WO2013082857A1 - Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method - Google Patents

Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method Download PDF

Info

Publication number
WO2013082857A1
WO2013082857A1 PCT/CN2012/000588 CN2012000588W WO2013082857A1 WO 2013082857 A1 WO2013082857 A1 WO 2013082857A1 CN 2012000588 W CN2012000588 W CN 2012000588W WO 2013082857 A1 WO2013082857 A1 WO 2013082857A1
Authority
WO
WIPO (PCT)
Prior art keywords
new energy
converter
power generation
centralized
bus
Prior art date
Application number
PCT/CN2012/000588
Other languages
French (fr)
Chinese (zh)
Inventor
吴红飞
高峰
常东升
邢岩
Original Assignee
上海康威特吉能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海康威特吉能源技术有限公司 filed Critical 上海康威特吉能源技术有限公司
Publication of WO2013082857A1 publication Critical patent/WO2013082857A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the field of new energy power generation technology, and particularly relates to a series module structure new energy power generation system and a corresponding centralized-distributed hybrid maximum power point tracking control method of the system, and the invention is particularly suitable for a photovoltaic power generation grid-connected power generation system and Thermoelectric power generation systems, etc. Background technique
  • Photovoltaic grid-connected power generation is the most important way of solar power generation applications. According to statistics, the world exceeds
  • PV grid-connected power generation systems are divided into centralized and distributed types.
  • the distributed MPPT system can ensure that each PV module works at its own maximum power point, and eliminates the voltage or current coupling existing when the components are directly connected in series and parallel, eliminating the inconsistency of the characteristics of the PV modules or the inconsistent environmental conditions.
  • the problem of lower power generation, improved system power generation efficiency, and higher system reliability have attracted wide attention.
  • photovoltaic grid-connected power generation systems based on distributed MPPT include: (1) AC modular system based on micro-inverter; (2) Photovoltaic grid-connected power generation system based on parallel connection of output side of high-voltage DC module; (3) Based on low-voltage DC Photovoltaic grid-connected power generation system connected in series on the output side of the module. Due to the low output power and low output voltage of PV modules, micro-inverters or high-voltage DC modules usually need to achieve high boost ratios by means of transformers or coupled inductors to meet grid voltage requirements, resulting in complex converter topology, reduced efficiency and reliability. Reduced sex and increased costs.
  • the output side of a plurality of new energy power generation modules form a high-voltage direct current in series, and the DC-DC converter in the new energy power generation module does not need high boosting itself, so basic Buck, Boost or The Buck/Boost converter is implemented with high efficiency and high reliability.
  • basic Buck, The conversion efficiency of the Boost or Buck/Boost converter is related to the difference between the input and output voltages. The greater the difference between the input and output voltages, the lower the efficiency. In order to obtain the optimal power generation efficiency of the whole system, it is necessary to pass the grid-connected inverter in real time. Adjust the input side DC bus voltage to make the input and output voltage of the DC-DC converter in the new energy power generation module close.
  • the grid-connected inverter cannot directly obtain the output voltage value of each new energy power generation module, and it is impossible to determine the appropriate input side DC bus voltage value.
  • the grid-connected inverter can obtain the output voltage of all DC modules, thus setting the appropriate DC bus voltage value, but the system cost is high, and the system Operation needs to rely on communication, and the reliability is poor. Summary of the invention
  • the invention provides a concentrated-distributed hybrid new energy power generation system for the problems of high cost and low energy conversion efficiency of the existing new energy power generation system, and also provides a concentration of the distributed series modular new energy power generation system - Distributed hybrid maximum power point tracking control method.
  • the invention combines the centralized maximum power tracking control of the centralized converter with the distributed maximum power tracking control of the new energy power generation module, so that the centralized converter automatically sets the optimal input side DC bus voltage value to improve the new energy source.
  • the system efficiency of the power generation system achieves the goal of increasing power generation.
  • a centralized-distributed hybrid new energy power generation system comprising at least one DC module string and a centralized converter, wherein the output terminals of all DC module strings are connected in parallel to form a high voltage DC bus and connected to the input of the centralized converter
  • the DC module string includes a plurality of new energy power generation modules, and the output ends of the plurality of new energy power generation modules are connected in series to form a DC module group;
  • the new energy power generation module includes a new energy power generation device and a DC-DC converter.
  • the output of the new energy power generation device is connected to the input end of the DC-DC converter, and the output end of the DC-DC converter is the output end of the new energy DC module.
  • the new energy power generation device may be a photovoltaic component, a thermal battery.
  • the DC-DC converter in the new energy power generation module is a buck converter or a buck-boost converter.
  • the centralized converter may be a DC-DC converter or a grid-connected inverter.
  • the output of the centralized converter may be connected to an electrical load or stored. The pool is connected.
  • the centralized converter is a grid-connected inverter, the output of the centralized converter is connected to the grid.
  • the present invention provides a centralized-distributed hybrid maximum power point tracking control method in which a DC-DC converter in a new energy power generation module is only connected to the DC-DC converter.
  • the new energy power generation equipment performs maximum power tracking
  • the centralized converter performs maximum power tracking for all new energy power generation equipment at the same time.
  • the DC-DC converter when the DC-DC converter performs maximum power tracking on the new energy power generation device and the input voltage of the DC-DC converter is equal to the maximum power point voltage of the new energy power generation device (C/W, DC- The maximum output voltage of the DC converter is equal to the maximum power point voltage of the new energy power generation module and less than the open circuit voltage (U oc ) of the new energy power generation module.
  • the DC-DC converter can use any maximum power point tracking strategy to realize new energy generation.
  • the maximum power tracking of the module, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules:
  • the centralized converter changes the input side bus voltage (t/ ⁇ :) and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
  • the DC-DC converter can use any maximum power point tracking strategy to achieve maximum power tracking of the new energy power generation module, and the centralized converter uses the following control strategy to achieve all new energy sources.
  • the centralized converter changes the input side bus voltage ( ⁇ / ⁇ ), and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
  • the present invention has the following advantages compared with the prior art:
  • the centralized converter and the distributed series of new energy power generation modules do not need communication, and the system can work stably and reliably to achieve maximum power output;
  • the centralized converter performs centralized maximum power tracking control on all new energy power generation equipment, which can automatically set the DC bus voltage at the input of the centralized converter to make the input and output voltages of the DC-DC converter in the new energy power generation module similar.
  • the bus voltage value improves the operating state of the DC-DC converter, improves the conversion efficiency of the DC-DC converter, and increases the system power generation;
  • the DC-DC converter in the new energy power generation module respectively performs maximum power tracking on the new energy power generation equipment connected to each other, which can ensure that each new energy power generation equipment works at its respective maximum power point, avoiding photovoltaic components.
  • the interaction between the characteristics and the environmental conditions is inconsistent, and the system power generation efficiency is maximized.
  • FIG. 1 is a schematic diagram of a new energy power generation system according to the present invention.
  • Figure 2 is a schematic diagram of a new energy power generation module
  • Figure 3 is a schematic diagram of a photovoltaic DC module
  • Figure 4 is a power-voltage characteristic curve of a photovoltaic module
  • Figure 5 is a power-voltage characteristic curve of a conventional photovoltaic DC module
  • FIG. 6 is a schematic diagram of a tracking area of distributed maximum power tracking and centralized maximum power tracking when using control strategy 1;
  • Figure 7 shows the power-voltage characteristic curve of the photovoltaic DC module when the control strategy 1 is adopted
  • FIG. 8 is a schematic diagram of a tracking area of distributed maximum power tracking and centralized maximum power tracking when using control strategy 2;
  • Figure 9 shows the power-voltage characteristics of the PV DC module when Control Strategy 2 is used.
  • PV photovoltaic module
  • DC-DC DC-DC converter
  • DC/AC grid inverter
  • PV module output power ( ⁇ grid-connected inverter DC input side bus voltage; ⁇ Factory PV module output voltage; "PV module output power; ⁇ "PV module maximum power point power; PV module maximum power point voltage; c ⁇ ” PV module open circuit voltage; w.
  • the present invention provides a centralized-distributed hybrid new energy power generation system comprising N new energy power generation modules 100 and a centralized converter 200.
  • each new energy power generation module 100 is mainly composed of a new energy power generation device 101 and a DC-DC converter 102, wherein an output end of the new energy power generation device 101 is connected to an input terminal of the DC-DC converter 102, DC The output of the -DC converter is the output of the new energy DC module.
  • the output terminals of the N new energy power generation modules 100 are sequentially connected in series to form a DC module string 300.
  • the output terminals of the DC module string 300 form a high voltage DC bus and are then connected to the input of the centralized converter 200.
  • the new energy power generating apparatus 101 may be a photovoltaic module, a heat battery, or the like.
  • the centralized converter 200 can be a DC-DC converter or a grid-connected inverter.
  • the output of the centralized converter 200 can be connected to an electrical load or battery 400.
  • the output of the centralized converter is connected to the grid 400.
  • the new energy power generation system is composed of a plurality of DC module strings 300 and a centralized converter 200, and the output terminals of the plurality of DC module strings 300 are connected in parallel to form a high voltage DC bus, and then It is then connected to the input of the centralized converter 200.
  • the new energy power generation module and the centralized converter in the new energy power generation system simultaneously perform maximum power tracking on the new energy power generation equipment, wherein the DC-DC converter in the new energy power generation module only pairs the DC-DC converter
  • the connected new energy power generation equipment performs maximum power tracking
  • the centralized converter simultaneously performs maximum power tracking on all new energy power generation equipment.
  • the centralized-distributed hybrid maximum power point following control method provided by the present invention specifically includes two control schemes.
  • Control plan 1
  • the DC-DC converter in the new energy power generation module can adopt a buck converter or a buck-boost converter, and the DC-DC converter performs maximum power tracking on the new energy power generation device and the DC-DC converter
  • the maximum output voltage of the DC-DC converter is greater than or equal to the maximum power point ( ⁇ / ⁇ / ) voltage of the new energy power generation module and is less than the new one.
  • the open circuit voltage (i/ oc ) of the energy generation module, the DC-DC converter can use any maximum power point tracking strategy to achieve the maximum power tracking of the new energy generation module, and the centralized converter uses the following control strategy to achieve all new energy generation.
  • Maximum power tracking of the module :
  • the centralized converter changes the input side bus voltage (1 ⁇ 4) and detects the input power before and after the centralized converter changes the bus voltage;
  • the DC-DC converter in the new energy power generation module can use a boost converter or a buck-boost converter, and the DC-DC converter performs maximum power tracking and DC-DC conversion on the new energy power generation module.
  • the lowest output (t/. TOanne) voltage of the DC-DC converter is less than or equal to the maximum power point of the new energy generation module (i/Mm).
  • the voltage is greater than 0, and the maximum output voltage ( ) of the DC-DC converter is greater than the open circuit voltage of the new energy generation module ([/ oc ).
  • the DC-DC converter can implement the new energy generation module by using any maximum power point tracking strategy.
  • the maximum power tracking, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules:
  • the centralized converter changes the input side bus voltage (1 ⁇ 4J, and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
  • the working principle of the centralized-distributed hybrid maximum power point tracking control method of the distributed tandem photovoltaic grid-connected power generation system of the present invention will be described below by taking the control scheme 1 as an example.
  • the new energy power generation equipment in the new energy power generation system is a solar photovoltaic module, and the centralized converter is a grid-connected inverter;
  • the new energy composed of the photovoltaic module and the DC-DC converter The power generation module is referred to as the photovoltaic DC module, as shown in Figure 3;
  • the DC-DC converter in the PV DC module performs maximum power tracking on the PV module and the input voltage of the DC-DC converter is equal to the maximum power point of the PV module.
  • the highest output voltage of the DC-DC converter ((7.) is equal to light
  • the maximum power point voltage of the volt component is assumed to light The maximum power point voltage of the volt component.
  • the output power-voltage characteristic curve of the multiple photovoltaic components after series and parallel connection is shown in Figure 4
  • the output power-voltage characteristic curve of the PV module is similar, that is, there is still a unique maximum power point in the system.
  • the grid-connected inverter performs centralized maximum power tracking for all PV modules at the same time, it can change the grid-connected inverter.
  • Input voltage that is, change the output voltage of the PV module, and compare the output power of the PV module
  • the DC-DC converter performs distributed maximum power tracking for each PV module, which ensures that each PV module operates at its respective maximum power point, since the DC-DC converter has always been
  • the maximum power tracking of the PV module the output power of the DC-DC converter always maintains the power of the maximum power point of the PV module, and the output power-voltage characteristic curve of the PV DC module thus formed is independent of the output voltage of the DC-DC converter.
  • the curve is a smooth straight line.
  • the output characteristic curve is still a smooth straight line, that is, there is no maximum power point in the output characteristic curve, because all The output power corresponding to the voltage point is the same, if the grid-connected inverter continues.
  • the PV DC module performs centralized maximum power tracking
  • the maximum power point corresponding to the fixed voltage point cannot be detected, that is, the centralized maximum power tracking of the grid-connected inverter will fail.
  • the grid-connected inverter input The terminal DC bus voltage will fluctuate randomly, which affects the stable operation of the system.
  • the present invention employs a centralized-distributed hybrid maximum power tracking control strategy, including two control schemes.
  • the basic principle of the control scheme 1 is as shown in Fig. 6:
  • the output power-voltage characteristic curve of the photovoltaic DC module is centered on the maximum power point and is divided into two parts, so that the photovoltaic DC module is only in the left half plane of the photovoltaic module.
  • Distributed maximum power tracking control is performed, while grid-connected inverters focus on centralized maximum power tracking control for the right half of all PV modules.
  • the photovoltaic DC module performs maximum power tracking control only when the output voltage is less than or equal to the maximum power point voltage, and thus the output characteristic curve of the photovoltaic DC module is as shown in FIG. According to FIG. 7, when the output voltage of the photovoltaic DC module is lower than the maximum power point voltage of the photovoltaic module, the photovoltaic DC module performs maximum power tracking control, and the output power-voltage curve of the photovoltaic DC module is a smooth straight line, and when the photovoltaic When the output voltage of the DC module is higher than the maximum power point voltage of the PV module, the PV DC module does not perform maximum power tracking control, and the output characteristics of the PV DC module are consistent with the original characteristics of the PV module.
  • the control strategy described in the present invention can automatically track the vicinity of the maximum power point voltage of the photovoltaic component, and the voltage can automatically ensure the output voltage of the DC module and the photovoltaic module itself.
  • the maximum power point voltage is close, so as to ensure that the photovoltaic DC module has high conversion efficiency and achieve the purpose of improving the power generation efficiency of the grid-connected power generation system.
  • the implementation principle of the control scheme 2 is similar to that of the control scheme 1, and the output characteristic curve of the photovoltaic module is still divided into two planes centered on the maximum power point voltage, as shown in FIG. 8, wherein the photovoltaic DC module is only for the photovoltaic component.
  • the right half-plane performs distributed maximum power tracking control, and the output power-voltage characteristic curve of the obtained photovoltaic DC module is as shown in FIG. 9.
  • the grid-connected inverter further performs centralized operation on the left half plane of the photovoltaic module.
  • Maximum power tracking control capable of automatically tracking the maximum power point voltage of the photovoltaic component under the control strategy of the present invention In the vicinity, the output voltage of the photovoltaic DC module is close to the maximum power point voltage of the photovoltaic module itself, thereby ensuring high conversion efficiency of the photovoltaic DC module and achieving the purpose of improving the power generation efficiency of the grid-connected power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The present invention relates to the technical field of new energy power generation. A centralized-distributed hybrid new energy power generation system and a maximum power point tracking control method. The new energy power generation system consists of a plurality of distributed serially connected new energy power generation modules (100) and a centralized transformer (200). The new energy power generation module (100) consists of power generation equipment (101) and a direct current transformer (102). The maximum power point tracking control method comprises: the distributed power generation modules (100) and the centralized transformer (200) performing maximum power point tracking on the power generation equipment (101) at the same time, the new energy power generation modules (100) and the centralized transformer (200) performing maximum power point tracking on different parts of the output characteristic curve of the power generation module, respectively. The control method can enable the centralized transformer (200) and the power generation module (100) to work stably and reliably without communication present therebetween, the centralized transformer (200) automatically works in the optimal direct current bus voltage point, and the new energy power generation modules (100) at the same time enable each set of power generation equipment (101) to work at respective maximum power point, so that the system automatically implements the maximum power output.

Description

集中-分布混合式新能源发电系统及最大功率点跟踪控制方法 技术领域  Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method
本发明属新能源发电技术领域, 具体涉及的是串联模块结构新能源发 电系统以及该系统相对应的集中 -分布混合式最大功率点跟踪控制方法, 本 发明尤其适用于光伏发电并网发电系统和热电发电系统等。 背景技术  The invention belongs to the field of new energy power generation technology, and particularly relates to a series module structure new energy power generation system and a corresponding centralized-distributed hybrid maximum power point tracking control method of the system, and the invention is particularly suitable for a photovoltaic power generation grid-connected power generation system and Thermoelectric power generation systems, etc. Background technique
发展和利用太阳能、 热电等新型能源发电技术是应对能源和环境危机 的重要举措。 由于新能源发电设备成本高且能量转换效率低, 极大增加了 发电成本, 限制了新能源发电技术的推广和应用。 下面以太阳能光伏发电 系统为例来说明本发明的应用背景。  The development and utilization of new energy generation technologies such as solar energy and thermal power are important measures to deal with the energy and environmental crisis. Due to the high cost of new energy power generation equipment and low energy conversion efficiency, the power generation cost is greatly increased, which limits the promotion and application of new energy power generation technology. The application background of the present invention will be described below by taking a solar photovoltaic power generation system as an example.
光伏并网发电是太阳能发电应用最主要的方式, 据统计, 全世界超过 Photovoltaic grid-connected power generation is the most important way of solar power generation applications. According to statistics, the world exceeds
90%的光伏发电设备安装容量为并网应用, 这是因为并网应用相对独立光 伏系统有成本低和免维护等优势。 按照光伏组件实现最大功率跟踪 (Maximum Power Point Tracking, MPPT)的方式, 光伏并网发电系统分为集 中式和分布式两种类型。 分布式 MPPT系统可以保证每个光伏组件工作在 各自的最大功率点, 解除各个组件直接串并联连接时存在的电压或电流耦 合, 消除光伏组件之间特性不一致或环境条件不一致时因为彼此相互影响 导致的发电量降低问题, 改善系统发电效率, 同时提高系统可靠性高, 因 而受到广泛关注。 90% of photovoltaic power generation equipment installation capacity is grid-connected, because grid-connected applications have the advantages of low cost and maintenance-free compared to independent photovoltaic systems. According to the way of PV module's Maximum Power Point Tracking (MPPT), PV grid-connected power generation systems are divided into centralized and distributed types. The distributed MPPT system can ensure that each PV module works at its own maximum power point, and eliminates the voltage or current coupling existing when the components are directly connected in series and parallel, eliminating the inconsistency of the characteristics of the PV modules or the inconsistent environmental conditions. The problem of lower power generation, improved system power generation efficiency, and higher system reliability have attracted wide attention.
目前基于分布式 MPPT的光伏并网发电系统包括: (1)基于微逆变器的 交流模块式系统; (2)基于高压直流模块输出侧并联的光伏并网发电系统; (3)基于低压直流模块输出侧串联的光伏并网发电系统。 由于光伏组件输出 功率小、 输出电压低, 微逆变器或者高压直流模块通常需要借助变压器或 耦合电感等实现高升压比, 以满足电网电压需求, 导致变换器拓扑结构复 杂、 效率降低、 可靠性降低、 成本增加。 分布式串联光伏并网发电系统中, 多个新能源发电模块输出侧串联形成高压直流, 新能源发电模块中的 DC-DC 变换器自身不需要高升压, 因此可以采用基本的 Buck、 Boost或 Buck/Boost变换器实现, 具有效率高、 可靠性高等优点。 但是基本 Buck、 Boost或 Buck/Boost变换器的变换效率与输入输出电压的差值有关, 输入 输出电压相差越大, 其效率越低, 为了使整个系统获得最优的发电效率, 需要通过并网逆变器实时调整输入侧直流母线电压, 使得新能源发电模块 中的 DC-DC变换器输入输出电压接近。然而, 并网逆变器无法直接获得每 个新能源发电模块输出电压值, 无法确定合适的输入侧直流母线电压值。 通过为所有新能源发电模块和并网逆变器加入通信系统的方式, 可以使并 网逆变器获得所有直流模块的输出电压,从而设置合适的直流母线电压值, 但系统成本高, 且系统运行需要依赖通信, 可靠性差。 发明内容 At present, photovoltaic grid-connected power generation systems based on distributed MPPT include: (1) AC modular system based on micro-inverter; (2) Photovoltaic grid-connected power generation system based on parallel connection of output side of high-voltage DC module; (3) Based on low-voltage DC Photovoltaic grid-connected power generation system connected in series on the output side of the module. Due to the low output power and low output voltage of PV modules, micro-inverters or high-voltage DC modules usually need to achieve high boost ratios by means of transformers or coupled inductors to meet grid voltage requirements, resulting in complex converter topology, reduced efficiency and reliability. Reduced sex and increased costs. In the distributed series photovoltaic grid-connected power generation system, the output side of a plurality of new energy power generation modules form a high-voltage direct current in series, and the DC-DC converter in the new energy power generation module does not need high boosting itself, so basic Buck, Boost or The Buck/Boost converter is implemented with high efficiency and high reliability. But basic Buck, The conversion efficiency of the Boost or Buck/Boost converter is related to the difference between the input and output voltages. The greater the difference between the input and output voltages, the lower the efficiency. In order to obtain the optimal power generation efficiency of the whole system, it is necessary to pass the grid-connected inverter in real time. Adjust the input side DC bus voltage to make the input and output voltage of the DC-DC converter in the new energy power generation module close. However, the grid-connected inverter cannot directly obtain the output voltage value of each new energy power generation module, and it is impossible to determine the appropriate input side DC bus voltage value. By adding all new energy power generation modules and grid-connected inverters to the communication system, the grid-connected inverter can obtain the output voltage of all DC modules, thus setting the appropriate DC bus voltage value, but the system cost is high, and the system Operation needs to rely on communication, and the reliability is poor. Summary of the invention
本发明针对现有新能源发电系统成本高且能量转换效率低等问题, 提 供一种集中-分布混合式新能源发电系统, 同时还提供一种针对分布式串联 模块式新能源发电系统的集中 -分布混合式最大功率点跟踪控制方法。本发 明通过将集中变换器的集中式最大功率跟踪控制与新能源发电模块的分布 式最大功率跟踪控制相结合, 使得集中变换器自动设定在最优的输入侧直 流母线电压值, 改善新能源发电系统的系统效率, 达到提高发电量的目的。  The invention provides a concentrated-distributed hybrid new energy power generation system for the problems of high cost and low energy conversion efficiency of the existing new energy power generation system, and also provides a concentration of the distributed series modular new energy power generation system - Distributed hybrid maximum power point tracking control method. The invention combines the centralized maximum power tracking control of the centralized converter with the distributed maximum power tracking control of the new energy power generation module, so that the centralized converter automatically sets the optimal input side DC bus voltage value to improve the new energy source. The system efficiency of the power generation system achieves the goal of increasing power generation.
为了达到上述目的, 本发明采用如下的技术方案:  In order to achieve the above object, the present invention adopts the following technical solutions:
集中-分布混合式新能源发电系统, 该系统包括至少一个直流模块组串 和一个集中变换器, 所有直流模块组串的输出端并联形成高压直流母线, 并与集中变换器的输入端相连, 所述直流模块组串包括复数个新能源发电 模块, 所述复数个新能源发电模块的输出端串联形成直流模块组串; 所述 新能源发电模块包括新能源发电设备和 DC-DC变换器,所述新能源发电设 备的输出端与 DC-DC变换器的输入端相连, DC-DC变换器的输出端即为 新能源直流模块的输出端。  A centralized-distributed hybrid new energy power generation system comprising at least one DC module string and a centralized converter, wherein the output terminals of all DC module strings are connected in parallel to form a high voltage DC bus and connected to the input of the centralized converter The DC module string includes a plurality of new energy power generation modules, and the output ends of the plurality of new energy power generation modules are connected in series to form a DC module group; the new energy power generation module includes a new energy power generation device and a DC-DC converter. The output of the new energy power generation device is connected to the input end of the DC-DC converter, and the output end of the DC-DC converter is the output end of the new energy DC module.
在上述发电系统的优选方案中,所述新能源发电设备可以是光伏组件、 热电池。  In a preferred embodiment of the power generation system described above, the new energy power generation device may be a photovoltaic component, a thermal battery.
进一步的,所述新能源发电模块中的 DC-DC变换器为降压变换器或者 升降压变换器。  Further, the DC-DC converter in the new energy power generation module is a buck converter or a buck-boost converter.
进一步的,所述集中变换器可以是 DC-DC变换器或并网逆变器, 当集 中变换器为 DC-DC变换器时,集中变换器的输出端可以与用电负载或蓄电 池相连, 当集中变换器为并网逆变器时, 集中变换器的输出端与电网相连。 针对上述新能源发电系统, 本发明提供一种集中-分布混合式最大功率 点跟踪控制方法,该控制方法中新能源发电模块中的 DC-DC变换器仅对与 该 DC-DC变换器相连的新能源发电设备进行最大功率跟踪,集中变换器对 所有新能源发电设备同时进行最大功率跟踪。 Further, the centralized converter may be a DC-DC converter or a grid-connected inverter. When the centralized converter is a DC-DC converter, the output of the centralized converter may be connected to an electrical load or stored. The pool is connected. When the centralized converter is a grid-connected inverter, the output of the centralized converter is connected to the grid. In view of the above new energy power generation system, the present invention provides a centralized-distributed hybrid maximum power point tracking control method in which a DC-DC converter in a new energy power generation module is only connected to the DC-DC converter. The new energy power generation equipment performs maximum power tracking, and the centralized converter performs maximum power tracking for all new energy power generation equipment at the same time.
在上述控制方法的优选方案中,当 DC-DC变换器对新能源发电设备进 行最大功率跟踪且 DC-DC 变换器的输入电压等于新能源发电设备最大功 率点电压 (C/ W时, DC-DC变换器的最高输出电压 于等于新能源 发电模块的最大功率点 电压且小于新能源发电模块的开路电压 (Uoc), DC-DC变换器可以采用任意的最大功率点跟踪策略实现新能源发电 模块的最大功率跟踪, 而集中变换器采用如下的控制策略实现所有新能源 发电模块的最大功率跟踪: In a preferred embodiment of the above control method, when the DC-DC converter performs maximum power tracking on the new energy power generation device and the input voltage of the DC-DC converter is equal to the maximum power point voltage of the new energy power generation device (C/W, DC- The maximum output voltage of the DC converter is equal to the maximum power point voltage of the new energy power generation module and less than the open circuit voltage (U oc ) of the new energy power generation module. The DC-DC converter can use any maximum power point tracking strategy to realize new energy generation. The maximum power tracking of the module, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules:
(1)集中变换器改变输入侧母线电压 (t/^:),同时检测集中变换器改变母 线电压 前后的输入功率大小;  (1) The centralized converter changes the input side bus voltage (t/^:) and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 (C/^)后输入功率变小, 则减小母线电压值 (UBus),如果增加母线电压值 (¼„s)后输入功率变大,则继续增加母线电压值(2) If the input power becomes smaller after increasing the bus voltage value (C/^), reduce the bus voltage value (U Bus ). If the input power becomes larger after increasing the bus voltage value (1⁄4 s ), continue to increase the bus. Voltage value
(uBusy, (u Bus y,
(3)如果减小母线电压值 (¼„s)后输入功率变小, 则增加母线电压值 (UBus),如果减小母线电压值 (½„s)后输入功率变大,则继续减小母线电压值 (UBus); (3) If the input power becomes smaller after reducing the bus voltage value (1⁄4„ s ), increase the bus voltage value (U Bus ). If the input power becomes larger after reducing the bus voltage value (1⁄2„ s ), continue to decrease. Small bus voltage value (U Bus );
(4)如果减小母线电压值 后输入功率不变, 则增加母线电压值 (UBus),如果增加母线电压值 (¼„s)后输入功率不变,则继续增加母线电压值 在上述控制方法的另一优选方案中,当 DC-DC变换器对新能源发电模 块进行最大功率跟踪且 DC-DC变换器的输入电压等于新能源发电模块最 大功率点电压 (i/Mm时, DC-DC变换器的最低输出 (i/。TO„)电压小于等于新 能源发电模块的最大功率点 (i/Mw)电压且大于 0, 同时 DC-DC变换器的最 高输出电压 (ί/。„«„)大于新能源发电模块的开路电压 ( c), DC-DC变换器可 以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪, 而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟 踪: (4) If the input power is constant after reducing the bus voltage value, increase the bus voltage value (U Bus ). If the input power is unchanged after increasing the bus voltage value (1⁄4„ s ), continue to increase the bus voltage value in the above control. In another preferred embodiment of the method, when the DC-DC converter performs maximum power tracking on the new energy generation module and the input voltage of the DC-DC converter is equal to the maximum power point voltage of the new energy generation module (i/Mm, DC-DC) The lowest output (i/. TO „) voltage of the converter is less than or equal to the maximum power point (i/Mw) voltage of the new energy generation module and greater than 0, and the highest output voltage of the DC-DC converter (ί/.„«„ ) Larger than the open circuit voltage of the new energy power generation module ( c ), the DC-DC converter can use any maximum power point tracking strategy to achieve maximum power tracking of the new energy power generation module, and the centralized converter uses the following control strategy to achieve all new energy sources. The maximum power of the power generation module Trace:
(1)集中变换器改变输入侧母线电压 (^/^),同时检测集中变换器改变母 线电压 前后的输入功率大小;  (1) The centralized converter changes the input side bus voltage (^/^), and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 (¼„s)后输入功率变小, 则减小母线电压值 (UBus),如果增加母线电压值 后输入功率变大,则继续增加母线电压值 (UBus); (2) If the input power becomes smaller after increasing the bus voltage value (1⁄4„ s ), reduce the bus voltage value (U Bus ). If the input power becomes larger after increasing the bus voltage value, continue to increase the bus voltage value (U Bus) );
(3)如果减小母线电压值 后输入功率变小, 则增加母线电压值 (UBus),如果减小母线电压值 后输入功率变大,则继续减小母线电压值(3) If the input power becomes smaller after reducing the bus voltage value, increase the bus voltage value (U Bus ). If the input power becomes larger after reducing the bus voltage value, continue to reduce the bus voltage value.
(uBus , (u Bus ,
(4)如果减小母线电压值 (t/^)后输入功率不变,则继续减小母线电压值 {UBus) , 如果增加母线电压值 后输入功率不变, 则减小母线电压值 根据杉树方案得到的本发明够使集中变换器与发电模块无需通信情况 下稳定、 可靠工作, 集中变换器自动工作在最优的直流母线电压点, 新能 源发电模块同时使每个发电设备都工作在各自的最大功率点, 使系统自动 实现最大功率输出。 (4) If the input power is constant after reducing the bus voltage value (t/^), continue to reduce the bus voltage value {U Bus ). If the input power is unchanged after increasing the bus voltage value, reduce the bus voltage value according to The invention obtained by the cedar scheme enables the centralized converter and the power generation module to work stably and reliably without communication, and the centralized converter automatically operates at the optimal DC bus voltage point, and the new energy power generation module simultaneously makes each power generation device work. At their respective maximum power points, the system automatically achieves maximum power output.
同时本发明与现有技术相比还具有以下优点:  At the same time, the present invention has the following advantages compared with the prior art:
(1)集中变换器与分布式串联的新能源发电模块不需要通信配合,系统 可以稳定、 可靠工作, 实现最大功率输出;  (1) The centralized converter and the distributed series of new energy power generation modules do not need communication, and the system can work stably and reliably to achieve maximum power output;
(2)集中变换器对所有新能源发电设备集中进行最大功率跟踪控制,能 够使集中变换器的输入端直流母线电压自动设定为使新能源发电模块中的 DC-DC变换器输入输出电压相近的母线电压值, 改善 DC-DC变换器的工 作状态、 提高 DC-DC变换器的变换效率, 提高系统发电量;  (2) The centralized converter performs centralized maximum power tracking control on all new energy power generation equipment, which can automatically set the DC bus voltage at the input of the centralized converter to make the input and output voltages of the DC-DC converter in the new energy power generation module similar. The bus voltage value improves the operating state of the DC-DC converter, improves the conversion efficiency of the DC-DC converter, and increases the system power generation;
(3)新能源发电模块中的 DC-DC变换器分别对与各自相连的新能源发 电设备进行最大功率跟踪, 能够保证每一个新能源发电设备都工作在各自 的最大功率点, 避免光伏组件之间特性、环境条件不一致导致的相互影响, 最大程度改善系统发电效率。 附图说明  (3) The DC-DC converter in the new energy power generation module respectively performs maximum power tracking on the new energy power generation equipment connected to each other, which can ensure that each new energy power generation equipment works at its respective maximum power point, avoiding photovoltaic components. The interaction between the characteristics and the environmental conditions is inconsistent, and the system power generation efficiency is maximized. DRAWINGS
以下结合附图和具体实施方式来进一步说明本发明。 图 1为本发明所述的新能源发电系统示意图; The invention is further described below in conjunction with the drawings and specific embodiments. 1 is a schematic diagram of a new energy power generation system according to the present invention;
图 2为新能源发电模块示意图;  Figure 2 is a schematic diagram of a new energy power generation module;
图 3为光伏直流模块示意图;  Figure 3 is a schematic diagram of a photovoltaic DC module;
图 4为光伏组件功率-电压特性曲线;  Figure 4 is a power-voltage characteristic curve of a photovoltaic module;
图 5为传统光伏直流模块功率-电压特性曲线;  Figure 5 is a power-voltage characteristic curve of a conventional photovoltaic DC module;
图 6为采用控制策略 1时分布式最大功率跟踪和集中式最大功率跟踪 的跟踪区域示意图;  6 is a schematic diagram of a tracking area of distributed maximum power tracking and centralized maximum power tracking when using control strategy 1;
图 7为采用控制策略 1时光伏直流模块功率-电压特性曲线;  Figure 7 shows the power-voltage characteristic curve of the photovoltaic DC module when the control strategy 1 is adopted;
图 8为采用控制策略 2时分布式最大功率跟踪和集中式最大功率跟踪 的跟踪区域示意图;  8 is a schematic diagram of a tracking area of distributed maximum power tracking and centralized maximum power tracking when using control strategy 2;
图 9为采用控制策略 2时光伏直流模块功率-电压特性曲线。  Figure 9 shows the power-voltage characteristics of the PV DC module when Control Strategy 2 is used.
图中符号说明: PV—光伏组件; DC-DC— DC-DC 变换器; DC/AC— 并网逆变器; 《 (^电网; 《 ^—并网逆变器直流输入侧母线电压; ^厂光伏 组件输出电压; 「光伏组件输出功率; Γ "光伏组件最大功率点电功 率; 光伏组件最大功率点电压; c^"光伏组件开路电压; w。一光 伏直流模块输出电压; /7。一光伏直流模块输出功率; ^一光伏直流模块最 高输出电压; W。^一光伏直流模块最低输出电压。 具体实施方式 Symbols in the figure: PV—photovoltaic module; DC-DC—DC-DC converter; DC/AC—grid inverter; “(^ grid-connected inverter DC input side bus voltage; ^ Factory PV module output voltage; "PV module output power; Γ "PV module maximum power point power; PV module maximum power point voltage; c^" PV module open circuit voltage; w. A PV DC module output voltage; / 7. A photovoltaic DC module output power; ^ one PV module maximum output voltage; W. ^ a photovoltaic DC module minimum output voltage.
为了使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白 了解, 下面结合具体图示, 进一步阐述本发明。  In order to make the technical means, the authoring features, the achievement of the object and the effect of the present invention easy to understand, the present invention will be further described below in conjunction with the specific drawings.
参见图 1, 本发明提供的集中-分布混合式新能源发电系统, 其包括 N 个新能源发电模块 100和一个集中变换器 200。  Referring to Figure 1, the present invention provides a centralized-distributed hybrid new energy power generation system comprising N new energy power generation modules 100 and a centralized converter 200.
参见图 2, 每个新能源发电模块 100 主要由新能源发电设备 101 和 DC-DC变换器 102构成, 其中, 新能源发电设备 101的输出端与 DC-DC 变换器 102的输入端相连, DC-DC变换器的输出端即为新能源直流模块的 输出端。 N个新能源发电模块 100的输出端依次串联形成直流模块组串 300, 直流模块组串 300的输出端形成高压直流母线, 然后与集中变换器 200的 输入端相连。  Referring to FIG. 2, each new energy power generation module 100 is mainly composed of a new energy power generation device 101 and a DC-DC converter 102, wherein an output end of the new energy power generation device 101 is connected to an input terminal of the DC-DC converter 102, DC The output of the -DC converter is the output of the new energy DC module. The output terminals of the N new energy power generation modules 100 are sequentially connected in series to form a DC module string 300. The output terminals of the DC module string 300 form a high voltage DC bus and are then connected to the input of the centralized converter 200.
在本发明中新能源发电设备 101可以是光伏组件、 热电池等设备。 集中变换器 200可以是 DC-DC变换器或并网逆变器,当集中变换器为 DC-DC变换器时, 集中变换器 200的输出端可以与用电负载或蓄电池 400 相连, 当集中变换器 200为并网逆变器时,集中变换器的输出端与电网 400 相连。 In the present invention, the new energy power generating apparatus 101 may be a photovoltaic module, a heat battery, or the like. The centralized converter 200 can be a DC-DC converter or a grid-connected inverter. When the centralized converter is a DC-DC converter, the output of the centralized converter 200 can be connected to an electrical load or battery 400. When the device 200 is a grid-connected inverter, the output of the centralized converter is connected to the grid 400.
作为本发明中新能源发电系统另一变形, 该新能源发电系统由多个直 流模块组串 300和一个集中变换器 200构成, 多个直流模块组串 300的输 出端并联形成高压直流母线, 然后再与集中变换器 200的输入端相连。  As another variation of the new energy power generation system of the present invention, the new energy power generation system is composed of a plurality of DC module strings 300 and a centralized converter 200, and the output terminals of the plurality of DC module strings 300 are connected in parallel to form a high voltage DC bus, and then It is then connected to the input of the centralized converter 200.
根据上述方案形成的新能源发电系统中新能源发电模块和集中变换器 同时对新能源发电设备进行最大功率跟踪, 其中新能源发电模块中的 DC-DC变换器仅对与该 DC-DC变换器相连的新能源发电设备进行最大功 率跟踪, 集中变换器对所有新能源发电设备同时进行最大功率跟踪。  According to the above scheme, the new energy power generation module and the centralized converter in the new energy power generation system simultaneously perform maximum power tracking on the new energy power generation equipment, wherein the DC-DC converter in the new energy power generation module only pairs the DC-DC converter The connected new energy power generation equipment performs maximum power tracking, and the centralized converter simultaneously performs maximum power tracking on all new energy power generation equipment.
基于上述原理, 本发明提供的集中-分布混合式最大功率点跟中控制方 法具体包括两种控制方案。  Based on the above principle, the centralized-distributed hybrid maximum power point following control method provided by the present invention specifically includes two control schemes.
控制方案 1 :  Control plan 1 :
在该方案中,新能源发电模块中的 DC-DC变换器可以采用降压变换器 或者升降压变换器,当 DC-DC变换器对新能源发电设备进行最大功率跟踪 且 DC-DC 变换器的输入电压等于新能源发电设备最大功率点电压 (【/MW:) 时, DC-DC变换器的最高输出电压 大于等于新能源发电模块的最大 功率点 (ί/Λ^/ )电压且小于新能源发电模块的开路电压 (i/oc), DC-DC变换器 可以采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟 踪, 而集中变换器采用如下的控制策略实现所有新能源发电模块的最大功 率跟踪: In this scheme, the DC-DC converter in the new energy power generation module can adopt a buck converter or a buck-boost converter, and the DC-DC converter performs maximum power tracking on the new energy power generation device and the DC-DC converter When the input voltage is equal to the maximum power point voltage of the new energy power generation equipment ([/ MW :), the maximum output voltage of the DC-DC converter is greater than or equal to the maximum power point (ί/Λ^/ ) voltage of the new energy power generation module and is less than the new one. The open circuit voltage (i/ oc ) of the energy generation module, the DC-DC converter can use any maximum power point tracking strategy to achieve the maximum power tracking of the new energy generation module, and the centralized converter uses the following control strategy to achieve all new energy generation. Maximum power tracking of the module:
(1)集中变换器改变输入侧母线电压 (¼ ),同时检测集中变换器改变母 线电压 前后的输入功率大小;  (1) The centralized converter changes the input side bus voltage (1⁄4) and detects the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 后输入功率变小, 则减小母线电压值 ( UBUS) ,如果增加母线电压值 (¼„s)后输入功率变大,则继续增加母线电压值 (2) If the input power becomes smaller after increasing the bus voltage value, reduce the bus voltage value ( U BUS ). If the input power becomes larger after increasing the bus voltage value (1⁄4 s ), continue to increase the bus voltage value.
(3)如果减小母线电压值 (1/^)后输入功率变小, 则增加母线电压值 ( UBUS) ,如果减小母线电压值 (¼„s)后输入功率变大,则继续减小母线电压值 (UBUS) ; (4)如果减小母线电压值 后输入功率不变, 则增加母线电压值 (UBus),如果增加母线电压值 后输入功率不变,则继续增加母线电压值 控制方案 2: (3) If the input power becomes smaller after reducing the bus voltage value (1/^), increase the bus voltage value ( U BUS ). If the input power becomes larger after reducing the bus voltage value (1⁄4 s ), continue to decrease. Small bus voltage value (U BUS ); (4) If the input power is constant after reducing the bus voltage value, increase the bus voltage value (U Bus ). If the input power is unchanged after increasing the bus voltage value, continue to increase the bus voltage value control scheme 2:
在该方案中,新能源发电模块中的 DC-DC变换器可以釆用升压变换器 或者升降压变换器,当 DC-DC变换器对新能源发电模块进行最大功率跟踪 且 DC-DC 变换器的输入电压等于新能源发电模块最大功率点电压 (C/ W) 时, DC-DC变换器的最低输出 (t/。TO„)电压小于等于新能源发电模块的最大 功率点 (i/Mm电压且大于 0, 同时 DC-DC变换器的最高输出电压 ( )大 于新能源发电模块的开路电压 ([/oc), DC-DC变换器可以采用任意的最大功 率点跟踪策略实现新能源发电模块的最大功率跟踪, 而集中变换器采用如 下的控制策略实现所有新能源发电模块的最大功率跟踪: In this scheme, the DC-DC converter in the new energy power generation module can use a boost converter or a buck-boost converter, and the DC-DC converter performs maximum power tracking and DC-DC conversion on the new energy power generation module. When the input voltage of the device is equal to the maximum power point voltage (C/W) of the new energy generation module, the lowest output (t/. TO „) voltage of the DC-DC converter is less than or equal to the maximum power point of the new energy generation module (i/Mm). The voltage is greater than 0, and the maximum output voltage ( ) of the DC-DC converter is greater than the open circuit voltage of the new energy generation module ([/ oc ). The DC-DC converter can implement the new energy generation module by using any maximum power point tracking strategy. The maximum power tracking, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules:
(1)集中变换器改变输入侧母线电压 (¼J,同时检测集中变换器改变母 线电压 前后的输入功率大小;  (1) The centralized converter changes the input side bus voltage (1⁄4J, and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 后输入功率变小, 则减小母线电压值 (UBus),如果增加母线电压值 (¼ 后输入功率变大,则继续增加母线电压值 (2) If the input power becomes smaller after increasing the bus voltage value, reduce the bus voltage value (U Bus ). If the bus voltage value is increased (1⁄4, the input power becomes larger, continue to increase the bus voltage value).
(3)如果减小母线电压值 后输入功率变小, 则增加母线电压值 {UBus),如果减小母线电压值 后输入功率变大,则继续减小母线电压值 (3) If the input power becomes smaller after reducing the bus voltage value, increase the bus voltage value {U Bus ). If the input power becomes larger after reducing the bus voltage value, continue to reduce the bus voltage value.
(4)如果减小母线电压值 (¼„s)后输入功率不变,则继续减小母线电压值 (UBus) , 如果增加母线电压值 后输入功率不变, 则减小母线电压值 (¼" )。 (4) If the input power is constant after reducing the bus voltage value (1⁄4„ s ), continue to reduce the bus voltage value (U Bus ). If the input power is unchanged after increasing the bus voltage value, reduce the bus voltage value ( 1⁄4" ).
下面以控制方案 1为例, 说明本发明分布式串联光伏并网发电系统集 中-分布混合式最大功率点跟踪控制方法的工作原理。 为了简化分析做如下 假设: (1)新能源发电系统中的新能源发电设备为太阳能光伏组件, 集中变 换器为并网逆变器; (2)光伏组件与 DC-DC变换器构成的新能源发电模块 简称为光伏直流模块, 如附图 3所示; (3)光伏直流模块中的 DC-DC变换 器对光伏组件进行最大功率跟踪且 DC-DC变换器的输入电压等于光伏组 件最大功率点电压 时, DC-DC变换器的最高输出电压 ((7。 )等于光 伏组件的最大功率点 电压。 The working principle of the centralized-distributed hybrid maximum power point tracking control method of the distributed tandem photovoltaic grid-connected power generation system of the present invention will be described below by taking the control scheme 1 as an example. In order to simplify the analysis, the following assumptions are made: (1) The new energy power generation equipment in the new energy power generation system is a solar photovoltaic module, and the centralized converter is a grid-connected inverter; (2) The new energy composed of the photovoltaic module and the DC-DC converter The power generation module is referred to as the photovoltaic DC module, as shown in Figure 3; (3) The DC-DC converter in the PV DC module performs maximum power tracking on the PV module and the input voltage of the DC-DC converter is equal to the maximum power point of the PV module. At voltage, the highest output voltage of the DC-DC converter ((7.) is equal to light The maximum power point voltage of the volt component.
对于传统的光伏并网发电系统, 只能单独由并网逆变器对所有光伏组 件进行集中式最大功率跟踪控制,或者只能由光伏直流模块中的 DC-DC变 换器对每一个光伏组件进行分布式最大功率跟踪控制, 即集中式最大功率 跟踪控制和分布式最大功率跟踪控制无法同时进行, 这是因为两者的最大 功率跟踪会发生冲突, 具体原因如下: 传统光伏组件的输出功率-电压特性 曲线如附图 4所示, 特性曲线中存在唯一的最大功率点 (ί/ >/ , Ρ贈 τ), 多 个光伏组件串并联以后输出功率-电压特性曲线与附图 4所示的单个光伏组 件的输出功率-电压特性曲线类似, 即系统中仍存在唯一的最大功率点, 当 并网逆变器同时对所有的光伏组件进行集中式最大功率跟踪时, 能够通过 改变并网逆变器输入端电压, 也即改变光伏组件输出电压, 同时对比光伏 组件输出功率变化的方式, 自动搜索到最大功率点, 从而稳定工作, 然而 集中式的最大功率跟踪无法兼顾到每一个光伏组件的输出特性, 保证每个 组件都能工作在最大功率点;当光伏组件与 DC-DC变换器相连构成光伏直 流模块以后, DC-DC变换器对每一个光伏组件进行分布式的最大功率跟踪, 能够保证每一个光伏组件工作在各自的最大功率点,由于 DC-DC变换器一 直对光伏组件进行最大功率跟踪, DC-DC变换器的输出功率一直保持光伏 组件最大功率点的功率, 而与 DC-DC变换器的输出电压无关, 由此形成的 光伏直流模块输出功率-电压特性曲线如附图 5所示, 该曲线是一条平滑的 直线, 当多个光伏直流模块串并联连接后, 其输出特性曲线仍为平滑的直 线, 即输出特性曲线中不存在最大功率点, 因为所有的电压点对应的输出 功率都相同, 此时如果并网逆变器继续对光伏直流模块进行集中式的最大 功率跟踪, 则无法检测到对应固定电压点的最大功率点, 即并网逆变器的 集中式最大功率跟踪将失效, 在这种情况下并网逆变器输入端直流母线电 压将随机波动, 影响系统稳定运行。  For the traditional photovoltaic grid-connected power generation system, only the grid-connected inverter can be used for centralized maximum power tracking control of all PV modules, or only for the PV modules by the DC-DC converter in the PV DC module. Distributed maximum power tracking control, ie centralized maximum power tracking control and distributed maximum power tracking control cannot be performed simultaneously, because the maximum power tracking of the two will conflict, the specific reasons are as follows: Output power-voltage of traditional photovoltaic components The characteristic curve is shown in Figure 4. There is a unique maximum power point (ί/ >/ , τ τ) in the characteristic curve. The output power-voltage characteristic curve of the multiple photovoltaic components after series and parallel connection is shown in Figure 4 The output power-voltage characteristic curve of the PV module is similar, that is, there is still a unique maximum power point in the system. When the grid-connected inverter performs centralized maximum power tracking for all PV modules at the same time, it can change the grid-connected inverter. Input voltage, that is, change the output voltage of the PV module, and compare the output power of the PV module The way to automatically search for the maximum power point, thus stable operation, but the centralized maximum power tracking can not take into account the output characteristics of each photovoltaic module, to ensure that each component can work at the maximum power point; when the PV module and DC- After the DC converters are connected to form a PV DC module, the DC-DC converter performs distributed maximum power tracking for each PV module, which ensures that each PV module operates at its respective maximum power point, since the DC-DC converter has always been The maximum power tracking of the PV module, the output power of the DC-DC converter always maintains the power of the maximum power point of the PV module, and the output power-voltage characteristic curve of the PV DC module thus formed is independent of the output voltage of the DC-DC converter. As shown in FIG. 5, the curve is a smooth straight line. When a plurality of photovoltaic DC modules are connected in series and in parallel, the output characteristic curve is still a smooth straight line, that is, there is no maximum power point in the output characteristic curve, because all The output power corresponding to the voltage point is the same, if the grid-connected inverter continues When the PV DC module performs centralized maximum power tracking, the maximum power point corresponding to the fixed voltage point cannot be detected, that is, the centralized maximum power tracking of the grid-connected inverter will fail. In this case, the grid-connected inverter input The terminal DC bus voltage will fluctuate randomly, which affects the stable operation of the system.
对于分布式串联光伏并网发电系统, 仅需要通过光伏直流模块进行分 布式的最大功率跟踪控制就能够保证每个光伏组件都工作在各自的最大功 率点,然而光伏直流模块中的 DC-DC变换效率与输入输出电压有很大的关 系, 对于采用基本 Buck、 Boost或 Buck-Boost变换器的光伏直流模块, 变 换器的输入输出电压越接近, DC-DC 变换器的变换效率越高, 也就是 DC-DC 变换器的输出电压越接近于光伏组件的最大功率点电压, DC-DC 变换器的变换效率也越高,并网发电系统的发电效率也越高。为了使 DC-DC 变换器的输出电压接近光伏板的最大功率点电压, 需要通过并网逆变器实 时调整并网逆变器输入端直流母线电压的值,从而使 DC-DC变换器的输出 电压接近于光伏组件的最大功率点电压。 然而, 并网逆变器无法获得每个 光伏直流模块的输出电压信息,因此无法自动选择最优的直流母线电压值。 For the distributed series photovoltaic grid-connected power generation system, only the distributed maximum power tracking control by the PV DC module can ensure that each PV module works at its respective maximum power point, but the DC-DC conversion in the PV DC module The efficiency has a great relationship with the input and output voltage. For a PV DC module using a basic Buck, Boost or Buck-Boost converter, the closer the input and output voltage of the converter is, the higher the conversion efficiency of the DC-DC converter is. The closer the output voltage of the DC-DC converter is to the maximum power point voltage of the photovoltaic module, the higher the conversion efficiency of the DC-DC converter, and the higher the power generation efficiency of the grid-connected power generation system. In order to make the output voltage of the DC-DC converter close to the maximum power point voltage of the photovoltaic panel, it is necessary to adjust the value of the DC bus voltage at the input of the grid-connected inverter through the grid-connected inverter in real time, so that the output of the DC-DC converter is made. The voltage is close to the maximum power point voltage of the photovoltaic module. However, the grid-connected inverter cannot obtain the output voltage information of each PV DC module, so the optimal DC bus voltage value cannot be automatically selected.
为了解决上述问题, 本发明釆用集中 -分布混合式最大功率跟踪控制策 略, 包括两种控制方案。 控制方案 1的基本原理如附图 6所示: 将光伏直 流模块的输出功率-电压特性曲线以最大功率点为中心, 分为左右两个部 分, 令光伏直流模块仅在光伏组件的左半平面进行分布式的最大功率跟踪 控制, 而并网逆变器则集中对所有光伏组件的右半平面进行集中式的最大 功率跟踪控制。 基于上述方法, 光伏直流模块只在输出电压小于等于最大 功率点电压时进行最大功率跟踪控制, 由此光伏直流模块的输出特性曲线 如附图 7所示。 根据附图 7可知, 当光伏直流模块的输出电压低于光伏组 件的最大功率点电压时, 光伏直流模块进行最大功率跟踪控制, 光伏直流 模块的输出功率 -电压曲线是平滑的直线, 而当光伏直流模块的输出电压高 于光伏组件最大功率点电压时, 光伏直流模块不进行最大功率跟踪控制, 光伏直流模块的输出特性与光伏组件原有特性一致。 当多个光伏直流模块 串联连接时, 其输出特性仍与附图 7所示的功率-电压特性曲线相似, 即功 率 -电压特性曲线不再是一条平滑的直线, 当并网逆变器对所有光伏组件进 行集中式最大功率跟踪时, 采用本发明所述的控制策略, 能够自动跟踪到 光伏组件的最大功率点电压附近, 该电压能够自动保证 ^:伏直流模块的输 出电压与光伏组件自身的最大功率点电压接近, 从而保证光伏直流模块具 有很高的变换效率, 达到改善并网发电系统发电效率的目的。  In order to solve the above problems, the present invention employs a centralized-distributed hybrid maximum power tracking control strategy, including two control schemes. The basic principle of the control scheme 1 is as shown in Fig. 6: The output power-voltage characteristic curve of the photovoltaic DC module is centered on the maximum power point and is divided into two parts, so that the photovoltaic DC module is only in the left half plane of the photovoltaic module. Distributed maximum power tracking control is performed, while grid-connected inverters focus on centralized maximum power tracking control for the right half of all PV modules. Based on the above method, the photovoltaic DC module performs maximum power tracking control only when the output voltage is less than or equal to the maximum power point voltage, and thus the output characteristic curve of the photovoltaic DC module is as shown in FIG. According to FIG. 7, when the output voltage of the photovoltaic DC module is lower than the maximum power point voltage of the photovoltaic module, the photovoltaic DC module performs maximum power tracking control, and the output power-voltage curve of the photovoltaic DC module is a smooth straight line, and when the photovoltaic When the output voltage of the DC module is higher than the maximum power point voltage of the PV module, the PV DC module does not perform maximum power tracking control, and the output characteristics of the PV DC module are consistent with the original characteristics of the PV module. When multiple PV DC modules are connected in series, their output characteristics are still similar to the power-voltage characteristics shown in Figure 7, ie the power-voltage characteristic curve is no longer a smooth straight line, when the grid-connected inverter is all When the photovoltaic module performs centralized maximum power tracking, the control strategy described in the present invention can automatically track the vicinity of the maximum power point voltage of the photovoltaic component, and the voltage can automatically ensure the output voltage of the DC module and the photovoltaic module itself. The maximum power point voltage is close, so as to ensure that the photovoltaic DC module has high conversion efficiency and achieve the purpose of improving the power generation efficiency of the grid-connected power generation system.
对于控制方案 2的实现原理与控制方案 1类似, 仍把光伏组件的输出 特性曲线以最大功率点电压为中心分为左右两个平面, 如附图 8所示, 其 中光伏直流模块仅对光伏组件的右半平面进行分布式的最大功率跟踪控 制, 从而得到的光伏直流模块的输出功率-电压特性曲线如附图 9所示, 并 网逆变器进一步对光伏组件的左半平面进行集中式的最大功率跟踪控制, 在本发明所述的控制策略下, 能够自动跟踪到光伏组件的最大功率点电压 附近, 从而保证光伏直流模块的输出电压与光伏组件自身的最大功率点电 压接近, 从而保证光伏直流模块具有很高的变换效率, 达到改善并网发电 系统发电效率的目的。 The implementation principle of the control scheme 2 is similar to that of the control scheme 1, and the output characteristic curve of the photovoltaic module is still divided into two planes centered on the maximum power point voltage, as shown in FIG. 8, wherein the photovoltaic DC module is only for the photovoltaic component. The right half-plane performs distributed maximum power tracking control, and the output power-voltage characteristic curve of the obtained photovoltaic DC module is as shown in FIG. 9. The grid-connected inverter further performs centralized operation on the left half plane of the photovoltaic module. Maximum power tracking control, capable of automatically tracking the maximum power point voltage of the photovoltaic component under the control strategy of the present invention In the vicinity, the output voltage of the photovoltaic DC module is close to the maximum power point voltage of the photovoltaic module itself, thereby ensuring high conversion efficiency of the photovoltaic DC module and achieving the purpose of improving the power generation efficiency of the grid-connected power generation system.
以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本 行业的技术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和 说明书中描述的只是说明本发明的原理, 在不脱离本发明精神和范围的前 提下, 本发明还会有各种变化和改进, 这些变化和改进都落入要求保护的 本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。  The basic principles, main features and advantages of the present invention are shown and described above. It should be understood by those skilled in the art that the present invention is not limited by the foregoing embodiments, and that the present invention is only described in the foregoing embodiments and the description of the present invention, without departing from the spirit and scope of the invention. Various changes and modifications are intended to fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and their equivalents.

Claims

权 利 要 求 Rights request
1、 集中-分布混合式新能源发电系统, 其特征在于, 所述新能源发电 系统包括至少一个直流模块组串和一个集中变换器, 所有直流模块组串的 输出端并联形成高压直流母线, 并与集中变换器的输入端相连, 所述直流 模块组串包括复数个新能源发电模块, 所述复数个新能源发电模块的输出 端串联形成直流模块组串; 所述新能源发电模块包括新能源发电设备和 DC-DC变换器, 所述新能源发电设备的输出端与 DC-DC变换器的输入端 相连, DC-DC变换器的输出端即为新能源直流模块的输出端。 1. A concentrated-distributed hybrid new energy power generation system, characterized in that: the new energy power generation system comprises at least one DC module string and a centralized converter, and the output terminals of all DC module strings are connected in parallel to form a high voltage DC bus, and Connected to the input end of the centralized converter, the DC module string includes a plurality of new energy power generation modules, and the output ends of the plurality of new energy power generation modules are connected in series to form a DC module string; the new energy power generation module includes a new energy source The power generation device and the DC-DC converter, the output end of the new energy power generation device is connected to the input end of the DC-DC converter, and the output end of the DC-DC converter is the output end of the new energy DC module.
2、 根据权利要求 1 所述的集中-分布混合式新能源发电系统, 其特征 在于, 所述新能源发电设备可以是光伏组件、 热电池。  2. The centralized-distributed hybrid new energy power generation system according to claim 1, wherein the new energy power generation device is a photovoltaic module or a heat battery.
3、 根据权利要求 1 所述的集中-分布混合式新能源发电系统, 其特征 在于,所述新能源发电模块中的 DC-DC变换器为降压变换器或者升降压变 换器。  3. The concentrated-distributed hybrid new energy power generation system according to claim 1, wherein the DC-DC converter in the new energy power generation module is a buck converter or a buck-boost converter.
4、 根据权利要求 1 所述的集中-分布混合式新能源发电系统, 其特征 在于,所述集中变换器可以是 DC-DC变换器或并网逆变器, 当集中变换器 为 DC-DC变换器时, 集中变换器的输出端可以与用电负载或蓄电池相连, 当集中变换器为并网逆变器时, 集中变换器的输出端与电网相连。  4. The concentrated-distributed hybrid new energy power generation system according to claim 1, wherein the centralized converter is a DC-DC converter or a grid-connected inverter, and when the centralized converter is a DC-DC In the case of a converter, the output of the centralized converter can be connected to an electrical load or a battery. When the centralized converter is a grid-connected inverter, the output of the centralized converter is connected to the grid.
5、 集中 -分布混合式最大功率点跟踪控制方法, 其特征在于, 所述控 制方法中新能源发电模块中的 DC-DC变换器仅对与该 DC-DC变换器相连 的新能源发电设备进行最大功率跟踪, 集中变换器对所有新能源发电设备 同时进行最大功率跟踪。  5. A centralized-distributed hybrid maximum power point tracking control method, characterized in that: in the control method, a DC-DC converter in a new energy power generation module performs only on a new energy power generation device connected to the DC-DC converter. Maximum power tracking, centralized converters simultaneously perform maximum power tracking for all new energy generation equipment.
6、 根据权利要求 5所述的集中 -分布混合式最大功率点跟踪控制方法, 其特征在于, 当 DC-DC 变换器对新能源发电设备进行最大功率跟踪且 DC-DC变换器的输入电压等于新能源发电设备最大功率点电压 (ί/^ )时, DC-DC变换器的最高输出电压 于等于新能源发电模块的最大功率 点 (i / )电压且小于新能源发电模块的开路电压 (¼c), DC-DC变换器可以 采用任意的最大功率点跟踪策略实现新能源发电模块的最大功率跟踪, 而 集中变换器采用如下的控制策略实现所有新能源发电模块的最大功率跟 踪: (1)集中变换器改变输入侧母线电压 同时检测集中变换器改变母 线电压 前后的输入功率大小; 6. The centralized-distributed hybrid maximum power point tracking control method according to claim 5, wherein when the DC-DC converter performs maximum power tracking on the new energy power generation device and the input voltage of the DC-DC converter is equal to When the maximum power point voltage (ί/^ ) of the new energy power generation equipment, the maximum output voltage of the DC-DC converter is equal to the maximum power point (i / ) voltage of the new energy power generation module and less than the open circuit voltage of the new energy power generation module (1⁄4c) The DC-DC converter can use any maximum power point tracking strategy to achieve maximum power tracking of the new energy generation module, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules: (1) The centralized converter changes the input side bus voltage while detecting the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 后输入功率变小, 则减小母线电压值 (2) If the input power becomes smaller after increasing the bus voltage value, reduce the bus voltage value.
{ UBUS) ,如果增加母线电压值 后输入功率变大,则继续增加母线电压值 (UBUS); { U BUS ), if the input power becomes larger after increasing the bus voltage value, continue to increase the bus voltage value (U BUS );
(3)如果减小母线电压值 后输入功率变小, 则增加母线电压值 (UBUS) ,如果减小母线电压值 后输入功率变大,则继续减小母线电压值 (UBUS) ; (3) If the input power becomes smaller after reducing the bus voltage value, increase the bus voltage value (U BUS ). If the input power becomes larger after reducing the bus voltage value, continue to reduce the bus voltage value (U BUS );
(4)如果减小母线电压值 后输入功率不变, 则增加母线电压值 (UBUS) ,如果增加母线电压值 (¼„s)后输入功率不变,则继续增加母线电压值 (UBUS) 0 (4) If the input power is constant after reducing the bus voltage value, increase the bus voltage value (U BUS ). If the input power is unchanged after increasing the bus voltage value (1⁄4„ s ), continue to increase the bus voltage value (U BUS ) 0
7、 根据权利要求 5所述的集中 -分布混合式最大功率点跟踪控制方法, 其特征在于, 当 DC-DC 变换器对新能源发电模块进行最大功率跟踪且 DC-DC变换器的输入电压等于新能源发电模块最大功率点电压 (ί/Μ^ζ)时, DC-DC变换器的最低输出 ( ^)电压小于等于新能源发电模块的最大功率 点 ([/ / )电压且大于 0, 同时 DC-DC变换器的最高输出电压 (C/。Wi„)大于新 能源发电模块的开路电压 (i/oc), DC-DC变换器可以釆用任意的最大功率点 跟踪策略实现新能源发电模块的最大功率跟踪, 而集中变换器采用如下的 控制策略实现所有新能源发电模块的最大功率跟踪: 7. The centralized-distributed hybrid maximum power point tracking control method according to claim 5, wherein when the DC-DC converter performs maximum power tracking on the new energy power generation module and the input voltage of the DC-DC converter is equal to When the maximum power point voltage (ί/Μ^ζ) of the new energy generation module is used, the minimum output (^) voltage of the DC-DC converter is less than or equal to the maximum power point ([/ / ) voltage of the new energy generation module and greater than 0, The maximum output voltage of the DC-DC converter (C/. Wi „) is greater than the open circuit voltage (i/ oc ) of the new energy generation module. The DC-DC converter can implement the new energy generation module using any maximum power point tracking strategy. The maximum power tracking, and the centralized converter uses the following control strategy to achieve maximum power tracking of all new energy generation modules:
(1)集中变换器改变输入侧母线电压 (¼J,同时检测集中变换器改变母 线电压 前后的输入功率大小;  (1) The centralized converter changes the input side bus voltage (1⁄4J, and simultaneously detects the input power before and after the centralized converter changes the bus voltage;
(2)如果增加母线电压值 (¼J后输入功率变小, 则减小母线电压值 (UBUS) ,如果增加母线电压值 后输入功率变大,则继续增加母线电压值 (2) If the bus voltage value is increased (the input power becomes smaller after 1⁄4J, the bus voltage value (U BUS ) is decreased. If the input power becomes larger after increasing the bus voltage value, the bus voltage value continues to increase.
(3)如果减小母线电压值 后输入功率变小, 则增加母线电压值 ( UBUS) ,如果减小母线电压值 (¼J后输入功率变大,则继续减小母线电压值 (UBUS) (3) If the input power becomes smaller after reducing the bus voltage value, increase the bus voltage value ( U BUS ). If the bus voltage value is reduced (the input power becomes larger after 1⁄4J, continue to reduce the bus voltage value (U BUS )).
(4)如果减小母线电压值 (¼„s)后输入功率不变,则继续减小母线电压值 (UBUS) , 如果增加母线电压值 (C/^)后输入功率不变, 则减小母线电压值 ( UBUS) 0 (4) If the input power is constant after reducing the bus voltage value (1⁄4„ s ), continue to reduce the bus voltage value (U BUS ). If the input voltage is unchanged after increasing the bus voltage value (C/^), subtract Small bus voltage value ( U BUS ) 0
PCT/CN2012/000588 2011-12-09 2012-05-02 Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method WO2013082857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110410080.4 2011-12-09
CN201110410080.4A CN103166239B (en) 2011-12-09 2011-12-09 Centralized-distributed mixed novel energy power generation system and maximum power point tracking control method

Publications (1)

Publication Number Publication Date
WO2013082857A1 true WO2013082857A1 (en) 2013-06-13

Family

ID=48573526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000588 WO2013082857A1 (en) 2011-12-09 2012-05-02 Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method

Country Status (2)

Country Link
CN (1) CN103166239B (en)
WO (1) WO2013082857A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269883A (en) * 2014-09-28 2015-01-07 南方电网科学研究院有限责任公司 Photovoltaic power generation system equivalence method based on real-time digital simulator
CN104578134A (en) * 2013-10-12 2015-04-29 南京南瑞继保电气有限公司 Tracking method and tracking system for maximum power point
CN107834590A (en) * 2017-11-27 2018-03-23 广东工业大学 A kind of photovoltaic generation D.C. high voltage transmission devices and methods therefor
CN109921455A (en) * 2018-02-07 2019-06-21 苏州捷芯威半导体有限公司 A kind of control method of distributed generation system framework and distributed generation system framework
CN112421639A (en) * 2020-10-28 2021-02-26 许继集团有限公司 System and method for regulating line voltage of distributed photovoltaic power generation access distribution station area

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516305B (en) * 2013-08-28 2015-10-07 浙江工业大学 Containing the photovoltaic array MPPT interface circuit of three winding coupling inductance
TWI505061B (en) * 2013-11-15 2015-10-21 Inst Information Industry Power generation control system, method and non-transitory computer readable storage medium of the same
CN103560541B (en) * 2013-11-16 2015-10-14 沈阳工业大学 A kind of alternating current-direct current mixing microgrid fault traversing control device and method
US20150340947A1 (en) * 2014-05-23 2015-11-26 Infineon Technologies Austria Ag Boost-buck based power converter
CN104079001B (en) * 2014-07-15 2017-08-25 浙江昱能科技有限公司 To the control method of optimizer in photovoltaic parallel in system based on tandem type optimizer
CN104156028B (en) * 2014-07-30 2016-08-31 深圳科士达科技股份有限公司 A kind of MPPT compensator of photovoltaic generating system
CN104734548B (en) * 2015-04-07 2017-11-07 深圳市英威腾电气股份有限公司 A kind of control method of photovoltaic combining inverter and photovoltaic combining inverter
CN105827180A (en) * 2016-05-24 2016-08-03 西交利物浦大学 Distributed photovoltaic system based on Beta parameter difference power control
CN106953525B (en) * 2017-01-18 2019-08-23 上海交通大学 Impedance type multimode tandem photovoltaic DC booster converter
US10651735B2 (en) 2017-02-06 2020-05-12 Futurewei Technologies, Inc. Series stacked DC-DC converter with serially connected DC power sources and capacitors
US10665743B2 (en) * 2017-02-16 2020-05-26 Futurewei Technologies, Inc. Distributed/central optimizer architecture
DE102017206579A1 (en) * 2017-04-19 2018-10-25 Robert Bosch Gmbh Converter for controlling power flows between DC sources
CN107910890A (en) * 2017-09-13 2018-04-13 中南大学 The light storage micro-capacitance sensor structure and control method of a kind of connection in series-parallel inverter combination
CN109672213B (en) * 2017-10-17 2023-02-28 丰郅(上海)新能源科技有限公司 Power optimization system containing secondary optimization and optimization method thereof
CN110021955B (en) * 2018-01-08 2023-03-14 丰郅(上海)新能源科技有限公司 Photovoltaic power generation system integrating energy storage function and method for dynamically balancing electric energy
CN108448621B (en) * 2018-04-08 2021-01-08 阳光电源股份有限公司 Control method and device of photovoltaic power generation system
WO2020133351A1 (en) * 2018-12-29 2020-07-02 华为技术有限公司 Inverter
NL2023114B1 (en) * 2019-05-13 2020-12-01 Atlas Technologies Holding Bv Electric or hybrid means of transport with a solar panel.
CN110474600B (en) * 2019-05-22 2021-11-09 上海空间电源研究所 Control circuit based on input independent output series power generation circuit
CN110867846B (en) * 2019-10-25 2021-12-17 中国科学院电工研究所 Large-scale photovoltaic direct current series connection boosting grid-connected system with power balancer
CN111446735B (en) * 2020-04-07 2022-01-28 清华大学 Control system and method for photovoltaic medium-voltage distributed system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143188A1 (en) * 2006-12-06 2008-06-19 Meir Adest Distributed power harvesting systems using dc power sources
CN102067437A (en) * 2008-05-14 2011-05-18 国家半导体公司 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
CN102148509A (en) * 2011-05-13 2011-08-10 王红卫 Grid-connected inverter for optimizing minimum unit of solar cell
CN102185532A (en) * 2011-05-16 2011-09-14 武汉纺织大学 Grid-connected and off-grid hybrid solar energy photovoltaic generating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080143188A1 (en) * 2006-12-06 2008-06-19 Meir Adest Distributed power harvesting systems using dc power sources
CN102067437A (en) * 2008-05-14 2011-05-18 国家半导体公司 Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
CN102148509A (en) * 2011-05-13 2011-08-10 王红卫 Grid-connected inverter for optimizing minimum unit of solar cell
CN102185532A (en) * 2011-05-16 2011-09-14 武汉纺织大学 Grid-connected and off-grid hybrid solar energy photovoltaic generating system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578134A (en) * 2013-10-12 2015-04-29 南京南瑞继保电气有限公司 Tracking method and tracking system for maximum power point
CN104269883A (en) * 2014-09-28 2015-01-07 南方电网科学研究院有限责任公司 Photovoltaic power generation system equivalence method based on real-time digital simulator
CN104269883B (en) * 2014-09-28 2016-08-17 南方电网科学研究院有限责任公司 A kind of photovoltaic generating system equivalence method based on real-time digital simulator
CN107834590A (en) * 2017-11-27 2018-03-23 广东工业大学 A kind of photovoltaic generation D.C. high voltage transmission devices and methods therefor
CN107834590B (en) * 2017-11-27 2023-07-25 广东工业大学 Photovoltaic power generation high-voltage direct current transmission device and method thereof
CN109921455A (en) * 2018-02-07 2019-06-21 苏州捷芯威半导体有限公司 A kind of control method of distributed generation system framework and distributed generation system framework
CN112421639A (en) * 2020-10-28 2021-02-26 许继集团有限公司 System and method for regulating line voltage of distributed photovoltaic power generation access distribution station area
CN112421639B (en) * 2020-10-28 2023-03-31 许继集团有限公司 System and method for regulating line voltage of distributed photovoltaic power generation access distribution station area

Also Published As

Publication number Publication date
CN103166239B (en) 2015-07-08
CN103166239A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2013082857A1 (en) Centralized-distributed hybrid new energy power generation system and maximum power point tracking control method
CN106787707B (en) Embedded energy storage type multi-module tandem photovoltaic direct current boost converter and application method
US20180233919A1 (en) Photovoltaic inverter system and operation method thereof
Taghvaee et al. A current and future study on non-isolated DC–DC converters for photovoltaic applications
WO2021203592A1 (en) Control system and method for photovoltaic medium-voltage distributed control system
CN102244139B (en) Method for eliminating damage of hot marks by controlling operating point with set voltage range of photovoltaic module
Chowdhury et al. Single phase grid-connected photovoltaic inverter for residential application with maximum power point tracking
WO2012152072A1 (en) Solar energy photovoltaic three-phase micro-inverter and solar energy photovoltaic generating system
WO2014169533A1 (en) New energy power generation system and distrusted mixed maximum power tracking method
CN102629836B (en) Novel two-stage alternating-current photovoltaic module
CN104701877A (en) Novel building photovoltaic power generation maximum power point tracking and grid connection control device
CN103904638A (en) Direct-current distributed load system based on three-port converter and control method thereof
CN103312136A (en) Method and device for restraining power-frequency ripple current
CN113193755B (en) Multi-port converter based on topology integration, control method and system
Varaprasad et al. Design and analysis of PV fed high-voltage gain DC-DC converter using PI and NN controllers
CN108089687B (en) High-efficient formula power supply system of data center
CN102969707B (en) Series distributed novel energy power generation system and control method thereof
CN109412182B (en) Modularized photovoltaic energy system without electrolytic capacitor and modulation method thereof
Jeon et al. Differential Power Processing converter with cell balancing operation of multiple photovoltaic module systems
CN202475260U (en) High step-up ratio converter, solar energy inverter and solar energy cell system
Tarassodi et al. A power management strategy for a grid‐connected multi‐energy storage resources with a multiport converter
Testa et al. Active voltage ripple compensation in PV Systems for domestic uses
WO2022011591A1 (en) Power supply system and power supply control method therefor
AlMohaisin et al. A review on sepic converter topologies
CN203219215U (en) Solar energy system comprising power optimizing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854872

Country of ref document: EP

Kind code of ref document: A1