerative converter device 20 exceeds a predetermined voltage. As described above, when the power source 1 is turned on, the current output from the forward conversion unit 11 is caused to flow through the resistor 23, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 24.
  • the relay 22 opens and closes according to the drive current output from the relay controller 28.
  • the relay 22 has a coil and a switch. When a drive current is output from the relay control unit 28, the coil is excited to close the switch and turn on. Further, for example, when the drive current is not output from the relay control unit 28, the relay 22 stops generating a magnetic flux from the coil and opens the switch to be turned off.
  • the capacitive element 24 is connected in series with the relay 22 to which the resistor 23 is connected in parallel, and is connected in parallel to the inverse conversion unit 25.
  • Capacitance element 24 smoothes the voltage of the DC bus of regenerative converter device 20 (the voltage between arrows P2 and N2 in FIG. 1).
  • the capacitive element 24 is, for example, an electrolytic capacitor.
  • the reverse conversion unit 25 is connected in parallel with the reverse conversion unit 15 of the inverter device 10 through the diode 21.
  • the reverse conversion unit 25 converts the voltage of the DC bus of the regenerative converter device 20 into an AC voltage and outputs the AC voltage to the power source 1. That is, the inverse conversion unit 25 converts the regenerative power generated in the load 2 into AC power and outputs it to the power source 1.
  • the capacitor element 26 is connected to the inverse conversion unit 25 in parallel.
  • the capacitive element 26 is, for example, a snubber capacitor that absorbs a transient high voltage generated by the on / off operation of the inverse conversion unit 25.
  • the detection unit 27 detects the drive current output from the relay control unit 28 and outputs the detection result to the determination unit 29. For example, when detecting the drive current, the detection unit 27 outputs a “drive current presence signal” indicating that the drive current has been detected to the determination unit 29. Further, for example, when the detection unit 27 does not detect the drive current, the detection unit 27 outputs a “drive current no signal” indicating that the drive current is not detected to the determination unit 29.
  • the detection unit 27 has a resistance, for example, and detects a drive current by detecting a voltage generated at both ends of the resistance.
  • the detection unit 27 can also use other general current detectors.
  • the relay control unit 28 outputs a drive current to the relay 22 to control the opening / closing operation of the relay 22. In addition, the relay control unit 28 outputs a control state signal indicating the open / closed state of the relay 22 to the determination unit 29.
  • the relay controller 22 when the relay controller 22 outputs a drive current to the relay 22 so as to close the switch of the relay 22, the relay controller 22 determines a control state signal indicating that the relay 22 is closed (turned on). Output to. Further, the relay control unit 28 determines a control state signal indicating that the relay 22 is opened (turned off) when the drive current is not output to the relay 22 so as to open the switch of the relay 22. Output to.
  • a control state signal indicating that the relay 22 is controlled to close is sometimes referred to as a “closed signal”
  • a control state signal indicating that the relay 22 is open is referred to as an “open signal”.
  • the determination unit 29 determines the state of the relay 22 based on the control state signal output from the relay control unit 28 indicating the open / closed state of the relay 22 and the detection result of the drive current of the detection unit 27.
  • the determination unit 29 outputs a state control signal indicating “closed signal” from the relay control unit 28, but the drive current is not detected by the detection unit 27, the relay 22 is “abnormal”. Is determined. In addition, the determination unit 29 determines that the relay 22 is “abnormal” when the detection unit 27 detects the drive current despite the state control signal indicating the “open signal” being output from the relay control unit 28. Judge that there is.
  • Converter control unit 30 controls the on / off operation of inverse conversion unit 25 based on the voltage of the DC bus of inverter device 10 (or regenerative converter device 20). For example, the converter control unit 30 starts the on / off operation of the inverse conversion unit 25 when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage due to the regenerative power generated in the load 2. Thereby, the regenerative power generated in the load 2 is output to the power source 1. As will be described later, converter control unit 30 stops the switching operation of inverse conversion unit 25 (stops power conversion) according to the determination result of determination unit 29.
  • FIG. 2 is a diagram illustrating an example of functional blocks of the determination unit 29.
  • the determination unit 29 includes a control state signal input unit 41, a detection result input unit 42, a comparison unit 43, and an output unit 44.
  • the control state signal output from the relay control unit 28 is input to the control state signal input unit 41.
  • the control state signal input unit 41 receives “close signal” indicating that the relay 22 is closed or “open signal” indicating that the relay 22 is open.
  • the detection result output from the detection unit 27 is input to the detection result input unit 42.
  • a “drive current present signal” indicating that a drive current has been detected or a “drive current no signal” indicating that a drive current has not been detected is input to the detection result input unit 42.
  • the comparison unit 43 compares the control state signal input to the control state signal input unit 41 with the detection result (detection result signal) input to the detection result input unit 42, and outputs the comparison result to the output unit 44. .
  • FIG. 3 is a diagram for explaining the comparison operation of the comparison unit 43.
  • Table 51 of FIG. 3 when the control state signal is “closed signal” and the detection result signal is “drive current present signal”, the comparison unit 43 outputs the comparison result of “signal coincidence”.
  • the unit 44 that is, when the relay control unit 28 is controlled to close the switch of the relay 22, and the drive current for actually closing the switch of the relay 22 is output from the relay control unit 28 to the relay 22, the comparison The unit 43 outputs the comparison result of “signal match” to the output unit 44.
  • the comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44. That is, when the relay control unit 28 is controlling to close the switch of the relay 22, the drive current for closing the switch of the relay 22 is not output from the relay control unit 28 to the relay 22.
  • the comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44.
  • the comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44. That is, when the relay control unit 28 controls the relay 22 to open the switch, the relay control unit 28 outputs a drive current for closing the relay 22 switch to the relay 22. The comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44.
  • the comparison unit 43 outputs the comparison result of “signal coincidence” to the output unit 44. That is, when the relay control unit 28 controls to open the switch of the relay 22, and the drive current is not output from the relay control unit 28 to open the switch of the relay 22, the comparison unit 43 The comparison result of “signal match” is output to the output unit 44.
  • the comparison unit 43 outputs a comparison result of “signal match”. Moreover, the comparison part 43 will output the comparison result of "signal mismatch", when the switching state of the relay 22 which a control state signal shows, and the switching state of the relay 22 which a detection result signal does not correspond.
  • the coil of the relay 22 is disconnected.
  • the relay control unit 28 attempts to close the switch of the relay 22 and outputs a drive current, no current flows from the relay control unit 28 to the relay 22. That is, when the coil of the relay 22 is disconnected, the drive control is not detected by the detection unit 27 even though the control state signal of “closed signal” is output from the relay control unit 28. It becomes.
  • the comparison unit 43 performs an exclusive OR operation by setting the “close signal” and the “drive current present signal” to “1” and the “open signal” and the “no drive current signal” to “0”. The result may be output as a comparison result. In this case, the “signal match” comparison result is output as “0”, and the “signal mismatch” comparison result is output as “1”.
  • the output unit 44 outputs a determination result of whether the relay 22 is abnormal or normal to the inverter control unit 17 and the converter control unit 30 according to the comparison result of the comparison unit 43.
  • the output unit 44 when the comparison result of “signal coincidence” is output from the comparison unit 43, the output unit 44 outputs the determination result indicating that the relay 22 is normal. Further, when the comparison result “signal mismatch” is output from the comparison unit 43, the output unit 44 outputs the determination result indicating that the relay 22 is abnormal.
  • the output unit 44 actually opens and closes the relay 22 with the driving current by the relay control unit 28 controlling the relay 22. If the current state matches the current state, a determination result indicating that the state is normal is output. In addition, when the comparison result of “signal mismatch” is output from the comparison unit 43, the output unit 44 actually opens and closes the relay 22 with the driving current and the state in which the relay control unit 28 controls the relay 22. If the current state does not match, a determination result indicating that there is an abnormality is output.
  • FIG. 4 is a flowchart illustrating an operation example of the determination unit 29. The flowchart of FIG. 4 is executed, for example, when the power source 1 is turned on.
  • control state signal input unit 41 inputs a control state signal output from the relay control unit 28, and the detection result input unit 42 inputs a detection result signal output from the detection unit 27 (step S1).
  • the comparison unit 43 compares the control state signal input by the control state signal input unit 41 with the detection result signal input by the detection result input unit 42 (step S2).
  • the comparison unit 43 determines whether or not the control state signal and the detection result signal match (step S3). When the control state signal matches the detection result signal, the comparison unit 43 proceeds to step S4. If the control state signal and the detection result signal do not match, the comparison unit 43 proceeds to step S6.
  • step S3 When the comparison unit 43 determines in step S3 that the control state signal and the detection result signal match, the comparison unit 43 outputs a comparison result of “signal match” to the output unit 44 (step S4).
  • the output unit 44 outputs the determination result of “normal” to the inverter control unit 17 and the converter control unit 30 ( Step S5).
  • step S6 When the comparison unit 43 determines in step S3 that the control state signal and the detection result signal do not coincide with each other, the comparison unit 43 outputs a comparison result of “signal mismatch” to the output unit 44 (step S6).
  • the output unit 44 outputs the determination result of “abnormal” to the inverter control unit 17 and the converter control unit 30 ( Step S7).
  • the switching element of the reverse conversion unit 25 has a capacitance Depending on the capacitance of the element 26, it may be damaged by a turn-off surge voltage. Therefore, when the “abnormal” determination result is output from the output unit 44, the inverter control unit 17 and the converter control unit 30 stop power conversion of the inverse conversion unit 15 and the inverse conversion unit 25. Thereby, damage to the inverse conversion unit 25 can be prevented.
  • FIG. 4 Although the flowchart of FIG. 4 is executed when the power supply 1 is turned on, it may be executed periodically after the power supply is turned on.
  • each processing unit in the above-described flowchart is divided according to main processing contents in order to make the processing of the determination unit 29 easy to understand.
  • the present invention is not limited by the way of dividing the processing unit or the name.
  • the processing of the determination unit 29 can be divided into more processing units according to the processing content. Moreover, it can also divide
  • FIG. 5 is a diagram illustrating an example of a hardware configuration that implements the function of the determination unit 29.
  • the determination unit 29 includes, for example, a CPU (Central Processing Unit) 61, a RAM (Random Access Memory), a ROM (Read Only Memory) 63, and a communication interface (I / F) 64 as shown in FIG. Prepare.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • I / F communication interface
  • the function of the determination unit 29 is realized by the CPU 61 executing a predetermined program loaded from the ROM 63 or the like to the RAM 62, for example.
  • Communication between the determination unit 29 and the inverter control unit 17 and the converter control unit 30 is realized by the CPU 61 using the communication I / F 64, for example.
  • the ROM 63 may be, for example, a flash memory.
  • the predetermined program may be installed in the flash memory from the network via the communication I / F 64, for example.
  • the determination unit 29 may be realized by a controller board including an ASIC (Application Specific Integrated Circuit) having a CPU, a ROM, a RAM, a drive circuit, and the like.
  • the determination unit 29 may be realized by a logic circuit or the like without using an arithmetic device such as a CPU.
  • the data of the table 51 shown in FIG. 3 may be stored in the ROM 63.
  • the comparison unit 43 may calculate the comparison result by referring to the data in the table 51 developed from the ROM 63 or the ROM 63 to the RAM 62 based on the input control state signal and detection result signal.
  • the functional configuration of the determination unit 29 described above is classified according to main processing contents in order to make the configuration of the determination unit 29 easy to understand.
  • the present invention is not limited by the way of classification and names of the constituent elements.
  • the configuration of the determination unit 29 can be classified into more components depending on the processing content. Moreover, it can also classify
  • the power conversion device determines the state of the relay 22 based on the control state signal indicating the open / close state of the relay 22 output from the relay control unit 28 and the detection result of the detection unit 27. . Thereby, even if it is the relay 22 which is not provided with an answer back function, the state of the relay 22 can be determined with a simpler configuration.
  • the state of the relay 22 can be determined, so that the reverse conversion unit 25 can be prevented from being damaged.
  • the cost can be reduced by using the relay 22 that does not have the answer back function.
  • the forward conversion unit 11 outputs a DC voltage, but may output a DC current. Moreover, although the reverse conversion parts 15 and 25 output AC voltage, you may output AC current.
  • the relay 22 is closed and turned on when the driving current is output from the relay control unit 28.
  • the relay is opened and turned off. May be.
  • the relay 22 is opened and turned off when no driving current is output from the relay control unit 28, but may be turned on when the driving current is not output from the relay control unit 28.
  • the relay 22 is opened / closed by the drive current, it may be opened / closed by the drive voltage.
  • the detection unit 27 detects the drive voltage output from the relay control unit 28, and the determination unit 29 determines the relay 22 based on the control state signal of the relay control unit 28 and the voltage detection result of the detection unit 27. The state may be determined.
  • the inverter control unit 17 stops power conversion of the inverse conversion unit 15 when the determination result of the determination unit 29 is “abnormal”, but it flows through the DC bus of the inverter device 10 and the regenerative converter 20. You may make it control the power conversion of the reverse conversion part 15 so that an electric current may become below a predetermined value. That is, the inverter control unit 17 reduces the regenerative current caused by the load 2 flowing through the DC buses of the inverter device 10 and the regenerative converter 20 and prevents the resistor 23 from being burned out.
  • the regenerative current flowing through the DC bus of the inverter device 10 can be calculated from the output current of the inverse converter 15.
  • the inverter control unit 17 monitors the current output from the inverse conversion unit 15 to the load 2. Therefore, when the determination result of the determination unit 29 is “abnormal”, the inverter control unit 17 can calculate the regenerative current flowing through the DC bus of the inverter device 10 from the output current of the inverse conversion unit 15.
  • the power conversion of the inverse conversion unit 15 can be controlled so that the regenerative current is equal to or less than a predetermined value.
  • the determination unit 29 may display the determination result on the display device. Thereby, the user can know the abnormality of the relay 22.
  • FIG. 6 is a diagram showing a configuration example of the power conversion device according to the second embodiment of the present invention. 6 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
  • the inverter device 10A is provided with a relay 71 with respect to the thyristor 12 of FIG.
  • the inverter device 10 ⁇ / b> A also determines a detection unit 72 that detects a drive current output from the relay control unit 73 to the relay 71, a relay control unit 73 that controls the opening / closing operation of the relay 71, and a determination that determines whether the relay 71 is abnormal.
  • Unit 74 and inverter control unit 75 are examples of a detection unit 72 that detects a drive current output from the relay control unit 73 to the relay 71, a relay control unit 73 that controls the opening / closing operation of the relay 71, and a determination that determines whether the relay 71 is abnormal.
  • the relay 71 is a relay that does not have an answer bank function.
  • the relay 71 is turned off when the power supply 1 is turned on, and turned on when the voltage of the DC bus becomes equal to or higher than a predetermined voltage due to charging of the capacitive element 14. That is, the current output from the forward converter 11 flows through the resistor 13 when the power supply 1 is turned on, and then flows into the relay 71 when the voltage of the DC bus becomes equal to or higher than a predetermined voltage.
  • the current output from the forward conversion unit 11 is caused to flow through the resistor 13, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 14.
  • the relay 71 opens and closes according to the drive current output from the relay control unit 73.
  • the operation of the relay 71 is the same as that of the relay 22 in FIG.
  • the relay control unit 73 outputs a drive current to the relay 71 to control the opening / closing operation of the relay 71. Further, the relay control unit 73 outputs a control state signal indicating the open / close state of the relay 71 to the determination unit 74.
  • the determination unit 74 determines the state of the relay 71 based on the control state signal indicating the open / close state of the relay 71 output from the relay control unit 73 and the detection result of the drive current of the detection unit 72.
  • the determination unit 74 has a functional block similar to the functional block of the determination unit 29 shown in FIG. Therefore, the operation of the determination unit 74 is the same as that of the determination unit 29, and the description thereof is omitted.
  • the inverter control unit 75 stops the power conversion of the inverse conversion unit 15.
  • the inverter control unit 75 controls the power conversion of the inverse conversion unit 15 so that the current flowing through the DC bus is equal to or less than a predetermined value. May be.
  • the inverter control unit 75 can calculate the current flowing through the DC bus from the output current of the inverse conversion unit 15.
  • the power conversion apparatus determines the state of the relay 71 based on the control state signal indicating the open / close state of the relay 71 output from the relay control unit 73 and the detection result of the detection unit 72. . Thereby, even if it is the relay 71 which is not provided with an answer back function, the state of the relay 71 can be determined with a simpler configuration.
  • the state of the relay 71 can be determined, and thus the burnout of the resistor 13 can be prevented.
  • the cost can be reduced by using the relay 71 that does not have the answer back function.
  • a relay instead of the thyristor 12 of FIG. 1, as shown in FIG. 6, a relay, a relay control unit that controls the relay, and a detection unit that detects a drive current output from the relay control unit are provided. Thereby, the state of the relay used instead of the thyristor 12 can be determined.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • the present invention can also be provided as a method for determining an abnormality of a power converter, a program for determining an abnormality of a power converter, and a storage medium storing the program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

To make it possible to determine the state of a relay even when the relay does not have an answer-back function. A relay controller (28) outputs a drive signal for opening/closing the relay (22). A detector (27) detects the drive signal outputted from the relay controller (28) to the relay (22). A determining unit (29) determines whether the relay (22) is normal or abnormal on the basis of a control state signal outputted from the relay controller (28) indicating the open/close state of the relay (22) and the result of the detection by the detector (27).

Description

電力変換装置および電力変換装置の状態判定方法Power conversion apparatus and state determination method for power conversion apparatus
 本発明は、電力変換装置および電力変換装置の状態判定方法に関するものである。本発明は2014年1月17日に出願された日本国特許の出願番号2014-006676の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a power converter and a state determination method for the power converter. The present invention claims the priority of Japanese Patent Application No. 2014-006676 filed on January 17, 2014, and for the designated countries where weaving by reference of documents is permitted, the contents described in the application are as follows: Is incorporated into this application by reference.
 従来の回路構成で突入電流抑制抵抗の焼損を防止するとともにリレーの動作状態を判別することができる突入電流防止回路の保護方法とそれを備えたインバータ装置が提供されている(例えば、特許文献1参照)。 There is provided a protection method for an inrush current prevention circuit that can prevent the inrush current suppression resistor from being burned out in a conventional circuit configuration and can determine the operation state of the relay, and an inverter device including the same (for example, Patent Document 1). reference).
特開2009-11042号公報JP 2009-11042 A
 しかし、特許文献1に示される技術では、アンサーバック機能を有するリレーを用いて、リレーの状態を判定しているという問題がある。 However, the technique disclosed in Patent Document 1 has a problem that the relay state is determined using a relay having an answer back function.
 そこで本発明は、アンサーバック機能の無い継電器であっても、より簡易な構成で継電器の状態を判定することができる技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technology capable of determining the state of a relay with a simpler configuration even if the relay has no answer back function.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。上記課題を解決すべく、本発明に係る電力変換装置は、継電器を開閉するための駆動信号を出力する継電器制御部と、前記継電器制御部から前記継電器に出力される前記駆動信号を検出する検出部と、前記継電器制御部から出力される前記継電器の開閉状態を示す制御状態信号と、前記検出部の検出結果とに基づいて、前記継電器の状態を判定する判定部と、を有することを特徴とする。 The present application includes a plurality of means for solving at least a part of the above-described problems, and examples thereof are as follows. In order to solve the above problems, a power converter according to the present invention includes a relay control unit that outputs a drive signal for opening and closing a relay, and a detection that detects the drive signal output from the relay control unit to the relay. And a determination unit that determines a state of the relay based on a control state signal indicating an open / close state of the relay output from the relay control unit, and a detection result of the detection unit. And
 本発明によれば、アンサーバック機能の無い継電器であっても、より簡易な構成で継電器の状態を判定することができる。 According to the present invention, even a relay without an answerback function can determine the state of the relay with a simpler configuration.
 上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の第1の実施の形態に係る電力変換装置の構成例を示した図である。It is the figure which showed the structural example of the power converter device which concerns on the 1st Embodiment of this invention. 判定部29の機能ブロックの一例を示した図である。5 is a diagram illustrating an example of a functional block of a determination unit 29. FIG. 比較部43の比較動作を説明する図である。6 is a diagram illustrating a comparison operation of a comparison unit 43. FIG. 判定部29の動作例を示したフローチャートである。5 is a flowchart illustrating an operation example of a determination unit 29. 判定部29の機能を実現するハードウェア構成の一例を示した図である。It is the figure which showed an example of the hardware constitutions which implement | achieve the function of the determination part. 本発明の第2の実施の形態に係る電力変換装置の構成例を示した図である。It is the figure which showed the structural example of the power converter device which concerns on the 2nd Embodiment of this invention.
 [第1の実施の形態]
 図1は、本発明の第1の実施の形態に係る電力変換装置の構成例を示した図である。図1に示すように、電力変換装置は、インバータ装置10と、回生コンバータ装置20とを有している。図1には、電力変換装置の他に、電源1と、負荷2とが示してある。電源1は、例えば、三相交流電源である。負荷2は、例えば、モータである。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to a first embodiment of the present invention. As shown in FIG. 1, the power conversion device includes an inverter device 10 and a regenerative converter device 20. FIG. 1 shows a power source 1 and a load 2 in addition to the power conversion device. The power source 1 is, for example, a three-phase AC power source. The load 2 is, for example, a motor.
 インバータ装置10には、電源1から交流電力が供給される。インバータ装置10は、電源1から供給される交流電力を直流電力に変換し、変換した直流電力を交流電力に変換して、負荷2に出力する。インバータ装置10は、順変換部11と、サイリスタ12と、抵抗13と、容量素子14,16と、逆変換部15と、インバータ制御部17とを有している。 AC power is supplied from the power source 1 to the inverter device 10. The inverter device 10 converts AC power supplied from the power source 1 into DC power, converts the converted DC power into AC power, and outputs the AC power to the load 2. The inverter device 10 includes a forward conversion unit 11, a thyristor 12, a resistor 13, capacitive elements 14 and 16, an inverse conversion unit 15, and an inverter control unit 17.
 順変換部11は、電源1に接続されている。順変換部11は、電源1から供給される交流電圧を直流電圧に変換し、インバータ装置10の直流母線に出力する。 The forward conversion unit 11 is connected to the power source 1. The forward conversion unit 11 converts the AC voltage supplied from the power source 1 into a DC voltage and outputs the DC voltage to the DC bus of the inverter device 10.
 サイリスタ12は、順変換部11と逆変換部15との間に直列に接続されている。サイリスタ12には、抵抗13が並列に接続されている。 The thyristor 12 is connected in series between the forward conversion unit 11 and the reverse conversion unit 15. A resistor 13 is connected to the thyristor 12 in parallel.
 サイリスタ12は、電源1の電源投入時オフし、インバータ装置10の直流母線の電圧が、容量素子14の充電により所定の電圧以上になると(図1の矢印P1,N1間の電圧が所定の電圧以上になると)オンする。すなわち、順変換部11から出力される電流は、電源1の電源投入時、抵抗13を流れ、その後、インバータ装置10の直流母線の電圧が所定の電圧以上になると、サイリスタ12を流れる。このように、電源1の電源投入時、順変換部11から出力される電流を抵抗13に流すことによって、順変換部11および容量素子14に突入電流が流れるのを抑制する。 The thyristor 12 is turned off when the power source 1 is turned on, and when the voltage of the DC bus of the inverter device 10 becomes equal to or higher than a predetermined voltage due to the charging of the capacitive element 14 (the voltage between the arrows P1 and N1 in FIG. Turn on) That is, the current output from the forward conversion unit 11 flows through the resistor 13 when the power supply 1 is turned on, and then flows through the thyristor 12 when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage. As described above, when the power source 1 is turned on, the current output from the forward conversion unit 11 is caused to flow through the resistor 13, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 14.
 なお、サイリスタ12は、例えば、インバータ制御部17によってオンされる。例えば、インバータ制御部17は、インバータ装置10の直流母線の電圧が所定の電圧以上になると、サイリスタ12のゲートに電圧を供給し、サイリスタ12をオンする。 The thyristor 12 is turned on by, for example, the inverter control unit 17. For example, when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage, the inverter control unit 17 supplies a voltage to the gate of the thyristor 12 and turns on the thyristor 12.
 容量素子14は、順変換部11に並列に接続されている。容量素子14は、順変換部11から出力される電圧を平滑化する。容量素子14は、例えば、電解コンデンサである。 The capacitive element 14 is connected to the forward conversion unit 11 in parallel. The capacitive element 14 smoothes the voltage output from the forward conversion unit 11. The capacitive element 14 is an electrolytic capacitor, for example.
 逆変換部15は、順変換部11に並列に接続されている。逆変換部15は、順変換部11から出力される直流電圧を交流電圧に変換し、負荷2に出力する。逆変換部15は、例えば、IGBT(Insulated Gate Bipolar Transistor)のスイッチング素子を有し、インバータ制御部17の制御に応じてIGBTをオンおよびオフして、交流電圧を負荷2に出力する。 The reverse conversion unit 15 is connected to the forward conversion unit 11 in parallel. The inverse conversion unit 15 converts the DC voltage output from the forward conversion unit 11 into an AC voltage and outputs the AC voltage to the load 2. The inverse conversion unit 15 has, for example, an IGBT (Insulated Gate Bipolar Transistor) switching element, and turns on and off the IGBT according to control of the inverter control unit 17 to output an AC voltage to the load 2.
 容量素子16は、逆変換部15に並列に接続されている。容量素子16は、例えば、逆変換部15のオンおよびオフ動作によって生じる過渡的な高電圧を吸収するスナバコンデンサである。 The capacitive element 16 is connected to the inverse conversion unit 15 in parallel. The capacitive element 16 is, for example, a snubber capacitor that absorbs a transient high voltage generated by the on / off operation of the inverse conversion unit 15.
 インバータ制御部17は、上記したようにサイリスタ12のオンおよびオフ動作を制御する。また、インバータ制御部17は、逆変換部15のオンおよびオフ動作を制御して、負荷2が所望の動作をするように制御する。例えば、負荷2がモータであって、そのモータが力行状態にある場合、インバータ制御部17は、逆変換部15を制御して、直流電圧を所定の周波数の交流電圧に変換し、モータを駆動する。また、後述するが、インバータ制御部17は、判定部29の判定結果に応じて、逆変換部15のスイッチング動作を停止(電力変換を停止)する。 The inverter control unit 17 controls the on / off operation of the thyristor 12 as described above. Further, the inverter control unit 17 controls the on / off operation of the inverse conversion unit 15 so that the load 2 performs a desired operation. For example, when the load 2 is a motor and the motor is in a power running state, the inverter control unit 17 controls the inverse conversion unit 15 to convert a DC voltage into an AC voltage having a predetermined frequency and drive the motor. To do. Moreover, although mentioned later, the inverter control part 17 stops the switching operation | movement of the reverse conversion part 15 according to the determination result of the determination part 29 (stops power conversion).
 回生コンバータ装置20は、逆変換部15に並列に接続されている。回生コンバータ装置20は、負荷2で生じた回生電力を交流電力に変換し、電源1に出力する。 The regenerative converter device 20 is connected to the inverse conversion unit 15 in parallel. The regenerative converter device 20 converts the regenerative power generated in the load 2 into AC power and outputs it to the power source 1.
 例えば、負荷2がモータであって、そのモータが回生状態になると、モータは発電機として機能し、インバータ装置10の直流母線の電圧は上昇する。回生コンバータ装置20は、インバータ装置10(または回生コンバータ装置20)の直流母線の電圧が所定の電圧以上になると、回生コンバータ装置20の直流母線の電圧(すなわち、インバータ装置10の直流母線の電圧)を交流電圧に変換し、電源1へ出力する。 For example, when the load 2 is a motor and the motor is in a regenerative state, the motor functions as a generator, and the voltage of the DC bus of the inverter device 10 increases. When the voltage of the DC bus of inverter device 10 (or regenerative converter device 20) becomes equal to or higher than a predetermined voltage, regenerative converter device 20 has a voltage of DC bus of regenerative converter device 20 (that is, a voltage of DC bus of inverter device 10). Is converted into an AC voltage and output to the power source 1.
 なお、回生コンバータ装置20から電源1へ出力された電力は、図1に示していない、電源1に接続されている他の機器へ供給される。また、回生コンバータ装置20は、負荷2が回生状態にあるときに動作する。 In addition, the electric power output from the regenerative converter device 20 to the power source 1 is supplied to other devices connected to the power source 1, not shown in FIG. Regenerative converter device 20 operates when load 2 is in a regenerative state.
 回生コンバータ装置20は、ダイオード21と、継電器22と、抵抗23と、容量素子24,26と、逆変換部25と、検出部27と、継電器制御部28と、判定部29と、コンバータ制御部30とを有している。 The regenerative converter device 20 includes a diode 21, a relay 22, a resistor 23, capacitive elements 24 and 26, an inverse conversion unit 25, a detection unit 27, a relay control unit 28, a determination unit 29, and a converter control unit. 30.
 ダイオード21は、インバータ装置10の直流母線と逆変換部25との間に直列に接続されている。ダイオード21は、回生コンバータ装置20から、インバータ装置10へ流れる逆流電流を抑制する、逆流防止ダイオードである。 The diode 21 is connected in series between the DC bus of the inverter device 10 and the inverse conversion unit 25. The diode 21 is a backflow prevention diode that suppresses a backflow current flowing from the regenerative converter device 20 to the inverter device 10.
 継電器22は、容量素子24と直列に接続され、逆変換部25に並列に接続されている。継電器22には、抵抗23が並列に接続されている。継電器22は、アンサーバック機能を備えない継電器である。 The relay 22 is connected in series with the capacitive element 24 and is connected in parallel to the inverse conversion unit 25. A resistor 23 is connected in parallel to the relay 22. The relay 22 is a relay that does not have an answer back function.
 継電器22は、電源1の電源投入時オフし、回生コンバータ装置20の直流母線の電圧が、容量素子24の充電により所定の電圧以上になるとオンする。すなわち、順変換部11から出力される電流は、電源1の電源投入時、抵抗23を流れ、その後、回生コンバータ装置20の直流母線の電圧が所定の電圧以上になると、継電器22を流れる。このように、電源1の電源投入時、順変換部11から出力される電流を抵抗23に流すことによって、順変換部11および容量素子24に突入電流が流れるのを抑制する。 The relay 22 is turned off when the power source 1 is turned on, and turned on when the voltage of the DC bus of the regenerative converter device 20 becomes equal to or higher than a predetermined voltage due to the charging of the capacitive element 24. That is, the current output from the forward conversion unit 11 flows through the resistor 23 when the power supply 1 is turned on, and then flows through the relay 22 when the voltage of the DC bus of the regenerative converter device 20 exceeds a predetermined voltage. As described above, when the power source 1 is turned on, the current output from the forward conversion unit 11 is caused to flow through the resistor 23, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 24.
 継電器22は、継電器制御部28から出力される駆動電流に応じて、開閉動作する。例えば、継電器22は、コイルとスイッチとを有し、継電器制御部28から駆動電流が出力されるとコイルが励磁してスイッチを閉じ、オンする。また、継電器22は、例えば、継電器制御部28から駆動電流が出力されなくなるとコイルから磁束が発生しなくなり、スイッチを開いて、オフする。 The relay 22 opens and closes according to the drive current output from the relay controller 28. For example, the relay 22 has a coil and a switch. When a drive current is output from the relay control unit 28, the coil is excited to close the switch and turn on. Further, for example, when the drive current is not output from the relay control unit 28, the relay 22 stops generating a magnetic flux from the coil and opens the switch to be turned off.
 容量素子24は、抵抗23が並列に接続された継電器22と直列に接続されて、逆変換部25に並列に接続されている。容量素子24は、回生コンバータ装置20の直流母線の電圧(図1の矢印P2,N2間の電圧)を平滑化する。容量素子24は、例えば、電解コンデンサである。 The capacitive element 24 is connected in series with the relay 22 to which the resistor 23 is connected in parallel, and is connected in parallel to the inverse conversion unit 25. Capacitance element 24 smoothes the voltage of the DC bus of regenerative converter device 20 (the voltage between arrows P2 and N2 in FIG. 1). The capacitive element 24 is, for example, an electrolytic capacitor.
 逆変換部25は、ダイオード21を介して、インバータ装置10の逆変換部15と並列に接続されている。逆変換部25は、回生コンバータ装置20の直流母線の電圧を交流電圧に変換し、電源1へ出力する。すなわち、逆変換部25は、負荷2で生じた回生電力を交流電力に変換し、電源1に出力する。 The reverse conversion unit 25 is connected in parallel with the reverse conversion unit 15 of the inverter device 10 through the diode 21. The reverse conversion unit 25 converts the voltage of the DC bus of the regenerative converter device 20 into an AC voltage and outputs the AC voltage to the power source 1. That is, the inverse conversion unit 25 converts the regenerative power generated in the load 2 into AC power and outputs it to the power source 1.
 容量素子26は、逆変換部25に並列に接続されている。容量素子26は、例えば、逆変換部25のオンおよびオフ動作によって生じる過渡的な高電圧を吸収するスナバコンデンサである。 The capacitor element 26 is connected to the inverse conversion unit 25 in parallel. The capacitive element 26 is, for example, a snubber capacitor that absorbs a transient high voltage generated by the on / off operation of the inverse conversion unit 25.
 検出部27は、継電器制御部28から出力される駆動電流を検出し、検出結果を判定部29に出力する。例えば、検出部27は、駆動電流を検出した場合、駆動電流を検出したことを示す「駆動電流有信号」を判定部29に出力する。また、例えば、検出部27は、駆動電流を検出しなかった場合、駆動電流を検出されなかったことを示す「駆動電流無信号」を判定部29に出力する。 The detection unit 27 detects the drive current output from the relay control unit 28 and outputs the detection result to the determination unit 29. For example, when detecting the drive current, the detection unit 27 outputs a “drive current presence signal” indicating that the drive current has been detected to the determination unit 29. Further, for example, when the detection unit 27 does not detect the drive current, the detection unit 27 outputs a “drive current no signal” indicating that the drive current is not detected to the determination unit 29.
 検出部27は、例えば、抵抗を有し、その抵抗の両端に生じる電圧を検出することによって、駆動電流を検出する。検出部27は、その他の一般的な電流検出器を用いることもできる。 The detection unit 27 has a resistance, for example, and detects a drive current by detecting a voltage generated at both ends of the resistance. The detection unit 27 can also use other general current detectors.
 継電器制御部28は、継電器22に駆動電流を出力して、継電器22の開閉動作を制御する。また、継電器制御部28は、継電器22の開閉状態を示す制御状態信号を判定部29に出力する。 The relay control unit 28 outputs a drive current to the relay 22 to control the opening / closing operation of the relay 22. In addition, the relay control unit 28 outputs a control state signal indicating the open / closed state of the relay 22 to the determination unit 29.
 例えば、継電器制御部28は、継電器22のスイッチを閉じるよう、駆動電流を継電器22に出力している場合、継電器22を閉じている(オンしている)ことを示す制御状態信号を判定部29に出力する。また、継電器制御部28は、継電器22のスイッチを開くよう、駆動電流を継電器22に出力していない場合、継電器22を開いている(オフしている)ことを示す制御状態信号を判定部29に出力する。以下では、継電器22を閉制御していることを示す制御状態信号を「閉信号」、継電器22を開制御していることを示す制御状態信号を「開信号」と呼ぶことがある。 For example, when the relay controller 22 outputs a drive current to the relay 22 so as to close the switch of the relay 22, the relay controller 22 determines a control state signal indicating that the relay 22 is closed (turned on). Output to. Further, the relay control unit 28 determines a control state signal indicating that the relay 22 is opened (turned off) when the drive current is not output to the relay 22 so as to open the switch of the relay 22. Output to. Hereinafter, a control state signal indicating that the relay 22 is controlled to close is sometimes referred to as a “closed signal”, and a control state signal indicating that the relay 22 is open is referred to as an “open signal”.
 判定部29は、継電器制御部28から出力される継電器22の開閉状態を示す制御状態信号と、検出部27の駆動電流の検出結果とに基づいて、継電器22の状態を判定する。 The determination unit 29 determines the state of the relay 22 based on the control state signal output from the relay control unit 28 indicating the open / closed state of the relay 22 and the detection result of the drive current of the detection unit 27.
 例えば、判定部29は、継電器制御部28から「閉信号」を示す状態制御信号が出力されているにも関わらず、検出部27によって駆動電流が検出されない場合、継電器22は「異常」であると判定する。また、判定部29は、継電器制御部28から「開信号」を示す状態制御信号が出力されているにも関わらず、検出部27によって駆動電流が検出された場合、継電器22は「異常」であると判定する。 For example, in the case where the determination unit 29 outputs a state control signal indicating “closed signal” from the relay control unit 28, but the drive current is not detected by the detection unit 27, the relay 22 is “abnormal”. Is determined. In addition, the determination unit 29 determines that the relay 22 is “abnormal” when the detection unit 27 detects the drive current despite the state control signal indicating the “open signal” being output from the relay control unit 28. Judge that there is.
 コンバータ制御部30は、インバータ装置10(または回生コンバータ装置20)の直流母線の電圧に基づいて、逆変換部25のオンおよびオフ動作を制御する。例えば、コンバータ制御部30は、インバータ装置10の直流母線の電圧が、負荷2で生じた回生電力によって所定の電圧以上になると、逆変換部25のオンおよびオフ動作を開始する。これにより、負荷2で生じた回生電力は、電源1に出力される。また、後述するが、コンバータ制御部30は、判定部29の判定結果に応じて、逆変換部25のスイッチング動作を停止(電力変換を停止)する。 Converter control unit 30 controls the on / off operation of inverse conversion unit 25 based on the voltage of the DC bus of inverter device 10 (or regenerative converter device 20). For example, the converter control unit 30 starts the on / off operation of the inverse conversion unit 25 when the voltage of the DC bus of the inverter device 10 exceeds a predetermined voltage due to the regenerative power generated in the load 2. Thereby, the regenerative power generated in the load 2 is output to the power source 1. As will be described later, converter control unit 30 stops the switching operation of inverse conversion unit 25 (stops power conversion) according to the determination result of determination unit 29.
 図2は、判定部29の機能ブロックの一例を示した図である。図2に示すように、判定部29は、制御状態信号入力部41と、検出結果入力部42と、比較部43と、出力部44とを有している。 FIG. 2 is a diagram illustrating an example of functional blocks of the determination unit 29. As illustrated in FIG. 2, the determination unit 29 includes a control state signal input unit 41, a detection result input unit 42, a comparison unit 43, and an output unit 44.
 制御状態信号入力部41には、継電器制御部28から出力される制御状態信号が入力される。例えば、制御状態信号入力部41には、継電器22を閉制御していることを示す「閉信号」または継電器22を開制御していることを示す「開信号」が入力される。 The control state signal output from the relay control unit 28 is input to the control state signal input unit 41. For example, the control state signal input unit 41 receives “close signal” indicating that the relay 22 is closed or “open signal” indicating that the relay 22 is open.
 検出結果入力部42には、検出部27から出力される検出結果が入力される。例えば、検出結果入力部42には、駆動電流が検出されたことを示す「駆動電流有信号」または駆動電流が検出されていないことを示す「駆動電流無信号」が入力される。 The detection result output from the detection unit 27 is input to the detection result input unit 42. For example, a “drive current present signal” indicating that a drive current has been detected or a “drive current no signal” indicating that a drive current has not been detected is input to the detection result input unit 42.
 比較部43は、制御状態信号入力部41に入力された制御状態信号と、検出結果入力部42に入力された検出結果(検出結果信号)とを比較し、比較結果を出力部44に出力する。 The comparison unit 43 compares the control state signal input to the control state signal input unit 41 with the detection result (detection result signal) input to the detection result input unit 42, and outputs the comparison result to the output unit 44. .
 図3は、比較部43の比較動作を説明する図である。図3の表51に示すように、制御状態信号が「閉信号」であって、検出結果信号が「駆動電流有信号」である場合、比較部43は、「信号一致」の比較結果を出力部44に出力する。すなわち、継電器制御部28が継電器22のスイッチを閉じるように制御しており、実際に、継電器制御部28から、継電器22のスイッチを閉じるための駆動電流が継電器22に出力されている場合、比較部43は、「信号一致」の比較結果を出力部44に出力する。 FIG. 3 is a diagram for explaining the comparison operation of the comparison unit 43. As shown in Table 51 of FIG. 3, when the control state signal is “closed signal” and the detection result signal is “drive current present signal”, the comparison unit 43 outputs the comparison result of “signal coincidence”. To the unit 44. That is, when the relay control unit 28 is controlled to close the switch of the relay 22, and the drive current for actually closing the switch of the relay 22 is output from the relay control unit 28 to the relay 22, the comparison The unit 43 outputs the comparison result of “signal match” to the output unit 44.
 また、制御状態信号が「閉信号」であって、検出結果信号が「駆動電流無信号」である場合、比較部43は、「信号不一致」の比較結果を出力部44に出力する。すなわち、継電器制御部28が継電器22のスイッチを閉じるように制御しているにも関わらず、継電器制御部28から、継電器22のスイッチを閉じるための駆動電流が継電器22に出力されていない場合、比較部43は、「信号不一致」の比較結果を出力部44に出力する。 Further, when the control state signal is “closed signal” and the detection result signal is “no drive current signal”, the comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44. That is, when the relay control unit 28 is controlling to close the switch of the relay 22, the drive current for closing the switch of the relay 22 is not output from the relay control unit 28 to the relay 22. The comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44.
 また、制御状態信号が「開信号」であって、検出結果信号が「駆動電流有信号」である場合、比較部43は、「信号不一致」の比較結果を出力部44に出力する。すなわち、継電器制御部28が継電器22のスイッチを開くように制御しているにも関わらず、継電器制御部28から、継電器22のスイッチを閉じるための駆動電流が継電器22に出力されている場合、比較部43は、「信号不一致」の比較結果を出力部44に出力する。 Further, when the control state signal is “open signal” and the detection result signal is “drive current present signal”, the comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44. That is, when the relay control unit 28 controls the relay 22 to open the switch, the relay control unit 28 outputs a drive current for closing the relay 22 switch to the relay 22. The comparison unit 43 outputs the comparison result of “signal mismatch” to the output unit 44.
 また、制御状態信号が「開信号」であって、検出結果信号が「駆動電流無信号」である場合、比較部43は、「信号一致」の比較結果を出力部44に出力する。すなわち、継電器制御部28が継電器22のスイッチを開くように制御しており、継電器制御部28から、継電器22のスイッチを開くために駆動電流が継電器22に出力されていない場合、比較部43は、「信号一致」の比較結果を出力部44に出力する。 Further, when the control state signal is “open signal” and the detection result signal is “no drive current signal”, the comparison unit 43 outputs the comparison result of “signal coincidence” to the output unit 44. That is, when the relay control unit 28 controls to open the switch of the relay 22, and the drive current is not output from the relay control unit 28 to open the switch of the relay 22, the comparison unit 43 The comparison result of “signal match” is output to the output unit 44.
 つまり、比較部43は、制御状態信号が示す継電器22の開閉状態と、検出結果信号が示す継電器22の開閉状態とが一致していれば、「信号一致」の比較結果を出力する。また、比較部43は、制御状態信号が示す継電器22の開閉状態と、検出結果信号が示す継電器22の開閉状態とが一致していなければ、「信号不一致」の比較結果を出力する。 That is, if the open / close state of the relay 22 indicated by the control state signal matches the open / close state of the relay 22 indicated by the detection result signal, the comparison unit 43 outputs a comparison result of “signal match”. Moreover, the comparison part 43 will output the comparison result of "signal mismatch", when the switching state of the relay 22 which a control state signal shows, and the switching state of the relay 22 which a detection result signal does not correspond.
 なお、「信号不一致」が生じるケースとしては、例えば、継電器22のコイルの断線がある。例えば、継電器22のコイルに断線が生じている場合、継電器制御部28が継電器22のスイッチを閉じようとして、駆動電流を出力しても、継電器制御部28から継電器22には電流は流れない。つまり、継電器22のコイルに断線が生じている場合、継電器制御部28からは、「閉信号」の制御状態信号が出力されているにも関わらず、駆動電流は、検出部27によって検出されない状態となる。 In addition, as a case where “signal mismatch” occurs, for example, the coil of the relay 22 is disconnected. For example, when the coil of the relay 22 is disconnected, even if the relay control unit 28 attempts to close the switch of the relay 22 and outputs a drive current, no current flows from the relay control unit 28 to the relay 22. That is, when the coil of the relay 22 is disconnected, the drive control is not detected by the detection unit 27 even though the control state signal of “closed signal” is output from the relay control unit 28. It becomes.
 また、比較部43は、例えば、「閉信号」および「駆動電流有信号」を「1」とし、「開信号」および「駆動電流無信号」を「0」として、排他的論理和演算を行ってその結果を比較結果として出力してもよい。この場合、「信号一致」の比較結果は、「0」で出力され、「信号不一致」の比較結果は、「1」で出力される。 For example, the comparison unit 43 performs an exclusive OR operation by setting the “close signal” and the “drive current present signal” to “1” and the “open signal” and the “no drive current signal” to “0”. The result may be output as a comparison result. In this case, the “signal match” comparison result is output as “0”, and the “signal mismatch” comparison result is output as “1”.
 図2の説明に戻る。出力部44は、比較部43の比較結果に応じて、継電器22が異常であるかまたは正常であるかの判定結果を、インバータ制御部17およびコンバータ制御部30に出力する。 Returning to the explanation of FIG. The output unit 44 outputs a determination result of whether the relay 22 is abnormal or normal to the inverter control unit 17 and the converter control unit 30 according to the comparison result of the comparison unit 43.
 例えば、出力部44は、比較部43から「信号一致」の比較結果が出力された場合、継電器22は、正常である旨の判定結果を出力する。また、出力部44は、比較部43から「信号不一致」の比較結果が出力された場合、継電器22は、異常である旨の判定結果を出力する。 For example, when the comparison result of “signal coincidence” is output from the comparison unit 43, the output unit 44 outputs the determination result indicating that the relay 22 is normal. Further, when the comparison result “signal mismatch” is output from the comparison unit 43, the output unit 44 outputs the determination result indicating that the relay 22 is abnormal.
 すなわち、出力部44は、比較部43から「信号一致」の比較結果が出力された場合、継電器制御部28が継電器22を制御している状態と、駆動電流で実際に継電器22を開閉している状態とが一致しているとし、正常である旨の判定結果を出力する。また、出力部44は、比較部43から「信号不一致」の比較結果が出力された場合、継電器制御部28が継電器22を制御している状態と、駆動電流で実際に継電器22を開閉している状態とが一致していないとし、異常である旨の判定結果を出力する。 That is, when the comparison result of “signal coincidence” is output from the comparison unit 43, the output unit 44 actually opens and closes the relay 22 with the driving current by the relay control unit 28 controlling the relay 22. If the current state matches the current state, a determination result indicating that the state is normal is output. In addition, when the comparison result of “signal mismatch” is output from the comparison unit 43, the output unit 44 actually opens and closes the relay 22 with the driving current and the state in which the relay control unit 28 controls the relay 22. If the current state does not match, a determination result indicating that there is an abnormality is output.
 図4は、判定部29の動作例を示したフローチャートである。図4のフローチャートは、例えば、電源1の電源が投入されたときに実行される。 FIG. 4 is a flowchart illustrating an operation example of the determination unit 29. The flowchart of FIG. 4 is executed, for example, when the power source 1 is turned on.
 まず、制御状態信号入力部41は、継電器制御部28から出力される制御状態信号を入力し、検出結果入力部42は、検出部27から出力される検出結果信号を入力する(ステップS1)。 First, the control state signal input unit 41 inputs a control state signal output from the relay control unit 28, and the detection result input unit 42 inputs a detection result signal output from the detection unit 27 (step S1).
 次に、比較部43は、制御状態信号入力部41によって入力された制御状態信号と、検出結果入力部42によって入力された検出結果信号とを比較する(ステップS2)。 Next, the comparison unit 43 compares the control state signal input by the control state signal input unit 41 with the detection result signal input by the detection result input unit 42 (step S2).
 次に、比較部43は、制御状態信号と検出結果信号とが信号一致したか否か判定する(ステップS3)。比較部43は、制御状態信号と検出結果信号とが信号一致した場合、ステップS4へ処理を移行する。比較部43は、制御状態信号と検出結果信号とが信号一致しない場合、ステップS6へ処理を移行する。 Next, the comparison unit 43 determines whether or not the control state signal and the detection result signal match (step S3). When the control state signal matches the detection result signal, the comparison unit 43 proceeds to step S4. If the control state signal and the detection result signal do not match, the comparison unit 43 proceeds to step S6.
 比較部43は、ステップS3にて、制御状態信号と検出結果信号とが信号一致したと判定した場合、「信号一致」の比較結果を出力部44へ出力する(ステップS4)。 When the comparison unit 43 determines in step S3 that the control state signal and the detection result signal match, the comparison unit 43 outputs a comparison result of “signal match” to the output unit 44 (step S4).
 次に、出力部44は、ステップS4にて、比較部43から「信号一致」の比較結果が出力されると、「正常」の判定結果をインバータ制御部17およびコンバータ制御部30へ出力する(ステップS5)。 Next, when the comparison result of “signal coincidence” is output from the comparison unit 43 in step S4, the output unit 44 outputs the determination result of “normal” to the inverter control unit 17 and the converter control unit 30 ( Step S5).
 比較部43は、ステップS3にて、制御状態信号と検出結果信号とが信号一致しないと判定した場合、「信号不一致」の比較結果を出力部44へ出力する(ステップS6)。 When the comparison unit 43 determines in step S3 that the control state signal and the detection result signal do not coincide with each other, the comparison unit 43 outputs a comparison result of “signal mismatch” to the output unit 44 (step S6).
 次に、出力部44は、ステップS6にて、比較部43から「信号一致」の比較結果が出力されると、「異常」の判定結果をインバータ制御部17およびコンバータ制御部30へ出力する(ステップS7)。 Next, when the comparison result of “signal coincidence” is output from the comparison unit 43 in step S6, the output unit 44 outputs the determination result of “abnormal” to the inverter control unit 17 and the converter control unit 30 ( Step S7).
 ここで、継電器22が正常に動作せず、継電器22のスイッチが閉となっていない状態(異常状態)で、逆変換部25がスイッチング動作を開始すると、逆変換部25のスイッチング素子は、容量素子26の容量によっては、ターンオフサージ電圧によって破損する場合がある。そこで、インバータ制御部17およびコンバータ制御部30は、出力部44から、「異常」の判定結果が出力されると、逆変換部15および逆変換部25の電力変換を停止する。これにより、逆変換部25の破損を防止することができる。 Here, when the reverse conversion unit 25 starts the switching operation in a state where the relay 22 does not operate normally and the switch of the relay 22 is not closed (abnormal state), the switching element of the reverse conversion unit 25 has a capacitance Depending on the capacitance of the element 26, it may be damaged by a turn-off surge voltage. Therefore, when the “abnormal” determination result is output from the output unit 44, the inverter control unit 17 and the converter control unit 30 stop power conversion of the inverse conversion unit 15 and the inverse conversion unit 25. Thereby, damage to the inverse conversion unit 25 can be prevented.
 なお、図4のフローチャートは、電源1の電源が投入されたときに実行されるとしたが、電源投入後、周期的に実行されてもよい。 Although the flowchart of FIG. 4 is executed when the power supply 1 is turned on, it may be executed periodically after the power supply is turned on.
 また、上述したフロー図の各処理単位は、判定部29の処理を理解容易にするために、主な処理内容に応じて分割したものである。処理単位の分割の仕方や名称によって、本願発明が制限されることはない。判定部29の処理は、処理内容に応じて、さらに多くの処理単位に分割することもできる。また、1つの処理単位がさらに多くの処理を含むように分割することもできる。 In addition, each processing unit in the above-described flowchart is divided according to main processing contents in order to make the processing of the determination unit 29 easy to understand. The present invention is not limited by the way of dividing the processing unit or the name. The processing of the determination unit 29 can be divided into more processing units according to the processing content. Moreover, it can also divide | segment so that one process unit may contain many processes.
 図5は、判定部29の機能を実現するハードウェア構成の一例を示した図である。判定部29は、例えば、図5に示すような、CPU(Central Processing Unit)61と、RAM(Random Access Memory)と、ROM(Read Only Memory)63と、通信インターフェイス(I/F)64とを備える。 FIG. 5 is a diagram illustrating an example of a hardware configuration that implements the function of the determination unit 29. The determination unit 29 includes, for example, a CPU (Central Processing Unit) 61, a RAM (Random Access Memory), a ROM (Read Only Memory) 63, and a communication interface (I / F) 64 as shown in FIG. Prepare.
 判定部29の機能は、例えば、ROM63などからRAM62にロードされた所定のプログラムをCPU61が実行することで実現される。判定部29と、インバータ制御部17およびコンバータ制御部30との通信は、例えば、CPU61が通信I/F64を利用することで実現される。 The function of the determination unit 29 is realized by the CPU 61 executing a predetermined program loaded from the ROM 63 or the like to the RAM 62, for example. Communication between the determination unit 29 and the inverter control unit 17 and the converter control unit 30 is realized by the CPU 61 using the communication I / F 64, for example.
 ROM63は、例えば、フラッシュメモリなどであってもよい。そして、上記の所定のプログラムは、例えば、通信I/F64を介してネットワークからフラッシュメモリにインストールされてもよい。 The ROM 63 may be, for example, a flash memory. The predetermined program may be installed in the flash memory from the network via the communication I / F 64, for example.
 また、判定部29の一部またはすべての機能は、例えば、CPU、ROM、RAM、駆動回路などを有するASIC(Application Specific Integrated Circuit)を備えたコントローラー基板等により実現してもよい。また、判定部29は、CPU等の演算装置を用いないで、ロジック回路等によって、実現してもよい。 Further, some or all of the functions of the determination unit 29 may be realized by a controller board including an ASIC (Application Specific Integrated Circuit) having a CPU, a ROM, a RAM, a drive circuit, and the like. The determination unit 29 may be realized by a logic circuit or the like without using an arithmetic device such as a CPU.
 また、図3に示した表51のデータは、ROM63に記憶するようにしてもよい。比較部43は、入力された制御状態信号および検出結果信号に基づいて、ROM63またはROM63からRAM62に展開された表51のデータを参照し、比較結果を算出してもよい。 Further, the data of the table 51 shown in FIG. 3 may be stored in the ROM 63. The comparison unit 43 may calculate the comparison result by referring to the data in the table 51 developed from the ROM 63 or the ROM 63 to the RAM 62 based on the input control state signal and detection result signal.
 上述した判定部29の機能構成は、判定部29の構成を理解容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。判定部29の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。また、各構成要素の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。 The functional configuration of the determination unit 29 described above is classified according to main processing contents in order to make the configuration of the determination unit 29 easy to understand. The present invention is not limited by the way of classification and names of the constituent elements. The configuration of the determination unit 29 can be classified into more components depending on the processing content. Moreover, it can also classify | categorize so that one component may perform more processes. Further, the processing of each component may be executed by one hardware or may be executed by a plurality of hardware.
 このように、電力変換装置は、継電器制御部28から出力される継電器22の開閉状態を示す制御状態信号と、検出部27の検出結果とに基づいて、継電器22の状態を判定するようにした。これにより、アンサーバック機能を備えない継電器22であっても、より簡易な構成で継電器22の状態を判定することができる。 In this way, the power conversion device determines the state of the relay 22 based on the control state signal indicating the open / close state of the relay 22 output from the relay control unit 28 and the detection result of the detection unit 27. . Thereby, even if it is the relay 22 which is not provided with an answer back function, the state of the relay 22 can be determined with a simpler configuration.
 また、アンサーバック機能を備えない継電器22であっても、継電器22の状態を判定することができるので、逆変換部25の破損を防止することができる。 In addition, even if the relay 22 does not have an answer back function, the state of the relay 22 can be determined, so that the reverse conversion unit 25 can be prevented from being damaged.
 また、アンサーバック機能を備えない継電器22を用いることによって、コスト低減を図ることができる。 Further, the cost can be reduced by using the relay 22 that does not have the answer back function.
 なお、上記では、順変換部11は、直流電圧を出力するとしたが、直流電流を出力してもよい。また、逆変換部15,25は、交流電圧を出力するとしたが、交流電流を出力してもよい。 In the above description, the forward conversion unit 11 outputs a DC voltage, but may output a DC current. Moreover, although the reverse conversion parts 15 and 25 output AC voltage, you may output AC current.
 また、上記では、継電器22は、継電器制御部28から駆動電流が出力されるとスイッチを閉じてオンするとしたが、継電器制御部28から駆動電流が出力されるとスイッチを開いてオフするようにしてもよい。また、継電器22は、継電器制御部28から駆動電流が出力されないとスイッチを開いてオフするとしたが、継電器制御部28から駆動電流が出力されないとスイッチを閉じてオンするようにしてもよい。 In the above description, the relay 22 is closed and turned on when the driving current is output from the relay control unit 28. However, when the driving current is output from the relay control unit 28, the relay is opened and turned off. May be. In addition, the relay 22 is opened and turned off when no driving current is output from the relay control unit 28, but may be turned on when the driving current is not output from the relay control unit 28.
 また、継電器22は、駆動電流によって開閉動作するとしたが、駆動電圧によって開閉動作してもよい。そして、検出部27は、継電器制御部28から出力される駆動電圧を検出し、判定部29は、継電器制御部28の制御状態信号と、検出部27の電圧検出結果とに基づいて、継電器22の状態を判定するようにしてもよい。 Further, although the relay 22 is opened / closed by the drive current, it may be opened / closed by the drive voltage. The detection unit 27 detects the drive voltage output from the relay control unit 28, and the determination unit 29 determines the relay 22 based on the control state signal of the relay control unit 28 and the voltage detection result of the detection unit 27. The state may be determined.
 また、上記では、インバータ制御部17は、判定部29の判定結果が「異常」である場合、逆変換部15の電力変換を停止するとしたが、インバータ装置10および回生コンバータ20の直流母線を流れる電流が所定値以下になるように、逆変換部15の電力変換を制御するようにしてもよい。すなわち、インバータ制御部17は、インバータ装置10および回生コンバータ20の直流母線を流れる、負荷2による回生電流を低下させ、抵抗23の焼損を防止する。 In the above description, the inverter control unit 17 stops power conversion of the inverse conversion unit 15 when the determination result of the determination unit 29 is “abnormal”, but it flows through the DC bus of the inverter device 10 and the regenerative converter 20. You may make it control the power conversion of the reverse conversion part 15 so that an electric current may become below a predetermined value. That is, the inverter control unit 17 reduces the regenerative current caused by the load 2 flowing through the DC buses of the inverter device 10 and the regenerative converter 20 and prevents the resistor 23 from being burned out.
 例えば、インバータ装置10の直流母線を流れる回生電流は、逆変換部15の出力電流から算出することができる。また、インバータ制御部17は、逆変換部15から負荷2へ出力される電流を監視している。従って、インバータ制御部17は、判定部29の判定結果が「異常」である場合、逆変換部15の出力電流から、インバータ装置10の直流母線を流れる回生電流を算出することができ、算出した回生電流が所定値以下になるように、逆変換部15の電力変換を制御することができる。 For example, the regenerative current flowing through the DC bus of the inverter device 10 can be calculated from the output current of the inverse converter 15. The inverter control unit 17 monitors the current output from the inverse conversion unit 15 to the load 2. Therefore, when the determination result of the determination unit 29 is “abnormal”, the inverter control unit 17 can calculate the regenerative current flowing through the DC bus of the inverter device 10 from the output current of the inverse conversion unit 15. The power conversion of the inverse conversion unit 15 can be controlled so that the regenerative current is equal to or less than a predetermined value.
 また、判定部29は、判定結果を表示装置に表示するようにしてもよい。これにより、ユーザは、継電器22の異常を知ることができる。 Further, the determination unit 29 may display the determination result on the display device. Thereby, the user can know the abnormality of the relay 22.
 [第2の実施の形態]
 第1の実施の形態では、インバータ装置10と回生コンバータ装置20とを備える電力変換装置について説明した。第2の実施の形態では、回生コンバータ装置20を備えていない電力変換装置について説明する。
[Second Embodiment]
In 1st Embodiment, the power converter device provided with the inverter apparatus 10 and the regenerative converter apparatus 20 was demonstrated. In the second embodiment, a power conversion device that does not include the regenerative converter device 20 will be described.
 図6は、本発明の第2の実施の形態に係る電力変換装置の構成例を示した図である。図6において図1と同じものには同じ符号を付し、その説明を省略する。 FIG. 6 is a diagram showing a configuration example of the power conversion device according to the second embodiment of the present invention. 6 that are the same as those in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
 図6に示すように、インバータ装置10Aは、図1のサイリスタ12に対し、継電器71が設けられている。また、インバータ装置10Aは、継電器制御部73から継電器71に出力される駆動電流を検出する検出部72と、継電器71の開閉動作を制御する継電器制御部73と、継電器71の異常を判定する判定部74と、インバータ制御部75とを有している。 As shown in FIG. 6, the inverter device 10A is provided with a relay 71 with respect to the thyristor 12 of FIG. The inverter device 10 </ b> A also determines a detection unit 72 that detects a drive current output from the relay control unit 73 to the relay 71, a relay control unit 73 that controls the opening / closing operation of the relay 71, and a determination that determines whether the relay 71 is abnormal. Unit 74 and inverter control unit 75.
 継電器71は、アンサーバンク機能を備えない継電器である。継電器71は、電源1の電源投入時、オフし、直流母線の電圧が、容量素子14の充電により所定の電圧以上になると、オンする。すなわち、順変換部11から出力される電流は、電源1の電源投入時、抵抗13を流れ、その後、直流母線の電圧が所定の電圧以上になると、継電器71に流れる。このように、電源1の電源投入時、順変換部11から出力される電流を抵抗13に流すことによって、順変換部11および容量素子14に突入電流が流れるのを抑制する。 The relay 71 is a relay that does not have an answer bank function. The relay 71 is turned off when the power supply 1 is turned on, and turned on when the voltage of the DC bus becomes equal to or higher than a predetermined voltage due to charging of the capacitive element 14. That is, the current output from the forward converter 11 flows through the resistor 13 when the power supply 1 is turned on, and then flows into the relay 71 when the voltage of the DC bus becomes equal to or higher than a predetermined voltage. As described above, when the power source 1 is turned on, the current output from the forward conversion unit 11 is caused to flow through the resistor 13, thereby suppressing the inrush current from flowing into the forward conversion unit 11 and the capacitive element 14.
 継電器71は、継電器制御部73から出力される駆動電流に応じて、開閉動作する。継電器71の動作は、図1の継電器22と同様であり、その説明を省略する。 The relay 71 opens and closes according to the drive current output from the relay control unit 73. The operation of the relay 71 is the same as that of the relay 22 in FIG.
 継電器制御部73は、継電器71に駆動電流を出力して、継電器71の開閉動作を制御する。また、継電器制御部73は、継電器71の開閉状態を示す制御状態信号を判定部74に出力する。 The relay control unit 73 outputs a drive current to the relay 71 to control the opening / closing operation of the relay 71. Further, the relay control unit 73 outputs a control state signal indicating the open / close state of the relay 71 to the determination unit 74.
 判定部74は、継電器制御部73から出力される継電器71の開閉状態を示す制御状態信号と、検出部72の駆動電流の検出結果とに基づいて、継電器71の状態を判定する。判定部74は、図2に示した判定部29の機能ブロックと同様の機能ブロックを有する。従って、判定部74の動作は、判定部29と同様であり、その説明を省略する。 The determination unit 74 determines the state of the relay 71 based on the control state signal indicating the open / close state of the relay 71 output from the relay control unit 73 and the detection result of the drive current of the detection unit 72. The determination unit 74 has a functional block similar to the functional block of the determination unit 29 shown in FIG. Therefore, the operation of the determination unit 74 is the same as that of the determination unit 29, and the description thereof is omitted.
 インバータ制御部75は、判定部74から「異常」の判定結果が出力されると、逆変換部15の電力変換を停止する。または、インバータ制御部75は、判定部74から「異常」の判定結果が出力されると、直流母線を流れる電流が所定値以下となるように、逆変換部15の電力変換を制御するようにしてもよい。なお、第1の実施の形態で説明したように、インバータ制御部75は、逆変換部15の出力電流から、直流母線を流れる電流を算出することができる。 When the determination result of “abnormal” is output from the determination unit 74, the inverter control unit 75 stops the power conversion of the inverse conversion unit 15. Alternatively, when the determination result of “abnormal” is output from the determination unit 74, the inverter control unit 75 controls the power conversion of the inverse conversion unit 15 so that the current flowing through the DC bus is equal to or less than a predetermined value. May be. As described in the first embodiment, the inverter control unit 75 can calculate the current flowing through the DC bus from the output current of the inverse conversion unit 15.
 このように、電力変換装置は、継電器制御部73から出力される継電器71の開閉状態を示す制御状態信号と、検出部72の検出結果とに基づいて、継電器71の状態を判定するようにした。これにより、アンサーバック機能を備えない継電器71であっても、より簡易な構成で継電器71の状態を判定することができる。 As described above, the power conversion apparatus determines the state of the relay 71 based on the control state signal indicating the open / close state of the relay 71 output from the relay control unit 73 and the detection result of the detection unit 72. . Thereby, even if it is the relay 71 which is not provided with an answer back function, the state of the relay 71 can be determined with a simpler configuration.
 また、アンサーバック機能を備えない継電器71であっても、継電器71の状態を判定することができるので、抵抗13の焼損を防止することができる。 Moreover, even if the relay 71 does not have the answer back function, the state of the relay 71 can be determined, and thus the burnout of the resistor 13 can be prevented.
 また、アンサーバック機能を備えない継電器71を用いることによって、コスト低減を図ることができる。 Moreover, the cost can be reduced by using the relay 71 that does not have the answer back function.
 以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be made to the above embodiment. In addition, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 また、第1の実施の形態と第2の実施の形態を組み合わせることも可能である。例えば、図1のサイリスタ12の代わりに、図6に示したように継電器と、その継電器を制御する継電器制御部と、継電器制御部から出力される駆動電流を検出する検出部とを設ける。これにより、サイリスタ12の代わりに用いられた継電器の状態を判定することができる。 Also, it is possible to combine the first embodiment and the second embodiment. For example, instead of the thyristor 12 of FIG. 1, as shown in FIG. 6, a relay, a relay control unit that controls the relay, and a detection unit that detects a drive current output from the relay control unit are provided. Thereby, the state of the relay used instead of the thyristor 12 can be determined.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 本発明は、電力変換装置の異常を判定する方法、電力変換装置の異常を判定するプログラム、当該プログラムを記憶した記憶媒体として提供することもできる。 The present invention can also be provided as a method for determining an abnormality of a power converter, a program for determining an abnormality of a power converter, and a storage medium storing the program.
 1:電源、2:負荷、10,10A:インバータ装置、11:順変換部、12:サイリスタ、13,23:抵抗、14,16,24,26:容量素子、15,25:逆変換部、17,75:インバータ制御部、20:回生コンバータ装置、21:ダイオード、22:継電器、27:検出部、28:継電器制御部、29:判定部、30:コンバータ制御部。 1: power supply, 2: load, 10, 10A: inverter device, 11: forward converter, 12: thyristor, 13, 23: resistor, 14, 16, 24, 26: capacitive element, 15, 25: inverse converter, 17, 75: inverter control unit, 20: regenerative converter device, 21: diode, 22: relay, 27: detection unit, 28: relay control unit, 29: determination unit, 30: converter control unit.

Claims (9)

  1.  継電器を開閉するための駆動信号を出力する継電器制御部と、
     前記継電器制御部から前記継電器に出力される前記駆動信号を検出する検出部と、
     前記継電器制御部から出力される前記継電器の開閉状態を示す制御状態信号と、前記検出部の検出結果とに基づいて、前記継電器の状態を判定する判定部と、
     を有することを特徴とする電力変換装置。
    A relay control unit that outputs a drive signal for opening and closing the relay;
    A detection unit for detecting the drive signal output from the relay control unit to the relay;
    A determination unit that determines a state of the relay based on a control state signal indicating an open / close state of the relay output from the relay control unit, and a detection result of the detection unit;
    The power converter characterized by having.
  2.  請求項1に記載の電力変換装置であって、
     前記判定部は、
     前記継電器制御部から、前記継電器を閉じたことを示す前記制御状態信号が出力され、前記検出部によって前記継電器を閉じるための前記駆動信号が検出されなかった場合、前記継電器は異常であると判定し、また、
     前記継電器制御部から、前記継電器を開いたことを示す前記制御状態信号が出力され、前記検出部によって前記継電器を開くための前記駆動信号が検出されなかった場合、前記継電器は異常であると判定する、
     ことを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    The determination unit
    When the control state signal indicating that the relay is closed is output from the relay control unit and the driving signal for closing the relay is not detected by the detection unit, it is determined that the relay is abnormal. And also
    When the control state signal indicating that the relay has been opened is output from the relay control unit and the drive signal for opening the relay is not detected by the detection unit, the relay is determined to be abnormal. To
    The power converter characterized by the above-mentioned.
  3.  請求項1に記載の電力変換装置であって、
     負荷で生じた回生電力を交流電力に変換して電源に出力する回生電力逆変換部をさらに有し、
     前記継電器は、容量素子と直列に接続されて、前記回生電力逆変換部に並列に接続されることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    It further has a regenerative power reverse conversion unit that converts the regenerative power generated in the load into AC power and outputs it to the power source,
    The said relay is connected in series with a capacitive element, and is connected in parallel with the said regenerative power reverse conversion part, The power converter device characterized by the above-mentioned.
  4.  請求項3に記載の電力変換装置であって、
     前記負荷に交流電力を出力する逆変換部と、
     前記逆変換部を制御する逆変換制御部と、
     前記回生電力逆変換部を制御する回生電力逆変換制御部と、をさらに有し、
     前記逆変換制御部および前記回生電力逆変換制御部は、前記判定部によって前記継電器が異常であると判定された場合、前記逆変換部および前記回生電力逆変換部の電力変換を停止するように制御することを特徴とする電力変換装置。
    The power conversion device according to claim 3,
    An inverse converter that outputs AC power to the load;
    An inverse transformation control unit for controlling the inverse transformation unit;
    A regenerative power reverse conversion control unit for controlling the regenerative power reverse conversion unit;
    The reverse conversion control unit and the regenerative power reverse conversion control unit stop power conversion of the reverse conversion unit and the regenerative power reverse conversion unit when the determination unit determines that the relay is abnormal. The power converter characterized by controlling.
  5.  請求項3に記載の電力変換装置であって、
     前記負荷に交流電力を出力する逆変換部と、
     前記逆変換部を制御する逆変換制御部と、をさらに有し、
     前記逆変換制御部は、前記判定部によって前記継電器が異常であると判定された場合、直流母線を流れる電流が所定値以下になるように、前記逆変換部を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 3,
    An inverse converter that outputs AC power to the load;
    An inverse transformation control unit that controls the inverse transformation unit;
    When the determination unit determines that the relay is abnormal, the reverse conversion control unit controls the reverse conversion unit so that the current flowing through the DC bus is equal to or less than a predetermined value. Conversion device.
  6.  請求項1に記載の電力変換装置であって、
     負荷に交流電力を出力する逆変換部をさらに有し、
     前記継電器は、電源と前記逆変換部との間に直列に接続されていることを特徴とする電力変換装置。
    The power conversion device according to claim 1,
    And further having an inverse converter that outputs AC power to the load,
    The said relay is connected in series between a power supply and the said reverse conversion part, The power converter device characterized by the above-mentioned.
  7.  請求項6に記載の電力変換装置であって、
     前記逆変換部を制御する逆変換制御部をさらに有し、
     前記逆変換制御部は、前記判定部によって前記継電器が異常であると判定された場合、前記逆変換部の電力変換を停止するように制御することを特徴とする電力変換装置。
    The power conversion device according to claim 6,
    An inverse transformation control unit for controlling the inverse transformation unit;
    The said reverse conversion control part is controlled to stop the power conversion of the said reverse conversion part, when the said determination part determines with the said relay being abnormal, The power converter device characterized by the above-mentioned.
  8.  請求項6に記載の電力変換装置であって、
     前記逆変換制御部は、前記判定部によって前記継電器が異常であると判定された場合、直流母線を流れる電流が所定値以下になるように、前記逆変換部を制御することを特徴とする電力変換装置。
    The power conversion device according to claim 6,
    When the determination unit determines that the relay is abnormal, the reverse conversion control unit controls the reverse conversion unit so that the current flowing through the DC bus is equal to or less than a predetermined value. Conversion device.
  9.  電力変換装置の状態判定方法であって、
     継電器を開閉するための駆動信号を出力する継電器制御部から前記継電器に出力される前記駆動信号を検出する検出ステップと、
     前記継電器制御部から出力される前記継電器の開閉状態を示す制御状態信号と、前記検出ステップの検出結果とに基づいて、前記継電器の状態を判定する判定ステップと、
     を有することを特徴とする電力変換装置の状態判定方法。
    A method for determining the state of a power converter,
    A detection step of detecting the drive signal output to the relay from a relay controller that outputs a drive signal for opening and closing the relay; and
    A determination step of determining a state of the relay based on a control state signal indicating an open / close state of the relay output from the relay control unit, and a detection result of the detection step;
    A method for determining the state of a power converter, comprising:
PCT/JP2015/050811 2014-01-17 2015-01-14 Power conversion device and method for determining state of power conversion device WO2015108070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580003930.5A CN105900327B (en) 2014-01-17 2015-01-14 The state judging method of power inverter and power inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014006676A JP6757112B2 (en) 2014-01-17 2014-01-17 Power converter and state determination method of power converter
JP2014-006676 2014-01-17

Publications (1)

Publication Number Publication Date
WO2015108070A1 true WO2015108070A1 (en) 2015-07-23

Family

ID=53542958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050811 WO2015108070A1 (en) 2014-01-17 2015-01-14 Power conversion device and method for determining state of power conversion device

Country Status (3)

Country Link
JP (1) JP6757112B2 (en)
CN (1) CN105900327B (en)
WO (1) WO2015108070A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719057B (en) * 2018-07-12 2024-04-02 株式会社电装 Abnormality determination system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295299A (en) * 1991-03-22 1992-10-20 Toyota Motor Corp Detecting equipment for anomaly of relay for starting motor
JPH0759359A (en) * 1993-08-09 1995-03-03 Fuji Electric Co Ltd Power converter for power regeneration
JP2008206364A (en) * 2007-02-22 2008-09-04 Tamagawa Seiki Co Ltd Power supply
JP2009011042A (en) * 2007-06-27 2009-01-15 Yaskawa Electric Corp Method for protecting rush current prevention circuits, and inverter device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118528A (en) * 1978-03-06 1979-09-14 Hitachi Ltd Pulse width modulation inverter
JPS62217865A (en) * 1986-03-19 1987-09-25 Hitachi Ltd Three-phase power receiving type inverter unit
JPH06103872A (en) * 1992-09-18 1994-04-15 Fujitsu Ltd Electromagnetic relay and its contact failure sensing method
JPH06249569A (en) * 1993-02-26 1994-09-06 Sanyo Electric Co Ltd Alarm device of cooling refrigerator
JP3255115B2 (en) * 1998-07-13 2002-02-12 松下電器産業株式会社 Inverter device
JP4295299B2 (en) * 2006-08-07 2009-07-15 株式会社木澤工務店 New school building wooden structure
JP4661874B2 (en) * 2008-01-10 2011-03-30 パナソニック電工株式会社 Discharge lamp lighting device and lighting fixture
JP6069646B2 (en) * 2012-04-10 2017-02-01 日東工業株式会社 Charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295299A (en) * 1991-03-22 1992-10-20 Toyota Motor Corp Detecting equipment for anomaly of relay for starting motor
JPH0759359A (en) * 1993-08-09 1995-03-03 Fuji Electric Co Ltd Power converter for power regeneration
JP2008206364A (en) * 2007-02-22 2008-09-04 Tamagawa Seiki Co Ltd Power supply
JP2009011042A (en) * 2007-06-27 2009-01-15 Yaskawa Electric Corp Method for protecting rush current prevention circuits, and inverter device

Also Published As

Publication number Publication date
CN105900327A (en) 2016-08-24
JP6757112B2 (en) 2020-09-16
CN105900327B (en) 2018-12-21
JP2015136243A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
JP5820021B1 (en) Motor control device having charging resistance protection means
JP6261491B2 (en) Power converter
US9287698B2 (en) Power conversion apparatus
JP6697181B2 (en) Electric motor drive
JP2008061496A (en) Pwm method for cycloconverter
JP5955484B1 (en) Converter unit system and converter unit
JP6625235B2 (en) Motor drive
JP6183460B2 (en) Inverter device
JP5043915B2 (en) Motor drive power supply
JP2008118834A (en) Surge reduction circuit and inverter device equipped with surge reduction circuit
JP2010239736A (en) Power conversion apparatus
TWI614977B (en) Uninterruptible power supply
AU2016383826C1 (en) Air conditioner
CN110710090A (en) DC link capacitor protection
JP5223367B2 (en) Drive device
WO2016163066A1 (en) Power conversion device
JPWO2016035159A1 (en) In-vehicle charger
WO2015108070A1 (en) Power conversion device and method for determining state of power conversion device
JP2012115143A (en) Power conversion apparatus
CN105322773A (en) Slow start circuit and operation method thereof
JP2004112929A (en) Ac-dc converter
JP2011166954A (en) Device for control of electric motor
JP2003230275A (en) Protection method for pwm cycloconverter
JP2006109670A (en) Three-phase missing phase detection circuit
JP2018133849A (en) Parallel inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737387

Country of ref document: EP

Kind code of ref document: A1