WO2012091096A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091096A1
WO2012091096A1 PCT/JP2011/080401 JP2011080401W WO2012091096A1 WO 2012091096 A1 WO2012091096 A1 WO 2012091096A1 JP 2011080401 W JP2011080401 W JP 2011080401W WO 2012091096 A1 WO2012091096 A1 WO 2012091096A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
flow path
unit
heat
fuel cell
Prior art date
Application number
PCT/JP2011/080401
Other languages
French (fr)
Japanese (ja)
Inventor
暁 山本
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012551045A priority Critical patent/JPWO2012091096A1/en
Publication of WO2012091096A1 publication Critical patent/WO2012091096A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell system described in Patent Document 1 is known.
  • a power generation unit including a cell stack that generates power using a hydrogen-containing gas is housed in a casing, and an external fan is operated by operating a fan (blower unit) installed in the casing.
  • the air is taken into the housing to cool the inside of the housing, and the outside air is supplied to the cell stack of the power generation unit.
  • the inside of the housing can be sufficiently cooled.
  • the amount of air circulating in the housing is limited to the amount of cathode air supplied to the power generation unit, and thus there is a risk that cooling in the housing will be insufficient.
  • an object of the present invention is to provide a fuel cell system that can sufficiently cool the inside of the casing.
  • a fuel cell system includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and a system main body including a housing that houses the power generation unit. And a heat supply section that includes a combustion section inside and supplies heat according to heat demand, and an air flow path that cools the inside of the casing by circulating external air inside the casing. And a downstream side of the air flow path includes a first branch flow path that supplies air to the cell stack of the power generation unit, and a second branch flow path that supplies air to the combustion unit of the heat supply unit.
  • the path is provided with a first blower that pumps air toward the cell stack of the power generation unit and a second blower that pumps air toward the combustion unit of the heat supply unit.
  • the inside of the casing can be selectively and sequentially (efficiently) cooled by the air flow path, instead of being uniformly ventilated and cooled.
  • the inside of the housing can be cooled not only by the air supplied to the cell stack of the power generation unit but also by the air supplied to the combustion unit of the heat supply unit. Therefore, according to the present invention, the inside of the housing can be sufficiently cooled.
  • 1 is a schematic block diagram showing a fuel cell system according to a first embodiment. It is a schematic block diagram which shows the principal part of the fuel cell system which concerns on 1st Embodiment. It is a schematic block diagram which shows the principal part in the modification of the fuel cell system shown in FIG. It is a schematic block diagram which shows the principal part in the other modification of the fuel cell system shown in FIG. It is a schematic block diagram which shows the principal part of the fuel cell system which concerns on 2nd Embodiment.
  • 6 is a flowchart showing an example of an operation when the control based on the temperature in the housing is not performed in the fuel cell system of FIG. 5. 6 is a flowchart showing an example of an operation in the case of performing control based on the temperature in the casing in the fuel cell system of FIG. 5. It is a schematic block diagram which shows the principal part in the modification of the fuel cell system shown in FIG.
  • FIG. 1 is a schematic block diagram showing a fuel cell system according to the first embodiment.
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an offgas combustion unit 6, a hydrogen-containing fuel supply unit 7, A supply unit 8, an oxidant supply unit 9, a power conditioner 10, and a control unit 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • phosphoric acid phosphoric acid
  • a fuel cell Phosphoric Acid Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit (water vaporizer) 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the hydrogen-containing fuel supply unit 7 supplies a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas
  • the desulfurization unit 2, the water supply unit 8, the water vaporization unit 3 and one or more of the hydrogen generators 4 can be omitted.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • FIG. 2 is a schematic block diagram showing a main part of the fuel cell system according to the first embodiment.
  • the fuel cell system 1 includes a system main body 20 and a backup boiler (heat supply unit) 30.
  • the system main body 20 includes a power generation unit 21, the power conditioner 10, and first and second auxiliary machine modules 22 and 23, and these are airtightly accommodated so as to be installed in the housing 24. .
  • the first auxiliary machine module 22, the power generation unit 21, the second auxiliary machine module 23, and the power conditioner 10 are arranged in this order from the upper side to the lower side, and have a tandem arrangement structure.
  • the power generation unit 21 is a module that generates power, and includes the desulfurization unit 2, the water vaporization unit 3, the hydrogen generation unit 4, the cell stack 5, the offgas combustion unit 6, the hydrogen-containing fuel supply unit 7, and the water At least a supply unit 8 and the oxidant supply unit 9 are provided.
  • the power generation unit 21 is accommodated in a box (chamber) 21a and modularized.
  • the power conditioner 10 adjusts the electric power generated by the cell stack 5 of the power generation unit 21 as described above.
  • the power conditioner 10 has a control panel as the control unit 11 that controls the operation of the power generation unit 21.
  • the power conditioner 10 is housed in a box (chamber) 10a and modularized, like the power generation unit 21.
  • the first and second auxiliary machine modules 22 and 23 are peripheral devices for generating power in the power generation unit. As with the power generation unit 21 and the power conditioner 10, each of the auxiliary machine modules 22 and 23 is housed and modularized in box bodies (chambers) 22 a and 23 a.
  • Each box 10a, 21a, 22a, 23a includes an air inlet (not shown) and an air outlet (not shown). And the air inflow part and air outflow part of adjacent box 10a, 21a, 22a, 23a are connected so that the inflow / outflow of air is possible, and the air flow path is formed.
  • the backup boiler 30 supplies a deficient amount of heat with respect to heat demand to water in a heat recovery system (not shown) (so-called additional hot water supply is performed).
  • the backup boiler 30 has a combustion part 30a such as a burner.
  • the backup boiler 30 is provided so as to be coupled to the system main body 20. That is, the system main body 20 and the backup boiler 30 are integrated with each other.
  • the fuel cell system 1 includes an air flow path 25, a cathode blower (first air blowing unit) 26, and a combustion unit blower (second air blowing unit) 27.
  • the air flow path 25 circulates external air inside the housing 24 and cools the inside of the housing 24.
  • the cathode blower 26 is provided in the air flow path 25, and feeds air to the cathode 13 (see FIG. 1) of the cell stack 5 in the power generation unit 21 to send air.
  • the combustion section blower 27 is provided in the air flow path 25, and feeds air to the combustion section 30 a in the backup boiler 30 by pressure.
  • the air flow path 25 circulates air so that the power conditioner 10, the second auxiliary module 23, the power generation unit 21, and the first auxiliary module 22 are cooled in this order in the housing 24. Specifically, as shown below, air is sequentially circulated in the plurality of boxes 10a, 23a, 21a, and 22a so as to cool the plurality of modules (equipment) in order from the lowest guaranteed operating temperature. .
  • the air channel 25 of the present embodiment has a first branch channel 51 that supplies air to the cell stack of the power generation unit 21 and a first gas channel that supplies air to the combustion unit 30a of the backup boiler 30 on the downstream side.
  • the air flow path 25 here is bifurcated into first and second branch flow paths 51 and 52 inside the first auxiliary machine module 22.
  • the first branch passage 51 is provided with the cathode blower 26, and the second branch passage 52 is provided with the combustion section blower 27.
  • the air after cooling the first auxiliary machine module 22 is supplied to the cathode 13 of the cell stack 5 (see FIG. 1) via the cathode blower 26, and at the same time, the combustion section 30a of the backup boiler 30 is combusted. It will be supplied through the blower 27 for use.
  • casing 24 can be cooled not only with the air supplied to the cell stack 5 of the electric power generation part 21, but with the air supplied to the combustion part 30a of the backup boiler 30.
  • FIG. Therefore, according to this embodiment, the inside of the housing 24 can be sufficiently cooled.
  • the inside of the casing 24 can be selectively and sequentially (efficiently) cooled by the air flow path 25.
  • the air flow path 25 allows the plurality of modules (the power conditioner 10, the first and second auxiliary equipment modules 22 and 23, and the power generation unit 21) in the housing 24 to operate at a guaranteed temperature. Air is circulated so as to cool in ascending order. Therefore, a plurality of modules can be efficiently cooled in the casing 24, the necessity of the cathode blower 26 and the combustion portion blower 27 having an excessive air blowing capacity can be reduced, and the economic efficiency of the system can be improved. It becomes.
  • the cathode blower 26 and the combustion portion blower 27 having an excessive blowing capacity are not required in this way, it is possible to suppress excessive power consumption and noise of the cathode blower 26 and the combustion portion blower 27. .
  • external air is supplied to the cell stack 5 and the combustion unit 30a on the downstream side of the air flow path 25, so that it is possible to suppress heat from being accumulated in the casing 24. it can. Further, the air whose temperature has been increased by cooling the inside of the housing 24 can be supplied to the cell stack 5.
  • each module can be cooled according to the temperature required by each module.
  • FIG. 3 is a schematic block diagram showing a main part in a modification of the fuel cell system shown in FIG.
  • the branch point P of the first and second branch channels 51, 52 is located outside the first auxiliary module 22 in the air channel 25, and the branch point P
  • a manifold portion 53 may be provided.
  • the manifold portion 53 is a space portion having a flow area larger than that of the air flow path 25, and functions as a buffer tank that temporarily stores air.
  • the manifold portion 53 can suppress pulsation of air supplied to the cell stack 5 and air supplied to the combustion portion 30a.
  • FIG. 4 is a schematic block diagram showing a main part in another modification of the fuel cell system shown in FIG. As shown in FIG. 4, the fuel cell system 1 may include a combined blower 28 instead of the combustion portion blower 27.
  • the combined blower 28 also serves as the first and second air blowing sections, and is provided upstream of the branch point P of the first and second branch flow paths 51 and 52 in the air flow path 25.
  • the dual-purpose blower 28 is installed in an intake port which is a connection portion with the flue pipe T in the housing 24.
  • the combined blower 28 pumps and blows air having an air amount corresponding to the sum of the air amount supplied to the cell stack 5 and the air amount supplied to the combustion unit 30a.
  • a part of the air pressure-fed by the dual-purpose blower 28 is supplied to the cell stack 5 by the cathode blower 26, and the remaining part is supplied to the combustion unit 30a as combustion air. It becomes. This makes it possible to supply more accurate air to the cell stack 5.
  • FIG. 5 is a schematic block diagram showing the main part of the fuel cell system according to the second embodiment.
  • the fuel cell system 50 of this embodiment includes a hot water tank 19, a heat medium circulation channel 55, a first heat exchange unit 16 a, a second heat exchange unit (heat exchange unit) 30 b, and a temperature measurement unit. 18 and a control unit 15 are further provided.
  • the hot water storage tank 19 stores water such as clean water supplied from outside, collects heat from the heat medium flowing through the heat medium circulation passage 55 passing through the inside, and stores the heat in the stored water. Moreover, this hot water storage tank 19 discharge
  • the hot water supply line 19a is provided so as to pass through the combustion unit 30a. Thus, when the temperature of the upper part of the hot water storage tank 19 is low, for example, the heat quantity of the hot water is increased by heating the combustion unit 30a so that the hot water becomes a desired temperature. Be compensated.
  • the heat medium circulation channel 55 circulates the heat medium between the hot water tank 19 and the fuel cell system 50.
  • the heat medium circulation channel 55 here circulates the heat medium among the hot water tank 19, the first heat exchange unit 16a, and the second heat exchange unit 30b.
  • As the heat medium for example, antifreeze or high boiling point oil is used.
  • the hot water storage tank 19 of FIG. 5 may be provided with a flow path / heat exchange section as indicated by a broken line, and the heat medium circulation path 55 may be a closed system. According to this, the heat recovered by the heat medium circulation path 55 moves to the water in the hot water storage tank 19, and the heat medium flows again toward the first heat exchange unit 16a.
  • the water of the hot water tank 19 can also be used as a heat medium. In this case, the broken line part in the hot water storage tank 19 of FIG. 5 can be made unnecessary.
  • the first heat exchanging unit 16a recovers heat in the exhaust gas from the cell stack 5 to the heat medium, on the first exhaust gas passage 61 through which the exhaust gas from the cell stack 5 circulates, and in the heat medium circulation flow It is provided on the path 55.
  • the first heat exchanging part 16a is arranged in the first auxiliary machine module 22, but the arrangement place is not limited to this. For example, it may be in the second accessory module 23 or in the power generation unit 21.
  • the second heat exchanging unit 30b recovers heat in the exhaust gas of the combustion unit 30a from the heat medium or / and the hot water storage tank 19 to hot water flowing through the hot water supply line 19a, and the second heat exchange unit 30b distributes the exhaust gas from the combustion unit 30a. 2 on the exhaust gas flow path 62 and on the heat medium circulation flow path 55.
  • the second heat exchange unit 30 b is disposed in the backup boiler 30.
  • the heat recovery for the hot water supply line 19a and the heat recovery for the heat medium circulation passage 55 are performed by one heat exchange unit (here, the second heat exchange unit 30b).
  • a heat exchange unit for the hot water supply line 19a may be provided separately.
  • the heat medium circulation channel 55 is provided with a bypass channel 17b provided so as to bypass the second heat exchange unit 30b.
  • the bypass flow path 17b communicates the upstream and downstream of the second heat exchange unit 30b in the heat medium circulation flow path 55.
  • the heat medium circulation passage 55 that passes through the second heat exchange section 30b (does not bypass) is referred to as a heat exchange passage 17a.
  • a switching valve 17 that switches the flow of the heat medium between the heat exchange flow path 17a and the bypass flow path 17b is provided in the merging portion on the upstream side of the bypass flow path 17b in the heat medium circulation flow path 55. .
  • the temperature measuring unit 18 measures the temperature in the housing 24.
  • the temperature measuring unit 18 is arranged in the first auxiliary machine module 22, but the arrangement location is not limited to this. For example, it may be in the second accessory module 23 or in the power generation unit 21.
  • the control unit 15 controls the fuel cell system 50, and here controls at least the operations of the cathode blower 26, the combustion unit blower 27, and the switching valve 17. Specifically, the control unit 15 operates the cathode blower 26 so that air having an air flow rate corresponding to the power generation amount of the cell stack 5 flows through the first branch flow path 51.
  • control unit 15 causes the combustion unit blower so that air flows through the second branch flow path 52 when the temperature in the casing 24 measured by the temperature measurement unit 18 exceeds a predetermined upper limit temperature. 27 is operated. Further, when the backup boiler 30 is operated, the control unit 15 operates the combustion unit blower 27 so that the air flow rate flowing through the second branch flow path 52 becomes the air flow rate necessary for the combustion of the combustion unit 30a.
  • the control unit 15 switches so that the heat medium flows into the bypass channel 17b.
  • the valve 17 is operated.
  • the control part 15 operates the switching valve 17 so that a heat medium may distribute
  • the air introduced from the flue pipe T by operating the cathode blower 26 and / or the combustor blower 27 is a box 10a in which the power conditioner 10 is contained, a second auxiliary machine module 23a, a power generation unit 21a, Each of the first accessory module 22a is cooled while passing through the air inflow portion and the air outflow portion. Then, it reaches the branch point P and flows to the first branch channel 51 and / or the second branch channel 52.
  • the system main body 20 and the backup boiler 30 are included in the outer case 56 with the upper surface of the system main body 20 and the lower surface of the backup boiler 30 in contact with each other.
  • a merged gas flow channel 57 formed by merging them is connected to the downstream side of the first and second exhaust gas flow channels 61 and 62.
  • the merged gas flow path 57 joins the exhaust gas from the cell stack 5 and the exhaust gas from the combustion unit 30 a and discharges the outer case 56 to the outside.
  • the configuration of the cathode blower 26, the combustion section blower 27, and the first and second branch flow paths 51 and 52 in FIG. 5 is the configuration shown in FIG. 3, but the configuration of FIG. 2 or FIG. May be applied.
  • FIG. 6 is a flowchart showing an example of the operation when the control based on the temperature inside the casing is not performed in the fuel cell system of FIG. 5, and FIG. 7 is the case where the control based on the temperature inside the casing is performed in the fuel cell system of FIG. It is a flowchart which shows an example of operation
  • the combustion section blower 27 is set so that the amount of combustion air necessary for the operation of the backup boiler 30 flows through the second branch flow path 52. Control and operate the backup boiler 30. And it transfers again to the determination process of said S2.
  • the switching valve 17 is operated so that the heat medium flows through the heat exchange flow path 17a, whereby the heat medium passes through the second heat exchange unit 30b and the exhaust gas from the combustion unit 30a. The heat is recovered into the heat medium (S14).
  • the temperature measurement unit 18 acquires the temperature R in the casing 24, and it is further determined whether or not the measured temperature R in the casing 24 exceeds the upper limit temperature Rmax. (S17).
  • the combustion section blower 27 is stopped and the air supply to the second branch flow path 52 is stopped (S18).
  • the switching valve 17 is operated so that the heat medium flows into the bypass flow path 17b, whereby the heat medium bypasses the second heat exchange unit 30b (S19). And air is supplied to the 2nd branch flow path 52 by the blower 27 for combustion parts, and the backup boiler 30 is drive
  • the output of the combustion section blower 27 may be increased or decreased according to the acquired temperature R in the casing 24 to adjust the amount of air flowing through the second branch flow path 52.
  • the backup boiler 30 is stopped simultaneously with the execution of S18 or S20 (S21). That is, when there is no shortage of heat in the hot water supplied from the hot water supply line 19a and the temperature R in the housing 24 is higher than the upper limit temperature Rmax, the second boiler is not operated. Air is circulated from the branch flow path 52 to the combustion section 30a. And it transfers again to the determination process of said S11.
  • the cathode blower 26 is operated so that air having an air flow rate corresponding to the power generation amount of the fuel cell system 50 flows through the first branch flow path 51. Therefore, air always flows through the first branch channel 51 when the fuel cell system 50 generates power.
  • the combustion section blower 27 when the temperature in the casing 24 exceeds the upper limit temperature Rmax, the combustion section blower 27 is operated so that air flows through the second branch flow path 52. Therefore, when the temperature in the housing 24 is high, air can be circulated through the second branch flow path 52.
  • the combustion unit blower 27 when the backup boiler 30 is operated (actuated), the combustion unit blower 27 operates so that the air flow rate flowing through the second branch flow path 52 becomes the air flow rate necessary for the combustion of the combustion unit 30a. Is done. Therefore, it is possible to control the air flow rate of the second branch flow path 52 as being dominant for the combustion of the combustion unit 30a.
  • the backup medium 30 is in operation, and the heat medium flows through the bypass flow path 17b during full storage when the heat recovered from the second heat exchange unit 30b cannot be stored in the hot water storage tank 19.
  • the switching valve 17 can be switched to.
  • the switching valve 17 can be switched so that the heat medium flows into the bypass flow path 17b. As a result, it is possible to suppress heat from being deprived from the heat medium passing through the second heat exchange unit 30b.
  • FIG. 8 is a schematic block diagram showing a main part in a modification of the fuel cell system shown in FIG.
  • the fuel cell system 50 of the present embodiment can also employ the configuration shown in FIG. Specifically, components with high cooling priority (auxiliary module, power conditioner, power generation unit, etc.) are preferentially installed below the system body, and the entire surface or one of the plates or boxes on which the components are arranged. You may form the surface of a part with the member (for example, net
  • the air introduced from the flue pipe T cools the inside of the system main body 20, and the air itself rises toward the upper side of the system main body 20 while being heated.
  • FIG. 8 The configuration of the cathode blower 26, the combustion section blower 27, and the first and second branch flow paths 51 and 52 in FIG. 8 is the configuration shown in FIG. 4, but the configuration of FIG. 2 or FIG. 3 is applied. May be. Further, in place of the combustion section blower 27, the above-described combined blower 28 may be provided.
  • the air flow path was formed in the order of the power conditioner 10, the 2nd auxiliary machine module 23, the electric power generation part 21, and the 1st auxiliary machine module, the order and auxiliary machine which form an air flow path are changed.
  • the number of compartments such as modules to be stored is not limited to this. It can be arbitrarily determined in consideration of the priority of arrangement of components constituting the fuel cell system or the cooling priority.
  • the flue pipe T Is no longer necessary.
  • the said embodiment is equipped with the backup boiler 30 as a heat supply part, the heat supply part should just be for supplying heat quantity according to a heat demand, for example, a normal boiler (main boiler) May be included).
  • the air flow path 25 touches the outer surface (outer wall of box 10a, 21a, 22a, 23a) of a module. Air may be circulated, thereby cooling the module (cooling the outer surface).
  • the first gas flow path 61 and the second gas flow path 62 do not necessarily have to be merged, and may be independently discharged outside the outer case 56.
  • the “module” means, for example, one in which one or a plurality of elements (parts or devices) are aggregated in terms of function or configuration as a function for realizing a predetermined function.
  • a heat exchanging part provided on the merged gas flow path 57 may be provided instead of the first and second heat exchanging parts 16a and 30b. That is, the heat exchange part that recovers the heat discharged from the combustion part can also serve as the heat exchange part that recovers the heat discharged from the power generation part.
  • the heat exchange of the second heat exchange unit 30b is performed after the heat exchange of the first heat exchange unit 16a.
  • the heat recovery order on the heat medium circulation channel is not limited. In the second embodiment, for example, when a hot water storage tank 19 having a high heat recovery rate is used, the second heat exchange unit 30b, the bypass flow path 17b, and the switching valve 17 are not necessary.
  • the inside of the housing can be sufficiently cooled.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system is provided with: a system body that has a power generation unit containing a fuel cell stack for generating power using hydrogen-containing gas, and a chassis for housing the power generation unit; a heat supply unit for supplying an amount of heat according to heat demand, and including a combustion unit; and an air channel for circulating outside air within the chassis, and cooling the interior of the chassis. A first branch channel for supplying air to the fuel cell stack in the power generation unit, and a second branch channel for supplying air to the combustion unit in the heat supply unit are included in the downstream side of the air channel. A first ventilation unit for pumping air toward the fuel cell stack in the power generation unit, and a second ventilation unit for pumping air toward the combustion unit in the heat supply unit are provided in the air channel.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 従来、燃料電池システムとしては、例えば特許文献1に記載されたものが知られている。このような燃料電池システムでは、水素含有ガスを用いて発電を行うセルスタックを含む発電部が筐体内に収容されており、筐体内に設置されたファン(送風部)を作動させることで、外部の空気を筐体内に取り込んで筐体内を冷却し、当該外部の空気を発電部のセルスタックへ供給することが図られている。 Conventionally, for example, a fuel cell system described in Patent Document 1 is known. In such a fuel cell system, a power generation unit including a cell stack that generates power using a hydrogen-containing gas is housed in a casing, and an external fan is operated by operating a fan (blower unit) installed in the casing. The air is taken into the housing to cool the inside of the housing, and the outside air is supplied to the cell stack of the power generation unit.
特開2007-207441号公報JP 2007-207441 A
 ここで、近年の燃料電池システムでは、例えばシステムの小型化や高密度化等に伴い、筐体内を十分に冷却できることが特に求められている。この点、上述したような燃料電池システムでは、例えば、筐体内に流通する空気量は、発電部に供給されるカソード空気量に限られるため、筐体内の冷却が不十分となるおそれがある。 Here, in recent fuel cell systems, for example, with the miniaturization and high density of the system, it is particularly required that the inside of the housing can be sufficiently cooled. In this regard, in the fuel cell system as described above, for example, the amount of air circulating in the housing is limited to the amount of cathode air supplied to the power generation unit, and thus there is a risk that cooling in the housing will be insufficient.
 そこで、本発明は、筐体内を十分に冷却することができる燃料電池システムを提供することを課題とする。 Therefore, an object of the present invention is to provide a fuel cell system that can sufficiently cool the inside of the casing.
 上記課題を解決するため、本発明の一側面に係る燃料電池システムは、水素含有ガスを用いて発電を行うセルスタックを含む発電部と、当該発電部を収容する筐体と、を有するシステム本体と、内部に燃焼部を含み、熱需要に応じて熱量を熱供給するための熱供給部と、筐体内にて外部の空気を流通させて、当該筐体内を冷却する空気流路と、を備え、空気流路の下流側は、空気を発電部のセルスタックに供給する第1分岐流路と、空気を熱供給部の燃焼部に供給する第2分岐流路と、を含み、空気流路には、発電部のセルスタックへ向けて空気を圧送する第1送風部と、熱供給部の燃焼部へ向けて空気を圧送する第2送風部と、が設けられている。 In order to solve the above-described problem, a fuel cell system according to one aspect of the present invention includes a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and a system main body including a housing that houses the power generation unit. And a heat supply section that includes a combustion section inside and supplies heat according to heat demand, and an air flow path that cools the inside of the casing by circulating external air inside the casing. And a downstream side of the air flow path includes a first branch flow path that supplies air to the cell stack of the power generation unit, and a second branch flow path that supplies air to the combustion unit of the heat supply unit. The path is provided with a first blower that pumps air toward the cell stack of the power generation unit and a second blower that pumps air toward the combustion unit of the heat supply unit.
 この本発明の燃料電池システムでは、筐体内を一様に換気し冷却するのではなく、空気流路によって筐体内を選択的且つ順次に(効率的に)冷却することができる。加えて、発電部のセルスタックに供給される空気だけでなく、熱供給部の燃焼部に供給される空気によっても、筐体内を冷却することができる。従って、本発明によれば、筐体内を十分に冷却することが可能となる。 In the fuel cell system of the present invention, the inside of the casing can be selectively and sequentially (efficiently) cooled by the air flow path, instead of being uniformly ventilated and cooled. In addition, the inside of the housing can be cooled not only by the air supplied to the cell stack of the power generation unit but also by the air supplied to the combustion unit of the heat supply unit. Therefore, according to the present invention, the inside of the housing can be sufficiently cooled.
第1実施形態に係る燃料電池システムを示す概略ブロック図である。1 is a schematic block diagram showing a fuel cell system according to a first embodiment. 第1実施形態に係る燃料電池システムの要部を示す概略ブロック図である。It is a schematic block diagram which shows the principal part of the fuel cell system which concerns on 1st Embodiment. 図2に示す燃料電池システムの変形例における要部を示す概略ブロック図である。It is a schematic block diagram which shows the principal part in the modification of the fuel cell system shown in FIG. 図2に示す燃料電池システムの他の変形例における要部を示す概略ブロック図である。It is a schematic block diagram which shows the principal part in the other modification of the fuel cell system shown in FIG. 第2実施形態に係る燃料電池システムの要部を示す概略ブロック図である。It is a schematic block diagram which shows the principal part of the fuel cell system which concerns on 2nd Embodiment. 図5の燃料電池システムにおいて筐体内温度による制御を行なわない場合の動作の一例を示すフローチャートである。6 is a flowchart showing an example of an operation when the control based on the temperature in the housing is not performed in the fuel cell system of FIG. 5. 図5の燃料電池システムにおいて筐体内温度による制御を行う場合の動作の一例を示すフローチャートである。6 is a flowchart showing an example of an operation in the case of performing control based on the temperature in the casing in the fuel cell system of FIG. 5. 図5に示す燃料電池システムの変形例における要部を示す概略ブロック図である。It is a schematic block diagram which shows the principal part in the modification of the fuel cell system shown in FIG.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 図1は、第1実施形態に係る燃料電池システムを示す概略ブロック図である。図1に示すように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。 FIG. 1 is a schematic block diagram showing a fuel cell system according to the first embodiment. As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an offgas combustion unit 6, a hydrogen-containing fuel supply unit 7, A supply unit 8, an oxidant supply unit 9, a power conditioner 10, and a control unit 11 are provided.
 燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部(水気化器)3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit (water vaporizer) 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガス(水素含有ガス)を発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。なお、水素含有燃料供給部7が、例えば純水素ガス、水素富化ガス等、改質処理を必要としない水素含有燃料を供給する場合には、脱硫部2、水供給部8、水気化部3、及び水素発生部4のうちの一つ又は複数を省略することができる。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11. When the hydrogen-containing fuel supply unit 7 supplies a hydrogen-containing fuel that does not require a reforming process, such as pure hydrogen gas or hydrogen-enriched gas, the desulfurization unit 2, the water supply unit 8, the water vaporization unit 3 and one or more of the hydrogen generators 4 can be omitted.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 図2は、第1実施形態に係る燃料電池システムの要部を示す概略ブロック図である。図2に示すように、燃料電池システム1は、システム本体20と、バックアップボイラ(熱供給部)30と、を含んで構成されている。 FIG. 2 is a schematic block diagram showing a main part of the fuel cell system according to the first embodiment. As shown in FIG. 2, the fuel cell system 1 includes a system main body 20 and a backup boiler (heat supply unit) 30.
 システム本体20は、発電部21と、上記パワーコンディショナー10と、第1及び第2補機モジュール22、23と、を含み、これらが筐体24内に画設されるよう気密に収容されている。ここでのシステム本体20では、第1補機モジュール22、発電部21、第2補機モジュール23及びパワーコンディショナー10が、上方から下方に向けてこの順に配置され、縦列配置構造とされている。 The system main body 20 includes a power generation unit 21, the power conditioner 10, and first and second auxiliary machine modules 22 and 23, and these are airtightly accommodated so as to be installed in the housing 24. . In the system body 20 here, the first auxiliary machine module 22, the power generation unit 21, the second auxiliary machine module 23, and the power conditioner 10 are arranged in this order from the upper side to the lower side, and have a tandem arrangement structure.
 発電部21は、発電を行うモジュールであり、上記脱硫部2、上記水気化部3、上記水素発生部4、上記セルスタック5、上記オフガス燃焼部6、上記水素含有燃料供給部7、上記水供給部8及び上記酸化剤供給部9を少なくとも有している。この発電部21は、箱体(室部)21aに収容されてモジュール化されている。 The power generation unit 21 is a module that generates power, and includes the desulfurization unit 2, the water vaporization unit 3, the hydrogen generation unit 4, the cell stack 5, the offgas combustion unit 6, the hydrogen-containing fuel supply unit 7, and the water At least a supply unit 8 and the oxidant supply unit 9 are provided. The power generation unit 21 is accommodated in a box (chamber) 21a and modularized.
 パワーコンディショナー10は、上述したように、発電部21のセルスタック5で発電した電力を調整するものである。パワーコンディショナー10は、発電部21の動作を制御する上記制御部11としての制御盤を有している。このパワーコンディショナー10は、発電部21と同様に、箱体(室部)10aに収容されてモジュール化されている。 The power conditioner 10 adjusts the electric power generated by the cell stack 5 of the power generation unit 21 as described above. The power conditioner 10 has a control panel as the control unit 11 that controls the operation of the power generation unit 21. The power conditioner 10 is housed in a box (chamber) 10a and modularized, like the power generation unit 21.
 第1及び第2補機モジュール22,23は、発電部で発電を行うための周辺機器である。補機モジュール22,23のそれぞれは、発電部21及びパワーコンディショナー10と同様に、箱体(室部)22a,23aにそれぞれ収容されてモジュール化されている。 The first and second auxiliary machine modules 22 and 23 are peripheral devices for generating power in the power generation unit. As with the power generation unit 21 and the power conditioner 10, each of the auxiliary machine modules 22 and 23 is housed and modularized in box bodies (chambers) 22 a and 23 a.
 なお、各箱体10a,21a,22a,23aは、図示しない空気流入口及び図示しない空気流出口を備える。そして、隣接する箱体10a,21a,22a,23aの空気流入部と空気流出部は、空気の流出入が可能なように連通して空気流路を形成している。 Each box 10a, 21a, 22a, 23a includes an air inlet (not shown) and an air outlet (not shown). And the air inflow part and air outflow part of adjacent box 10a, 21a, 22a, 23a are connected so that the inflow / outflow of air is possible, and the air flow path is formed.
 バックアップボイラ30は、熱需要に対する不足熱量を熱回収系(不図示)の水へ熱供給する(いわゆる追い炊き給湯を行う)ものである。バックアップボイラ30は、バーナ等の燃焼部30aを有している。このバックアップボイラ30は、システム本体20と結合するよう設けられている。つまり、システム本体20及びバックアップボイラ30は、互いに一体化されて構成されている。 The backup boiler 30 supplies a deficient amount of heat with respect to heat demand to water in a heat recovery system (not shown) (so-called additional hot water supply is performed). The backup boiler 30 has a combustion part 30a such as a burner. The backup boiler 30 is provided so as to be coupled to the system main body 20. That is, the system main body 20 and the backup boiler 30 are integrated with each other.
 また、燃料電池システム1は、空気流路25、カソードブロア(第1送風部)26及び燃焼部用ブロア(第2送風部)27を備えている。空気流路25は、筐体24内で外部の空気を流通させ、当該筐体24内を冷却する。カソードブロア26は、空気流路25に設けられており、空気を発電部21におけるセルスタック5のカソード13(図1参照)へ向けて圧送し送風する。燃焼部用ブロア27は、空気流路25に設けられており、空気をバックアップボイラ30における燃焼部30aへ向けて圧送し送風する。 Further, the fuel cell system 1 includes an air flow path 25, a cathode blower (first air blowing unit) 26, and a combustion unit blower (second air blowing unit) 27. The air flow path 25 circulates external air inside the housing 24 and cools the inside of the housing 24. The cathode blower 26 is provided in the air flow path 25, and feeds air to the cathode 13 (see FIG. 1) of the cell stack 5 in the power generation unit 21 to send air. The combustion section blower 27 is provided in the air flow path 25, and feeds air to the combustion section 30 a in the backup boiler 30 by pressure.
 この空気流路25は、筐体24内においてパワーコンディショナー10、第2補機モジュール23、発電部21、及び第1補機モジュール22をこの順で冷却するように空気を流通させる。具体的には、以下に示すように、複数のモジュール(機器)をその動作保障温度の低い順で冷却するように、複数の箱体10a,23a,21a,22a内に空気を順次に流通させる。 The air flow path 25 circulates air so that the power conditioner 10, the second auxiliary module 23, the power generation unit 21, and the first auxiliary module 22 are cooled in this order in the housing 24. Specifically, as shown below, air is sequentially circulated in the plurality of boxes 10a, 23a, 21a, and 22a so as to cool the plurality of modules (equipment) in order from the lowest guaranteed operating temperature. .
 すなわち、空気流路25においては、カソードブロア26及び燃焼部用ブロア27の稼動により、まず、煙道管(空気配管)Tを介して外部の空気(野外空気)が筐体24内に取り込まれる。そして、当該空気が、パワーコンディショナー10を収容する箱体10a内に流入され、パワーコンディショナー10が冷却される。続いて、パワーコンディショナー10を冷却後の空気が、第2補機モジュール23を収容する箱体23a内に流入され、第2補機モジュール23が冷却される。続いて、第2補機モジュール23を冷却後の空気が、発電部21を収容する箱体21a内に流入され、発電部21が冷却される。続いて、発電部21を冷却した後の空気が、第1補機モジュール22を収容する箱体22a内に流入され、第2補機モジュール22が冷却される。 That is, in the air flow path 25, external air (outdoor air) is first taken into the housing 24 through the flue pipe (air pipe) T by the operation of the cathode blower 26 and the combustion section blower 27. . And the said air flows in into the box 10a which accommodates the power conditioner 10, and the power conditioner 10 is cooled. Subsequently, the air after cooling the power conditioner 10 flows into the box body 23a that houses the second auxiliary machine module 23, and the second auxiliary machine module 23 is cooled. Subsequently, the air after cooling the second auxiliary equipment module 23 flows into the box 21 a that houses the power generation unit 21, and the power generation unit 21 is cooled. Subsequently, the air after cooling the power generation unit 21 flows into the box 22 a that houses the first auxiliary machine module 22, and the second auxiliary machine module 22 is cooled.
 ここで、本実施形態の空気流路25は、その下流側に、発電部21のセルスタックに空気を供給する第1分岐流路51と、バックアップボイラ30の燃焼部30aに空気を供給する第2分岐流路52と、を含んでいる。ここでの空気流路25は、第1補機モジュール22の内部にて第1及び第2分岐流路51,52に2分岐されている。この第1分岐流路51には上記カソードブロア26が設けられ、第2分岐流路52には上記燃焼部用ブロア27が設けられている。 Here, the air channel 25 of the present embodiment has a first branch channel 51 that supplies air to the cell stack of the power generation unit 21 and a first gas channel that supplies air to the combustion unit 30a of the backup boiler 30 on the downstream side. A two-branch channel 52. The air flow path 25 here is bifurcated into first and second branch flow paths 51 and 52 inside the first auxiliary machine module 22. The first branch passage 51 is provided with the cathode blower 26, and the second branch passage 52 is provided with the combustion section blower 27.
 これにより、第1補機モジュール22を冷却した後の空気は、セルスタック5のカソード13(図1参照)へカソードブロア26を介して供給されると共に、バックアップボイラ30の燃焼部30aへ燃焼部用ブロア27を介して供給されることとなる。 As a result, the air after cooling the first auxiliary machine module 22 is supplied to the cathode 13 of the cell stack 5 (see FIG. 1) via the cathode blower 26, and at the same time, the combustion section 30a of the backup boiler 30 is combusted. It will be supplied through the blower 27 for use.
 以上、本実施形態においては、発電部21のセルスタック5に供給される空気だけでなく、バックアップボイラ30の燃焼部30aに供給される空気によっても、筐体24内を冷却することができる。従って、本実施形態によれば、筐体24内を十分に冷却することが可能となる。加えて、筐体24内を一様に換気し冷却するのではなく、空気流路25によって筐体24内を選択的且つ順次に(効率的に)冷却することができる。 As mentioned above, in this embodiment, the inside of the housing | casing 24 can be cooled not only with the air supplied to the cell stack 5 of the electric power generation part 21, but with the air supplied to the combustion part 30a of the backup boiler 30. FIG. Therefore, according to this embodiment, the inside of the housing 24 can be sufficiently cooled. In addition, instead of uniformly ventilating and cooling the inside of the casing 24, the inside of the casing 24 can be selectively and sequentially (efficiently) cooled by the air flow path 25.
 また、本実施形態では、上述したように、空気流路25は、筐体24内の複数のモジュール(パワーコンディショナー10、第1及び2補機モジュール22,23及び発電部21)を動作保障温度の低い順で冷却するように空気を流通させている。よって、筐体24内にて複数のモジュールを効率的に冷却することができ、過剰な送風能力を有するカソードブロア26及び燃焼部用ブロア27の必要性を低減し、システムの経済性を向上可能となる。 In the present embodiment, as described above, the air flow path 25 allows the plurality of modules (the power conditioner 10, the first and second auxiliary equipment modules 22 and 23, and the power generation unit 21) in the housing 24 to operate at a guaranteed temperature. Air is circulated so as to cool in ascending order. Therefore, a plurality of modules can be efficiently cooled in the casing 24, the necessity of the cathode blower 26 and the combustion portion blower 27 having an excessive air blowing capacity can be reduced, and the economic efficiency of the system can be improved. It becomes.
 また、このように過剰な送風能力のカソードブロア26及び燃焼部用ブロア27が不要となるため、カソードブロア26及び燃焼部用ブロア27の消費電力や騒音が過剰になるのを抑制することができる。また、本実施形態では、上述したように、空気流路25の下流側で外部の空気をセルスタック5及び燃焼部30aへ供給するため、筐体24内に熱がこもるのを抑制することができる。また、筐体24内を冷却して温度が高まった空気を、セルスタック5に供給することが可能となる。 In addition, since the cathode blower 26 and the combustion portion blower 27 having an excessive blowing capacity are not required in this way, it is possible to suppress excessive power consumption and noise of the cathode blower 26 and the combustion portion blower 27. . Further, in the present embodiment, as described above, external air is supplied to the cell stack 5 and the combustion unit 30a on the downstream side of the air flow path 25, so that it is possible to suppress heat from being accumulated in the casing 24. it can. Further, the air whose temperature has been increased by cooling the inside of the housing 24 can be supplied to the cell stack 5.
 また、本実施形態では、空気流路25にて必要以上の圧力損失が発生するのを抑制することもできる。さらに、各モジュールが要する温度のそれぞれに応じて当該各モジュールを冷却することが可能となる。 Further, in the present embodiment, it is possible to suppress occurrence of pressure loss more than necessary in the air flow path 25. Furthermore, each module can be cooled according to the temperature required by each module.
 図3は、図2に示す燃料電池システムの変形例における要部を示す概略ブロック図である。図3に示すように、燃料電池システム1では、空気流路25において第1及び第2分岐流路51,52の分岐箇所Pが第1補機モジュール22外に位置し、当該分岐箇所Pにマニホールド部53が設けられていてもよい。マニホールド部53は、空気流路25よりも広い流路面積を有する空間部であり、空気を一時的に貯留するバッファタンクとして機能する。 FIG. 3 is a schematic block diagram showing a main part in a modification of the fuel cell system shown in FIG. As shown in FIG. 3, in the fuel cell system 1, the branch point P of the first and second branch channels 51, 52 is located outside the first auxiliary module 22 in the air channel 25, and the branch point P A manifold portion 53 may be provided. The manifold portion 53 is a space portion having a flow area larger than that of the air flow path 25, and functions as a buffer tank that temporarily stores air.
 この変形例の燃料電池システム1では、マニホールド部53により、セルスタック5に供給される空気及び燃焼部30aに供給される空気の脈動を抑制することができる。 In the fuel cell system 1 of this modification, the manifold portion 53 can suppress pulsation of air supplied to the cell stack 5 and air supplied to the combustion portion 30a.
 図4は、図2に示す燃料電池システムの他の変形例における要部を示す概略ブロック図である。図4に示すように、燃料電池システム1は、燃焼部用ブロア27に代えて、兼用ブロア28を備えていてもよい。 FIG. 4 is a schematic block diagram showing a main part in another modification of the fuel cell system shown in FIG. As shown in FIG. 4, the fuel cell system 1 may include a combined blower 28 instead of the combustion portion blower 27.
 兼用ブロア28は、第1及び第2送風部を兼用するものであり、空気流路25において第1及び第2分岐流路51,52の分岐箇所Pよりも上流側に設けられている。ここでは、兼用ブロア28は、筐体24において煙道管Tとの接続部である吸気口に設置されている。この兼用ブロア28は、セルスタック5に供給する空気量と燃焼部30aに供給する空気量との合計に相当する空気量の空気を、圧送して送風する。 The combined blower 28 also serves as the first and second air blowing sections, and is provided upstream of the branch point P of the first and second branch flow paths 51 and 52 in the air flow path 25. Here, the dual-purpose blower 28 is installed in an intake port which is a connection portion with the flue pipe T in the housing 24. The combined blower 28 pumps and blows air having an air amount corresponding to the sum of the air amount supplied to the cell stack 5 and the air amount supplied to the combustion unit 30a.
 この他の変形例の燃料電池システムでは、兼用ブロア28で圧送された空気の一部がカソードブロア26によってセルスタック5に供給されると共に、残部が燃焼部30aに燃焼用空気として供給されることとなる。これにより、セルスタック5に対して、より正確な空気供給を行うことが可能となる。 In the fuel cell system according to another modified example, a part of the air pressure-fed by the dual-purpose blower 28 is supplied to the cell stack 5 by the cathode blower 26, and the remaining part is supplied to the combustion unit 30a as combustion air. It becomes. This makes it possible to supply more accurate air to the cell stack 5.
 次に、第2実施形態について説明する。なお、本実施形態の説明では、上記第1実施形態と異なる点について主に説明する。 Next, a second embodiment will be described. In the description of the present embodiment, differences from the first embodiment will be mainly described.
 図5は、第2実施形態に係る燃料電池システムの要部を示す概略ブロック図である。図5に示すように、本実施形態の燃料電池システム50は、貯湯槽19、熱媒体循環流路55、第1熱交換部16a、第2熱交換部(熱交換部)30b、温度測定部18、及び制御部15をさらに備えている。 FIG. 5 is a schematic block diagram showing the main part of the fuel cell system according to the second embodiment. As shown in FIG. 5, the fuel cell system 50 of this embodiment includes a hot water tank 19, a heat medium circulation channel 55, a first heat exchange unit 16 a, a second heat exchange unit (heat exchange unit) 30 b, and a temperature measurement unit. 18 and a control unit 15 are further provided.
 貯湯槽19は、外部から供給された例えば上水等の水を内部に貯えると共に、内部を通過する熱媒体循環流路55を流れる熱媒体から熱を回収し、貯えた水へ蓄熱する。また、この貯湯槽19は、例えばユーザ等の需要に応じて、給湯ライン19aを介して貯えた水を温水として排出する。給湯ライン19aは、燃焼部30aを通過するように設けられており、これにより、貯湯槽19上部の温度が低い場合、例えば温水が所望温度となるように燃焼部30aの加熱により温水の熱量が補われる。 The hot water storage tank 19 stores water such as clean water supplied from outside, collects heat from the heat medium flowing through the heat medium circulation passage 55 passing through the inside, and stores the heat in the stored water. Moreover, this hot water storage tank 19 discharge | releases the water stored via the hot water supply line 19a as warm water according to a user's etc. demand, for example. The hot water supply line 19a is provided so as to pass through the combustion unit 30a. Thus, when the temperature of the upper part of the hot water storage tank 19 is low, for example, the heat quantity of the hot water is increased by heating the combustion unit 30a so that the hot water becomes a desired temperature. Be compensated.
 熱媒体循環流路55は、貯湯槽19と燃料電池システム50と間で熱媒体を循環させるものである。ここでの熱媒体循環流路55は、貯湯槽19、第1熱交換部16a及び第2熱交換部30bの間で熱媒体を循環させる。熱媒体としては、例えば、不凍液や高沸点油等が用いられている。この場合、図5の貯湯槽19内に破線で示すような流路兼熱交換部を備え、熱媒体循環経路55を閉鎖系とすればよい。これによると、熱媒体循環経路55が回収してきた熱が貯湯槽19内の水に移動し、熱媒体は再び第1熱交換部16aに向けて流れていくことになる。なお、熱媒体として水を用いる場合、貯湯槽19の水を熱媒体とすることもできる。この場合、図5の貯湯槽19内の破線部分を不要にできる。 The heat medium circulation channel 55 circulates the heat medium between the hot water tank 19 and the fuel cell system 50. The heat medium circulation channel 55 here circulates the heat medium among the hot water tank 19, the first heat exchange unit 16a, and the second heat exchange unit 30b. As the heat medium, for example, antifreeze or high boiling point oil is used. In this case, the hot water storage tank 19 of FIG. 5 may be provided with a flow path / heat exchange section as indicated by a broken line, and the heat medium circulation path 55 may be a closed system. According to this, the heat recovered by the heat medium circulation path 55 moves to the water in the hot water storage tank 19, and the heat medium flows again toward the first heat exchange unit 16a. In addition, when using water as a heat medium, the water of the hot water tank 19 can also be used as a heat medium. In this case, the broken line part in the hot water storage tank 19 of FIG. 5 can be made unnecessary.
 第1熱交換部16aは、セルスタック5からの排ガス中の熱を熱媒体へ回収するものであり、セルスタック5からの排ガスを流通させる第1排ガス流路61上で、且つ熱媒体循環流路55上に設けられている。本実施形態においては、この第1熱交換部16aは、第1補機モジュール22内に配置されているが、配置場所はこの限りではない。例えば、第2補機モジュール23内でもよいし、発電部21内であってもよい。 The first heat exchanging unit 16a recovers heat in the exhaust gas from the cell stack 5 to the heat medium, on the first exhaust gas passage 61 through which the exhaust gas from the cell stack 5 circulates, and in the heat medium circulation flow It is provided on the path 55. In the present embodiment, the first heat exchanging part 16a is arranged in the first auxiliary machine module 22, but the arrangement place is not limited to this. For example, it may be in the second accessory module 23 or in the power generation unit 21.
 第2熱交換部30bは、燃焼部30aの排ガス中の熱を熱媒体又は/及び貯湯槽19から給湯ライン19aを流通する温水へ回収するものであり、燃焼部30aからの排ガスを流通させる第2排ガス流路62上で、且つ熱媒体循環流路55上に設けられている。この第2熱交換部30bは、バックアップボイラ30内に配置されている。なお、本実施形態では、給湯ライン19a用の熱回収と、熱媒体循環流路用55の熱回収を1つの熱交換部(ここでは、第2熱交換部30b)で実施する構成であるが、給湯ライン19a用の熱交換部を別個に設けてもよい。 The second heat exchanging unit 30b recovers heat in the exhaust gas of the combustion unit 30a from the heat medium or / and the hot water storage tank 19 to hot water flowing through the hot water supply line 19a, and the second heat exchange unit 30b distributes the exhaust gas from the combustion unit 30a. 2 on the exhaust gas flow path 62 and on the heat medium circulation flow path 55. The second heat exchange unit 30 b is disposed in the backup boiler 30. In the present embodiment, the heat recovery for the hot water supply line 19a and the heat recovery for the heat medium circulation passage 55 are performed by one heat exchange unit (here, the second heat exchange unit 30b). A heat exchange unit for the hot water supply line 19a may be provided separately.
 また、熱媒体循環流路55には、第2熱交換部30bを迂回するように設けられたバイパス流路17bが設けられている。バイパス流路17bは、熱媒体循環流路55において第2熱交換部30bの上流と下流とを連通させる。なお、以下においては、第2熱交換部30bを通過する(迂回しない)熱媒体循環流路55を、熱交換流路17aと称する。また、熱媒体循環流路55においてバイパス流路17bの上流側の合流部には、熱交換流路17aとバイパス流路17bとの間で熱媒体の流通を切り替える切替弁17が設けられている。 In addition, the heat medium circulation channel 55 is provided with a bypass channel 17b provided so as to bypass the second heat exchange unit 30b. The bypass flow path 17b communicates the upstream and downstream of the second heat exchange unit 30b in the heat medium circulation flow path 55. Hereinafter, the heat medium circulation passage 55 that passes through the second heat exchange section 30b (does not bypass) is referred to as a heat exchange passage 17a. In addition, a switching valve 17 that switches the flow of the heat medium between the heat exchange flow path 17a and the bypass flow path 17b is provided in the merging portion on the upstream side of the bypass flow path 17b in the heat medium circulation flow path 55. .
 温度測定部18は、筐体24内の温度を測定するものである。本実施形態においては、温度測定部18は、第1補機モジュール22内に配置されているが、配置場所はこの限りではない。例えば、第2補機モジュール23内でもよいし、発電部21内であってもよい。制御部15は、燃料電池システム50を制御するものであり、ここでは、少なくともカソードブロア26、燃焼部用ブロア27及び切替弁17の動作を制御する。具体的には、制御部15は、セルスタック5の発電量に応じた空気流量の空気が第1分岐流路51に流通するようにカソードブロア26を動作させる。また、制御部15は、温度測定部18で測定された筐体24内の温度が予め定めた上限温度を上回っているとき、第2分岐流路52に空気が流通するように燃焼部用ブロア27を動作させる。また、制御部15は、バックアップボイラ30を作動させるとき、第2分岐流路52に流通する空気流量が燃焼部30aの燃焼に必要な空気流量となるように燃焼部用ブロア27を動作させる。 The temperature measuring unit 18 measures the temperature in the housing 24. In the present embodiment, the temperature measuring unit 18 is arranged in the first auxiliary machine module 22, but the arrangement location is not limited to this. For example, it may be in the second accessory module 23 or in the power generation unit 21. The control unit 15 controls the fuel cell system 50, and here controls at least the operations of the cathode blower 26, the combustion unit blower 27, and the switching valve 17. Specifically, the control unit 15 operates the cathode blower 26 so that air having an air flow rate corresponding to the power generation amount of the cell stack 5 flows through the first branch flow path 51. In addition, the control unit 15 causes the combustion unit blower so that air flows through the second branch flow path 52 when the temperature in the casing 24 measured by the temperature measurement unit 18 exceeds a predetermined upper limit temperature. 27 is operated. Further, when the backup boiler 30 is operated, the control unit 15 operates the combustion unit blower 27 so that the air flow rate flowing through the second branch flow path 52 becomes the air flow rate necessary for the combustion of the combustion unit 30a.
 さらに、制御部15は、バックアップボイラ30が作動しており、且つ、第2熱交換部30bから回収する熱を貯湯槽19に蓄熱できない場合、熱媒体がバイパス流路17bに流通するように切替弁17を動作させる。また、制御部15は、バックアップボイラ30が停止している場合、熱媒体がバイパス流路17bに流通するように切替弁17を動作させる。 Furthermore, when the backup boiler 30 is operating and the heat recovered from the second heat exchange unit 30b cannot be stored in the hot water storage tank 19, the control unit 15 switches so that the heat medium flows into the bypass channel 17b. The valve 17 is operated. Moreover, the control part 15 operates the switching valve 17 so that a heat medium may distribute | circulate to the bypass flow path 17b, when the backup boiler 30 has stopped.
 カソードブロア26及び/又は燃焼部用ブロア27を動作させることにより煙道管Tから導入された空気は、パワーコンディショナー10が内包されている箱体10a、第2補機モジュール23a、発電部21a、第1補機モジュール22aの空気流入部及び空気流出部を通過しながら、それぞれを冷却する。そして、分岐箇所Pに到達し、第1分岐流路51又は/及び第2分岐流路52に流通する。 The air introduced from the flue pipe T by operating the cathode blower 26 and / or the combustor blower 27 is a box 10a in which the power conditioner 10 is contained, a second auxiliary machine module 23a, a power generation unit 21a, Each of the first accessory module 22a is cooled while passing through the air inflow portion and the air outflow portion. Then, it reaches the branch point P and flows to the first branch channel 51 and / or the second branch channel 52.
 なお、本実施形態では、システム本体20及びバックアップボイラ30は、システム本体20の上面と、バックアップボイラ30の下面とが接しており、外ケース56に内包されている。また、第1及び第2排ガス流路61,62の下流側には、これらを合流してなる合流ガス流路57が接続されている。合流ガス流路57は、セルスタック5からの排ガス及び燃焼部30aからの排ガスを合流して外ケース56外へ排出する。また、図5におけるカソードブロア26及び燃焼部用ブロア27、並びに、第1及び第2分岐流路51,52の構成は、図3に示す構成となっているが、図2又は図4の構成を適用してもよい。 In this embodiment, the system main body 20 and the backup boiler 30 are included in the outer case 56 with the upper surface of the system main body 20 and the lower surface of the backup boiler 30 in contact with each other. Further, a merged gas flow channel 57 formed by merging them is connected to the downstream side of the first and second exhaust gas flow channels 61 and 62. The merged gas flow path 57 joins the exhaust gas from the cell stack 5 and the exhaust gas from the combustion unit 30 a and discharges the outer case 56 to the outside. Further, the configuration of the cathode blower 26, the combustion section blower 27, and the first and second branch flow paths 51 and 52 in FIG. 5 is the configuration shown in FIG. 3, but the configuration of FIG. 2 or FIG. May be applied.
 次に、上記燃料電池システム50の動作の一例について、図6,7を参照しつつ説明する。図6は、図5の燃料電池システムにおいて筐体内温度による制御を行なわない場合の動作の一例を示すフローチャートであり、図7は、図5の燃料電池システムにおいて筐体内温度による制御を行う場合の動作の一例を示すフローチャートである。 Next, an example of the operation of the fuel cell system 50 will be described with reference to FIGS. FIG. 6 is a flowchart showing an example of the operation when the control based on the temperature inside the casing is not performed in the fuel cell system of FIG. 5, and FIG. 7 is the case where the control based on the temperature inside the casing is performed in the fuel cell system of FIG. It is a flowchart which shows an example of operation | movement.
 図6に示すように、筐体24内の温度による動作制御を行なわない場合には、まず、燃焼部用ブロア27によって第2分岐流路52に空気が供給され、給湯ライン19aから供給される温水に熱量不足(燃焼部30aに対する熱需要)が生じているか否かが判断される(S1,S2)。上記S2でNoの場合、熱媒体がバイパス流路17bに流通するように切替弁17が操作されると共に、バックアップボイラ30が停止される(S3,S4)。これにより、熱媒体が第2熱交換部30bを迂回することになる(S3)。つまり、給湯ライン19aから供給される温水に熱量不足が生じていない場合には、バックアップボイラ30を動作させない状態で、第2分岐流路52から燃焼部30aに空気を流通させる。そして、上記S2の判断処理に再び移行される。 As shown in FIG. 6, when the operation control based on the temperature in the casing 24 is not performed, first, air is supplied to the second branch flow path 52 by the combustion section blower 27 and supplied from the hot water supply line 19a. It is determined whether or not there is a shortage of heat (heat demand for the combustion unit 30a) in the hot water (S1, S2). In the case of No in S2, the switching valve 17 is operated so that the heat medium flows through the bypass flow path 17b, and the backup boiler 30 is stopped (S3, S4). Thereby, a heat medium bypasses the 2nd heat exchange part 30b (S3). That is, when there is no shortage of heat in the hot water supplied from the hot water supply line 19a, air is circulated from the second branch flow path 52 to the combustion unit 30a without operating the backup boiler 30. And it transfers again to the determination process of said S2.
 一方、上記S2でYesの場合、貯湯槽19が満蓄(蓄熱量が上限に達した状態)か否かがさらに判断される(S5)。上記S5でYesの場合、熱媒体がバイパス流路17bに流通するように切替弁17が操作され、熱媒体が第2熱交換部30bを迂回する(S6)。他方、上記S5でNoの場合、熱媒体が熱交換流路17aに流通するように切替弁17が操作され、これにより、熱媒体が第2熱交換部30bを通過し、燃焼部30aの排ガスの熱が熱媒体へ回収される(S7)。上記S6又はS7の実行と共に、バックアップボイラ30が運転される(S8)。つまり、給湯ライン19aから供給される温水に熱量不足が生じている場合には、第2分岐流路52にバックアップボイラ30の運転に必要な燃焼空気量が流通するように燃焼部用ブロア27を制御し、バックアップボイラ30を運転する。そして、上記S2の判断処理に再び移行される。 On the other hand, in the case of Yes in S2, it is further determined whether or not the hot water tank 19 is fully stored (a state where the heat storage amount has reached the upper limit) (S5). In the case of Yes in S5, the switching valve 17 is operated so that the heat medium flows into the bypass flow path 17b, and the heat medium bypasses the second heat exchange unit 30b (S6). On the other hand, in the case of No in S5, the switching valve 17 is operated so that the heat medium flows through the heat exchange flow path 17a, whereby the heat medium passes through the second heat exchange unit 30b and the exhaust gas from the combustion unit 30a. The heat is recovered to the heat medium (S7). Simultaneously with the execution of S6 or S7, the backup boiler 30 is operated (S8). That is, when there is a shortage of heat in the hot water supplied from the hot water supply line 19a, the combustion section blower 27 is set so that the amount of combustion air necessary for the operation of the backup boiler 30 flows through the second branch flow path 52. Control and operate the backup boiler 30. And it transfers again to the determination process of said S2.
 或いは、図7に示すように、筐体24内の温度による動作制御を行う場合には、まず、給湯ライン19aから供給される温水に熱量不足が生じているか否かが判断される(S11)。上記S11でYesの場合、貯湯槽19が満蓄か否かがさらに判断される(S12)。上記S12でYesの場合、熱媒体がバイパス流路17bに流通するように切替弁17が操作され、これにより、熱媒体が第2熱交換部30bを迂回する(S13)。他方、上記S12でNoの場合、熱媒体が熱交換流路17aに流通するように切替弁17が操作され、これにより、熱媒体が第2熱交換部30bを通過し、燃焼部30aの排ガスの熱が熱媒体へ回収される(S14)。 Alternatively, as shown in FIG. 7, when performing the operation control based on the temperature in the housing 24, first, it is determined whether or not there is a shortage of heat in the hot water supplied from the hot water supply line 19a (S11). . In the case of Yes in S11, it is further determined whether or not the hot water tank 19 is fully stored (S12). In the case of Yes in S12, the switching valve 17 is operated so that the heat medium flows through the bypass flow path 17b, and thereby the heat medium bypasses the second heat exchange unit 30b (S13). On the other hand, in the case of No in S12, the switching valve 17 is operated so that the heat medium flows through the heat exchange flow path 17a, whereby the heat medium passes through the second heat exchange unit 30b and the exhaust gas from the combustion unit 30a. The heat is recovered into the heat medium (S14).
 上記S13又はS14の実行と共に、燃焼部用ブロア27によって第2分岐流路52に空気が供給され、バックアップボイラ30が運転される(S15,S16)。つまり、給湯ライン19aから供給される温水に熱量不足が生じている場合には、第2分岐流路52にバックアップボイラ30の運転に必要な燃焼空気量が流通するように燃焼部用ブロア27を制御し、バックアップボイラ30を運転する。そして、上記S11の判断処理に再び移行される。 With the execution of S13 or S14, air is supplied to the second branch flow path 52 by the combustion section blower 27, and the backup boiler 30 is operated (S15, S16). That is, when there is a shortage of heat in the hot water supplied from the hot water supply line 19a, the combustion section blower 27 is set so that the amount of combustion air necessary for the operation of the backup boiler 30 flows through the second branch flow path 52. Control and operate the backup boiler 30. And it transfers again to the determination process of said S11.
 一方、上記S11でNoの場合、温度測定部18で筐体24内の温度Rを取得し、測定された筐体24内の温度Rが上限温度Rmaxを上回っているか否かがさらに判断される(S17)。上記S17でNoの場合、燃焼部用ブロア27が停止されて第2分岐流路52への空気供給が停止される(S18)。上記S17でYesの場合、熱媒体がバイパス流路17bに流通するように切替弁17が操作され、これにより、熱媒体が第2熱交換部30bを迂回する(S19)。そして、燃焼部用ブロア27によって第2分岐流路52に空気が供給され、バックアップボイラ30が運転される(S20)。このとき、取得された筐体24内温度Rに応じて燃焼部用ブロア27の出力を増減させ、第2分岐流路52に流通させる空気量を調整してもよい。 On the other hand, in the case of No in S11, the temperature measurement unit 18 acquires the temperature R in the casing 24, and it is further determined whether or not the measured temperature R in the casing 24 exceeds the upper limit temperature Rmax. (S17). In the case of No in S17, the combustion section blower 27 is stopped and the air supply to the second branch flow path 52 is stopped (S18). In the case of Yes in S17 described above, the switching valve 17 is operated so that the heat medium flows into the bypass flow path 17b, whereby the heat medium bypasses the second heat exchange unit 30b (S19). And air is supplied to the 2nd branch flow path 52 by the blower 27 for combustion parts, and the backup boiler 30 is drive | operated (S20). At this time, the output of the combustion section blower 27 may be increased or decreased according to the acquired temperature R in the casing 24 to adjust the amount of air flowing through the second branch flow path 52.
 上記S18又はS20の実行と共に、バックアップボイラ30が停止される(S21)。つまり、給湯ライン19aから供給される温水に熱量不足が生じておらず、且つ、筐体24内の温度Rが上限温度Rmaxを上回っている場合は、バックアップボイラ30を動作させない状態で、第2分岐流路52から燃焼部30aに空気を流通させる。そして、上記S11の判断処理に再び移行される。 The backup boiler 30 is stopped simultaneously with the execution of S18 or S20 (S21). That is, when there is no shortage of heat in the hot water supplied from the hot water supply line 19a and the temperature R in the housing 24 is higher than the upper limit temperature Rmax, the second boiler is not operated. Air is circulated from the branch flow path 52 to the combustion section 30a. And it transfers again to the determination process of said S11.
 以上、本実施形態においても、上記第1実施形態と同様な効果を奏する。さらに、本実施形態では、燃料電池システム50の発電量に応じた空気流量の空気が第1分岐流路51に流通するようにカソードブロア26が動作される。よって、燃料電池システム50の発電時には、常に第1分岐流路51に空気が流れることになる。 As described above, also in this embodiment, the same effects as those of the first embodiment are obtained. Furthermore, in the present embodiment, the cathode blower 26 is operated so that air having an air flow rate corresponding to the power generation amount of the fuel cell system 50 flows through the first branch flow path 51. Therefore, air always flows through the first branch channel 51 when the fuel cell system 50 generates power.
 また、本実施形態では、筐体24内の温度が上限温度Rmaxを超えたとき、、第2分岐流路52に空気が流通するように燃焼部用ブロア27が動作される。よって、筐体24内の温度が高いときには、第2分岐流路52に空気を流通させることが可能となる。 In this embodiment, when the temperature in the casing 24 exceeds the upper limit temperature Rmax, the combustion section blower 27 is operated so that air flows through the second branch flow path 52. Therefore, when the temperature in the housing 24 is high, air can be circulated through the second branch flow path 52.
 また、本実施形態では、バックアップボイラ30を運転(作動)させるとき、第2分岐流路52に流通する空気流量が燃焼部30aの燃焼に必要な空気流量となるよう燃焼部用ブロア27が動作される。よって、第2分岐流路52の空気流量を、燃焼部30aの燃焼に支配的なものとして制御することができる。 In the present embodiment, when the backup boiler 30 is operated (actuated), the combustion unit blower 27 operates so that the air flow rate flowing through the second branch flow path 52 becomes the air flow rate necessary for the combustion of the combustion unit 30a. Is done. Therefore, it is possible to control the air flow rate of the second branch flow path 52 as being dominant for the combustion of the combustion unit 30a.
 また、本実施形態では、バックアップボイラ30が作動しており、且つ、第2熱交換部30bから回収する熱を貯湯槽19に蓄熱できない満蓄時に、熱媒体がバイパス流路17bに流通するように切替弁17を切り替えることができる。 Further, in the present embodiment, the backup medium 30 is in operation, and the heat medium flows through the bypass flow path 17b during full storage when the heat recovered from the second heat exchange unit 30b cannot be stored in the hot water storage tank 19. The switching valve 17 can be switched to.
 また、本実施形態では、上述したように、バックアップボイラ30が停止されている場合、熱媒体がバイパス流路17bに流通するように切替弁17を切り替えることができる。その結果、第2熱交換部30bを通過する熱媒体から逆に熱が奪われてしまうということを抑制できる。 In the present embodiment, as described above, when the backup boiler 30 is stopped, the switching valve 17 can be switched so that the heat medium flows into the bypass flow path 17b. As a result, it is possible to suppress heat from being deprived from the heat medium passing through the second heat exchange unit 30b.
 図8は、図5に示す燃料電池システムの変形例における要部を示す概略ブロック図である。本実施形態の燃料電池システム50は、図8に示す構成を採用することもできる。具体的には、冷却優先性が高い構成要素(補機モジュール、パワーコンディショナー、発電部等)を優先的にシステム本体の下方に設置し、構成要素を配置する板、又は箱体の全面又は一部の面を、通気可能な部材(例えば、網またはパンチング板)で形成してもよい。煙道管Tから導入された空気は、システム本体20内部を冷却し、空気自体は温められながらシステム本体20の上方に向かって上昇する。そして、第1分岐流路51又は/及び第2分岐流路52に流通する。図8におけるカソードブロア26及び燃焼部用ブロア27、並びに、第1及び第2分岐流路51,52の構成は、図4に示す構成となっているが、図2又は図3の構成を適用してもよい。また、燃焼部用ブロア27に代えて、上記兼用ブロア28を備えていてもよい。 FIG. 8 is a schematic block diagram showing a main part in a modification of the fuel cell system shown in FIG. The fuel cell system 50 of the present embodiment can also employ the configuration shown in FIG. Specifically, components with high cooling priority (auxiliary module, power conditioner, power generation unit, etc.) are preferentially installed below the system body, and the entire surface or one of the plates or boxes on which the components are arranged. You may form the surface of a part with the member (for example, net | network or a punching board) which can ventilate. The air introduced from the flue pipe T cools the inside of the system main body 20, and the air itself rises toward the upper side of the system main body 20 while being heated. And it distribute | circulates to the 1st branch flow path 51 or / and the 2nd branch flow path 52. FIG. The configuration of the cathode blower 26, the combustion section blower 27, and the first and second branch flow paths 51 and 52 in FIG. 8 is the configuration shown in FIG. 4, but the configuration of FIG. 2 or FIG. 3 is applied. May be. Further, in place of the combustion section blower 27, the above-described combined blower 28 may be provided.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. The present invention is modified without departing from the scope described in the claims or applied to others. It may be.
 例えば、上記実施形態においては、パワーコンディショナー10、第2補機モジュール23、発電部21、第1補機モジュールの順番で空気流路を形成したが、空気流路を形成する順番及び補機を収納するモジュール等の区画数はこの限りではない。燃料電池システムを構成する部品配置の優先性、又は冷却優先性を考慮して、任意に定めることができる。 For example, in the said embodiment, although the air flow path was formed in the order of the power conditioner 10, the 2nd auxiliary machine module 23, the electric power generation part 21, and the 1st auxiliary machine module, the order and auxiliary machine which form an air flow path are changed. The number of compartments such as modules to be stored is not limited to this. It can be arbitrarily determined in consideration of the priority of arrangement of components constituting the fuel cell system or the cooling priority.
 また、上記実施形態では、煙道管Tを介して野外空気を筐体24内に流通させているが、室内空気を外部の空気として筐体24内に流通させる場合には、煙道管Tは不要となる。また、上記実施形態は、熱供給部としてバックアップボイラ30を備えているが、熱供給部は、熱需要に応じて熱量を熱供給するためのものであればよく、例えば通常のボイラ(メインボイラを含む)等であってもよい。 Moreover, in the said embodiment, although outdoor air is distribute | circulated in the housing | casing 24 via the flue pipe T, when indoor air is distribute | circulated in the housing | casing 24 as external air, the flue pipe T Is no longer necessary. Moreover, although the said embodiment is equipped with the backup boiler 30 as a heat supply part, the heat supply part should just be for supplying heat quantity according to a heat demand, for example, a normal boiler (main boiler) May be included).
 また、上記実施形態では、空気流路25により空気をモジュール内に流通させているが、空気流路25は、モジュールの外表面(箱体10a,21a,22a,23aの外壁)に接するように空気を流通させ、これにより、モジュールを冷却(外表面を冷却)してもよい。また、第1ガス流路61及び第2ガス流路62は必ずしも合流させる必要はなく、それぞれ独立して外ケース56外へ排出してもよい。なお、上記において「モジュール」とは、例えば、所定機能を実現するためのものとして、1又は複数の要素(部品や機器)が機能上又は構成上において集約されて纏まったものを意味する。 Moreover, in the said embodiment, although the air is distribute | circulated in the module by the air flow path 25, the air flow path 25 touches the outer surface (outer wall of box 10a, 21a, 22a, 23a) of a module. Air may be circulated, thereby cooling the module (cooling the outer surface). Further, the first gas flow path 61 and the second gas flow path 62 do not necessarily have to be merged, and may be independently discharged outside the outer case 56. In the above description, the “module” means, for example, one in which one or a plurality of elements (parts or devices) are aggregated in terms of function or configuration as a function for realizing a predetermined function.
 また、上記第2実施形態では、第1及び第2熱交換部16a,30bに代えて、合流ガス流路57上に設けられた熱交換部を備えていてもよい。つまり、燃焼部から排出される熱を回収する熱交換部は、発電部から排出される熱を回収する熱交換部と兼ねることができる。 In the second embodiment, a heat exchanging part provided on the merged gas flow path 57 may be provided instead of the first and second heat exchanging parts 16a and 30b. That is, the heat exchange part that recovers the heat discharged from the combustion part can also serve as the heat exchange part that recovers the heat discharged from the power generation part.
 また、上記第2実施形態の熱媒体循環流路55では、第1熱交換部16aの熱交換の後に第2熱交換部30bの熱交換が行われている。しかし、熱交換部を複数設ける場合、熱媒体循環流路上においての熱回収順序は限定されるものではない。また、上記第2実施形態において例えば貯湯槽19として熱回収率が高いものを用いた場合、第2熱交換部30b、バイパス流路17b及び切替弁17は不要となる。 In the heat medium circulation channel 55 of the second embodiment, the heat exchange of the second heat exchange unit 30b is performed after the heat exchange of the first heat exchange unit 16a. However, when a plurality of heat exchange units are provided, the heat recovery order on the heat medium circulation channel is not limited. In the second embodiment, for example, when a hot water storage tank 19 having a high heat recovery rate is used, the second heat exchange unit 30b, the bypass flow path 17b, and the switching valve 17 are not necessary.
 本発明によれば、筐体内を十分に冷却することが可能となる。 According to the present invention, the inside of the housing can be sufficiently cooled.
 1…燃料電池システム、5…セルスタック、10…パワーコンディショナー(制御部,機器)、15…制御部、17…切替弁、17b…バイパス流路、18…温度測定部、19…貯湯槽、20…システム本体、21…発電部(機器)、22…第1補機モジュール(機器)、23…第1補機モジュール(機器)、24…筐体、25…空気流路、26…カソードブロア(第1送風部)、27…燃焼部用ブロア(第2送風部)、28…兼用ブロア(第1及び第2送風部)、30…バックアップボイラ(熱供給部)、30a…燃焼部、30b…第2熱交換部(熱交換部)、51…第1分岐流路、52…第2分岐流路、53…マニホールド部、55…熱媒体循環流路、P…分岐箇所。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 5 ... Cell stack, 10 ... Power conditioner (control part, apparatus), 15 ... Control part, 17 ... Switching valve, 17b ... Bypass flow path, 18 ... Temperature measurement part, 19 ... Hot water storage tank, 20 ... System body, 21 ... Power generation unit (equipment), 22 ... First auxiliary equipment module (equipment), 23 ... First auxiliary equipment module (equipment), 24 ... Case, 25 ... Air flow path, 26 ... Cathode blower ( First blower), 27 ... Blower for combustion section (second blower), 28 ... Blower (first and second blower), 30 ... Backup boiler (heat supply section), 30a ... Combustion section, 30b ... 2nd heat exchange part (heat exchange part), 51 ... 1st branch flow path, 52 ... 2nd branch flow path, 53 ... Manifold part, 55 ... Heat-medium circulation flow path, P ... Branch location.

Claims (11)

  1.  水素含有ガスを用いて発電を行うセルスタックを含む発電部と、当該発電部を収容する筐体と、を有するシステム本体と、
     内部に燃焼部を含み、熱需要に応じて熱量を熱供給するための熱供給部と、
     前記筐体内にて外部の空気を流通させて、当該筐体内を冷却する空気流路と、を備え、
     前記空気流路の下流側は、前記空気を前記発電部の前記セルスタックに供給する第1分岐流路と、前記空気を前記熱供給部の前記燃焼部に供給する第2分岐流路と、を含み、
     前記空気流路には、前記発電部の前記セルスタックへ向けて前記空気を圧送する第1送風部と、前記熱供給部の前記燃焼部へ向けて前記空気を圧送する第2送風部と、が設けられている燃料電池システム。
    A system main body including a power generation unit including a cell stack that generates power using a hydrogen-containing gas, and a housing that houses the power generation unit;
    A heat supply part for including a combustion part inside and supplying heat according to heat demand;
    An external air flow in the housing to cool the inside of the housing, and
    On the downstream side of the air flow path, a first branch flow path that supplies the air to the cell stack of the power generation unit, a second branch flow path that supplies the air to the combustion unit of the heat supply unit, Including
    In the air flow path, a first air blowing unit that pumps the air toward the cell stack of the power generation unit, a second air blowing unit that pumps the air toward the combustion unit of the heat supply unit, and A fuel cell system provided with
  2.  前記燃料電池システムを制御する制御部をさらに備え、
     前記制御部は、前記燃料電池システムの発電量に応じた空気流量の空気が第1分岐流路に流通するように前記第1送風部を動作させる請求項1に記載の燃料電池システム。
    A control unit for controlling the fuel cell system;
    2. The fuel cell system according to claim 1, wherein the control unit operates the first air blowing unit so that air having an air flow rate according to the power generation amount of the fuel cell system flows through the first branch flow path.
  3.  前記制御部は、前記第2分岐流路に空気が流通するように前記第2送風部を動作させる請求項2に記載の燃料電池システム。 The fuel cell system according to claim 2, wherein the control unit operates the second air blowing unit so that air flows through the second branch flow path.
  4.  前記筐体内の温度を測定する温度測定部をさらに備え、
     前記制御部は、前記筐体内の温度が予め定めた上限温度を上回っているとき、前記第2分岐流路に空気が流通するように前記第2送風部を動作させる請求項2に記載の燃料電池システム。
    A temperature measuring unit for measuring the temperature in the housing;
    3. The fuel according to claim 2, wherein the control unit operates the second air blowing unit so that air flows through the second branch flow path when the temperature in the housing exceeds a predetermined upper limit temperature. 4. Battery system.
  5.  前記制御部は、前記熱供給部を作動させるとき、前記第2分岐流路に流通する空気流量が前記燃焼部の燃焼に必要な空気流量となるように前記第2送風部を動作させる請求項2~4の何れか一項に記載の燃料電池システム。 The said control part operates the said 2nd ventilation part so that the air flow volume distribute | circulated to the said 2nd branch flow path may turn into the air flow rate required for the combustion of the said combustion part, when operating the said heat supply part. The fuel cell system according to any one of 2 to 4.
  6.  内部に貯えた水に前記燃料電池システムから回収した熱を蓄熱すると共に、需要に応じて当該水を排出する貯湯槽と、
     前記貯湯槽と前記燃料電池システムと間で熱媒体を循環させる熱媒体循環流路と、
     前記熱供給部から排出される排熱から熱を回収するように前記熱媒体循環流路に設けられた熱交換部と、
     前記熱交換部を迂回するように前記熱媒体循環流路において前記熱交換部の上流と前記熱交換部の下流とを連通させるバイパス流路と、
     前記熱媒体循環流路に設けられ、前記バイパス流路における前記熱媒体の流通を切り替える切替弁と、をさらに備え、
     前記制御部は、
     前記熱供給部が作動しており、且つ、前記熱交換部から回収する熱を前記貯湯槽に蓄熱できない場合、前記熱媒体が前記バイパス流路に流通するように前記切替弁を動作させる請求項2~5の何れか一項に記載の燃料電池システム。
    A hot water storage tank that stores heat recovered from the fuel cell system in water stored inside, and discharges the water according to demand,
    A heat medium circulation passage for circulating a heat medium between the hot water storage tank and the fuel cell system;
    A heat exchange section provided in the heat medium circulation channel so as to recover heat from the exhaust heat discharged from the heat supply section;
    A bypass flow path for communicating the upstream of the heat exchange section and the downstream of the heat exchange section in the heat medium circulation flow path so as to bypass the heat exchange section;
    A switching valve that is provided in the heat medium circulation flow path and switches the flow of the heat medium in the bypass flow path;
    The controller is
    The said switching valve is operated so that the said heat medium distribute | circulates to the said bypass flow path when the said heat supply part is operate | moving and the heat | fever collect | recovered from the said heat exchange part cannot be stored in the said hot water storage tank. 6. The fuel cell system according to any one of 2 to 5.
  7.  前記制御部は、前記熱供給部が停止している場合、前記熱媒体が前記バイパス流路に流通するように前記切替弁を動作させる請求項6に記載の燃料電池システム。 The fuel cell system according to claim 6, wherein when the heat supply unit is stopped, the control unit operates the switching valve so that the heat medium flows through the bypass flow path.
  8.  前記第1分岐流路に設けられ、前記第1送風部を構成するカソードブロアと、
     前記第2分岐流路に設けられ、前記第2送風部を構成する燃焼部用ブロアと、を有する請求項1~7の何れか一項に記載の燃料電池システム。
    A cathode blower provided in the first branch flow path and constituting the first air blowing section;
    The fuel cell system according to any one of claims 1 to 7, further comprising a combustion section blower provided in the second branch flow path and constituting the second blower section.
  9.  前記第1分岐流路に設けられ、前記第1送風部を構成するカソードブロアと、
     前記空気流路において前記第1及び第2分岐流路の分岐箇所よりも上流側に設けられ、前記第1及び第2送風部を構成する兼用ブロアと、を有する請求項1~6の何れか一項に記載の燃料電池システム。
    A cathode blower provided in the first branch flow path and constituting the first air blowing section;
    7. The air blower according to claim 1, further comprising: a dual-purpose blower that is provided upstream of a branching location of the first and second branch channels and that constitutes the first and second air blowing units. The fuel cell system according to one item.
  10.  前記空気流路において前記第1及び第2分岐流路の分岐箇所には、マニホールド部が設けられている請求項1~9の何れか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 9, wherein a manifold portion is provided at a branch point of the first and second branch channels in the air channel.
  11.  前記空気流路は、前記筐体内の複数の機器を動作保障温度の低い順で冷却するように、前記空気を流通させる請求項1~10の何れか一項記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 10, wherein the air flow channel circulates the air so as to cool a plurality of devices in the casing in order of a low operation guarantee temperature.
PCT/JP2011/080401 2010-12-28 2011-12-28 Fuel cell system WO2012091096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551045A JPWO2012091096A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292351 2010-12-28
JP2010-292351 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091096A1 true WO2012091096A1 (en) 2012-07-05

Family

ID=46383184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080401 WO2012091096A1 (en) 2010-12-28 2011-12-28 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012091096A1 (en)
WO (1) WO2012091096A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
JP2021093257A (en) * 2019-12-09 2021-06-17 東京瓦斯株式会社 Fuel battery system and fuel battery system operation method
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JPH06281130A (en) * 1992-01-20 1994-10-07 Noritz Corp Forced air supply and exhaust type combustion device
JP2005011639A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Fuel cell system
WO2006057223A1 (en) * 2004-11-25 2006-06-01 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2010272310A (en) * 2009-05-20 2010-12-02 Aisin Seiki Co Ltd Fuel cell device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JPH06281130A (en) * 1992-01-20 1994-10-07 Noritz Corp Forced air supply and exhaust type combustion device
JP2005011639A (en) * 2003-06-18 2005-01-13 Nissan Motor Co Ltd Fuel cell system
WO2006057223A1 (en) * 2004-11-25 2006-06-01 Aisin Seiki Kabushiki Kaisha Fuel cell system
JP2010272310A (en) * 2009-05-20 2010-12-02 Aisin Seiki Co Ltd Fuel cell device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
JP7335798B2 (en) 2019-12-09 2023-08-30 東京瓦斯株式会社 FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
JP2021093257A (en) * 2019-12-09 2021-06-17 東京瓦斯株式会社 Fuel battery system and fuel battery system operation method
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Also Published As

Publication number Publication date
JPWO2012091096A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2012091096A1 (en) Fuel cell system
US10644338B2 (en) Dynamically responsive high efficiency CCHP system
JP5331819B2 (en) MCFC power generation system
JP5327693B2 (en) Fuel cell system
JP5852011B2 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
WO2012091121A1 (en) Fuel cell system
JP5048870B2 (en) Fuel cell system and operation method thereof
JP5782458B2 (en) Fuel cell system
JP5502521B2 (en) Fuel cell system
JP5738319B2 (en) Fuel cell system
JP2006179346A (en) Fuel cell power generation system and its operation method
JP4610906B2 (en) Fuel cell power generation system and method for starting fuel cell power generation system
JP6800367B1 (en) Fuel cell system
WO2012091132A1 (en) Fuel cell system
JP2014107186A (en) Solid oxide fuel cell system
WO2012091131A1 (en) Fuel cell system
KR101295237B1 (en) Fuel cell system
WO2012090964A1 (en) Fuel cell system
JP6224329B2 (en) Fuel cell system
US7201983B2 (en) Hydrogen generation apparatus and method and fuel cell system
JP5550327B2 (en) Solid oxide fuel cell power generation system
WO2012091094A1 (en) Fuel cell system
JP2012221934A (en) Fuel cell module
JP2009001440A (en) Fuel cell power generator and operational method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853013

Country of ref document: EP

Kind code of ref document: A1