WO2012091132A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091132A1
WO2012091132A1 PCT/JP2011/080492 JP2011080492W WO2012091132A1 WO 2012091132 A1 WO2012091132 A1 WO 2012091132A1 JP 2011080492 W JP2011080492 W JP 2011080492W WO 2012091132 A1 WO2012091132 A1 WO 2012091132A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat recovery
temperature
heat
medium
Prior art date
Application number
PCT/JP2011/080492
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 堀内
修平 咲間
庄一 塚越
定兼 修
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012551060A priority Critical patent/JPWO2012091132A1/en
Publication of WO2012091132A1 publication Critical patent/WO2012091132A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/04Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by spirally-wound plates or laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/13Small-scale CHP systems characterised by their heat recovery units characterised by their heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/10Small-scale CHP systems characterised by their heat recovery units
    • F24D2103/17Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/19Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0207Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system, and more particularly to a fuel cell system provided with a hot water tank.
  • Patent Document 1 As a system for storing hot water, a heat storage tank (hot water storage tank) that is long in the vertical direction is provided, and a high-temperature circulation pipe is connected to the upper side of the heat storage tank.
  • a system in which a medium temperature circulation pipe is connected to the lower side of the tank is known.
  • a high temperature heat source is connected to the high temperature circulation pipe, and an intermediate temperature heat source is connected to the medium temperature circulation pipe.
  • Patent Document 1 since the system described in Patent Document 1 requires a plurality of heat sources such as a high-temperature heat source and an intermediate-temperature heat source, the configuration of the system becomes complicated.
  • an object of the present invention is to provide a fuel cell system that can efficiently perform hot water discharge from a hot water tank according to hot water demand, and that has a simple configuration.
  • a fuel cell system includes a cell stack that generates power using a hydrogen-containing gas, a heat exchanger that heats a heat medium using heat discharged from the cell stack, and stores water therein. And a hot water storage tank that circulates the heat medium heated by the heat exchanger and moves the heat from the heat medium to the water to heat the water, and the heat exchanger has the heat medium at a predetermined temperature.
  • a high temperature heat recovery flow path for heating and a low temperature heat recovery flow path for heating the heat medium to a temperature lower than a predetermined temperature are formed, and the hot water storage tank has a high temperature heat recovery flow path.
  • a high-temperature heat medium flow path for flowing the heated heat medium through and a low-temperature heat medium flow path for flowing the heated heat medium through the low-temperature heat recovery flow path are provided. .
  • the heat exchanger is formed with a high-temperature heat recovery flow path and a low-temperature heat recovery flow path, and a heat medium heated through the high-temperature heat recovery flow path is circulated in the hot water tank.
  • a high-temperature heat medium flow path that allows the heat medium to flow through the low-temperature heat recovery flow path and a low-temperature heat medium flow path that circulates the heated heat medium. Therefore, high-temperature water is stored around the high-temperature heat medium flow path, and low-temperature water is stored around the low-temperature heat medium flow path than water stored around the high-temperature heat medium flow path.
  • hot water from the hot water storage tank can be efficiently discharged by appropriately hot water and low temperature water.
  • the heat exchanger has a function of both high-temperature heat recovery and low-temperature heat recovery, it is not necessary to provide a plurality of heat exchangers, and the system configuration can be simplified.
  • the heat exchanger may be a mode in which the heat medium is heated by transferring heat from the off-gas combustion gas discharged from the cell stack to the heat medium.
  • the heat exchanger may be a mode in which the heat medium is heated by transferring heat from the heat recovery medium circulated from the cell stack to the heat medium.
  • the flow rate of the combustion gas for heating the heat medium in the high temperature heat recovery flow path may be larger than the flow rate of the combustion gas for heating the heat medium in the low temperature heat recovery flow path.
  • the amount of heat recovered in the heat medium in the high-temperature heat recovery channel is larger than the amount of heat recovered in the heat medium in the low-temperature heat recovery channel, so that high-temperature heat recovery and low-temperature heat recovery are effective. Can be done automatically.
  • the heat exchanger has a combustion gas passage through which the combustion gas passes, and a high temperature heat recovery passage and a low temperature heat recovery passage adjacent to the combustion gas passage, respectively. Further, an aspect may be adopted in which the line formed by connecting the inlet portion and the outlet portion of the combustion gas in the combustion gas flow path is closer to the low temperature heat recovery flow path. Normally, in the combustion gas flow path, the closer to the line connecting the inlet and outlet of the combustion gas, the larger the flow rate of the combustion gas, and the further away from the line, the smaller the flow rate of the combustion gas. According to the above configuration, the high temperature heat recovery flow path is closer to the line than the low temperature heat recovery flow path, so that high temperature heat recovery and low temperature heat recovery can be performed effectively.
  • the flow rate of the heat recovery medium for heating the heat medium in the high temperature heat recovery flow path may be larger than the flow rate of the heat recovery medium for heating the heat medium in the low temperature heat recovery flow path.
  • the amount of heat recovered in the heat medium in the high-temperature heat recovery channel is larger than the amount of heat recovered in the heat medium in the low-temperature heat recovery channel, so that high-temperature heat recovery and low-temperature heat recovery are effective. Can be done automatically.
  • the heat exchanger is formed with a heat recovery medium flow path through which the heat recovery medium passes, and a high temperature heat recovery flow path and a low temperature heat recovery flow path adjacent to the heat recovery medium flow path, respectively.
  • the channel may be formed so as to be closer to the line connecting the inlet portion and the outlet portion of the heat recovery medium in the heat recovery medium channel than the low temperature heat recovery channel.
  • the flow rate of the heat recovery medium increases as it is closer to the line connecting the inlet portion and the outlet portion of the heat recovery medium, and the flow rate of the heat recovery medium decreases as the distance from the line increases.
  • the high temperature heat recovery flow path is closer to the line than the low temperature heat recovery flow path, so that high temperature heat recovery and low temperature heat recovery can be performed effectively.
  • the hot water storage tank may be provided with a high-temperature hot water outlet and a low-temperature hot water outlet at heights corresponding to the uppermost portions of the high-temperature heat medium flow path and the low-temperature heat medium flow path.
  • the hot water stored in the vicinity of the uppermost part of the high-temperature heat medium flow path, that is, the uppermost stream part, and the low-temperature heat medium flow path by pressurizing with water from the lower part of the hot water tank
  • the hot water stored in the vicinity of the uppermost portion, that is, the vicinity of the uppermost stream portion can be reliably discharged.
  • hot water can be efficiently discharged from the hot water tank according to the hot water demand, and the system configuration can be simplified.
  • FIG. 1 is a block diagram of a fuel cell system according to a first embodiment of the present invention. It is a conceptual diagram which shows one form of the heat exchanger and hot water storage tank in a fuel cell system.
  • (A) is a conceptual diagram which shows the heat exchanger in FIG. 2
  • (b) is a conceptual diagram which shows the flow distribution of the combustion gas in the heat exchanger in FIG. It is a figure which shows the temperature distribution of the heat medium in the heat exchanger of FIG.
  • It is a conceptual diagram which shows the other example of a heat exchanger.
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the above-described fuel cell system 1 includes a casing 21 that is airtight with respect to external air, and a hot water tank 30 that is installed outside the casing 21. .
  • the casing 21 accommodates the above-described devices and a heat exchanger 23.
  • the heat exchanger 23 transfers heat from the combustion gas to the antifreeze liquid by circulating the offgas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the offgas combustion unit 6) and the antifreeze liquid as a heat medium. Heat the antifreeze.
  • a flame retardant heat medium having a high boiling point such as ethylene glycol, is used.
  • the hot water storage tank 30 stores water therein and distributes the antifreeze liquid heated by the heat exchanger 23, thereby transferring heat from the antifreeze liquid to the water stored therein to heat the water.
  • Hot water (that is, hot water) stored in the hot water tank 30 is discharged from the hot water tank 30 and supplied to hot water use equipment such as a bath in a facility where the fuel cell system 1 is installed.
  • the hot water use facility is a device that performs a specific function (or operation) using hot water.
  • the heat exchanger 23 is a box having a substantially rectangular parallelepiped shape.
  • the heat exchanger 23 includes a high-temperature heat recovery channel 24b for heating the antifreeze liquid to about 75 ° C., for example, and two low-temperature heat recovery channels 24a and 24c for heating the antifreeze liquid to about 65 ° C., for example. Is formed. That is, the high-temperature heat recovery flow path 24b is a high-temperature heat recovery flow path for heating the antifreeze liquid to a predetermined temperature, and the two low-temperature heat recovery flow paths 24a and 24c have a temperature lower than the predetermined temperature. It is a low-temperature heat recovery flow path for heating.
  • the heat exchanger 23 is formed with a combustion gas passage 25 through which the off-gas combustion gas discharged from the cell stack 5 passes.
  • the flow direction of the antifreeze liquid in each of the heat recovery flow paths 24a to 24c and the flow direction of the combustion gas in the combustion gas flow path 25 are opposite to each other.
  • a partition plate 26 that fixes the heat recovery passages 24 a to 24 c and the combustion gas passage 25 is fixed to the heat exchanger 23 so as to bisect the inside.
  • partition plates 27 and 27 that divide the low temperature heat recovery flow path 24a, the high temperature heat recovery flow path 24b, and the low temperature heat recovery flow path 24c are fixed to the heat exchanger 23.
  • a plurality of heat recovery passages 24 a to 24 c and one combustion gas passage 25 are formed in a single heat exchanger 23.
  • Each of the heat recovery flow paths 24a to 24c is adjacent to the combustion gas flow path 25 through the partition plate 26.
  • the partition plates 26 and 27 can take various shapes such as providing unevenness in order to increase the surface area contributing to heat recovery in consideration of heat recovery efficiency and the like.
  • the hot water tank 30 is a substantially cylindrical container extending in the vertical direction. From the vicinity of the uppermost part of the hot water tank 30 to a position slightly higher than the central part of the hot water tank 30 in the vertical direction, a high-temperature antifreeze liquid channel 31 is provided for circulating the heat medium downward.
  • the high-temperature antifreeze liquid channel 31 is provided in the hot water tank 30 in the vertical direction, for example, in a zigzag shape or a spiral shape.
  • the high temperature antifreeze liquid flow path 31 is connected to the high temperature heat recovery flow path 24b of the heat exchanger 23 by a high temperature heat recovery line L1.
  • the high temperature heat recovery line L1 is provided with a pump 28 for circulating an antifreeze liquid in the high temperature heat recovery line L1 and circulating between the hot water tank 30 and the high temperature heat recovery flow path 24b.
  • a low-temperature antifreeze liquid flow path 33 is provided to flow the heat medium downward from a position slightly lower than the central portion in the vertical direction of the hot water tank 30 to the vicinity of the lowermost part of the hot water tank 30.
  • the low-temperature antifreeze flow path 33 is provided in the hot water storage tank 30 in the vertical direction, for example, in a zigzag shape or a spiral shape.
  • the low-temperature antifreeze liquid flow path 33 is connected to the low-temperature heat recovery flow paths 24a and 24c of the heat exchanger 23 by a low-temperature heat recovery line L2.
  • the low-temperature heat recovery line L2 is provided with a pump 29 for circulating an antifreeze liquid through the low-temperature heat recovery line L2 between the hot water tank 30 and the low-temperature heat recovery flow paths 24a and 24c. Further, a water supply line L ⁇ b> 5 for supplying water from the outside into the hot water tank 30 is connected to the lowermost part of the hot water tank 30.
  • the combustion gas passage 25 is provided with a gas inlet portion 25a and a gas outlet portion 25b at both ends in the fuel gas flow direction. Both the gas inlet portion 25a and the gas outlet portion 25b are formed at a central position in the direction in which the heat recovery flow paths 24a to 24c are arranged in parallel. With such a configuration, for example, about 60% of the combustion gas flowing in the combustion gas passage 25 flows along the central line A connecting the gas inlet portion 25a and the gas outlet portion 25b, and the remaining 40% Every 20% flows through the sides on both sides of the combustion gas passage 25.
  • the high temperature heat recovery channel 24b is closer to the line A than the low temperature heat recovery channels 24a and 24c. That is, the flow rate of the combustion gas for heating the antifreeze liquid in the high temperature heat recovery flow path 24b is larger than the flow rate of the combustion gas for heating the antifreeze liquid in the low temperature heat recovery flow paths 24a and 24c.
  • FIG. 4 is a diagram showing the temperature distribution of the antifreeze liquid in the heat exchanger 23.
  • “left” means the low-temperature heat recovery flow path 24a
  • “middle” means the high-temperature heat recovery flow path 24b
  • “right” means the low-temperature heat recovery flow path 24c.
  • upstream”, “middle stream”, and “downstream” mean positions on the basis of the flow direction of the antifreeze liquid in each of the heat recovery flow paths 24a to 24c. That is, “upstream” is the lower side in the figure, and “downstream” is the upper side in the figure. As shown in FIG.
  • the antifreeze in the high-temperature heat recovery flow path 24b, the antifreeze is heated to 20 ° C., 50 ° C., and 75 ° C. as heat exchange proceeds upstream, midstream, and downstream.
  • the antifreeze in the low-temperature heat recovery flow paths 24a and 24c, the antifreeze is heated to 20 ° C., 45 ° C., and 65 ° C. as heat exchange proceeds upstream, midstream, and downstream.
  • the high temperature heat recovery flow path 24b, the high temperature heat recovery line L1, and the high temperature antifreeze liquid flow path 31 constitute a closed high temperature heat recovery system, and the low temperature heat recovery paths 24a and 24c, the low temperature heat recovery line A closed low-temperature heat recovery system is configured by L2 and the low-temperature antifreeze flow path 33.
  • a high-temperature water hot water source 36 is provided at the top of the hot water tank 30, a high-temperature water hot water source 36 is provided.
  • the high-temperature water hot-water supply unit 36 is connected to hot water utilization equipment such as a bath by a high-temperature hot-water supply line L3.
  • a low-temperature water hot water discharge portion 37 is provided at a position slightly lower than the central portion in the vertical direction of the hot water tank 30.
  • the low-temperature water hot water discharge section 37 is connected to hot water utilization equipment such as a bath by a low-temperature hot water supply line L4.
  • the high-temperature and low-temperature water discharge portions 36 and 37 are provided at substantially the same height as the uppermost portions (that is, the most upstream portions) of the high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33.
  • the high temperature hot water line L3 and the low temperature hot water line L4 are provided with motor-operated valves 38 and 39 for adjusting the flow rate of the hot water in the lines L3 and L4.
  • a water supply line (not shown) is connected to the high-temperature hot water line L3 and the low-temperature hot water line L4 in order to appropriately adjust the temperature of the hot water discharged.
  • the pumps 28 and 29 are controlled by the control unit 11 so that the hot water storage region 30a and the low temperature water storage region 30b are formed in the hot water tank 30. Storage is performed.
  • the motor control valves 38 and 39 are controlled by the control unit 11, and hot water is discharged to the hot water utilization equipment through the high temperature hot water supply line L3 and / or the low temperature hot water supply line L4.
  • control unit 11 may control the pump 28 and the pump 29 to operate simultaneously, or may control the pump 28 and the pump 29 to perform different operations.
  • the control unit 11 may adjust the discharge flow rates of the pump 28 and the pump 29 by detecting the temperature in the heat exchanger 23. For example, when the temperature in the heat heat exchanger 23 is low, the control unit 11 mainly recovers heat using the low-temperature heat recovery line L2 and the low-temperature heat recovery flow paths 24a and 24c, and the temperature in the heat exchanger 23 is high. Can also recover heat mainly by the high temperature heat recovery line L1 and the high temperature heat recovery flow path 24b.
  • the heat exchanger 23 is formed with the high temperature heat recovery passage 24 b and the low temperature heat recovery passages 24 a and 24 c, and the hot water storage tank 30 has the high temperature heat recovery passage 24 b.
  • a high temperature antifreeze liquid channel 31 through which the heated antifreeze liquid flows
  • a low temperature antifreeze liquid channel 33 through which the heated antifreeze liquid flows through the low temperature heat recovery channels 24a, 24c. Therefore, high-temperature water is stored around the high-temperature antifreeze liquid flow path 31, and relatively low-temperature water is stored around the low-temperature antifreeze liquid flow path 33.
  • hot water from the hot water storage tank 30 can be efficiently performed by appropriately discharging hot water and low temperature water according to the hot water demand.
  • the heat exchanger 23 has a function of both high-temperature heat recovery and low-temperature heat recovery, there is no need to provide a plurality of heat exchangers, and the system configuration can be simplified and the size reduction can be achieved. It has been.
  • the heat exchanger 23 is configured to heat the antifreeze liquid by transferring heat from the off-gas combustion gas discharged from the cell stack 5 to the antifreeze liquid, for example, it is efficient in a solid oxide fuel cell (SOFC) or the like. Heat recovery is possible.
  • SOFC solid oxide fuel cell
  • the flow rate of the combustion gas for heating the antifreeze liquid in the high temperature heat recovery flow path 24b is larger than the flow rate of the combustion gas for heating the antifreeze liquid in the low temperature heat recovery flow paths 24a, 24c.
  • the amount of heat recovered in the antifreeze liquid is larger than the amount of heat recovered in the antifreeze liquid in the low-temperature heat recovery flow paths 24a and 24c. Therefore, high-temperature heat recovery and low-temperature heat recovery can be performed effectively.
  • the high temperature heat recovery flow path 24b is closer to the line A connecting the gas inlet portion 25a and the gas outlet portion 25b of the combustion gas in the combustion gas flow path 25 than the low temperature heat recovery flow paths 24a and 24c.
  • the antifreeze liquid in the high-temperature heat recovery flow path 24b is heated by the combustion gas having a large flow rate.
  • the antifreeze liquid in the low-temperature heat recovery flow paths 24a and 24c is heated by the combustion gas having a relatively small flow rate. Therefore, high-temperature heat recovery and low-temperature heat recovery can be performed effectively.
  • the high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33 are used to distribute the antifreeze downward, and the low-temperature antifreeze flow channel 33 is provided at a position lower than the high-temperature antifreeze flow channel 31 and stores hot water.
  • the tank 30 is provided with a high-temperature water tap water portion 36 and a low-temperature water tap water portion 37 at heights corresponding to the uppermost portions of the high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33, the high-temperature antifreeze flow
  • the hot water stored in the uppermost part of the channel 31, that is, the vicinity of the uppermost stream part, and the cold water stored in the uppermost part of the low-temperature antifreeze liquid channel 33, that is, in the vicinity of the uppermost stream part are reliably discharged. be able to.
  • the heat exchanger 23 and piping (high temperature heat recovery line L1, low temperature heat recovery line L2, high temperature antifreeze liquid channel 31, and low temperature antifreeze liquid channel 33) Corrosion and scale volume can be prevented, and a decrease in heat exchange capacity can be prevented. In addition, it is possible to realize heat recovery at a higher temperature than the temperature range exemplified above.
  • the shape of the heat exchanger can take various modifications. That is, as shown in FIG. 5, a multi-plate type heat exchanger 40 in which the layers in which the heat recovery passages 41a, 41b, 41c are arranged in parallel and the layers of the combustion gas passages 42 are alternately stacked. Also good.
  • a cylindrical low temperature heat recovery passage 51a is formed around a columnar high temperature heat recovery passage 51b, and the combustion gas passage 52 is cooled from the high temperature heat recovery passage 51b to a low temperature. It is good also as the spiral tube type heat exchanger 50 extended spirally toward the heat recovery flow path 51a. According to this configuration, the combustion gas flowing through the combustion gas flow path 52 first heats the antifreeze liquid in the high temperature heat recovery flow path 51b and then heats the antifreeze liquid in the low temperature heat recovery flow path 51a. An effect can be obtained.
  • a substantially cylindrical low temperature heat recovery flow path 61a is formed around a substantially cylindrical high temperature heat recovery flow path 61b, and the combustion gas flow path 62 is replaced with a high temperature heat recovery flow path 61b. And it is good also as the multi-tube type heat exchanger 60 formed in many in the low temperature heat recovery flow path 61a.
  • a thick cylindrical low-temperature heat recovery flow path 71a is formed around a thin annular high-temperature heat recovery flow path 71b, and the combustion gas flow path 72 is replaced with a high-temperature heat recovery flow path 71b. It is good also as the double tube
  • the antifreeze liquid in the high temperature heat recovery flow path 71b is heated by the combustion gas flowing in the combustion gas flow path 72, and the antifreeze liquid in the low temperature heat recovery flow path 71a is further antifreeze liquid in the high temperature heat recovery flow path 71b. Heated by.
  • the heat transfer property can be improved by arranging a spiral heat transfer plate or the like in the combustion gas flow path 72.
  • a partition plate that partitions the high temperature water storage area 30a and the low temperature water storage area 30b may be provided, or a high temperature hot water storage tank and a low temperature hot water storage tank may be provided.
  • the hot water storage tank 30 not only stores hot water in a two-stage temperature range, but also provides, for example, a three-stage temperature range by providing the heat exchanger 23 with a three-stage heat recovery flow path of high temperature, medium temperature, and low temperature. You may store warm water.
  • the antifreeze may be circulated through the high-temperature heat recovery system, and water as a heat medium may be circulated through the low-temperature heat recovery system. Furthermore, the structure which distribute
  • a line L10 that connects the low-temperature antifreeze flow path 33 and the heat exchanger 23 is provided, and a heat recovery pump 80 that also serves as a high-temperature heat recovery system and a low-temperature heat recovery system is provided in the line L10.
  • the fuel cell system 1A may be provided outside the hot water storage tank 30, the outlet side of the high-temperature antifreeze liquid channel 31 of the high-temperature heat recovery line L1 can be connected to the inlet side of the low-temperature antifreeze liquid channel 33 of the low-temperature heat recovery line L2. Also in such a fuel cell system 1A, the temperature of the lower part of the high temperature water storage area
  • a line L10 and a heat recovery pump 80 are provided, and the outlet side of the high temperature antifreeze flow path 31 of the high temperature heat recovery line L1 is connected to the suction side of the heat recovery pump 80 of the line L10.
  • the fuel cell system 1B may be used.
  • the heat exchanger 23 uses the off-gas combustion gas discharged from the cell stack 5 .
  • heat is transferred from the heat recovery medium circulated from the cell stack 5 to the heat medium.
  • It may be a heat exchanger that heats the heat medium.
  • the combustion gas passage 25 of the heat exchanger 23 of the above embodiment can be used as a heat recovery medium passage.
  • the heat recovery medium a liquid having sufficiently low electrical conductivity such as pure water or antifreeze liquid can be used. According to this configuration, efficient heat recovery can be performed in a polymer electrolyte fuel cell (PEFC).
  • PEFC polymer electrolyte fuel cell
  • hot water can be efficiently discharged from the hot water tank according to the hot water demand, and the system configuration can be simplified.

Abstract

A fuel cell system is provided with a cell stack which uses hydrogen-containing gas to generate electricity, a heat exchanger which uses the heat discharged from the cell stack to heat a heating medium, and a hot water tank which internally stores water, and wherein the heating medium, heated by the heat exchanger, is made to circulate, and thus heat is transferred from the heating medium to the water, heating the water. The fuel cell system is characterised in that a high-temperature heat recovery flow channel for heating the heating medium to a prescribed temperature, and a low-temperature heat recovery flow channel for heating the heating medium to a temperature that is lower than the prescribed temperature are formed in the heat exchanger; and a high-temperature heating-medium flow channel, which causes the circulation of heating medium which has passed through the high-temperature heat recovery flow channel and been heated, and a low-temperature heating-medium flow channel, which causes the circulation of heating medium which has passed through the low-temperature heat recovery flow channel and been heated, are provided in the hot water tank.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関し、特に、貯湯槽を備えた燃料電池システムに関する。 The present invention relates to a fuel cell system, and more particularly to a fuel cell system provided with a hot water tank.
 従来、温水を貯留するシステムとして、下記特許文献1に記載されるように、上下方向に長い形状の蓄熱槽(貯湯槽)を備え、蓄熱槽の上側に高温用循環配管を接続すると共に、蓄熱槽の下側に中温用循環配管を接続したシステムが知られている。このシステムでは、高温用循環配管に高温熱源を接続し、中温用循環配管に中温熱源を接続している。このような構成により、蓄熱槽内において上下方向に温度成層を形成させ、各層の温水を適宜利用することで、用途(出湯需要)に応じた温度での温水の供給を可能にしている。 Conventionally, as described in Patent Document 1 below, as a system for storing hot water, a heat storage tank (hot water storage tank) that is long in the vertical direction is provided, and a high-temperature circulation pipe is connected to the upper side of the heat storage tank. A system in which a medium temperature circulation pipe is connected to the lower side of the tank is known. In this system, a high temperature heat source is connected to the high temperature circulation pipe, and an intermediate temperature heat source is connected to the medium temperature circulation pipe. With such a configuration, temperature stratification is formed in the vertical direction in the heat storage tank, and hot water in each layer is appropriately used, thereby enabling supply of hot water at a temperature corresponding to the application (demand for hot water).
特開2005-147494号公報JP 2005-147494 A
 しかしながら、上記特許文献1に記載されたシステムでは、高温熱源と中温熱源といった複数の熱源を必要とするため、システムの構成が複雑になってしまう。 However, since the system described in Patent Document 1 requires a plurality of heat sources such as a high-temperature heat source and an intermediate-temperature heat source, the configuration of the system becomes complicated.
 そこで本発明は、出湯需要に応じて貯湯槽からの出湯を効率的に行うことができ、しかも、構成が簡易な燃料電池システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a fuel cell system that can efficiently perform hot water discharge from a hot water tank according to hot water demand, and that has a simple configuration.
 本発明の一側面の燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックと、セルスタックから排出される熱を利用して熱媒体を加熱する熱交換器と、内部に水を貯留すると共に、熱交換器で加熱された熱媒体を流通させ、熱媒体から水に熱を移動させて水を加熱する貯湯槽と、を備え、熱交換器には、熱媒体を所定の温度に加熱するための高温熱回収流路と、熱媒体を所定の温度よりも低い温度に加熱するための低温熱回収流路と、が形成されており、貯湯槽には、高温熱回収流路を通って加熱された熱媒体を流通させる高温熱媒体流路と、低温熱回収流路を通って加熱された熱媒体を流通させる低温熱媒体流路と、が設けられていることを特徴とする。 A fuel cell system according to one aspect of the present invention includes a cell stack that generates power using a hydrogen-containing gas, a heat exchanger that heats a heat medium using heat discharged from the cell stack, and stores water therein. And a hot water storage tank that circulates the heat medium heated by the heat exchanger and moves the heat from the heat medium to the water to heat the water, and the heat exchanger has the heat medium at a predetermined temperature. A high temperature heat recovery flow path for heating and a low temperature heat recovery flow path for heating the heat medium to a temperature lower than a predetermined temperature are formed, and the hot water storage tank has a high temperature heat recovery flow path. A high-temperature heat medium flow path for flowing the heated heat medium through and a low-temperature heat medium flow path for flowing the heated heat medium through the low-temperature heat recovery flow path are provided. .
 この燃料電池システムでは、熱交換器には、高温熱回収流路と低温熱回収流路とが形成されており、貯湯槽には、高温熱回収流路を通って加熱された熱媒体を流通させる高温熱媒体流路と、低温熱回収流路を通って加熱された熱媒体を流通させる低温熱媒体流路と、が設けられている。よって、高温熱媒体流路の周辺には高温の水が貯留され、低温熱媒体流路の周辺には、高温熱媒体流路の周辺に貯留される水よりも低温の水が貯留される。そして、出湯需要に応じて、高温の水と低温の水とを適宜出湯させることにより、貯湯槽からの出湯を効率的に行うことができる。しかも、熱交換器は、高温の熱回収と低温の熱回収とを兼ねた機能を有するため、複数の熱交換器を設ける必要がなく、システムの構成を簡易にできる。 In this fuel cell system, the heat exchanger is formed with a high-temperature heat recovery flow path and a low-temperature heat recovery flow path, and a heat medium heated through the high-temperature heat recovery flow path is circulated in the hot water tank. There are provided a high-temperature heat medium flow path that allows the heat medium to flow through the low-temperature heat recovery flow path and a low-temperature heat medium flow path that circulates the heated heat medium. Therefore, high-temperature water is stored around the high-temperature heat medium flow path, and low-temperature water is stored around the low-temperature heat medium flow path than water stored around the high-temperature heat medium flow path. And according to the hot water demand, hot water from the hot water storage tank can be efficiently discharged by appropriately hot water and low temperature water. Moreover, since the heat exchanger has a function of both high-temperature heat recovery and low-temperature heat recovery, it is not necessary to provide a plurality of heat exchangers, and the system configuration can be simplified.
 また、熱交換器が、セルスタックから排出されるオフガスの燃焼ガスから熱媒体に熱を移動させて熱媒体を加熱する態様であってもよい。 Alternatively, the heat exchanger may be a mode in which the heat medium is heated by transferring heat from the off-gas combustion gas discharged from the cell stack to the heat medium.
 また、熱交換器が、セルスタックより循環される熱回収媒体から熱媒体に熱を移動させて熱媒体を加熱する態様であってもよい。 Further, the heat exchanger may be a mode in which the heat medium is heated by transferring heat from the heat recovery medium circulated from the cell stack to the heat medium.
 ここで、高温熱回収流路内の熱媒体を加熱する燃焼ガスの流量は、低温熱回収流路内の熱媒体を加熱する燃焼ガスの流量よりも大きい態様であってもよい。この場合、高温熱回収流路内の熱媒体における熱回収量は、低温熱回収流路内の熱媒体における熱回収量よりも大きくなるため、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 Here, the flow rate of the combustion gas for heating the heat medium in the high temperature heat recovery flow path may be larger than the flow rate of the combustion gas for heating the heat medium in the low temperature heat recovery flow path. In this case, the amount of heat recovered in the heat medium in the high-temperature heat recovery channel is larger than the amount of heat recovered in the heat medium in the low-temperature heat recovery channel, so that high-temperature heat recovery and low-temperature heat recovery are effective. Can be done automatically.
 また、熱交換器には、燃焼ガスが通る燃焼ガス流路と、燃焼ガス流路にそれぞれ隣接する高温熱回収流路及び低温熱回収流路とが形成されており、高温熱回収流路は、燃焼ガス流路における燃焼ガスの入口部と出口部とを結んだ線に対して、低温熱回収流路よりも近接するように形成されている態様であってもよい。通常、燃焼ガス流路では、燃焼ガスの入口部と出口部とを結んだ線に近いほど燃焼ガスの流量が大きく、その線から離れるほど燃焼ガスの流量が小さくなる。上記構成によれば、高温熱回収流路は、低温熱回収流路よりもその線に近接しているため、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 The heat exchanger has a combustion gas passage through which the combustion gas passes, and a high temperature heat recovery passage and a low temperature heat recovery passage adjacent to the combustion gas passage, respectively. Further, an aspect may be adopted in which the line formed by connecting the inlet portion and the outlet portion of the combustion gas in the combustion gas flow path is closer to the low temperature heat recovery flow path. Normally, in the combustion gas flow path, the closer to the line connecting the inlet and outlet of the combustion gas, the larger the flow rate of the combustion gas, and the further away from the line, the smaller the flow rate of the combustion gas. According to the above configuration, the high temperature heat recovery flow path is closer to the line than the low temperature heat recovery flow path, so that high temperature heat recovery and low temperature heat recovery can be performed effectively.
 また、高温熱回収流路内の熱媒体を加熱する熱回収媒体の流量は、低温熱回収流路内の熱媒体を加熱する熱回収媒体の流量よりも大きい態様であってもよい。この場合、高温熱回収流路内の熱媒体における熱回収量は、低温熱回収流路内の熱媒体における熱回収量よりも大きくなるため、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 Further, the flow rate of the heat recovery medium for heating the heat medium in the high temperature heat recovery flow path may be larger than the flow rate of the heat recovery medium for heating the heat medium in the low temperature heat recovery flow path. In this case, the amount of heat recovered in the heat medium in the high-temperature heat recovery channel is larger than the amount of heat recovered in the heat medium in the low-temperature heat recovery channel, so that high-temperature heat recovery and low-temperature heat recovery are effective. Can be done automatically.
 また、熱交換器には、熱回収媒体が通る熱回収媒体流路と、熱回収媒体流路にそれぞれ隣接する高温熱回収流路及び低温熱回収流路とが形成されており、高温熱回収流路は、熱回収媒体流路における熱回収媒体の入口部と出口部とを結んだ線に対して、低温熱回収流路よりも近接するように形成されている態様であってもよい。通常、熱回収媒体流路では、熱回収媒体の入口部と出口部とを結んだ線に近いほど熱回収媒体の流量が大きく、その線から離れるほど熱回収媒体の流量が小さくなる。上記構成によれば、高温熱回収流路は、低温熱回収流路よりもその線に近接しているため、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 Further, the heat exchanger is formed with a heat recovery medium flow path through which the heat recovery medium passes, and a high temperature heat recovery flow path and a low temperature heat recovery flow path adjacent to the heat recovery medium flow path, respectively. The channel may be formed so as to be closer to the line connecting the inlet portion and the outlet portion of the heat recovery medium in the heat recovery medium channel than the low temperature heat recovery channel. In general, in the heat recovery medium flow path, the flow rate of the heat recovery medium increases as it is closer to the line connecting the inlet portion and the outlet portion of the heat recovery medium, and the flow rate of the heat recovery medium decreases as the distance from the line increases. According to the above configuration, the high temperature heat recovery flow path is closer to the line than the low temperature heat recovery flow path, so that high temperature heat recovery and low temperature heat recovery can be performed effectively.
 また、高温熱媒体流路および低温熱媒体流路は、熱媒体を下方に向けて流通させるものであり、低温熱媒体流路は、高温熱媒体流路よりも低い位置に設けられており、貯湯槽には、高温熱媒体流路と低温熱媒体流路とのそれぞれの最上部に対応する高さに高温水出湯部と低温水出湯部とが設けられている態様であってもよい。この場合、例えば、貯湯槽下部から水で押し上げる等の方法で加圧することにより、高温熱媒体流路の最上部、すなわち最上流部の周辺に貯留された高温の水と、低温熱媒体流路の最上部、すなわち最上流部の周辺に貯留された低温の水とをそれぞれ確実に出湯することができる。 Further, the high-temperature heat medium flow path and the low-temperature heat medium flow path are for circulating the heat medium downward, and the low-temperature heat medium flow path is provided at a position lower than the high-temperature heat medium flow path, The hot water storage tank may be provided with a high-temperature hot water outlet and a low-temperature hot water outlet at heights corresponding to the uppermost portions of the high-temperature heat medium flow path and the low-temperature heat medium flow path. In this case, for example, the hot water stored in the vicinity of the uppermost part of the high-temperature heat medium flow path, that is, the uppermost stream part, and the low-temperature heat medium flow path by pressurizing with water from the lower part of the hot water tank The hot water stored in the vicinity of the uppermost portion, that is, the vicinity of the uppermost stream portion, can be reliably discharged.
 本発明によれば、出湯需要に応じて貯湯槽からの出湯を効率的に行うことができ、しかも、システムの構成を簡易にできる。 According to the present invention, hot water can be efficiently discharged from the hot water tank according to the hot water demand, and the system configuration can be simplified.
本発明の第1実施形態に係る燃料電池システムのブロック図である。1 is a block diagram of a fuel cell system according to a first embodiment of the present invention. 燃料電池システムにおける熱交換器および貯湯槽の一形態を示す概念図である。It is a conceptual diagram which shows one form of the heat exchanger and hot water storage tank in a fuel cell system. (a)は、図2中の熱交換器を示す概念図であり、(b)は、図2中の熱交換器における燃焼ガスの流れ分布を示す概念図である。(A) is a conceptual diagram which shows the heat exchanger in FIG. 2, (b) is a conceptual diagram which shows the flow distribution of the combustion gas in the heat exchanger in FIG. 図3の熱交換器における熱媒体の温度分布を示す図である。It is a figure which shows the temperature distribution of the heat medium in the heat exchanger of FIG. 熱交換器の他の例を示す概念図である。It is a conceptual diagram which shows the other example of a heat exchanger. 熱交換器の他の例を示す概念図である。It is a conceptual diagram which shows the other example of a heat exchanger. 熱交換器の他の例を示す概念図である。It is a conceptual diagram which shows the other example of a heat exchanger. 熱交換器の他の例を示す概念図である。It is a conceptual diagram which shows the other example of a heat exchanger. 燃料電池システムにおける熱交換器および貯湯槽の他の形態を示す概念図である。It is a conceptual diagram which shows the other form of the heat exchanger and hot water tank in a fuel cell system. 燃料電池システムにおける熱交換器および貯湯槽のさらに他の形態を示す概念図である。It is a conceptual diagram which shows the further another form of the heat exchanger and hot water storage tank in a fuel cell system.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガス(水素含有ガス)を発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 さらに、上述した燃料電池システム1は、図2に示されるように、外部の空気に対して気密性を有する筐体21と、筐体21の外部に設置された貯湯槽30とを備えている。この筐体21内には、上述した各機器類が収容されると共に、熱交換器23が収容されている。熱交換器23は、セルスタック5から排出されるオフガスの燃焼ガス(すなわち、オフガス燃焼部6からの排ガス)、及び熱媒体としての不凍液を流通させることで、燃焼ガスから不凍液に熱を移動させて不凍液を加熱する。不凍液としては、沸点の高い難燃性熱媒体、例えばエチレングリコール等が用いられる。貯湯槽30は、内部に水を貯留すると共に、熱交換器23で加熱された不凍液を流通させることで、不凍液から内部に貯留した水に熱を移動させてその水を加熱する。貯湯槽30に貯留された温水(すなわち、湯)は、貯湯槽30から出湯されて、燃料電池システム1が設置された施設における風呂等の温水利用設備に供給される。温水利用設備とは、温水を利用して特定の機能(若しくは動作)を実施するものである。 Further, as shown in FIG. 2, the above-described fuel cell system 1 includes a casing 21 that is airtight with respect to external air, and a hot water tank 30 that is installed outside the casing 21. . The casing 21 accommodates the above-described devices and a heat exchanger 23. The heat exchanger 23 transfers heat from the combustion gas to the antifreeze liquid by circulating the offgas combustion gas discharged from the cell stack 5 (that is, the exhaust gas from the offgas combustion unit 6) and the antifreeze liquid as a heat medium. Heat the antifreeze. As the antifreeze, a flame retardant heat medium having a high boiling point, such as ethylene glycol, is used. The hot water storage tank 30 stores water therein and distributes the antifreeze liquid heated by the heat exchanger 23, thereby transferring heat from the antifreeze liquid to the water stored therein to heat the water. Hot water (that is, hot water) stored in the hot water tank 30 is discharged from the hot water tank 30 and supplied to hot water use equipment such as a bath in a facility where the fuel cell system 1 is installed. The hot water use facility is a device that performs a specific function (or operation) using hot water.
 図2及び図3(a)に示されるように、熱交換器23は、略直方体形状をなす箱体である。この熱交換器23には、不凍液を例えば75℃程度に加熱するための高温熱回収流路24bと、不凍液を例えば65℃程度に加熱するための2つの低温熱回収流路24a,24cとが形成されている。すなわち、高温熱回収流路24bは、不凍液を所定の温度に加熱するための高温熱回収流路であり、2つの低温熱回収流路24a,24cは、不凍液を所定の温度よりも低い温度に加熱するための低温熱回収流路である。また、熱交換器23には、セルスタック5から排出されるオフガスの燃焼ガスが通る燃焼ガス流路25が形成されている。熱交換器23において、各熱回収流路24a~24cにおける不凍液の流れ方向と、燃焼ガス流路25における燃焼ガスの流れ方向とは、互いに逆向きになっている。 2 and FIG. 3A, the heat exchanger 23 is a box having a substantially rectangular parallelepiped shape. The heat exchanger 23 includes a high-temperature heat recovery channel 24b for heating the antifreeze liquid to about 75 ° C., for example, and two low-temperature heat recovery channels 24a and 24c for heating the antifreeze liquid to about 65 ° C., for example. Is formed. That is, the high-temperature heat recovery flow path 24b is a high-temperature heat recovery flow path for heating the antifreeze liquid to a predetermined temperature, and the two low-temperature heat recovery flow paths 24a and 24c have a temperature lower than the predetermined temperature. It is a low-temperature heat recovery flow path for heating. Further, the heat exchanger 23 is formed with a combustion gas passage 25 through which the off-gas combustion gas discharged from the cell stack 5 passes. In the heat exchanger 23, the flow direction of the antifreeze liquid in each of the heat recovery flow paths 24a to 24c and the flow direction of the combustion gas in the combustion gas flow path 25 are opposite to each other.
 熱交換器23の構造に関してより詳しくは、熱交換器23には、その内部を二分するようにして、熱回収流路24a~24cと燃焼ガス流路25とを分ける仕切り板26が固定されている。さらに、熱交換器23には、低温熱回収流路24aと、高温熱回収流路24bと、低温熱回収流路24cとを分ける仕切り板27,27が固定されている。このような構成により、単一の熱交換器23内に、複数の熱回収流路24a~24cと、1つの燃焼ガス流路25とが形成されている。各熱回収流路24a~24cは、仕切り板26を介して燃焼ガス流路25に隣接している。仕切り板26,27の形状は、熱回収効率などを考慮して、熱回収に寄与する表面積を増大させるために凹凸を設ける等といった種々の形状を採ることができる。 More specifically regarding the structure of the heat exchanger 23, a partition plate 26 that fixes the heat recovery passages 24 a to 24 c and the combustion gas passage 25 is fixed to the heat exchanger 23 so as to bisect the inside. Yes. Furthermore, partition plates 27 and 27 that divide the low temperature heat recovery flow path 24a, the high temperature heat recovery flow path 24b, and the low temperature heat recovery flow path 24c are fixed to the heat exchanger 23. With such a configuration, a plurality of heat recovery passages 24 a to 24 c and one combustion gas passage 25 are formed in a single heat exchanger 23. Each of the heat recovery flow paths 24a to 24c is adjacent to the combustion gas flow path 25 through the partition plate 26. The partition plates 26 and 27 can take various shapes such as providing unevenness in order to increase the surface area contributing to heat recovery in consideration of heat recovery efficiency and the like.
 図2に示されるように、貯湯槽30は、上下方向に延びる略円筒形状の容器である。貯湯槽30の最上部近傍から、貯湯槽30の上下方向の中央部より多少高い位置にかけては、熱媒体を下方に向けて流通させる高温不凍液流路31が設けられている。この高温不凍液流路31は、貯湯槽30内において上下方向に、例えばジグザグ状若しくは螺旋状に設けられている。高温不凍液流路31は、高温熱回収ラインL1によって熱交換器23の高温熱回収流路24bに接続されている。高温熱回収ラインL1には、高温熱回収ラインL1内に不凍液を流して貯湯槽30と高温熱回収流路24bとの間を循環させるためのポンプ28が設けられている。 As shown in FIG. 2, the hot water tank 30 is a substantially cylindrical container extending in the vertical direction. From the vicinity of the uppermost part of the hot water tank 30 to a position slightly higher than the central part of the hot water tank 30 in the vertical direction, a high-temperature antifreeze liquid channel 31 is provided for circulating the heat medium downward. The high-temperature antifreeze liquid channel 31 is provided in the hot water tank 30 in the vertical direction, for example, in a zigzag shape or a spiral shape. The high temperature antifreeze liquid flow path 31 is connected to the high temperature heat recovery flow path 24b of the heat exchanger 23 by a high temperature heat recovery line L1. The high temperature heat recovery line L1 is provided with a pump 28 for circulating an antifreeze liquid in the high temperature heat recovery line L1 and circulating between the hot water tank 30 and the high temperature heat recovery flow path 24b.
 一方、貯湯槽30の上下方向の中央部より多少低い位置から、貯湯槽30の最下部近傍にかけては、熱媒体を下方に向けて流通させる低温不凍液流路33が設けられている。この低温不凍液流路33は、貯湯槽30内において上下方向に、例えばジグザグ状若しくは螺旋状に設けられている。低温不凍液流路33は、低温熱回収ラインL2によって熱交換器23の低温熱回収流路24a,24cに接続されている。低温熱回収ラインL2には、低温熱回収ラインL2内に不凍液を流して貯湯槽30と低温熱回収流路24a,24cとの間を循環させるためのポンプ29が設けられている。さらに、貯湯槽30の最下部には、外部から貯湯槽30内に水を供給するための水供給ラインL5が接続されている。 On the other hand, a low-temperature antifreeze liquid flow path 33 is provided to flow the heat medium downward from a position slightly lower than the central portion in the vertical direction of the hot water tank 30 to the vicinity of the lowermost part of the hot water tank 30. The low-temperature antifreeze flow path 33 is provided in the hot water storage tank 30 in the vertical direction, for example, in a zigzag shape or a spiral shape. The low-temperature antifreeze liquid flow path 33 is connected to the low-temperature heat recovery flow paths 24a and 24c of the heat exchanger 23 by a low-temperature heat recovery line L2. The low-temperature heat recovery line L2 is provided with a pump 29 for circulating an antifreeze liquid through the low-temperature heat recovery line L2 between the hot water tank 30 and the low-temperature heat recovery flow paths 24a and 24c. Further, a water supply line L <b> 5 for supplying water from the outside into the hot water tank 30 is connected to the lowermost part of the hot water tank 30.
 図3(b)に示されるように、燃焼ガス流路25には、燃料ガスの流れ方向の両端部において、ガス入口部25aとガス出口部25bとが設けられている。ガス入口部25aとガス出口部25bとは、いずれも、熱回収流路24a~24cが並設された方向における中央の位置に形成されている。このような構成により、燃焼ガス流路25内を流れる燃焼ガスは、例えばその約6割がガス入口部25aとガス出口部25bとを結ぶ中央の線A沿いに流れ、残りの4割のうち2割ずつが燃焼ガス流路25の両側の側部を流れる。 As shown in FIG. 3B, the combustion gas passage 25 is provided with a gas inlet portion 25a and a gas outlet portion 25b at both ends in the fuel gas flow direction. Both the gas inlet portion 25a and the gas outlet portion 25b are formed at a central position in the direction in which the heat recovery flow paths 24a to 24c are arranged in parallel. With such a configuration, for example, about 60% of the combustion gas flowing in the combustion gas passage 25 flows along the central line A connecting the gas inlet portion 25a and the gas outlet portion 25b, and the remaining 40% Every 20% flows through the sides on both sides of the combustion gas passage 25.
 本実施形態の燃焼ガス流路25にあっては、高温熱回収流路24bは、低温熱回収流路24a,24cよりも線Aに対して近接している。すなわち、高温熱回収流路24b内の不凍液を加熱する燃焼ガスの流量は、低温熱回収流路24a,24c内の不凍液を加熱する燃焼ガスの流量よりも大きくなっている。 In the combustion gas channel 25 of the present embodiment, the high temperature heat recovery channel 24b is closer to the line A than the low temperature heat recovery channels 24a and 24c. That is, the flow rate of the combustion gas for heating the antifreeze liquid in the high temperature heat recovery flow path 24b is larger than the flow rate of the combustion gas for heating the antifreeze liquid in the low temperature heat recovery flow paths 24a and 24c.
 図4は、熱交換器23における不凍液の温度分布を示す図である。図4では、「左」は低温熱回収流路24aを、「中」は高温熱回収流路24bを、「右」は低温熱回収流路24cをそれぞれ意味する。また、「上流」、「中流」、及び「下流」は、各熱回収流路24a~24cにおける不凍液の流れ方向を基準とした位置を意味する。すなわち、「上流」は図示下側であり、「下流」は図示上側である。図4に示されるように、高温熱回収流路24bでは、上流、中流、下流と熱交換が進むにつれて、20℃、50℃、75℃に不凍液が加熱される。また、低温熱回収流路24a,24cでは、上流、中流、下流と熱交換が進むにつれて、20℃、45℃、65℃に不凍液が加熱される。 FIG. 4 is a diagram showing the temperature distribution of the antifreeze liquid in the heat exchanger 23. In FIG. 4, “left” means the low-temperature heat recovery flow path 24a, “middle” means the high-temperature heat recovery flow path 24b, and “right” means the low-temperature heat recovery flow path 24c. Further, “upstream”, “middle stream”, and “downstream” mean positions on the basis of the flow direction of the antifreeze liquid in each of the heat recovery flow paths 24a to 24c. That is, “upstream” is the lower side in the figure, and “downstream” is the upper side in the figure. As shown in FIG. 4, in the high-temperature heat recovery flow path 24b, the antifreeze is heated to 20 ° C., 50 ° C., and 75 ° C. as heat exchange proceeds upstream, midstream, and downstream. In the low-temperature heat recovery flow paths 24a and 24c, the antifreeze is heated to 20 ° C., 45 ° C., and 65 ° C. as heat exchange proceeds upstream, midstream, and downstream.
 このようにして、高温熱回収ラインL1及び高温熱回収流路24bを通った不凍液は、75℃程度の高温の状態で高温不凍液流路31を流通し、下方に流れる間に熱交換によって貯湯槽30内の水を加熱しながら、20℃程度の低温の状態に戻る。また、低温熱回収ラインL2及び低温熱回収流路24a,24cを通った不凍液は、65℃程度の比較的低温の状態で低温不凍液流路33を流通し、下方に流れる間に熱交換によって貯湯槽30内の水を加熱しながら、20℃程度の低温の状態に戻る。その結果、貯湯槽30内には、上下方向の中央部を境界として、上側に高温水貯留領域30aが形成され、下側に低温水貯留領域30bが形成される。 In this way, the antifreeze liquid that has passed through the high temperature heat recovery line L1 and the high temperature heat recovery flow path 24b flows through the high temperature antifreeze liquid flow path 31 at a high temperature of about 75 ° C., and hot water is stored by heat exchange while flowing downward. While the water in 30 is heated, the temperature returns to a low temperature of about 20 ° C. Further, the antifreeze liquid that has passed through the low-temperature heat recovery line L2 and the low-temperature heat recovery flow paths 24a and 24c flows through the low-temperature antifreeze liquid flow path 33 at a relatively low temperature of about 65 ° C., and stores hot water by heat exchange while flowing downward. It returns to a low temperature of about 20 ° C. while heating the water in the tank 30. As a result, in the hot water storage tank 30, the hot water storage region 30a is formed on the upper side and the low temperature water storage region 30b is formed on the lower side with the central portion in the vertical direction as a boundary.
 燃料電池システム1では、高温熱回収流路24b、高温熱回収ラインL1、及び高温不凍液流路31によって、閉じた高温熱回収系統が構成され、低温熱回収流路24a,24c、低温熱回収ラインL2、及び低温不凍液流路33によって、閉じた低温熱回収系統が構成されている。 In the fuel cell system 1, the high temperature heat recovery flow path 24b, the high temperature heat recovery line L1, and the high temperature antifreeze liquid flow path 31 constitute a closed high temperature heat recovery system, and the low temperature heat recovery paths 24a and 24c, the low temperature heat recovery line A closed low-temperature heat recovery system is configured by L2 and the low-temperature antifreeze flow path 33.
 貯湯槽30の最上部には、高温水出湯部36が設けられている。この高温水出湯部36は、高温出湯ラインL3によって風呂等の温水利用設備に接続されている。また、貯湯槽30の上下方向の中央部より多少低い位置には、低温水出湯部37が設けられている。この低温水出湯部37は、低温出湯ラインL4によって風呂等の温水利用設備に接続されている。高温水出湯部36及び低温水出湯部37は、高温不凍液流路31及び低温不凍液流路33のそれぞれの最上部(すなわち最上流部)と略等しい高さに設けられている。高温出湯ラインL3及び低温出湯ラインL4には、ラインL3,L4内の温水の流量を調整するための電動弁38,39が設けられている。なお、高温出湯ラインL3及び低温出湯ラインL4には、出湯される温水の温度を適宜調整するため、図示しない水の供給ラインが接続される。 At the top of the hot water tank 30, a high-temperature water hot water source 36 is provided. The high-temperature water hot-water supply unit 36 is connected to hot water utilization equipment such as a bath by a high-temperature hot-water supply line L3. In addition, a low-temperature water hot water discharge portion 37 is provided at a position slightly lower than the central portion in the vertical direction of the hot water tank 30. The low-temperature water hot water discharge section 37 is connected to hot water utilization equipment such as a bath by a low-temperature hot water supply line L4. The high-temperature and low-temperature water discharge portions 36 and 37 are provided at substantially the same height as the uppermost portions (that is, the most upstream portions) of the high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33. The high temperature hot water line L3 and the low temperature hot water line L4 are provided with motor-operated valves 38 and 39 for adjusting the flow rate of the hot water in the lines L3 and L4. Note that a water supply line (not shown) is connected to the high-temperature hot water line L3 and the low-temperature hot water line L4 in order to appropriately adjust the temperature of the hot water discharged.
 以上説明した燃料電池システム1では、制御部11によってポンプ28,29が制御されて、貯湯槽30内に高温水貯留領域30a及び低温水貯留領域30bが形成されるように、熱交換および温水の貯留が行われる。また、温水利用設備における出湯需要に応じて、制御部11によって電動弁38,39が制御されて、高温出湯ラインL3及び/又は低温出湯ラインL4を通じて温水利用設備への出湯が行われる。 In the fuel cell system 1 described above, the pumps 28 and 29 are controlled by the control unit 11 so that the hot water storage region 30a and the low temperature water storage region 30b are formed in the hot water tank 30. Storage is performed. Moreover, according to the hot water use demand in hot water utilization equipment, the motor control valves 38 and 39 are controlled by the control unit 11, and hot water is discharged to the hot water utilization equipment through the high temperature hot water supply line L3 and / or the low temperature hot water supply line L4.
 ここで、制御部11は、ポンプ28およびポンプ29を同時に作動させるよう制御してもよいし、ポンプ28およびポンプ29に異なる動作をさせるよう制御してもよい。制御部11は、熱交換器23内の温度を検知してポンプ28およびポンプ29の吐出流量をそれぞれ調節してもよい。例えば、制御部11は、熱熱交換器23内の温度が低いときは低温熱回収ラインL2及び低温熱回収流路24a,24cを主体に熱回収させ、熱交換器23内の温度が高いときは高温熱回収ラインL1及び高温熱回収流路24bを主体に熱回収させることもできる。 Here, the control unit 11 may control the pump 28 and the pump 29 to operate simultaneously, or may control the pump 28 and the pump 29 to perform different operations. The control unit 11 may adjust the discharge flow rates of the pump 28 and the pump 29 by detecting the temperature in the heat exchanger 23. For example, when the temperature in the heat heat exchanger 23 is low, the control unit 11 mainly recovers heat using the low-temperature heat recovery line L2 and the low-temperature heat recovery flow paths 24a and 24c, and the temperature in the heat exchanger 23 is high. Can also recover heat mainly by the high temperature heat recovery line L1 and the high temperature heat recovery flow path 24b.
 燃料電池システム1によれば、熱交換器23には、高温熱回収流路24bと低温熱回収流路24a,24cとが形成されており、貯湯槽30には、高温熱回収流路24bを通って加熱された不凍液を流通させる高温不凍液流路31と、低温熱回収流路24a,24cを通って加熱された不凍液を流通させる低温不凍液流路33と、が設けられている。よって、高温不凍液流路31の周辺には高温の水が貯留され、低温不凍液流路33の周辺には比較的低温の水が貯留される。そして、出湯需要に応じて、高温の水と低温の水とを適宜出湯させることにより、貯湯槽30からの出湯を効率的に行うことができる。しかも、熱交換器23は、高温の熱回収と低温の熱回収とを兼ねた機能を有するため、複数の熱交換器を設ける必要がなく、システムの構成を簡易にできると共に、コンパクト化が図られている。 According to the fuel cell system 1, the heat exchanger 23 is formed with the high temperature heat recovery passage 24 b and the low temperature heat recovery passages 24 a and 24 c, and the hot water storage tank 30 has the high temperature heat recovery passage 24 b. There are provided a high temperature antifreeze liquid channel 31 through which the heated antifreeze liquid flows and a low temperature antifreeze liquid channel 33 through which the heated antifreeze liquid flows through the low temperature heat recovery channels 24a, 24c. Therefore, high-temperature water is stored around the high-temperature antifreeze liquid flow path 31, and relatively low-temperature water is stored around the low-temperature antifreeze liquid flow path 33. And hot water from the hot water storage tank 30 can be efficiently performed by appropriately discharging hot water and low temperature water according to the hot water demand. In addition, since the heat exchanger 23 has a function of both high-temperature heat recovery and low-temperature heat recovery, there is no need to provide a plurality of heat exchangers, and the system configuration can be simplified and the size reduction can be achieved. It has been.
 また、熱交換器23が、セルスタック5から排出されるオフガスの燃焼ガスから不凍液に熱を移動させて不凍液を加熱する構成であるため、例えば固体酸化物形燃料電池(SOFC)等において効率的な熱回収が可能となる。 Further, since the heat exchanger 23 is configured to heat the antifreeze liquid by transferring heat from the off-gas combustion gas discharged from the cell stack 5 to the antifreeze liquid, for example, it is efficient in a solid oxide fuel cell (SOFC) or the like. Heat recovery is possible.
 また、高温熱回収流路24b内の不凍液を加熱する燃焼ガスの流量は、低温熱回収流路24a,24c内の不凍液を加熱する燃焼ガスの流量よりも大きいため、高温熱回収流路24b内の不凍液における熱回収量は、低温熱回収流路24a,24c内の不凍液における熱回収量よりも大きくなっている。よって、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 Further, since the flow rate of the combustion gas for heating the antifreeze liquid in the high temperature heat recovery flow path 24b is larger than the flow rate of the combustion gas for heating the antifreeze liquid in the low temperature heat recovery flow paths 24a, 24c, The amount of heat recovered in the antifreeze liquid is larger than the amount of heat recovered in the antifreeze liquid in the low-temperature heat recovery flow paths 24a and 24c. Therefore, high-temperature heat recovery and low-temperature heat recovery can be performed effectively.
 また、高温熱回収流路24bは、燃焼ガス流路25における燃焼ガスのガス入口部25aとガス出口部25bとを結んだ線Aに対して、低温熱回収流路24a,24cよりも近接するように形成されているため、高温熱回収流路24b内の不凍液は、流量の大きい燃焼ガスにより加熱される。一方、低温熱回収流路24a,24c内の不凍液は、流量の比較的小さい燃焼ガスにより加熱される。よって、高温の熱回収と低温の熱回収とをそれぞれ効果的に行うことができる。 The high temperature heat recovery flow path 24b is closer to the line A connecting the gas inlet portion 25a and the gas outlet portion 25b of the combustion gas in the combustion gas flow path 25 than the low temperature heat recovery flow paths 24a and 24c. Thus, the antifreeze liquid in the high-temperature heat recovery flow path 24b is heated by the combustion gas having a large flow rate. On the other hand, the antifreeze liquid in the low-temperature heat recovery flow paths 24a and 24c is heated by the combustion gas having a relatively small flow rate. Therefore, high-temperature heat recovery and low-temperature heat recovery can be performed effectively.
 また、高温不凍液流路31および低温不凍液流路33は、不凍液を下方に向けて流通させるものであり、低温不凍液流路33は、高温不凍液流路31よりも低い位置に設けられており、貯湯槽30には、高温不凍液流路31と低温不凍液流路33とのそれぞれの最上部に対応する高さに高温水出湯部36と低温水出湯部37とが設けられているため、高温不凍液流路31の最上部、すなわち最上流部の周辺に貯留された高温の水と、低温不凍液流路33の最上部、すなわち最上流部の周辺に貯留された低温の水とをそれぞれ確実に出湯することができる。 The high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33 are used to distribute the antifreeze downward, and the low-temperature antifreeze flow channel 33 is provided at a position lower than the high-temperature antifreeze flow channel 31 and stores hot water. Since the tank 30 is provided with a high-temperature water tap water portion 36 and a low-temperature water tap water portion 37 at heights corresponding to the uppermost portions of the high-temperature antifreeze flow channel 31 and the low-temperature antifreeze flow channel 33, the high-temperature antifreeze flow The hot water stored in the uppermost part of the channel 31, that is, the vicinity of the uppermost stream part, and the cold water stored in the uppermost part of the low-temperature antifreeze liquid channel 33, that is, in the vicinity of the uppermost stream part are reliably discharged. be able to.
 また、熱媒体として沸点の高い難燃性油を用いているため、熱交換器23や配管(高温熱回収ラインL1、低温熱回収ラインL2、高温不凍液流路31、及び低温不凍液流路33)の腐食やスケールの体積を防止し、熱交換能力の低下を防止することができる。また、上記で例示した温度域よりもさらに高温の熱回収を実現することもできる。 In addition, since flame retardant oil having a high boiling point is used as the heat medium, the heat exchanger 23 and piping (high temperature heat recovery line L1, low temperature heat recovery line L2, high temperature antifreeze liquid channel 31, and low temperature antifreeze liquid channel 33) Corrosion and scale volume can be prevented, and a decrease in heat exchange capacity can be prevented. In addition, it is possible to realize heat recovery at a higher temperature than the temperature range exemplified above.
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、熱交換器の形状は種々の変形態様を採ることができる。すなわち、図5に示されるように、熱回収流路41a,41b,41cが並設された層と燃焼ガス流路42の層とが、交互に積層された複数プレート式の熱交換器40としてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, the shape of the heat exchanger can take various modifications. That is, as shown in FIG. 5, a multi-plate type heat exchanger 40 in which the layers in which the heat recovery passages 41a, 41b, 41c are arranged in parallel and the layers of the combustion gas passages 42 are alternately stacked. Also good.
 また、図6に示されるように、円柱状の高温熱回収流路51bの周囲に円筒状の低温熱回収流路51aが形成され、燃焼ガス流路52が、高温熱回収流路51bから低温熱回収流路51aに向けて螺旋状に延びたスパイラルチューブ式の熱交換器50としてもよい。この構成によれば、燃焼ガス流路52を流れる燃焼ガスはまず高温熱回収流路51b内の不凍液を加熱した後に低温熱回収流路51a内の不凍液を加熱するため、上記実施形態と同様の効果を得ることができる。 Further, as shown in FIG. 6, a cylindrical low temperature heat recovery passage 51a is formed around a columnar high temperature heat recovery passage 51b, and the combustion gas passage 52 is cooled from the high temperature heat recovery passage 51b to a low temperature. It is good also as the spiral tube type heat exchanger 50 extended spirally toward the heat recovery flow path 51a. According to this configuration, the combustion gas flowing through the combustion gas flow path 52 first heats the antifreeze liquid in the high temperature heat recovery flow path 51b and then heats the antifreeze liquid in the low temperature heat recovery flow path 51a. An effect can be obtained.
 また、図7に示されるように、略円柱状の高温熱回収流路61bの周囲に略円筒状の低温熱回収流路61aが形成され、燃焼ガス流路62が、高温熱回収流路61b及び低温熱回収流路61a内に多数形成された多管式の熱交換器60としてもよい。 Further, as shown in FIG. 7, a substantially cylindrical low temperature heat recovery flow path 61a is formed around a substantially cylindrical high temperature heat recovery flow path 61b, and the combustion gas flow path 62 is replaced with a high temperature heat recovery flow path 61b. And it is good also as the multi-tube type heat exchanger 60 formed in many in the low temperature heat recovery flow path 61a.
 また、図8に示されるように、細い円環状の高温熱回収流路71bの周囲に太い円筒状の低温熱回収流路71aが形成され、燃焼ガス流路72が、高温熱回収流路71bの中心を延びる二重管式の熱交換器70としてもよい。この構成によれば、高温熱回収流路71b内の不凍液は燃焼ガス流路72を流れる燃焼ガスによって加熱され、さらに、低温熱回収流路71a内の不凍液は高温熱回収流路71b内の不凍液によって加熱される。この場合、燃焼ガス流路72内にスパイラル伝熱板等を配置することにより、伝熱性を向上させることもできる。 Further, as shown in FIG. 8, a thick cylindrical low-temperature heat recovery flow path 71a is formed around a thin annular high-temperature heat recovery flow path 71b, and the combustion gas flow path 72 is replaced with a high-temperature heat recovery flow path 71b. It is good also as the double tube | pipe type heat exchanger 70 extended in the center. According to this configuration, the antifreeze liquid in the high temperature heat recovery flow path 71b is heated by the combustion gas flowing in the combustion gas flow path 72, and the antifreeze liquid in the low temperature heat recovery flow path 71a is further antifreeze liquid in the high temperature heat recovery flow path 71b. Heated by. In this case, the heat transfer property can be improved by arranging a spiral heat transfer plate or the like in the combustion gas flow path 72.
 また、貯湯槽30において、高温水貯留領域30aと低温水貯留領域30bとを仕切る仕切り板を設けてもよいし、高温用の貯湯槽と低温用の貯湯槽とを設けてもよい。また、貯湯槽30は、2段階の温度領域で温水を貯留するのみならず、例えば熱交換器23に高温、中温、低温の3段階の熱回収流路を設けることにより、3段階の温度領域で温水を貯留してもよい。 In the hot water storage tank 30, a partition plate that partitions the high temperature water storage area 30a and the low temperature water storage area 30b may be provided, or a high temperature hot water storage tank and a low temperature hot water storage tank may be provided. The hot water storage tank 30 not only stores hot water in a two-stage temperature range, but also provides, for example, a three-stage temperature range by providing the heat exchanger 23 with a three-stage heat recovery flow path of high temperature, medium temperature, and low temperature. You may store warm water.
 高温熱回収系統には不凍液を流通させ、低温熱回収系統には熱媒体としての水を流通させる構成であってもよい。さらには、高温熱回収系統および低温熱回収系統に、熱媒体としての水を流通させる構成であってもよい。また、熱媒体として、油、空気、二酸化炭素や窒素等のガス、または蒸気等を用いてもよい。 The antifreeze may be circulated through the high-temperature heat recovery system, and water as a heat medium may be circulated through the low-temperature heat recovery system. Furthermore, the structure which distribute | circulates the water as a heat medium to a high temperature heat recovery system and a low temperature heat recovery system may be sufficient. Further, oil, air, a gas such as carbon dioxide or nitrogen, or steam may be used as the heat medium.
 また、上記実施形態では、高温熱回収系統用のポンプ28および低温熱回収系統用のポンプ29を設ける場合について説明したが、これらの2系統に対して共通のポンプを設けてもよい。 In the above embodiment, the case where the high temperature heat recovery system pump 28 and the low temperature heat recovery system pump 29 are provided has been described. However, a common pump may be provided for these two systems.
 例えば、図9に示されるように、低温不凍液流路33と熱交換器23とを接続するラインL10を設け、このラインL10に、高温熱回収系統および低温熱回収系統を兼ねる熱回収用ポンプ80を設けた燃料電池システム1Aであってもよい。この場合、貯湯槽30の外部において、高温熱回収ラインL1の高温不凍液流路31の出口側を低温熱回収ラインL2の低温不凍液流路33の入口側に接続する構成とすることができる。このような燃料電池システム1Aにおいても、高温水貯留領域30aの下部の温度を低温水貯留領域30bの上部の温度よりも高くすることができる。 For example, as shown in FIG. 9, a line L10 that connects the low-temperature antifreeze flow path 33 and the heat exchanger 23 is provided, and a heat recovery pump 80 that also serves as a high-temperature heat recovery system and a low-temperature heat recovery system is provided in the line L10. The fuel cell system 1A may be provided. In this case, outside the hot water storage tank 30, the outlet side of the high-temperature antifreeze liquid channel 31 of the high-temperature heat recovery line L1 can be connected to the inlet side of the low-temperature antifreeze liquid channel 33 of the low-temperature heat recovery line L2. Also in such a fuel cell system 1A, the temperature of the lower part of the high temperature water storage area | region 30a can be made higher than the temperature of the upper part of the low temperature water storage area | region 30b.
 また、図10に示されるように、ラインL10および熱回収用ポンプ80を設け、高温熱回収ラインL1の高温不凍液流路31の出口側をラインL10の熱回収用ポンプ80の吸込側に接続した燃料電池システム1Bであってもよい。 Further, as shown in FIG. 10, a line L10 and a heat recovery pump 80 are provided, and the outlet side of the high temperature antifreeze flow path 31 of the high temperature heat recovery line L1 is connected to the suction side of the heat recovery pump 80 of the line L10. The fuel cell system 1B may be used.
 また、上記実施形態では、水素含有燃料として、改質が必要な炭化水素系燃料を用いる場合について説明したが、純水素や水素富化ガス等の改質が不要なガスを用いることもできる。この場合、水素発生部の改質器は不要となる。 In the above embodiment, the case where a hydrocarbon-based fuel that needs reforming is used as the hydrogen-containing fuel, but a gas that does not require reforming, such as pure hydrogen or a hydrogen-enriched gas, can also be used. In this case, a reformer in the hydrogen generator is not necessary.
 さらに、上記実施形態では、熱交換器23がセルスタック5から排出されるオフガスの燃焼ガスを利用する場合について説明したが、セルスタック5より循環される熱回収媒体から熱媒体に熱を移動させて熱媒体を加熱する熱交換器であってもよい。具体的には、上記実施形態の熱交換器23の燃焼ガス流路25を熱回収媒体流路とすることができる。熱回収媒体としては、純水、不凍液など電気伝導性が十分に低い液体を用いることができる。この構成によれば、固体高分子形燃料電池(PEFC)において効率的な熱回収が可能となる。 Furthermore, in the above embodiment, the case where the heat exchanger 23 uses the off-gas combustion gas discharged from the cell stack 5 has been described. However, heat is transferred from the heat recovery medium circulated from the cell stack 5 to the heat medium. It may be a heat exchanger that heats the heat medium. Specifically, the combustion gas passage 25 of the heat exchanger 23 of the above embodiment can be used as a heat recovery medium passage. As the heat recovery medium, a liquid having sufficiently low electrical conductivity such as pure water or antifreeze liquid can be used. According to this configuration, efficient heat recovery can be performed in a polymer electrolyte fuel cell (PEFC).
 本発明によれば、出湯需要に応じて貯湯槽からの出湯を効率的に行うことができ、しかも、システムの構成を簡易にできる。 According to the present invention, hot water can be efficiently discharged from the hot water tank according to the hot water demand, and the system configuration can be simplified.
 1,1A,1B…燃料電池システム、5…セルスタック、23…熱交換器、24a,24c…低温熱回収流路、24b…高温熱回収流路、25…燃焼ガス流路、25a…ガス入口部、25b…ガス出口部、30…貯湯槽、31…高温不凍液流路(高温熱媒体流路)、33…低温不凍液流路(低温熱媒体流路)、36…高温水出湯部、37…低温水出湯部、40,50,60,70…熱交換器、41a,41c,51a,61a,71a…低温熱回収流路、41b,51b,61b,71b…高温熱回収流路、42,52,62,72…燃焼ガス流路。 DESCRIPTION OF SYMBOLS 1,1A, 1B ... Fuel cell system, 5 ... Cell stack, 23 ... Heat exchanger, 24a, 24c ... Low temperature heat recovery flow path, 24b ... High temperature heat recovery flow path, 25 ... Combustion gas flow path, 25a ... Gas inlet Part, 25b ... gas outlet part, 30 ... hot water storage tank, 31 ... high temperature antifreeze liquid flow path (high temperature heat medium flow path), 33 ... low temperature antifreeze liquid flow path (low temperature heat medium flow path), 36 ... high temperature water tapping part, 37 ... Low-temperature water tap, 40, 50, 60, 70 ... heat exchanger, 41a, 41c, 51a, 61a, 71a ... low-temperature heat recovery channel, 41b, 51b, 61b, 71b ... high-temperature heat recovery channel, 42, 52 62, 72 ... combustion gas flow paths.

Claims (8)

  1.  水素含有ガスを用いて発電を行うセルスタックと、
     前記セルスタックから排出される熱を利用して熱媒体を加熱する熱交換器と、
     内部に水を貯留すると共に、前記熱交換器で加熱された前記熱媒体を流通させ、前記熱媒体から前記水に熱を移動させて前記水を加熱する貯湯槽と、を備え、
     前記熱交換器には、前記熱媒体を所定の温度に加熱するための高温熱回収流路と、前記熱媒体を前記所定の温度よりも低い温度に加熱するための低温熱回収流路と、が形成されており、
     前記貯湯槽には、前記高温熱回収流路を通って加熱された前記熱媒体を流通させる高温熱媒体流路と、前記低温熱回収流路を通って加熱された前記熱媒体を流通させる低温熱媒体流路と、が設けられていることを特徴とする燃料電池システム。
    A cell stack for generating power using a hydrogen-containing gas;
    A heat exchanger that heats the heat medium using heat discharged from the cell stack;
    A hot water storage tank for storing water inside, circulating the heating medium heated by the heat exchanger, and transferring heat from the heating medium to the water to heat the water,
    The heat exchanger includes a high-temperature heat recovery passage for heating the heat medium to a predetermined temperature, a low-temperature heat recovery passage for heating the heat medium to a temperature lower than the predetermined temperature, Is formed,
    The hot water storage tank has a high-temperature heat medium flow path for circulating the heat medium heated through the high-temperature heat recovery flow path, and a low-temperature flow for circulating the heat medium heated through the low-temperature heat recovery flow path. And a heat medium flow path.
  2.  前記熱交換器が、前記セルスタックから排出されるオフガスの燃焼ガスから前記熱媒体に熱を移動させて前記熱媒体を加熱することを特徴とする請求項1記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the heat exchanger heats the heat medium by transferring heat from an off-gas combustion gas discharged from the cell stack to the heat medium.
  3.  前記熱交換器が、前記セルスタックより循環される熱回収媒体から前記熱媒体に熱を移動させて前記熱媒体を加熱することを特徴とする請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the heat exchanger heats the heat medium by transferring heat from a heat recovery medium circulated from the cell stack to the heat medium.
  4.  前記高温熱回収流路内の前記熱媒体を加熱する前記燃焼ガスの流量は、前記低温熱回収流路内の前記熱媒体を加熱する前記燃焼ガスの流量よりも大きいことを特徴とする請求項2記載の燃料電池システム。 The flow rate of the combustion gas for heating the heat medium in the high temperature heat recovery flow path is larger than the flow rate of the combustion gas for heating the heat medium in the low temperature heat recovery flow path. 3. The fuel cell system according to 2.
  5.  前記熱交換器には、前記燃焼ガスが通る燃焼ガス流路と、前記燃焼ガス流路にそれぞれ隣接する前記高温熱回収流路及び前記低温熱回収流路とが形成されており、前記高温熱回収流路は、前記燃焼ガス流路における前記燃焼ガスの入口部と出口部とを結んだ線に対して、前記低温熱回収流路よりも近接するように形成されていることを特徴とする請求項2又は4記載の燃料電池システム。 The heat exchanger is formed with a combustion gas flow path through which the combustion gas passes, and the high temperature heat recovery flow path and the low temperature heat recovery flow path adjacent to the combustion gas flow path, respectively. The recovery channel is formed so as to be closer to the line connecting the inlet and outlet of the combustion gas in the combustion gas channel than the low-temperature heat recovery channel. The fuel cell system according to claim 2 or 4.
  6.  前記高温熱回収流路内の前記熱媒体を加熱する前記熱回収媒体の流量は、前記低温熱回収流路内の前記熱媒体を加熱する前記熱回収媒体の流量よりも大きいことを特徴とする請求項3記載の燃料電池システム。 The flow rate of the heat recovery medium for heating the heat medium in the high temperature heat recovery flow path is larger than the flow rate of the heat recovery medium for heating the heat medium in the low temperature heat recovery flow path. The fuel cell system according to claim 3.
  7.  前記熱交換器には、前記熱回収媒体が通る熱回収媒体流路と、前記熱回収媒体流路にそれぞれ隣接する前記高温熱回収流路及び前記低温熱回収流路とが形成されており、前記高温熱回収流路は、前記熱回収媒体流路における前記熱回収媒体の入口部と出口部とを結んだ線に対して、前記低温熱回収流路よりも近接するように形成されていることを特徴とする請求項3又は6記載の燃料電池システム。 The heat exchanger is formed with a heat recovery medium flow path through which the heat recovery medium passes, and the high temperature heat recovery flow path and the low temperature heat recovery flow path adjacent to the heat recovery medium flow path, respectively. The high temperature heat recovery flow path is formed so as to be closer to the line connecting the inlet portion and the outlet portion of the heat recovery medium in the heat recovery medium flow path than the low temperature heat recovery flow path. The fuel cell system according to claim 3 or 6, wherein
  8.  前記高温熱媒体流路および前記低温熱媒体流路は、前記熱媒体を下方に向けて流通させるものであり、
     前記低温熱媒体流路は、前記高温熱媒体流路よりも低い位置に設けられており、
     前記貯湯槽には、前記高温熱媒体流路と前記低温熱媒体流路とのそれぞれの最上部に対応する高さに高温水出湯部と低温水出湯部とが設けられていることを特徴とする請求項1~7のいずれか一項記載の燃料電池システム。
    The high temperature heat medium flow path and the low temperature heat medium flow path circulate the heat medium downward,
    The low temperature heat medium flow path is provided at a position lower than the high temperature heat medium flow path,
    The hot water storage tank is provided with a high-temperature hot water hot-water portion and a low-temperature hot water hot-water portion at heights corresponding to the uppermost portions of the high-temperature heat medium flow channel and the low-temperature heat medium flow channel, respectively. The fuel cell system according to any one of claims 1 to 7.
PCT/JP2011/080492 2010-12-28 2011-12-28 Fuel cell system WO2012091132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551060A JPWO2012091132A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292402 2010-12-28
JP2010292402 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091132A1 true WO2012091132A1 (en) 2012-07-05

Family

ID=46383219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080492 WO2012091132A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012091132A1 (en)
WO (1) WO2012091132A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080832A (en) * 2015-12-30 2017-07-11 현대중공업 주식회사 Ship

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955349U (en) * 1982-10-04 1984-04-11 小型ガス冷房技術研究組合 Hot water storage type water heater
JPS6163652U (en) * 1984-10-02 1986-04-30
JPS61195252A (en) * 1985-02-25 1986-08-29 松下電工株式会社 Heat accumulator for engine heat pump
JP2005147480A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Multi-fluid heat exchanger
JP2005147494A (en) * 2003-11-14 2005-06-09 Osaka Gas Co Ltd Multi-temperature heat storage tank and heat storage system using the same
JP2006073417A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Fuel cell system
JP2007207446A (en) * 2006-01-31 2007-08-16 Kyocera Corp Fuel cell power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150974B2 (en) * 2004-03-12 2008-09-17 矢崎総業株式会社 Hybrid heat storage system
JP4776391B2 (en) * 2006-02-17 2011-09-21 大阪瓦斯株式会社 Waste heat utilization system
JP5092960B2 (en) * 2008-07-18 2012-12-05 パナソニック株式会社 Fuel cell cogeneration system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955349U (en) * 1982-10-04 1984-04-11 小型ガス冷房技術研究組合 Hot water storage type water heater
JPS6163652U (en) * 1984-10-02 1986-04-30
JPS61195252A (en) * 1985-02-25 1986-08-29 松下電工株式会社 Heat accumulator for engine heat pump
JP2005147480A (en) * 2003-11-13 2005-06-09 Toyo Radiator Co Ltd Multi-fluid heat exchanger
JP2005147494A (en) * 2003-11-14 2005-06-09 Osaka Gas Co Ltd Multi-temperature heat storage tank and heat storage system using the same
JP2006073417A (en) * 2004-09-03 2006-03-16 Kansai Electric Power Co Inc:The Fuel cell system
JP2007207446A (en) * 2006-01-31 2007-08-16 Kyocera Corp Fuel cell power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080832A (en) * 2015-12-30 2017-07-11 현대중공업 주식회사 Ship
KR102190945B1 (en) * 2015-12-30 2020-12-15 한국조선해양 주식회사 Ship

Also Published As

Publication number Publication date
JPWO2012091132A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
WO2012091096A1 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
JP5000412B2 (en) Operating temperature control method for solid oxide fuel cell system
JP2009059658A (en) Indirect interior-reformed solid oxide fuel cell
JP5095264B2 (en) Reformer and indirect internal reforming type high temperature fuel cell
JP5939858B2 (en) Fuel cell module
WO2012091132A1 (en) Fuel cell system
WO2012091131A1 (en) Fuel cell system
JP5782458B2 (en) Fuel cell system
JP2009059657A (en) Indirect interior-reformed solid oxide fuel cell
WO2012090875A1 (en) Fuel cell system and desulfurization device
KR20110118562A (en) Fuel cell system
JP5463006B2 (en) Operation method of solid oxide fuel cell system
WO2012090865A1 (en) Desulfurization device and fuel cell system
JP5738319B2 (en) Fuel cell system
KR101335504B1 (en) Fuel cell apparatus with single discharge port
JP5331596B2 (en) Fuel cell system
JP5738317B2 (en) Desulfurization apparatus and fuel cell system
JP5557260B2 (en) Operating temperature control method for solid oxide fuel cell system
JP2016062797A (en) Desulfurization container
JP5281991B2 (en) Load following operation method of fuel cell system
WO2012091094A1 (en) Fuel cell system
JP2011233296A (en) Fuel cell system
WO2012090964A1 (en) Fuel cell system
JP2015191785A (en) reformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853038

Country of ref document: EP

Kind code of ref document: A1