WO2012017616A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2012017616A1
WO2012017616A1 PCT/JP2011/004195 JP2011004195W WO2012017616A1 WO 2012017616 A1 WO2012017616 A1 WO 2012017616A1 JP 2011004195 W JP2011004195 W JP 2011004195W WO 2012017616 A1 WO2012017616 A1 WO 2012017616A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
reactor
leg portions
gap
wire
Prior art date
Application number
PCT/JP2011/004195
Other languages
French (fr)
Japanese (ja)
Inventor
拓志 地道
松田 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012527578A priority Critical patent/JP5310952B2/en
Publication of WO2012017616A1 publication Critical patent/WO2012017616A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F2027/2838Wires using transposed wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the present invention relates to a reactor that is connected to a power conversion device or incorporated in a power conversion device.
  • the reactor is used to connect the power conversion device to a voltage source such as a system power supply or a solar battery.
  • a voltage type power converter When a voltage type power converter is directly connected to another voltage source, a large current flows due to the potential difference, and the power converter is damaged or an abnormality occurs in the voltage source. Therefore, the voltage type power converter is connected to a voltage source via a reactor. In some cases, the voltage applied to the reactor is adjusted to control the current, and active power and reactive power are exchanged between the power converter and the voltage source.
  • JP-A-5-243060 pages 3-4, FIGS. 1 and 3) Japanese Patent Laid-Open No. 2001-297922 (page 2-3, FIGS. 1 and 3)
  • the present invention has been made to solve the above-described problems, and obtains a reactor that can achieve both a reduction in eddy current loss in a winding and a reduction in winding resistance caused by leakage magnetic flux from a gap in an iron core. It is.
  • a reactor according to the present invention has at least one pair of legs facing each other, an iron core in which a gap is formed by the pair of legs, and a pair of legs along the extending direction of the pair of legs. And a winding that is wound in multiple layers so as to overlap in a direction substantially perpendicular to the extending direction, and in the region surrounding the gap, the innermost circumference of the winding is a litz in which a number of strands are twisted together It is comprised with a wire
  • winding is comprised with a single wire.
  • the innermost circumference of the winding is composed of litz wires in which a number of strands are twisted, and the outermost circumference of the winding is composed of a single wire. It is possible to obtain a reactor that can achieve both a reduction in eddy current loss in a winding caused by leakage magnetic flux and a reduction in winding resistance.
  • Embodiment 1 of this invention flows. It is sectional drawing of the reactor in Embodiment 2 of this invention. It is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 8 in Embodiment 2 of this invention flows. It is sectional drawing of another reactor in Embodiment 2 of this invention. It is sectional drawing of the reactor in Embodiment 3 of this invention. It is a circuit diagram which shows the coil connection of the reactor shown in FIG. 11 in Embodiment 3 of this invention. It is a circuit diagram which shows another coil
  • FIG. 6 is a cross-sectional view showing an example of a winding arrangement in the first to fifth embodiments of the present invention.
  • FIG. 1 is a circuit diagram showing an example of a power converter to which the reactor of the present invention is applied.
  • the power conversion apparatus includes a power converter 104, a reactor 103, and a capacitor 102.
  • the power converter 104 is connected to the three-phase system power supply 101 via the reactor 103.
  • the reactor 103 generally uses three single-phase reactors, but a three-phase reactor in which three phases are integrated may be used.
  • the power converter 104 when the power converter 104 is a voltage type power converter and is connected to the three-phase system power supply 101 without passing through the reactor 103, an overcurrent caused by a potential difference between the power converter 104 and the three-phase system power supply 101 As a result, the semiconductor elements constituting the power converter 104 are destroyed or the power system is adversely affected. For this reason, when the power converter 104 is a voltage type, it is essential to connect the reactor 103. When reactor 103 is used, it may be connected in combination with capacitor 102 such as a filter capacitor.
  • the current flowing through the reactor 103 includes a commercial frequency current component of the three-phase system power supply 101 and a current component in a frequency (switching frequency) region in which the semiconductor elements constituting the power converter 104 perform switching.
  • the commercial frequency is a low frequency of 50 Hz or 60 Hz
  • the switching frequency is generally a high frequency of 1 kHz or more.
  • the reactor of the present invention is assumed to be used in such an application that both low-frequency component current and high-frequency component current flow, and a power converter that performs DC / AC conversion as shown in FIG.
  • the power converter may be a two-level converter that outputs a two-level voltage as shown in FIG. 1 or a multi-level converter that outputs a voltage of three or more levels.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • IEGT Insulated Transient Transistor
  • GCT Gate Committed Turn-off
  • JFET Junction Field Effect Transistor
  • silicon can be generally used, but a wide band gap semiconductor material having a wider band gap than silicon, for example, silicon carbide, gallium nitride, diamond, or the like. May be used.
  • switching loss can be reduced as compared with a power converter using silicon, and the power converter is driven at a high frequency.
  • the hysteresis loss that occurs in the core of the reactor increases, and when the high-frequency current generated by the power converter flows through the reactor windings, the skin effect occurs and copper loss occurs. Increase.
  • the reactor of the present invention can reduce the loss when the power converter is driven at a high frequency, even when a wide band gap semiconductor material is used for the power converter, the characteristics of the wide band gap semiconductor material are utilized to reduce the loss. A lossy power conversion device can be obtained.
  • FIG. 2 is a cross-sectional view of the reactor in the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing winding connection of the reactor shown in FIG.
  • a reactor 10 is arranged so that two E-shaped iron cores 11 and E-shaped iron cores 12 made of a magnetic material face each other, and a winding 1 and a winding 2 are provided on a central leg 14 provided with a gap 13. It is constructed by being wound (wrapped). Winding 1 and winding 2 are each a single winding among the windings wound in multiple.
  • the center leg 14 is composed of a pair of opposing leg portions 14p and 14q, and a gap 13 is formed between the pair of leg portions 14p and 14q.
  • the gap 13 is an air gap, but a material having a low magnetic permeability may be provided in the gap portion.
  • Magnetic materials for E-shaped iron cores 11 and 12 include silicon steel plates, steel plates with 6.5% silicon content (Super E core), ferrite cores, amorphous cores, dust cores made by mixing iron, aluminum and silicon, and nanocrystals A soft magnetic material such as fine-met core can be used.
  • the two iron cores of E-shaped iron cores 11 and 12 are used, this is to facilitate winding processing, and an iron core in which the E-shaped iron cores 11 and 12 are integrated may be used.
  • the shape of the iron core is not limited, and a feature is that a gap is included in the legs of the iron core to be wound.
  • the winding 1 and the winding 2 are wound around the central leg 14 with the same number of turns C turns along the extending direction of the central leg 14 (a set of leg portions 14p and 14q). Then, the winding 1 and the winding 2 are wound in a multiple manner so as to overlap in a direction substantially perpendicular to the extending direction.
  • the winding 1 is wound on the inner peripheral side close to the center leg 14.
  • the winding 2 is wound on the outer peripheral side far from the central leg 14. As shown in FIG. 3, the ends of the windings 1 and 2 are connected in parallel in the winding direction in which the inductances of both the windings 1 and 2 are not lost, that is, the inductance is not impaired.
  • FIG. 3 the ends of the windings 1 and 2 are connected in parallel in the winding direction in which the inductances of both the windings 1 and 2 are not lost, that is, the inductance is not impaired.
  • a dot ( ⁇ ) represents the polarity of each winding.
  • the length of the gap 13 and the number of turns C-turn are determined according to a desired inductance value. For example, the gap length is determined to be 3 mm and the number of turns is determined to be 16 turns.
  • a characteristic point of the present embodiment is that the winding 1 wound on the inner peripheral side close to the center leg 14 is composed of a litz wire obtained by twisting a large number of thin wire elements, and the outer peripheral side thereof.
  • the winding 2 to be wound around is composed of a single wire, and the winding 1 and the winding 2 are wound twice.
  • the wire diameter of the single wire of the winding 2 may be the same as the finished diameter of the litz wire of the winding 1.
  • the winding 1 uses a litz wire obtained by twisting 38 strands having a wire diameter of 0.3 mm and whose outer peripheral surface is insulated.
  • a tetron may be wound around the outer periphery of the litz wire in order to keep the finished cross section circular.
  • the finished diameter of the litz wire of the winding 1 is about 2.4 mm
  • a single wire of 2.4 mm is used for the winding 2.
  • the winding is a double winding, in the region surrounding the gap 13, the innermost circumference of the winding is constituted by a litz wire (winding 1), and the outermost circumference of the winding is a single wire (winding). Line 2).
  • the winding 1 and the winding 2 are composed of a litz wire (winding 1) in the innermost circumference of the winding in all regions surrounding the gap 13 and the central leg 14.
  • the outermost periphery of the wire is composed of a single wire (winding 2).
  • FIG. 4 is a diagram illustrating a state in which the leakage magnetic flux of the reactor flows, and illustrates the magnetic flux 15 while paying attention to the periphery of the gap 13 in FIG. Since a magnetic material having a high non-permeability with respect to vacuum is used for the iron core portion other than the gap 13, almost all the magnetic flux 15 passes through the iron core (the leg portions 14p and 14q in FIG. 4). The magnetic flux 15 passing through the iron core tends to cause a current to flow in the iron core in a direction that prevents the magnetic flux 15 according to Lenz's law.
  • the magnetic flux in the gap 13 portion does not become linear along the extending direction of the iron core but spreads to the portion where the winding is wound.
  • a current flows through the winding in a direction in which the magnetic flux 15 is to be blocked.
  • the eddy current loss due to the leakage magnetic flux is large, and thus eddy current loss cannot be ignored.
  • a litz wire in which a number of thin strands are twisted is used as the winding 1 that is wound on the inner peripheral side where leakage magnetic flux in the region surrounding the gap 13 is significantly interlinked.
  • the outer peripheral surface of the strand is insulated.
  • Litz wire has the advantage of reducing eddy current loss due to leakage magnetic flux, but the space factor, which is the proportion of the conductor in the cross section of the winding, is reduced by a structure in which a number of thin strands are twisted. To do. For this reason, in the commercial frequency region such as 50 Hz or 60 Hz, the winding resistance of the litz wire becomes larger than the winding resistance of the single wire having the same finished diameter, and there is a disadvantage that the resistance loss increases. Therefore, in the present embodiment, a single wire is used as the winding 2 that is wound around the outer peripheral side where there is little leakage magnetic flux in the region surrounding the gap 13, and the winding resistance in the commercial frequency region is reduced.
  • FIG. 5 is a cross-sectional view of another reactor according to Embodiment 1 of the present invention.
  • FIG. 6 is a circuit diagram showing winding connection of the reactor shown in FIG.
  • FIG. 7 is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 5 flows.
  • the difference between the reactor 20 shown in FIG. 5 and the reactor 10 shown in FIG. 2 is the configuration of the winding.
  • the entire winding is configured by winding n windings having the same number of turns C turns.
  • the x-fold (x: integer and 1 ⁇ x ⁇ n) windings (winding 1 to winding j in FIG. 5) wound on the inner peripheral side close to the center leg 14 have a thin wire diameter.
  • the diameter of the single wire from winding k to winding n may be the same as the finished diameter of the litz wire from winding 1 to winding j. As shown in FIG.
  • the ends of winding 1 to winding n are connected in parallel in the winding direction that does not impair the inductance.
  • the innermost circumference of the winding is constituted by a litz wire (winding 1)
  • the outermost circumference of the winding is constituted by a single wire (winding n).
  • the space where the winding in the iron core can be applied can be used effectively, so that the winding resistance can be further reduced.
  • the number of multiple turns x from the winding 1 to the winding j using the litz wire is adjusted according to the spread of the leakage magnetic flux from the gap 13, the winding in the high frequency region
  • the reduction of the eddy current loss in the portion and the reduction of the winding resistance in the low frequency region can both be achieved, and a reactor with a lower loss can be realized.
  • a single wire and a litz wire in which a number of strands are twisted together are wound in multiple layers, and the innermost circumference of the entire winding is composed of a litz wire in the region surrounding the gap 13, and the outermost circumference of the entire winding is Since it is constituted by a single wire, it is possible to obtain a reactor that can achieve both a reduction in eddy current loss and a reduction in winding resistance in the winding caused by leakage magnetic flux from the gap 13 of the iron cores 11 and 12.
  • FIG. FIG. 8 is a cross-sectional view of the reactor in the second embodiment of the present invention.
  • FIG. 9 is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 8 flows.
  • the reactor according to the present embodiment is used for an application in which both a low-frequency component current and a high-frequency component current flow.
  • a reactor 30 is arranged so that two E-shaped iron cores 11 and E-shaped iron cores 12 formed of a magnetic material face each other.
  • the winding 1a and the winding 2a are wound (wound).
  • the center leg 14 is composed of a pair of opposing leg portions 14p and 14q, and a gap 13 is formed between the leg portions 14p and 14q.
  • the winding 1a and the winding 2a are wound around the central leg 14 along the extending direction of the central leg 14 with the same number of turns C.
  • the winding 1a uses a litz wire obtained by twisting a number of strands having a thin wire diameter
  • the winding 2a uses a single wire having the same diameter as the finished diameter of the litz wire of the winding 1a.
  • the difference from the first embodiment is how to wind the litz wire and the single wire around the iron core.
  • the litz wire is disposed on the inner peripheral side close to the central leg 14 and the single wire is disposed on the outer peripheral side in the entire extending direction of the central leg 14, that is, as a configuration of the entire winding.
  • the litz wire is disposed on the inner peripheral side close to the center leg 14 and the single wire is disposed on the outer peripheral side, but in the region other than the region surrounding the gap,
  • the winding 1a and winding 2a of the same line type as in the first embodiment are arranged so as to be replaced in the middle along the extending direction of the central leg 14. That is, in a part of the region surrounding the pair of leg portions 14p and 14q, the innermost circumference is constituted by a single wire (winding 2a) and the outermost circumference is constituted by a litz wire (winding 1a).
  • the first turn that is the beginning of winding of the winding 1a and winding 2a is arranged so that the winding 1a is on the outer peripheral side and the winding 2a is on the inner peripheral side.
  • the winding 1a is switched to the inner peripheral side and the winding 2a is switched to the outer peripheral side.
  • the number of turns has passed 3C / 4 turns (12 turns in FIG. 8)
  • the winding 1a is switched to the outer peripheral side and the winding 2a is switched to the inner peripheral side.
  • the litz wire (winding 1a) which is a single winding of the double-wound winding, and the central leg 14 are wound.
  • the center line 14c of the central leg 14 corresponds to a line extending in the extending direction of the central leg 14 by connecting the centers of the surfaces of the leg 14p and the leg 14q that face each other.
  • the average distance between the single winding and the center line 14c is obtained by calculating the distance between the winding and the center line 14c for each turn of the single winding and averaging these distances. It is.
  • the single wire and the litz wire are interchanged twice, but the litz wire (winding 1 a), which is a single winding of the double-wound winding, and the center leg 14 are used.
  • the average distance between the center line 14c and the center line 14c between the single wire (winding 2a), which is another single winding of the multiple windings, and the center line 14c of the center leg 14 If the winding 1a using the litz wire in the region surrounding the gap 13 is substantially equal to the average distance and is arranged on the inner peripheral side close to the central leg 14, the number of times the single wire and the litz wire are replaced, Regardless of, the same effect can be obtained.
  • FIG. 10 is a cross-sectional view of another reactor in the second embodiment of the present invention.
  • the entire winding of the reactor 40 is composed of n windings of the same number of turns C turns, and as shown in FIG. You may connect in parallel by the winding direction which is not impaired. Even in this case, the average distance between the winding 1a, which is a single winding of the multiple windings, and the center line 14c of the central leg 14 is equal to each single winding other than the winding 1a.
  • Winding is performed so that the average distance between the winding (winding 2a (not shown) to winding na) and the center line 14c of the center leg 14 is substantially equal. Further, in the region surrounding the gap 13, the x-fold winding using the litz wire (winding 1 a to winding ja) is arranged on the inner peripheral side close to the center leg 14 and the y-fold using the single wire is used. The windings (winding ka to winding na) are replaced with x-folding windings (winding 1a to winding ja) using a litz wire. During the replacement, the winding 1a wound around the innermost periphery in the region surrounding the gap 13 is wound around the outermost periphery. The winding na wound around the outermost periphery in the region surrounding the gap 13 is wound around the innermost periphery.
  • FIG. 11 is a cross-sectional view of the reactor in the third embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing winding connection of the reactor shown in FIG.
  • FIG. 13 is a circuit diagram showing another winding connection of the reactor shown in FIG.
  • the second embodiment is different from the first embodiment in that two U-shaped iron cores are arranged so as to face each other to form leg portions having two gaps, and windings are wound around the respective leg portions.
  • the winding method for one leg is the same as in the first embodiment.
  • a reactor used for an application in which both a low-frequency component current and a high-frequency component current flow is assumed.
  • the reactor 50 is arranged so that two U-shaped iron cores 51 and U-shaped iron cores 52 formed of a magnetic material face each other while ensuring gaps 53a and 53b.
  • a winding A1 and a winding A2 are wound around a first side leg 54a provided with a gap 53a.
  • the first side leg 54a includes a pair of opposing leg portions 54ap and 54aq, and a gap 53a is formed between the leg portions 54ap and 54aq.
  • a winding B1 and a winding B2 are wound around a second side leg 54b provided with a gap 53b.
  • the second leg 54b is composed of a pair of opposing leg portions 54bp and 54bq, and a gap 53b is formed between the leg portions 54bp and 54bq. That is, the windings A1 and A2 and the windings B1 and B2 are wound around the leg portions 54ap and 54aq and the leg portions 54bp and 54bq, which are a plurality of sets of
  • the gaps 53a and 53b are air gaps, but a material having a low magnetic permeability may be provided in the gap portions.
  • Magnetic materials for U-shaped iron cores 51 and 52 include silicon steel plates, steel plates with 6.5% silicon content (Super E core), ferrite cores, amorphous cores, dust cores made by mixing iron, aluminum and silicon, and nanocrystals
  • a soft magnetic material such as fine-met core can be used.
  • the shape of the iron core is not limited and is characterized in that a gap is included in the legs of the iron core to be wound.
  • the windings A1 and A2 are provided on the first side leg 54a and the second side leg 54b is provided in the same manner as the winding method around the reactor 10 shown in the first embodiment.
  • Winding B1, B2 is wound around.
  • Winding A1 and winding A2 are wound with the same number of turns C around the first side leg 54a along the extending direction of the first side leg 54a.
  • the winding A1 is wound on the inner peripheral side close to the first side leg 54a.
  • the winding A2 is wound on the outer peripheral side far from the first side leg 54a.
  • the winding B1 and the winding B2 are wound around the first side leg 54b with the same number of turns C along the extending direction of the first side leg 54b.
  • the winding B1 is wound on the inner peripheral side close to the first side leg 54b.
  • the winding B2 is wound on the outer peripheral side far from the first side leg 54b.
  • Each of the windings A1, A2, B1, and B2 is a single winding among the windings wound in multiple. As shown in FIG. 12, the ends of the windings A1, A2, B1, and B2 are connected in parallel in a winding direction that does not impair the inductance of each winding.
  • the winding A1 wound on the inner peripheral side close to the first side leg 54a is composed of a litz wire obtained by twisting many strands having a thin wire diameter, and on the outer peripheral side thereof.
  • the winding A2 to be wound is composed of a single wire, and the winding A1 and the winding A2 are wound twice.
  • the wire diameter of the single wire of the winding A2 may be the same as the finished diameter of the litz wire of the winding A1.
  • the winding B1 wound on the inner peripheral side close to the second side leg 54b is formed of a litz wire obtained by twisting a large number of strands having a thin wire diameter, and is wound around the outer peripheral side.
  • windings B1 and B2 are wound twice.
  • the wire diameter of the single wire of the winding B2 may be the same as the finished diameter of the litz wire of the winding B1.
  • the innermost circumference of the winding is constituted by a litz wire (winding A1)
  • the outermost circumference of the winding is a single wire (winding).
  • Line A2) and in the region surrounding the gap 53b, the innermost circumference of the winding is constituted by a litz wire (winding B1), and the outermost circumference of the winding is constituted by a single line (winding B2).
  • the innermost circumference of the winding in the region surrounding the gaps 53a and 53b, by configuring the innermost circumference of the winding with a litz wire, eddy current loss due to leakage magnetic flux can be reduced, and the outermost circumference of the winding is made with a single wire.
  • winding resistance in the commercial frequency region can be reduced.
  • the number of windings in parallel can be increased, so that the winding resistance can be further reduced.
  • windings A1 and A2 wound around the first side leg 54a and the windings B1 and B2 wound around the first side leg 54b are not connected in parallel, as shown in FIG. , B1 and B2 may be connected. That is, each of the windings A1 and A2 and the windings B1 and B2 is wound around each of a plurality of side legs 54a and 54b (a plurality of sets of leg portions 54ap and 54aq and leg portions 54bp and 54bq). The windings that are rotated and wound around the respective side legs 54a and 54b (legs of each pair) are connected in parallel in a direction that does not impair the inductance. By connecting the windings A1 and A2 and the windings B1 and B2 in this manner, in the single-phase power converter as shown in FIG. 111 can be connected.
  • FIG. 11 shows the case where the winding is wound twice, the winding may be triple or more.
  • FIG. 15 is a cross-sectional view of another reactor according to Embodiment 3 of the present invention.
  • FIG. 16 is a circuit diagram showing the winding connection of the reactor shown in FIG.
  • FIG. 17 is a circuit diagram showing another winding connection of the reactor shown in FIG.
  • the difference between the reactor 60 shown in FIG. 15 and the reactor 50 shown in FIG. 11 is the configuration of the winding.
  • the winding method for the pair of opposing leg portions is the same as in FIG. 5 of the first embodiment.
  • the whole winding is configured by winding n turns with the same number of turns C turns.
  • x-fold (x: integer and 1 ⁇ x ⁇ n) windings (from winding A1 to winding Aj, winding B1 in FIG. 15) wound on the inner peripheral side close to the side legs 54a, 54b.
  • the wire diameter of the single wire from the winding Ak to the winding An and the winding Bk to the winding Bn may be the same as the finished diameter of the litz wire from the winding A1 to the winding Aj and from the winding B1 to the winding Bj. .
  • the ends of the windings A1 to Bn are connected in parallel in a winding direction that does not impair the inductance.
  • windings A1 to An wound around the first side leg 54a and the windings B1 to Bn wound around the first side leg 54b are not connected in parallel, but are wound as shown in FIG. To An and B1 to Bn may be connected.
  • the power converter 114 and the single-phase system power supply 111 are connected by one reactor 113. It is possible.
  • the space in which the winding in the iron core can be applied can be used effectively, so that the winding resistance can be further reduced and the leakage magnetic flux from the gaps 53a and 53b can be expanded. Accordingly, if the number of multiple turns x from the winding A1 to the winding Aj using the litz wire (from the winding B1 to the winding Bj) is adjusted, the eddy current loss of the winding portion in the high frequency region can be reduced. Moreover, it is possible to achieve both a reduction in winding resistance in the low frequency region and to realize a reactor with lower loss.
  • FIG. 18 is a cross-sectional view of the reactor in the fourth embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of another reactor.
  • the second embodiment is different from the second embodiment in that two U-shaped iron cores are arranged so as to face each other to form leg portions having two gaps, and windings are wound around the respective leg portions.
  • the winding method for one leg is the same as in the second embodiment.
  • the reactor 70 is arranged so that two U-shaped iron cores 51 and a U-shaped iron core 52 formed of a magnetic material face each other while ensuring gaps 53a and 53b.
  • a winding A1a and a winding A2a are wound around the first side leg 54a provided with the gap 53a.
  • the first side leg 54a includes a pair of opposing leg portions 54ap and 54aq, and a gap 53a is formed between the leg portions 54ap and 54aq.
  • a winding B1a and a winding B2a are wound around the second leg 54b provided with the gap 53b.
  • the second leg 54b is composed of a pair of opposing leg portions 54bp and 54bq, and a gap 53b is formed between the leg portions 54bp and 54bq.
  • the winding A1a and the winding A2a are wound around the first side leg 54a along the extending direction of the first side leg 54a with the same number of turns C.
  • a litz wire obtained by twisting many strands having a thin wire diameter is used
  • a single wire having the same diameter as the finished diameter of the litz wire of the winding A1a is used.
  • a litz wire is disposed on the inner peripheral side close to the first side leg 54a
  • a single wire (winding A2a) is disposed on the outer peripheral side.
  • winding A1a and the winding A2a are arranged so as to be replaced in the middle along the extending direction of the first side leg 54a.
  • the winding B1a and the winding B2a are also wound around the second side leg 54b, similarly to the winding A1a and the winding A2a.
  • the litz wire is a single winding of the windings wound twice by applying the winding method to replace the single wire and the litz wire in this way.
  • the average distance between the line A1a) and the center line 54ca of the first side leg 54a is the same as the single wire (winding A2a) that is the other single winding of the windings wound twice. It can be made substantially equal to the average distance between the center line 54ca of the first leg 54a. For this reason, the inductance of the winding A1a and the inductance of the winding A2a can be equalized, and the circulating current between the winding A1a and the winding A2a can be suppressed, thereby preventing an increase in copper loss.
  • the center line 54ca of the first side leg 54a corresponds to a line extending in the extending direction of the first side leg 54a by connecting the centers of the surfaces of the leg portion 54ap and the leg portion 54aq facing each other.
  • the winding B1a and the winding B2a are also wound by replacing the single wire and the litz wire.
  • the gaps 53a and 53b as in the first embodiment, the windings A1a and B1a using the litz wires are arranged on the inner peripheral winding where the leakage magnetic flux is remarkably linked. Eddy current loss at the winding portion can also be reduced. Furthermore, since the number of parallel windings can be increased, the winding resistance can be further reduced.
  • the single wire and the litz wire are switched twice, but the litz wire (winding A1a) that is a single winding of the windings wound twice and the first side leg 54a.
  • the average distance between the center line 54ca and the center line 54ca of the first side leg 54a is a single wire (winding A2a) that is one of the other windings of the multiple windings.
  • FIG. 19 is a cross-sectional view of another reactor according to Embodiment 4 of the present invention.
  • the reactor 80 uses an arbitrary number of multiple turns n per side leg, and as shown in FIG. 16, the ends of the windings 1 to n are arranged in parallel in a winding direction that does not impair the inductance. You may connect. Even in this case, the average distance between the winding A1a, which is a single winding among the multiple windings, and the center line 54ca of the first side leg 54a is equal to each single winding other than the winding A1a.
  • the minute windings (winding A2a (not shown) to winding Ana) are wound so as to be substantially equal to the respective average distances between the center line 54ca of the first side leg 54a. Further, in the region surrounding the gap 53a, a single wire is used so that the x-fold windings using the litz wire (winding A1a to winding Aja) are arranged on the inner peripheral side close to the first side leg 54a. The heavy windings (winding Aka to winding Ana) and the x-folding winding using the litz wire are replaced.
  • the windings B1a to Bna are similarly configured.
  • the space for winding is maintained while maintaining the effect of reducing the eddy current loss due to the leakage magnetic flux from the gap 53a and the effect of suppressing the circulating current due to the difference in inductance. Effective use is possible, and winding resistance can be reduced.
  • the windings are connected in parallel in the winding direction that does not impair the inductance, as shown in FIGS. 12 and 16, as in the third embodiment. Moreover, you may connect as shown in FIG. 13, FIG. 17, and may apply to a single phase power converter device.
  • FIG. 20 is a cross-sectional view of the reactor in the fifth embodiment of the present invention.
  • the case where one gap is provided for one leg of the iron core has been described as an example.
  • a plurality of legs are provided for one leg of the iron core.
  • a gap may be provided.
  • a reactor 90 is configured by combining iron cores 91, 92, 93, 94, and 95 of a block-shaped magnetic material.
  • two gaps 96 and 97 are formed.
  • the circulating current can be suppressed by applying a winding method that equalizes the inductances of the windings 1a to na.
  • the winding is illustrated as being directly applied to the iron core.
  • the bobbin may be mounted on the iron core after the bobbin is wound.
  • the insulating paper is inserted between the windings.
  • the insulating paper is inserted between the windings. May be.
  • the windings are connected in parallel, the overlapping portions of the windings have substantially the same potential, and the winding can be applied on the windings without inserting insulating paper.
  • FIG. 21 is a cross-sectional view showing an example of a winding arrangement. In this case, as shown in FIG.
  • the second layer winding (WL2) is wound just above the first layer winding (WL1) wound on the first layer, and the second layer winding (
  • the third layer winding (WL3) may be wound just above WL2), but the second layer winding (WL2) is inserted in the gap between the first layer winding (WL1) as shown in FIG. )
  • winding the third layer winding (WL3) in the gap between the second layer winding (WL2) the space factor of the conductor can be increased and the number of parallels can be increased. Can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

In order to obtain a reactor that is capable of reducing the eddy-current loss at a winding wire caused by means of the leakage flux from the gap of an iron core, the reactor is provided with: iron cores (11, 12) which have at least one pair of leg portions (14p, 14q) facing one another and which are formed with a gap (13) by means of the pair of leg portions (14p, 14q); and winding wires (1, 2) which are wound around the pair of leg portions (14p, 14q) along the direction in which the pair of leg portions (14p, 14q) extend and which are multiply wound so as to overlap with one another in a direction that is roughly perpendicular to the aforementioned direction in which the pair of leg portions (14p, 14q) extend. In a region surrounding the gap, the innermost turn of the winding wires (1, 2) is constituted by a litz wire (1) in which multiple wires are twisted together, and the outermost turn of the winding wires (1, 2) is constituted by a single wire (2).

Description

リアクトルReactor
 この発明は、電力変換装置に接続する、あるいは電力変換装置に組み込まれるリアクトルに関する。 The present invention relates to a reactor that is connected to a power conversion device or incorporated in a power conversion device.
 リアクトルは、電力変換装置を系統電源や太陽電池などの電圧源に接続するために用いられる。電圧型の電力変換装置を他の電圧源と直接接続する場合、その電位差によって大きな電流が流れ、電力変換装置が破損したり、電圧源に異常が発生したりする。そこで、電圧型の電力変換装置は、リアクトルを介して電圧源と接続する。場合によっては、リアクトルに印加する電圧を調整して電流を制御し、電力変換装置と電圧源との間で、有効電力や無効電力のやりとりを行う。 The reactor is used to connect the power conversion device to a voltage source such as a system power supply or a solar battery. When a voltage type power converter is directly connected to another voltage source, a large current flows due to the potential difference, and the power converter is damaged or an abnormality occurs in the voltage source. Therefore, the voltage type power converter is connected to a voltage source via a reactor. In some cases, the voltage applied to the reactor is adjusted to control the current, and active power and reactive power are exchanged between the power converter and the voltage source.
 一方、電力変換装置の高周波化に伴ってリアクトルの鉄心で発生するヒステリシス損失の増大や、電力変換装置で発生する高周波電流がリアクトルの巻線に流れると巻線の表面で電流密度が高くなる表皮効果による銅損の増大が問題となる場合がある。このような問題を解決するために、流れる電流の基本波電流に対して抵抗が小さい主巻線と高周波電流に対して抵抗が小さい補助巻線とを並列に鉄心に巻きつける巻線構造がある(例えば、特許文献1参照)。また、トランスやチョーク等のボビンまたはコアに、単線とリッツ線とを巻きつけて並列接続した巻線構造がある(例えば、特許文献2参照)。 On the other hand, an increase in hysteresis loss that occurs in the core of the reactor as the frequency of the power converter increases, and when the high-frequency current generated in the power converter flows in the winding of the reactor, the skin where the current density increases on the surface of the winding An increase in copper loss due to the effect may be a problem. In order to solve such problems, there is a winding structure in which a main winding having a small resistance with respect to a fundamental current of a flowing current and an auxiliary winding having a small resistance with respect to a high-frequency current are wound around an iron core in parallel. (For example, refer to Patent Document 1). Further, there is a winding structure in which a single wire and a litz wire are wound around a bobbin or a core such as a transformer or a choke and connected in parallel (see, for example, Patent Document 2).
特開平5-243060号公報(第3-4頁、第1,3図)JP-A-5-243060 (pages 3-4, FIGS. 1 and 3) 特開2001-297922号公報(第2-3頁、第1,3図)Japanese Patent Laid-Open No. 2001-297922 (page 2-3, FIGS. 1 and 3)
 従来のリアクトルでは、鉄心にギャップを含み、このギャップのまわりにも巻線構造が形成される場合、ギャップからの漏れ磁束によって、巻線で渦電流損失が発生し、電力損失が増加するという問題があった。そして、渦電流損失の低減のために巻線を細くすると抵抗損失が増加するという問題があった。 In a conventional reactor, when a gap is formed in the iron core and a winding structure is also formed around the gap, eddy current loss occurs in the winding due to leakage magnetic flux from the gap, and power loss increases. was there. Then, there is a problem that resistance loss increases when the winding is made thin to reduce eddy current loss.
 この発明は、上述のような課題を解決するためになされたもので、鉄心のギャップからの漏れ磁束によって生じる巻線での渦電流損失の低減と巻線抵抗の低減が両立できるリアクトルを得るものである。 The present invention has been made to solve the above-described problems, and obtains a reactor that can achieve both a reduction in eddy current loss in a winding and a reduction in winding resistance caused by leakage magnetic flux from a gap in an iron core. It is.
 この発明に係るリアクトルは、対向する少なくとも一組の脚部を有し、一組の脚部によってギャップが形成される鉄心と、一組の脚部の延伸方向に沿って一組の脚部に巻回され、かつ、延伸方向に略垂直な方向に重なるように多重に巻回される巻線とを備え、ギャップを囲む領域において、巻線の最内周が素線を多数撚り合わされたリッツ線で構成され、巻線の最外周が単線で構成されるものである。 A reactor according to the present invention has at least one pair of legs facing each other, an iron core in which a gap is formed by the pair of legs, and a pair of legs along the extending direction of the pair of legs. And a winding that is wound in multiple layers so as to overlap in a direction substantially perpendicular to the extending direction, and in the region surrounding the gap, the innermost circumference of the winding is a litz in which a number of strands are twisted together It is comprised with a wire | line, and the outermost periphery of a coil | winding is comprised with a single wire.
 この発明は、鉄心のギャップを囲む領域において、巻線の最内周が素線を多数撚り合わされたリッツ線で構成され、巻線の最外周が単線で構成されるので、鉄心のギャップからの漏れ磁束によって生じる巻線での渦電流損失の低減と巻線抵抗の低減が両立できるリアクトルを得ることができる。 In this invention, in the region surrounding the gap of the iron core, the innermost circumference of the winding is composed of litz wires in which a number of strands are twisted, and the outermost circumference of the winding is composed of a single wire. It is possible to obtain a reactor that can achieve both a reduction in eddy current loss in a winding caused by leakage magnetic flux and a reduction in winding resistance.
本発明の実施の形態1におけるリアクトルを適用した電力変換装置の一例を示す回路図である。It is a circuit diagram which shows an example of the power converter device to which the reactor in Embodiment 1 of this invention is applied. 本発明の実施の形態1におけるリアクトルの断面図である。It is sectional drawing of the reactor in Embodiment 1 of this invention. 本発明の実施の形態1における図2に示したリアクトルの巻線結線を示す回路図である。It is a circuit diagram which shows the coil connection of the reactor shown in FIG. 2 in Embodiment 1 of this invention. 本発明の実施の形態1における図2に示したリアクトルの漏れ磁束が流れる様子を示す図である。It is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 2 in Embodiment 1 of this invention flows. 本発明の実施の形態1における別のリアクトルの断面図である。It is sectional drawing of another reactor in Embodiment 1 of this invention. 本発明の実施の形態1における図5に示したリアクトルの巻線結線を示す回路図である。It is a circuit diagram which shows the coil connection of the reactor shown in FIG. 5 in Embodiment 1 of this invention. 本発明の実施の形態1における図5に示したリアクトルの漏れ磁束が流れる様子を示す図である。It is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 5 in Embodiment 1 of this invention flows. 本発明の実施の形態2におけるリアクトルの断面図である。It is sectional drawing of the reactor in Embodiment 2 of this invention. 本発明の実施の形態2における図8に示したリアクトルの漏れ磁束が流れる様子を示す図である。It is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 8 in Embodiment 2 of this invention flows. 本発明の実施の形態2における別のリアクトルの断面図である。It is sectional drawing of another reactor in Embodiment 2 of this invention. 本発明の実施の形態3におけるリアクトルの断面図である。It is sectional drawing of the reactor in Embodiment 3 of this invention. 本発明の実施の形態3における図11に示したリアクトルの巻線結線を示す回路図である。It is a circuit diagram which shows the coil connection of the reactor shown in FIG. 11 in Embodiment 3 of this invention. 本発明の実施の形態3における図11に示したリアクトルの別の巻線結線を示す回路図である。It is a circuit diagram which shows another coil | winding connection of the reactor shown in FIG. 11 in Embodiment 3 of this invention. 本発明の実施の形態3におけるリアクトルを適用した電力変換装置の一例を示す回路図である。It is a circuit diagram which shows an example of the power converter device to which the reactor in Embodiment 3 of this invention is applied. 本発明の実施の形態3における別のリアクトルの断面図である。It is sectional drawing of another reactor in Embodiment 3 of this invention. 本発明の実施の形態3における図15に示したリアクトルの巻線結線を示す回路図である。It is a circuit diagram which shows the coil connection of the reactor shown in FIG. 15 in Embodiment 3 of this invention. 本発明の実施の形態3における図15に示したリアクトルの別の巻線結線を示す回路図である。It is a circuit diagram which shows another coil | winding connection of the reactor shown in FIG. 15 in Embodiment 3 of this invention. 本発明の実施の形態4におけるリアクトルの断面図である。It is sectional drawing of the reactor in Embodiment 4 of this invention. 本発明の実施の形態4における別のリアクトルの断面図である。It is sectional drawing of another reactor in Embodiment 4 of this invention. 本発明の実施の形態5におけるリアクトルの断面図である。It is sectional drawing of the reactor in Embodiment 5 of this invention. 本発明の実施の形態1~5における巻線配置の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a winding arrangement in the first to fifth embodiments of the present invention.
実施の形態1.
 図1は、本発明のリアクトルが適用された電力変換装置の一例を示す回路図である。図1において、電力変換装置は、電力変換器104、リアクトル103、およびコンデンサ102で構成されている。電力変換器104は、リアクトル103を介して三相系統電源101に接続される。リアクトル103には、単相リアクトルを3台使用する方が一般的であるが、三相分が一体となった三相リアクトルを用いてもよい。
Embodiment 1 FIG.
FIG. 1 is a circuit diagram showing an example of a power converter to which the reactor of the present invention is applied. In FIG. 1, the power conversion apparatus includes a power converter 104, a reactor 103, and a capacitor 102. The power converter 104 is connected to the three-phase system power supply 101 via the reactor 103. The reactor 103 generally uses three single-phase reactors, but a three-phase reactor in which three phases are integrated may be used.
 例えば、電力変換器104が電圧型の電力変換器であり、リアクトル103を介すことなく三相系統電源101に接続した場合、電力変換器104と三相系統電源101との電位差によって生じる過電流によって、電力変換器104を構成する半導体素子が破壊したり、電力系統に悪影響を及ぼす。このため、電力変換器104が電圧型である場合、リアクトル103を接続することは必須である。なお、リアクトル103が使用される場合には、フィルタコンデンサなどのコンデンサ102などと組み合わせて接続される場合もある。 For example, when the power converter 104 is a voltage type power converter and is connected to the three-phase system power supply 101 without passing through the reactor 103, an overcurrent caused by a potential difference between the power converter 104 and the three-phase system power supply 101 As a result, the semiconductor elements constituting the power converter 104 are destroyed or the power system is adversely affected. For this reason, when the power converter 104 is a voltage type, it is essential to connect the reactor 103. When reactor 103 is used, it may be connected in combination with capacitor 102 such as a filter capacitor.
 図1において、リアクトル103に流れる電流は、三相系統電源101の商用周波数の電流成分と、電力変換器104を構成する半導体素子がスイッチングを行っている周波数(スイッチング周波数)領域の電流成分とを含む。例えば、商用周波数は、50Hzあるいは60Hzの低周波であり、スイッチング周波数は一般的に1kHz以上の高周波である。本発明のリアクトルは、このような低周波数成分の電流および高周波数成分の電流の両方が流れる用途で使用されることを前提としており、図1に示すような直流/交流変換を行う電力変換器104の出力端子に接続するリアクトル103として使用してもよいし、交流/交流変換を行う電力変換器の入力端子あるいは出力端子に接続するリアクトルとして使用してもよいし、交流/直流変換を行う電力変換器の入力端子に接続するリアクトルとして使用してもよいし、直流/直流変換を行う入力端子あるいは出力端子に接続するリアクトルとして使用してもよい。また、電力変換器は、図1に示すような2レベル電圧を出力する2レベル変換器でもよいし、3レベル以上の電圧を出力するマルチレベル変換器でもよい。 In FIG. 1, the current flowing through the reactor 103 includes a commercial frequency current component of the three-phase system power supply 101 and a current component in a frequency (switching frequency) region in which the semiconductor elements constituting the power converter 104 perform switching. Including. For example, the commercial frequency is a low frequency of 50 Hz or 60 Hz, and the switching frequency is generally a high frequency of 1 kHz or more. The reactor of the present invention is assumed to be used in such an application that both low-frequency component current and high-frequency component current flow, and a power converter that performs DC / AC conversion as shown in FIG. It may be used as a reactor 103 connected to the output terminal 104, or may be used as a reactor connected to an input terminal or an output terminal of a power converter that performs AC / AC conversion, or performs AC / DC conversion. You may use as a reactor connected to the input terminal of a power converter, and you may use as a reactor connected to the input terminal which performs DC / DC conversion, or an output terminal. The power converter may be a two-level converter that outputs a two-level voltage as shown in FIG. 1 or a multi-level converter that outputs a voltage of three or more levels.
 さらに、電力変換器104を構成する半導体素子には、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を使用してもよいし、IGBT(Insulated Gate Bipolar Transistor)やIEGT(Injection Enhanced Gate Transistor)、GCT(Gate Commutated Turn-off)サイリスタ、JFET(Junction Field Effect Transistor)などの他の半導体素子を使用してもよい。 Further, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be used as a semiconductor element constituting the power converter 104, or an IGBT (Insulated Gate Bipolar Transistor) or IEGT (Injected Transient Transistor). Other semiconductor elements such as a GCT (Gate Committed Turn-off) thyristor and JFET (Junction Field Effect Transistor) may be used.
 また、電力変換器104を構成する半導体素子の材料としては、一般的には珪素が使用できるが、珪素よりバンドギャップが広いワイドバンドギャップ半導体材料、例えば、炭化珪素、窒化ガリウム、またはダイヤモンドなどを使用してもよい。ワイドバンドギャップ半導体材料を用いた電力変換器では、珪素を用いた電力変換器と比べてスイッチング損失の低減が可能となり高周波で駆動されることになる。一方、電力変換器の高周波駆動化に伴って、リアクトルの鉄心で発生するヒステリシス損失が増大し、電力変換器が発生する高周波電流がリアクトルの巻線に流れると表皮効果が発生して銅損が増大する。つまり、ワイドバンドギャップ半導体材料を用いることによって電力変換器における電力損失が低減する一方で、リアクトルにおける損失が増大することになる。本発明のリアクトルは、電力変換器の高周波駆動化に対して、損失を低減できるので、ワイドバンドギャップ半導体材料を電力変換器に用いた場合でも、ワイドバンドギャップ半導体材料の特徴を活かして、低損失の電力変換装置を得ることができる。 As a material of the semiconductor element constituting the power converter 104, silicon can be generally used, but a wide band gap semiconductor material having a wider band gap than silicon, for example, silicon carbide, gallium nitride, diamond, or the like. May be used. In a power converter using a wide band gap semiconductor material, switching loss can be reduced as compared with a power converter using silicon, and the power converter is driven at a high frequency. On the other hand, as power converters are driven at higher frequencies, the hysteresis loss that occurs in the core of the reactor increases, and when the high-frequency current generated by the power converter flows through the reactor windings, the skin effect occurs and copper loss occurs. Increase. That is, by using the wide band gap semiconductor material, the power loss in the power converter is reduced, while the loss in the reactor is increased. Since the reactor of the present invention can reduce the loss when the power converter is driven at a high frequency, even when a wide band gap semiconductor material is used for the power converter, the characteristics of the wide band gap semiconductor material are utilized to reduce the loss. A lossy power conversion device can be obtained.
 図2は、本発明の実施の形態1におけるリアクトルの断面図である。図3は、図2に示したリアクトルの巻線結線を示す回路図である。図2において、リアクトル10は、磁性材料で形成された2つのE形鉄心11およびE形鉄心12が向かい合うように配置され、ギャップ13を設けた中央脚14には巻線1および巻線2が巻回されて(巻きつけられて)構成されている。巻線1、巻線2は、多重に巻回される巻線のうちのそれぞれ一重分の巻線である。中央脚14は、対向する一組の脚部14p、14qで構成され、一組の脚部14p、14q間にギャップ13が形成される。本発明の実施の形態において、ギャップ13はエアギャップであるが、このギャップ部に透磁率が小さい材料を設けても良い。E形鉄心11、12の磁性材料には、珪素鋼板、珪素含有量が6.5%の鋼板(スーパーEコア)、フェライトコア、アモルファスコア、鉄・アルミ・珪素を混ぜ合わせたダストコア、ナノ結晶柔磁性材料のファインメットコアなどが使用できる。なお、E形鉄心11、12の2つの鉄心を使用しているが、これは巻線加工を容易にするためであって、E形鉄心11、12が一体となった鉄心を用いてもよい。さらには、鉄心の形は限定しておらず、巻線を施す鉄心の脚にギャップが含まれることが特徴である。 FIG. 2 is a cross-sectional view of the reactor in the first embodiment of the present invention. FIG. 3 is a circuit diagram showing winding connection of the reactor shown in FIG. In FIG. 2, a reactor 10 is arranged so that two E-shaped iron cores 11 and E-shaped iron cores 12 made of a magnetic material face each other, and a winding 1 and a winding 2 are provided on a central leg 14 provided with a gap 13. It is constructed by being wound (wrapped). Winding 1 and winding 2 are each a single winding among the windings wound in multiple. The center leg 14 is composed of a pair of opposing leg portions 14p and 14q, and a gap 13 is formed between the pair of leg portions 14p and 14q. In the embodiment of the present invention, the gap 13 is an air gap, but a material having a low magnetic permeability may be provided in the gap portion. Magnetic materials for E-shaped iron cores 11 and 12 include silicon steel plates, steel plates with 6.5% silicon content (Super E core), ferrite cores, amorphous cores, dust cores made by mixing iron, aluminum and silicon, and nanocrystals A soft magnetic material such as fine-met core can be used. In addition, although the two iron cores of E-shaped iron cores 11 and 12 are used, this is to facilitate winding processing, and an iron core in which the E-shaped iron cores 11 and 12 are integrated may be used. . Furthermore, the shape of the iron core is not limited, and a feature is that a gap is included in the legs of the iron core to be wound.
 巻線1および巻線2は、中央脚14(一組の脚部14p、14q)の延伸方向に沿って中央脚14のまわりを同じ巻数Cターンで巻回されている。そして、巻線1および巻線2は、延伸方向に略垂直な方向に重なるように多重に巻回される。巻線1は、中央脚14に近接する内周側に巻回されている。巻線2は、中央脚14に遠い外周側に巻回されている。図3に示すように、巻線1と巻線2の端部は、巻線1と巻線2の両者のインダクタンスが消失しない、つまりインダクタンスを損なわない巻き方向で並列に接続されている。図3において、ドット(●)は、各巻線の極性を表すものである。ギャップ13の長さ、および巻数Cターンは、所望のインダクタンス値に応じて決定される。例えば、ギャップ長を3mm、巻数を16ターンと決定される。 The winding 1 and the winding 2 are wound around the central leg 14 with the same number of turns C turns along the extending direction of the central leg 14 (a set of leg portions 14p and 14q). Then, the winding 1 and the winding 2 are wound in a multiple manner so as to overlap in a direction substantially perpendicular to the extending direction. The winding 1 is wound on the inner peripheral side close to the center leg 14. The winding 2 is wound on the outer peripheral side far from the central leg 14. As shown in FIG. 3, the ends of the windings 1 and 2 are connected in parallel in the winding direction in which the inductances of both the windings 1 and 2 are not lost, that is, the inductance is not impaired. In FIG. 3, a dot (●) represents the polarity of each winding. The length of the gap 13 and the number of turns C-turn are determined according to a desired inductance value. For example, the gap length is determined to be 3 mm and the number of turns is determined to be 16 turns.
 本実施の形態の特徴的な点は、中央脚14に近接する内周側に巻回される巻線1は、細い線径の素線を多数撚り合わせたリッツ線で構成され、その外周側に巻きつける巻線2は、単線で構成され、巻線1および巻線2を二重に巻回している点である。巻線2の単線の線径を、巻線1のリッツ線の仕上がり径と同線径としてもよい。例えば、巻線1には、線径0.3mmの外周表面が絶縁された素線を38本撚り合わせたリッツ線を用いる。リッツ線には仕上がり断面が円形を維持する目的で外周にテトロンを巻きつけてもよい。この場合、巻線1のリッツ線の仕上がり径は約2.4mmとなるので、巻線2には、2.4mmの単線を用いる。図2において、巻線は二重巻きとなっているので、ギャップ13を囲む領域において、巻線の最内周がリッツ線(巻線1)で構成され、巻線の最外周が単線(巻線2)で構成されている。なお、図2においては、特に、巻線1および巻線2は、ギャップ13および中央脚14を囲む全ての領域において、巻線の最内周がリッツ線(巻線1)で構成され、巻線の最外周が単線(巻線2)で構成されている。 A characteristic point of the present embodiment is that the winding 1 wound on the inner peripheral side close to the center leg 14 is composed of a litz wire obtained by twisting a large number of thin wire elements, and the outer peripheral side thereof. The winding 2 to be wound around is composed of a single wire, and the winding 1 and the winding 2 are wound twice. The wire diameter of the single wire of the winding 2 may be the same as the finished diameter of the litz wire of the winding 1. For example, the winding 1 uses a litz wire obtained by twisting 38 strands having a wire diameter of 0.3 mm and whose outer peripheral surface is insulated. A tetron may be wound around the outer periphery of the litz wire in order to keep the finished cross section circular. In this case, since the finished diameter of the litz wire of the winding 1 is about 2.4 mm, a single wire of 2.4 mm is used for the winding 2. In FIG. 2, since the winding is a double winding, in the region surrounding the gap 13, the innermost circumference of the winding is constituted by a litz wire (winding 1), and the outermost circumference of the winding is a single wire (winding). Line 2). In FIG. 2, in particular, the winding 1 and the winding 2 are composed of a litz wire (winding 1) in the innermost circumference of the winding in all regions surrounding the gap 13 and the central leg 14. The outermost periphery of the wire is composed of a single wire (winding 2).
 図4は、リアクトルの漏れ磁束が流れる様子を示す図であり、図2のギャップ13の周辺に注目して、磁束15を示した図である。ギャップ13以外の鉄心部分には、真空に対して非透磁率が高い磁性材料を用いているので、ほぼ全ての磁束15は鉄心(図4では脚部14p、14q)の中を通る。なお、鉄心を通過する磁束15によって、レンツの法則により、鉄心中に磁束15を妨げる方向に電流が流れようとする。しかしながら、鉄心に、珪素鋼板に代表されるような、磁束の通過方法を面方向として周囲が絶縁された薄い鋼板の積層構造、あるいはダストコアのような周囲が絶縁された細かな粒状の磁性材料を押し固めた構造を用いることは公知である。このような構造を採用し、この渦電流が流れようとする方向の面積を低減することによって、無視できる範囲にまで渦電流損失を低減している。 FIG. 4 is a diagram illustrating a state in which the leakage magnetic flux of the reactor flows, and illustrates the magnetic flux 15 while paying attention to the periphery of the gap 13 in FIG. Since a magnetic material having a high non-permeability with respect to vacuum is used for the iron core portion other than the gap 13, almost all the magnetic flux 15 passes through the iron core (the leg portions 14p and 14q in FIG. 4). The magnetic flux 15 passing through the iron core tends to cause a current to flow in the iron core in a direction that prevents the magnetic flux 15 according to Lenz's law. However, a laminated structure of thin steel plates whose surroundings are insulated with respect to the magnetic flux passing method as represented by the surface direction, such as silicon steel plates, or fine granular magnetic materials such as dust cores are insulated on the iron core. It is known to use a compacted structure. By adopting such a structure and reducing the area in the direction in which this eddy current tends to flow, eddy current loss is reduced to a negligible range.
 一方、図4に示すように、ギャップ13部分の磁束は、鉄心の延伸方向に沿って直線的にはならず、巻線が巻回されている部分にまで広がる。従来のように単線のみを巻線に利用したリアクトルでは、巻線に磁束15が鎖交した時に、巻線にはこの磁束15を妨げようとする方向に電流が流れる。たとえば線径が2.4mmのような単線では、この漏れ磁束による渦電流が流れる面積が広いため、渦電流損失が無視できなくなる。そこで、本実施の形態では、ギャップ13を囲む領域における漏れ磁束が顕著に鎖交する内周側に巻回する巻線1として細い素線を多数撚り合わせたリッツ線を使用している。リッツ線は、素線の外周表面に絶縁が施されている。例えば、素線0.3mmを用いたリッツ線では、漏れ磁束が鎖交した時に渦電流が流れる面積が狭いため、渦電流損失を無視できる範囲にまで低減することが可能である。 On the other hand, as shown in FIG. 4, the magnetic flux in the gap 13 portion does not become linear along the extending direction of the iron core but spreads to the portion where the winding is wound. In a conventional reactor using only a single wire as a winding as in the prior art, when the magnetic flux 15 is linked to the winding, a current flows through the winding in a direction in which the magnetic flux 15 is to be blocked. For example, in the case of a single wire having a wire diameter of 2.4 mm, the eddy current loss due to the leakage magnetic flux is large, and thus eddy current loss cannot be ignored. Therefore, in the present embodiment, a litz wire in which a number of thin strands are twisted is used as the winding 1 that is wound on the inner peripheral side where leakage magnetic flux in the region surrounding the gap 13 is significantly interlinked. In the litz wire, the outer peripheral surface of the strand is insulated. For example, with a litz wire using a strand of 0.3 mm, the eddy current flow area is narrow when the leakage magnetic flux is interlinked, so it is possible to reduce the eddy current loss to a negligible range.
 このように、リッツ線には、漏れ磁束による渦電流損失を低減できるという利点があるが、細い素線が多数撚られた構造によって巻線の断面に占める導体の割合である占積率が低下する。このため、50Hzあるいは60Hzなどの商用周波数領域において、リッツ線の巻線抵抗が同じ仕上がり径の単線の巻線抵抗よりも大きくなり、抵抗損失が増加するという欠点がある。そこで、本実施の形態では、ギャップ13を囲む領域における漏れ磁束が少ない外周側に巻回する巻線2として単線を使用し、商用周波数領域での巻線抵抗を低減している。 In this way, Litz wire has the advantage of reducing eddy current loss due to leakage magnetic flux, but the space factor, which is the proportion of the conductor in the cross section of the winding, is reduced by a structure in which a number of thin strands are twisted. To do. For this reason, in the commercial frequency region such as 50 Hz or 60 Hz, the winding resistance of the litz wire becomes larger than the winding resistance of the single wire having the same finished diameter, and there is a disadvantage that the resistance loss increases. Therefore, in the present embodiment, a single wire is used as the winding 2 that is wound around the outer peripheral side where there is little leakage magnetic flux in the region surrounding the gap 13, and the winding resistance in the commercial frequency region is reduced.
 なお、前述の図2による説明では、巻線全体は、巻線1と巻線2をそれぞれ一重に巻回した二重巻きとなっているが、三重以上の多重巻きにしてもよい。図5は、本発明の実施の形態1における別のリアクトルの断面図である。図6は、図5に示したリアクトルの巻線結線を示す回路図である。また、図7は、図5に示したリアクトルの漏れ磁束が流れる様子を示す図である。図5に示したリアクトル20と図2に示したリアクトル10との相違点は、巻線の構成である。図5において、巻線全体は、同一巻数Cターンの巻線をn重巻きにして構成される。この場合、中央脚14に近接する内周側に巻回されるx重(x:整数かつ1≦x<n)の巻線(図5における巻線1から巻線j)は、細い線径の素線を多数撚り合わせたリッツ線で構成され、その外周側に巻回されるy重(y=n-x)の巻線(図5における巻線kから巻線n)は、単線で構成され、全体でn重(n=x+y)に巻回している。巻線kから巻線nの単線の線径を、巻線1から巻線jのリッツ線の仕上がり径と同線径としてもよい。図6に示すように、巻線1から巻線nの端部は、インダクタンスを損なわない巻き方向で並列に接続されている。図5において、ギャップ13を囲む領域において、巻線の最内周がリッツ線(巻線1)で構成され、巻線の最外周が単線(巻線n)で構成されている。 In the description with reference to FIG. 2 described above, the entire winding is a double winding in which the winding 1 and the winding 2 are wound in a single layer, but multiple windings of three or more windings may be used. FIG. 5 is a cross-sectional view of another reactor according to Embodiment 1 of the present invention. FIG. 6 is a circuit diagram showing winding connection of the reactor shown in FIG. Moreover, FIG. 7 is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 5 flows. The difference between the reactor 20 shown in FIG. 5 and the reactor 10 shown in FIG. 2 is the configuration of the winding. In FIG. 5, the entire winding is configured by winding n windings having the same number of turns C turns. In this case, the x-fold (x: integer and 1 ≦ x <n) windings (winding 1 to winding j in FIG. 5) wound on the inner peripheral side close to the center leg 14 have a thin wire diameter. The winding of y layers (y = nx) wound around the outer periphery of the litz wire (a winding k to the winding n in FIG. 5) is a single wire. It is configured and wound as a whole in n layers (n = x + y). The diameter of the single wire from winding k to winding n may be the same as the finished diameter of the litz wire from winding 1 to winding j. As shown in FIG. 6, the ends of winding 1 to winding n are connected in parallel in the winding direction that does not impair the inductance. In FIG. 5, in the region surrounding the gap 13, the innermost circumference of the winding is constituted by a litz wire (winding 1), and the outermost circumference of the winding is constituted by a single wire (winding n).
 巻線全体の多重巻数nを増やすことによって、鉄心における巻線を施すことが可能なスペースを有効利用できるので、巻線抵抗をさらに低減できる。また、図7に示すように、ギャップ13からの漏れ磁束の広がりに応じて、リッツ線を使用する巻線1から巻線jまでの多重巻数xを調整すれば、高周波数領域での巻線部分の渦電流損失の低減と、低周波数領域での巻線抵抗の低減とを両立でき、より低損失なリアクトルを実現することができる。 By increasing the number of multiple turns n of the entire winding, the space where the winding in the iron core can be applied can be used effectively, so that the winding resistance can be further reduced. Further, as shown in FIG. 7, if the number of multiple turns x from the winding 1 to the winding j using the litz wire is adjusted according to the spread of the leakage magnetic flux from the gap 13, the winding in the high frequency region The reduction of the eddy current loss in the portion and the reduction of the winding resistance in the low frequency region can both be achieved, and a reactor with a lower loss can be realized.
 以上のように、単線と素線が多数撚り合わされたリッツ線とを多重に巻回し、ギャップ13を囲む領域において巻線全体の最内周がリッツ線で構成され、巻線全体の最外周が単線で構成されるので、鉄心11、12のギャップ13からの漏れ磁束によって生じる巻線での渦電流損失の低減と巻線抵抗の低減が両立できるリアクトルを得ることができる。 As described above, a single wire and a litz wire in which a number of strands are twisted together are wound in multiple layers, and the innermost circumference of the entire winding is composed of a litz wire in the region surrounding the gap 13, and the outermost circumference of the entire winding is Since it is constituted by a single wire, it is possible to obtain a reactor that can achieve both a reduction in eddy current loss and a reduction in winding resistance in the winding caused by leakage magnetic flux from the gap 13 of the iron cores 11 and 12.
実施の形態2.
 図8は、本発明の実施の形態2におけるリアクトルの断面図である。また、図9は、図8に示したリアクトルの漏れ磁束が流れる様子を示す図である。本実施の形態におけるリアクトルも実施の形態1におけるリアクトルと同様に、低周波数成分の電流および高周波数成分の電流の両方が流れる用途で使用されるものである。図8において、実施の形態1と同様に、リアクトル30は、磁性材料で形成された2つのE形鉄心11およびE形鉄心12が向かい合うように配置し、ギャップ13を設けた中央脚14には巻線1aおよび巻線2aが巻回されて(巻きつけられて)構成されている。中央脚14は、対向する一組の脚部14p、14qで構成され、脚部14p、14q間にギャップ13が形成される。
Embodiment 2. FIG.
FIG. 8 is a cross-sectional view of the reactor in the second embodiment of the present invention. Moreover, FIG. 9 is a figure which shows a mode that the leakage magnetic flux of the reactor shown in FIG. 8 flows. Similarly to the reactor according to the first embodiment, the reactor according to the present embodiment is used for an application in which both a low-frequency component current and a high-frequency component current flow. In FIG. 8, similarly to the first embodiment, a reactor 30 is arranged so that two E-shaped iron cores 11 and E-shaped iron cores 12 formed of a magnetic material face each other. The winding 1a and the winding 2a are wound (wound). The center leg 14 is composed of a pair of opposing leg portions 14p and 14q, and a gap 13 is formed between the leg portions 14p and 14q.
 巻線1aおよび巻線2aは、中央脚14のまわりを中央脚14の延伸方向に沿って、同じ巻数Cターンで巻回されている。巻線1aには細い線径の素線を多数撚り合わせたリッツ線を使用し、巻線2aには巻線1aのリッツ線の仕上がり径と同線径の単線を使用する。実施の形態1と異なる点は、リッツ線および単線の鉄心への巻回の仕方である。実施の形態1では、中央脚14の延伸方向の全体において、つまり巻線全体の構成として、中央脚14に近接する内周側にリッツ線を配置し、外周側に単線を配置している。本実施の形態では、少なくともギャップを囲む領域においては、中央脚14に近接する内周側にリッツ線を配置し、外周側に単線を配置しているが、ギャップを囲む領域以外においては、そのような制限がなく、実施の形態1と同じ線種の巻線1aと巻線2aを、中央脚14の延伸方向に沿った途中で入れ替えるように配置している。つまり、一組の脚部14p、14qを囲む一部の領域においては、最内周が単線(巻線2a)で構成され、最外周がリッツ線(巻線1a)で構成されている。 The winding 1a and the winding 2a are wound around the central leg 14 along the extending direction of the central leg 14 with the same number of turns C. The winding 1a uses a litz wire obtained by twisting a number of strands having a thin wire diameter, and the winding 2a uses a single wire having the same diameter as the finished diameter of the litz wire of the winding 1a. The difference from the first embodiment is how to wind the litz wire and the single wire around the iron core. In the first embodiment, the litz wire is disposed on the inner peripheral side close to the central leg 14 and the single wire is disposed on the outer peripheral side in the entire extending direction of the central leg 14, that is, as a configuration of the entire winding. In the present embodiment, at least in the region surrounding the gap, the litz wire is disposed on the inner peripheral side close to the center leg 14 and the single wire is disposed on the outer peripheral side, but in the region other than the region surrounding the gap, There is no such limitation, and the winding 1a and winding 2a of the same line type as in the first embodiment are arranged so as to be replaced in the middle along the extending direction of the central leg 14. That is, in a part of the region surrounding the pair of leg portions 14p and 14q, the innermost circumference is constituted by a single wire (winding 2a) and the outermost circumference is constituted by a litz wire (winding 1a).
 図8を用いて、具体的な一例を説明する。巻線1aおよび巻線2aの巻き始めとなる1ターン目は、巻線1aが外周側に、巻線2aが内周側になるように配置する。巻数がC/4ターン(図8では4ターン)を過ぎたところで、巻線1aが内周側に、巻線2aが外周側になるように入れ替える。そして、巻数が3C/4ターン(図8では12ターン)を過ぎたところで巻線1aが外周側に、巻線2aが内周側になるように入れ替える。なお、C/4ターンや3C/4ターンが整数にならない場合、C/4や3C/4付近の値となるターン数を過ぎたところで入れ替えを行ってもよい。実施の形態1と同様、図3に示すように、巻線1aおよび巻線2aの端部は、巻線1aおよび巻線2aの両者のインダクタンスを損なわない巻き方向で並列に接続されている。 A specific example will be described with reference to FIG. The first turn that is the beginning of winding of the winding 1a and winding 2a is arranged so that the winding 1a is on the outer peripheral side and the winding 2a is on the inner peripheral side. When the number of turns has passed C / 4 turn (four turns in FIG. 8), the winding 1a is switched to the inner peripheral side and the winding 2a is switched to the outer peripheral side. When the number of turns has passed 3C / 4 turns (12 turns in FIG. 8), the winding 1a is switched to the outer peripheral side and the winding 2a is switched to the inner peripheral side. In addition, when C / 4 turn or 3C / 4 turn does not become an integer, replacement may be performed after the number of turns having values near C / 4 or 3C / 4. As in the first embodiment, as shown in FIG. 3, the ends of the winding 1a and the winding 2a are connected in parallel in the winding direction that does not impair the inductance of both the winding 1a and the winding 2a.
 このように単線とリッツ線とを入れ替える巻回の仕方を施すことによって、二重に巻回される巻線のうちの一重分の巻線であるリッツ線(巻線1a)と中央脚14の中心線14cとの間の平均距離を、二重に巻回される巻線のうちの他の一重分の巻線である単線(巻線2a)と中央脚14の中心線14cとの間の平均距離に略等しくすることができる。このため、巻線1aのインダクタンスと巻線2aのインダクタンスとを均等にすることができる。ここで、中央脚14の中心線14cは、脚部14pと脚部14qとが対抗する面のそれぞれの中心を結んで中央脚14の延伸方向に伸ばした線に相当する。また、一重分の巻線と中心線14cとの間の平均距離は、一重分の巻線の各ターン毎に巻線と中心線14cとの間の距離を求め、これらの距離を平均したものである。 In this way, by applying a winding method to replace the single wire and the litz wire, the litz wire (winding 1a), which is a single winding of the double-wound winding, and the central leg 14 are wound. The average distance between the center line 14 c and the center line 14 c between the single line (winding 2 a) that is the other single winding of the windings wound twice and the center line 14 c of the center leg 14. It can be approximately equal to the average distance. For this reason, the inductance of the winding 1a and the inductance of the winding 2a can be made equal. Here, the center line 14c of the central leg 14 corresponds to a line extending in the extending direction of the central leg 14 by connecting the centers of the surfaces of the leg 14p and the leg 14q that face each other. The average distance between the single winding and the center line 14c is obtained by calculating the distance between the winding and the center line 14c for each turn of the single winding and averaging these distances. It is.
 巻線1aのインダクタンスと巻線2aのインダクタンスとが均等ではない場合は、巻線1aの電圧降下と巻線2aの電圧降下とが等しくなるように、巻線1aと巻線2aとの間には大きな循環電流が流れてしまう。この結果、銅損の増加を招いてしまう。しかしながら、本実施の形態のように、巻線1aのインダクタンスと巻線2aのインダクタンスとを均等にするような巻回の仕方を施すことによって、このような循環電流を抑制することができる。また、図9に示すように、ギャップ13を囲む領域では、実施の形態1と同様に、漏れ磁束が顕著に鎖交する内周側の巻線にリッツ線を用いた巻線1aが配置されているので、巻線部分での渦電流損失も低減することができる。 When the inductance of the winding 1a and the inductance of the winding 2a are not equal, the voltage drop of the winding 1a and the voltage drop of the winding 2a are equal between the windings 1a and 2a. A large circulating current will flow. As a result, the copper loss increases. However, such a circulating current can be suppressed by applying a winding method that equalizes the inductance of the winding 1a and the inductance of the winding 2a as in the present embodiment. As shown in FIG. 9, in the region surrounding the gap 13, as in the first embodiment, the winding 1 a using a litz wire is arranged for the winding on the inner peripheral side where the leakage magnetic flux is remarkably linked. Therefore, the eddy current loss in the winding part can also be reduced.
 なお、図8では、単線とリッツ線との入れ替えを2回行ったが、二重に巻回される巻線のうちの一重分の巻線であるリッツ線(巻線1a)と中央脚14の中心線14cとの間の平均距離が、多重に巻回される巻線のうちの他の一重分の巻線である単線(巻線2a)と中央脚14の中心線14cとの間の平均距離に略等しく、かつ、ギャップ13を囲む領域においてリッツ線を用いる巻線1aが、中央脚14に近接する内周側に配置されれば、単線とリッツ線とを入れ替える回数、入れ替える箇所とは関係なく、同等の効果を得ることができる。 In FIG. 8, the single wire and the litz wire are interchanged twice, but the litz wire (winding 1 a), which is a single winding of the double-wound winding, and the center leg 14 are used. The average distance between the center line 14c and the center line 14c between the single wire (winding 2a), which is another single winding of the multiple windings, and the center line 14c of the center leg 14 If the winding 1a using the litz wire in the region surrounding the gap 13 is substantially equal to the average distance and is arranged on the inner peripheral side close to the central leg 14, the number of times the single wire and the litz wire are replaced, Regardless of, the same effect can be obtained.
 なお、前述の図8による説明では、巻線全体は二重巻きとなっているが、三重以上の多重巻きにしてもよい。図10は、本発明の実施の形態2における別のリアクトルの断面図である。図10に示すように、リアクトル40の巻線全体を、同一巻数Cターンの巻線をn重巻きに構成し、図6に示すように、巻線1から巻線nの端部がインダクタンスを損なわない巻き方向で並列に接続してもよい。この場合でも、多重に巻回される巻線のうちの一重分の巻線である巻線1aと中央脚14の中心線14cとの間の平均距離が、巻線1a以外の各一重分の巻線(巻線2a(図示せず)~巻線na)と中央脚14の中心線14cとの間のそれぞれの平均距離と略等しくなるように巻回する。さらに、ギャップ13を囲む領域において、リッツ線を用いるx重の巻線(巻線1aから巻線ja)が中央脚14に近接する内周側に配置されるように、単線を用いるy重の巻線(巻線kaから巻線na)とリッツ線を用いるx重の巻線(巻線1aから巻線ja)との入れ替えを行う。この入れ替えの際に、ギャップ13を囲む領域において最内周に巻回される巻線1aは、最外周に巻回される。また、ギャップ13を囲む領域において最外周に巻回される巻線naは、最内周に巻回される。 In the description with reference to FIG. 8 described above, the entire winding is a double winding, but multiple windings of triple or more may be used. FIG. 10 is a cross-sectional view of another reactor in the second embodiment of the present invention. As shown in FIG. 10, the entire winding of the reactor 40 is composed of n windings of the same number of turns C turns, and as shown in FIG. You may connect in parallel by the winding direction which is not impaired. Even in this case, the average distance between the winding 1a, which is a single winding of the multiple windings, and the center line 14c of the central leg 14 is equal to each single winding other than the winding 1a. Winding is performed so that the average distance between the winding (winding 2a (not shown) to winding na) and the center line 14c of the center leg 14 is substantially equal. Further, in the region surrounding the gap 13, the x-fold winding using the litz wire (winding 1 a to winding ja) is arranged on the inner peripheral side close to the center leg 14 and the y-fold using the single wire is used. The windings (winding ka to winding na) are replaced with x-folding windings (winding 1a to winding ja) using a litz wire. During the replacement, the winding 1a wound around the innermost periphery in the region surrounding the gap 13 is wound around the outermost periphery. The winding na wound around the outermost periphery in the region surrounding the gap 13 is wound around the innermost periphery.
 このように多重巻数xを調整して並列数を増加すると、ギャップ13からの漏れ磁束による渦電流損失の低減効果とインダクタンスの違いによる循環電流の抑制効果を維持し、巻線部分での渦電流損失も低減したまま、巻線を施すスペースの有効利用が可能となり、さらに巻線抵抗を低減することができる。 When the number of parallel turns is increased by adjusting the number of multiple turns x in this way, the effect of reducing the eddy current loss due to the leakage magnetic flux from the gap 13 and the effect of suppressing the circulating current due to the difference in inductance are maintained, and the eddy current in the winding portion is maintained. The space for winding can be effectively used while reducing the loss, and the winding resistance can be further reduced.
実施の形態3.
 図11は、本発明の実施の形態3におけるリアクトルの断面図である。図12は、図11に示したリアクトルの巻線結線を示す回路図である。図13は、図11に示したリアクトルの別の巻線結線を示す回路図である。2つのU形鉄心が向かい合うように配置して、ギャップを2箇所設けた脚部を構成し、それぞれの脚部に巻線を巻回した点が実施の形態1と異なる。1つの脚部に対する巻線の巻回の仕方については、実施の形態1と同じである。本実施の形態においても、実施の形態1、2と同様に、低周波成分の電流および高周波成分の電流の両方が流れる用途に使用されるリアクトルを前提としている。
Embodiment 3 FIG.
FIG. 11 is a cross-sectional view of the reactor in the third embodiment of the present invention. FIG. 12 is a circuit diagram showing winding connection of the reactor shown in FIG. FIG. 13 is a circuit diagram showing another winding connection of the reactor shown in FIG. The second embodiment is different from the first embodiment in that two U-shaped iron cores are arranged so as to face each other to form leg portions having two gaps, and windings are wound around the respective leg portions. The winding method for one leg is the same as in the first embodiment. In the present embodiment, similarly to the first and second embodiments, a reactor used for an application in which both a low-frequency component current and a high-frequency component current flow is assumed.
 図11において、リアクトル50は、磁性材料で形成された2つのU形鉄心51およびU形鉄心52がギャップ53a、53bを確保して向かい合うように配置されている。ギャップ53aを設けた第1側脚54aには巻線A1および巻線A2が巻回されて構成されている。第1側脚54aは、対向する一組の脚部54ap、54aqで構成され、脚部54ap、54aq間にギャップ53aが形成される。また、ギャップ53bを設けた第2側脚54bには巻線B1および巻線B2が巻回されて構成されている。第2側脚54bは、対向する一組の脚部54bp、54bqで構成され、脚部54bp、54bq間にギャップ53bが形成される。つまり、巻線A1、A2、巻線B1、B2は、複数組の脚部である脚部54ap、54aq、脚部54bp、54bqに対してそれぞれ巻回されている。 11, the reactor 50 is arranged so that two U-shaped iron cores 51 and U-shaped iron cores 52 formed of a magnetic material face each other while ensuring gaps 53a and 53b. A winding A1 and a winding A2 are wound around a first side leg 54a provided with a gap 53a. The first side leg 54a includes a pair of opposing leg portions 54ap and 54aq, and a gap 53a is formed between the leg portions 54ap and 54aq. A winding B1 and a winding B2 are wound around a second side leg 54b provided with a gap 53b. The second leg 54b is composed of a pair of opposing leg portions 54bp and 54bq, and a gap 53b is formed between the leg portions 54bp and 54bq. That is, the windings A1 and A2 and the windings B1 and B2 are wound around the leg portions 54ap and 54aq and the leg portions 54bp and 54bq, which are a plurality of sets of leg portions, respectively.
 本発明の実施の形態において、ギャップ53a、53bはエアギャップであるが、このギャップ部に透磁率が小さい材料を設けても良い。U形鉄心51、52の磁性材料には、珪素鋼板、珪素含有量が6.5%の鋼板(スーパーEコア)、フェライトコア、アモルファスコア、鉄・アルミ・珪素を混ぜ合わせたダストコア、ナノ結晶柔磁性材料のファインメットコアなどが使用できる。なお、鉄心の形は限定しておらず、巻線を施す鉄心の脚にギャップが含まれることが特徴である。 In the embodiment of the present invention, the gaps 53a and 53b are air gaps, but a material having a low magnetic permeability may be provided in the gap portions. Magnetic materials for U-shaped iron cores 51 and 52 include silicon steel plates, steel plates with 6.5% silicon content (Super E core), ferrite cores, amorphous cores, dust cores made by mixing iron, aluminum and silicon, and nanocrystals A soft magnetic material such as fine-met core can be used. The shape of the iron core is not limited and is characterized in that a gap is included in the legs of the iron core to be wound.
 本実施の形態におけるリアクトル50では、実施の形態1で示したリアクトル10への巻線の巻回の仕方と同じように、第1側脚54aに巻線A1、A2を、第2側脚54bに対して巻線B1、B2が巻回されている。巻線A1および巻線A2は、第1側脚54aのまわりを第1側脚54aの延伸方向に沿って、同じ巻数Cターンで巻回されている。巻線A1は、第1側脚54aに近接する内周側に巻回されている。巻線A2は、第1側脚54aに遠い外周側に巻回されている。同様に、巻線B1および巻線B2は、第1側脚54bのまわりを第1側脚54bの延伸方向に沿って、同じ巻数Cターンで巻回されている。巻線B1は、第1側脚54bに近接する内周側に巻回されている。巻線B2は、第1側脚54bに遠い外周側に巻回されている。巻線A1、A2、B1、B2は、多重に巻回される巻線のうちのそれぞれ一重分の巻線である。図12に示すように、巻線A1、A2、B1、B2の端部は、各巻線のインダクタンスを損なわない巻き方向で並列に接続されている。 In the reactor 50 according to the present embodiment, the windings A1 and A2 are provided on the first side leg 54a and the second side leg 54b is provided in the same manner as the winding method around the reactor 10 shown in the first embodiment. Winding B1, B2 is wound around. Winding A1 and winding A2 are wound with the same number of turns C around the first side leg 54a along the extending direction of the first side leg 54a. The winding A1 is wound on the inner peripheral side close to the first side leg 54a. The winding A2 is wound on the outer peripheral side far from the first side leg 54a. Similarly, the winding B1 and the winding B2 are wound around the first side leg 54b with the same number of turns C along the extending direction of the first side leg 54b. The winding B1 is wound on the inner peripheral side close to the first side leg 54b. The winding B2 is wound on the outer peripheral side far from the first side leg 54b. Each of the windings A1, A2, B1, and B2 is a single winding among the windings wound in multiple. As shown in FIG. 12, the ends of the windings A1, A2, B1, and B2 are connected in parallel in a winding direction that does not impair the inductance of each winding.
 実施の形態1と同様に、第1側脚54aに近接する内周側に巻回される巻線A1は、細い線径の素線を多数撚り合わせたリッツ線で構成され、その外周側に巻きつける巻線A2は、単線で構成され、巻線A1および巻線A2を二重に巻回している。巻線A2の単線の線径を、巻線A1のリッツ線の仕上がり径と同線径としてもよい。同様に、第2側脚54bに近接する内周側に巻回される巻線B1は、細い線径の素線を多数撚り合わせたリッツ線で構成され、その外周側に巻きつける巻線B2は、単線で構成され、巻線B1および巻線B2を二重に巻回している。巻線B2の単線の線径を、巻線B1のリッツ線の仕上がり径と同線径としてもよい。図11において、巻線は二重巻きとなっているので、ギャップ53aを囲む領域において、巻線の最内周がリッツ線(巻線A1)で構成され、巻線の最外周が単線(巻線A2)で構成され、ギャップ53bを囲む領域において、巻線の最内周がリッツ線(巻線B1)で構成され、巻線の最外周が単線(巻線B2)で構成されている。 As in the first embodiment, the winding A1 wound on the inner peripheral side close to the first side leg 54a is composed of a litz wire obtained by twisting many strands having a thin wire diameter, and on the outer peripheral side thereof. The winding A2 to be wound is composed of a single wire, and the winding A1 and the winding A2 are wound twice. The wire diameter of the single wire of the winding A2 may be the same as the finished diameter of the litz wire of the winding A1. Similarly, the winding B1 wound on the inner peripheral side close to the second side leg 54b is formed of a litz wire obtained by twisting a large number of strands having a thin wire diameter, and is wound around the outer peripheral side. Is composed of a single wire, and windings B1 and B2 are wound twice. The wire diameter of the single wire of the winding B2 may be the same as the finished diameter of the litz wire of the winding B1. In FIG. 11, since the winding is a double winding, in the region surrounding the gap 53a, the innermost circumference of the winding is constituted by a litz wire (winding A1), and the outermost circumference of the winding is a single wire (winding). Line A2), and in the region surrounding the gap 53b, the innermost circumference of the winding is constituted by a litz wire (winding B1), and the outermost circumference of the winding is constituted by a single line (winding B2).
 実施の形態1と同様に、ギャップ53a、53bを囲む領域において、巻線の最内周をリッツ線で構成することによって、漏れ磁束による渦電流損失を低減でき、巻線の最外周を単線で構成することによって商用周波数領域での巻線抵抗を低減することができる。このような効果に加えて、本実施の形態では、巻線の並列数を増加できるので、巻線抵抗をさらに低減することができる。 As in the first embodiment, in the region surrounding the gaps 53a and 53b, by configuring the innermost circumference of the winding with a litz wire, eddy current loss due to leakage magnetic flux can be reduced, and the outermost circumference of the winding is made with a single wire. By configuring, winding resistance in the commercial frequency region can be reduced. In addition to such an effect, in the present embodiment, the number of windings in parallel can be increased, so that the winding resistance can be further reduced.
 また、第1側脚54aに巻回した巻線A1、A2と、第1側脚54bに巻回した巻線B1、B2とを並列接続せずに、図13のように巻線A1、A2、B1、B2を接続してもよい。つまり、巻線A1、A2、巻線B1、B2のそれぞれは、複数の側脚54a、54b(複数組の脚部である脚部54ap、54aq、脚部54bp、54bq)のそれぞれに対して巻回され、かつ、それぞれの側脚54a、54b(それぞれの組の脚部)に巻回された巻線毎に、インダクタンスを損なわない方向で並列に接続されることなる。このように巻線A1、A2、巻線B1、B2を接続することによって、図14に示すような単相の電力変換装置において、1台のリアクトル113にて電力変換器114と単相系統電源111とを接続することが可能である。 Further, the windings A1 and A2 wound around the first side leg 54a and the windings B1 and B2 wound around the first side leg 54b are not connected in parallel, as shown in FIG. , B1 and B2 may be connected. That is, each of the windings A1 and A2 and the windings B1 and B2 is wound around each of a plurality of side legs 54a and 54b (a plurality of sets of leg portions 54ap and 54aq and leg portions 54bp and 54bq). The windings that are rotated and wound around the respective side legs 54a and 54b (legs of each pair) are connected in parallel in a direction that does not impair the inductance. By connecting the windings A1 and A2 and the windings B1 and B2 in this manner, in the single-phase power converter as shown in FIG. 111 can be connected.
 なお、図11では、巻線を二重に巻回した場合について示したが、巻線は三重以上であってもよい。図15は、本発明の実施の形態3における別のリアクトルの断面図である。図16は、図15に示したリアクトルの巻線結線を示す回路図である。図17は、図15に示したリアクトルの別の巻線結線を示す回路図である。図15に示したリアクトル60と図11に示したリアクトル50との相違点は、巻線の構成である。図15においては、対向する一組の脚部に対する巻線の巻回の仕方は実施の形態1の図5と同様である。図15において、巻線全体は、同一巻数Cターンの巻線をn重巻きにして構成される。この場合、側脚54a、54bに近接する内周側に巻回されるx重(x:整数かつ1≦x<n)の巻線(図15における巻線A1から巻線Aj、巻線B1から巻線Bj)は、細い線径の素線を多数撚り合わせたリッツ線で構成され、その外周側に巻回されるy重(y=n-x)の巻線(図15における巻線Akから巻線An、巻線Bkから巻線Bn)は、単線で構成され、全体でn重(n=x+y)に巻回されている。巻線Akから巻線An、巻線Bkから巻線Bnの単線の線径を、巻線A1から巻線Aj、巻線B1から巻線Bjのリッツ線の仕上がり径と同線径としてもよい。図16に示すように、巻線A1から巻線Bnの端部は、インダクタンスを損なわない巻き方向で並列に接続されている。 Although FIG. 11 shows the case where the winding is wound twice, the winding may be triple or more. FIG. 15 is a cross-sectional view of another reactor according to Embodiment 3 of the present invention. FIG. 16 is a circuit diagram showing the winding connection of the reactor shown in FIG. FIG. 17 is a circuit diagram showing another winding connection of the reactor shown in FIG. The difference between the reactor 60 shown in FIG. 15 and the reactor 50 shown in FIG. 11 is the configuration of the winding. In FIG. 15, the winding method for the pair of opposing leg portions is the same as in FIG. 5 of the first embodiment. In FIG. 15, the whole winding is configured by winding n turns with the same number of turns C turns. In this case, x-fold (x: integer and 1 ≦ x <n) windings (from winding A1 to winding Aj, winding B1 in FIG. 15) wound on the inner peripheral side close to the side legs 54a, 54b. To winding Bj) is composed of a litz wire formed by twisting a number of strands having a thin wire diameter, and a y-fold (y = nx) winding (winding in FIG. 15) wound around the outer periphery thereof. The windings Ak to An and windings Bk to Bn) are formed of a single wire, and are wound n times (n = x + y) as a whole. The wire diameter of the single wire from the winding Ak to the winding An and the winding Bk to the winding Bn may be the same as the finished diameter of the litz wire from the winding A1 to the winding Aj and from the winding B1 to the winding Bj. . As shown in FIG. 16, the ends of the windings A1 to Bn are connected in parallel in a winding direction that does not impair the inductance.
 また、第1側脚54aおよびに巻回した巻線A1からAnと、第1側脚54bに巻回した巻線B1からBnとを、並列接続せずに、図17のように巻線A1からAn、B1からBnを接続してもよい。このように巻線を接続することによって、前述のとおり、図14に示すような単相の電力変換装置において、1台のリアクトル113にて電力変換器114と単相系統電源111とを接続することが可能である。 Further, the windings A1 to An wound around the first side leg 54a and the windings B1 to Bn wound around the first side leg 54b are not connected in parallel, but are wound as shown in FIG. To An and B1 to Bn may be connected. By connecting the windings in this way, as described above, in the single-phase power converter as shown in FIG. 14, the power converter 114 and the single-phase system power supply 111 are connected by one reactor 113. It is possible.
 巻線全体の多重巻数nを増やすことによって、鉄心における巻線を施すことが可能なスペースを有効利用できるので、巻線抵抗をさらに低減できる他に、ギャップ53a、53bからの漏れ磁束の広がりに応じて、リッツ線を使用する巻線A1から巻線Ajまで(巻線B1から巻線Bjまで)の多重巻数xを調整すれば、高周波数領域での巻線部分の渦電流損失の低減と、低周波数領域での巻線抵抗の低減を両立でき、より低損失なリアクトルを実現することができる。 By increasing the number of multiple turns n of the entire winding, the space in which the winding in the iron core can be applied can be used effectively, so that the winding resistance can be further reduced and the leakage magnetic flux from the gaps 53a and 53b can be expanded. Accordingly, if the number of multiple turns x from the winding A1 to the winding Aj using the litz wire (from the winding B1 to the winding Bj) is adjusted, the eddy current loss of the winding portion in the high frequency region can be reduced. Moreover, it is possible to achieve both a reduction in winding resistance in the low frequency region and to realize a reactor with lower loss.
実施の形態4.
 図18は、本発明の実施の形態4におけるリアクトルの断面図である。図19は、別のリアクトルの断面図である。2つのU形鉄心が向かい合うように配置して、ギャップを2箇所設けた脚部を構成し、それぞれの脚部に巻線を巻回した点が実施の形態2と異なる。1つの脚部に対する巻線の巻回の仕方については、実施の形態2と同じである。
Embodiment 4 FIG.
FIG. 18 is a cross-sectional view of the reactor in the fourth embodiment of the present invention. FIG. 19 is a cross-sectional view of another reactor. The second embodiment is different from the second embodiment in that two U-shaped iron cores are arranged so as to face each other to form leg portions having two gaps, and windings are wound around the respective leg portions. The winding method for one leg is the same as in the second embodiment.
 図18において、リアクトル70は、磁性材料で形成された2つのU形鉄心51およびU形鉄心52がギャップ53a、53bを確保して向かい合うように配置されている。ギャップ53aを設けた第1側脚54aには巻線A1aおよび巻線A2aが巻回されて構成されている。第1側脚54aは、対向する一組の脚部54ap、54aqで構成され、脚部54ap、54aq間にギャップ53aが形成される。また、ギャップ53bを設けた第2側脚54bには巻線B1aおよび巻線B2aが巻回されて構成されている。第2側脚54bは、対向する一組の脚部54bp、54bqで構成され、脚部54bp、54bq間にギャップ53bが形成される。 18, the reactor 70 is arranged so that two U-shaped iron cores 51 and a U-shaped iron core 52 formed of a magnetic material face each other while ensuring gaps 53a and 53b. A winding A1a and a winding A2a are wound around the first side leg 54a provided with the gap 53a. The first side leg 54a includes a pair of opposing leg portions 54ap and 54aq, and a gap 53a is formed between the leg portions 54ap and 54aq. A winding B1a and a winding B2a are wound around the second leg 54b provided with the gap 53b. The second leg 54b is composed of a pair of opposing leg portions 54bp and 54bq, and a gap 53b is formed between the leg portions 54bp and 54bq.
 巻線A1aおよび巻線A2aは、第1側脚54aのまわりを第1側脚54aの延伸方向に沿って、同じ巻数Cターンで巻回されている。巻線A1aには細い線径の素線を多数撚り合わせたリッツ線を使用し、巻線A2aには巻線A1aのリッツ線の仕上がり径と同線径の単線を使用する。本実施の形態では、少なくともギャップ53aを囲む領域においては、第1側脚54aに近接する内周側にリッツ線(巻線A1a)を配置し、外周側に単線(巻線A2a)を配置しているが、ギャップを囲む領域以外においては、そのような制限がなく、巻線A1aと巻線A2aを、第1側脚54aの延伸方向に沿った途中で入れ替えるように配置している。巻線B1aおよび巻線B2aについても、巻線A1aおよび巻線A2aと同様に、第2側脚54bのまわりに巻回されている。 The winding A1a and the winding A2a are wound around the first side leg 54a along the extending direction of the first side leg 54a with the same number of turns C. For the winding A1a, a litz wire obtained by twisting many strands having a thin wire diameter is used, and for the winding A2a, a single wire having the same diameter as the finished diameter of the litz wire of the winding A1a is used. In the present embodiment, at least in a region surrounding the gap 53a, a litz wire (winding A1a) is disposed on the inner peripheral side close to the first side leg 54a, and a single wire (winding A2a) is disposed on the outer peripheral side. However, except for the region surrounding the gap, there is no such limitation, and the winding A1a and the winding A2a are arranged so as to be replaced in the middle along the extending direction of the first side leg 54a. The winding B1a and the winding B2a are also wound around the second side leg 54b, similarly to the winding A1a and the winding A2a.
 実施の形態2と同様に、このように単線とリッツ線とを入れ替える巻回の仕方を施すことによって、二重に巻回される巻線のうちの一重分の巻線であるリッツ線(巻線A1a)と第1側脚54aの中心線54caとの間の平均距離を、二重に巻回される巻線のうちの他の一重分の巻線である単線(巻線A2a)と第1側脚54aの中心線54caとの間の平均距離に略等しくすることができる。このため、巻線A1aのインダクタンスと巻線A2aのインダクタンスとを均等にすることができ、巻線A1aと巻線A2aとの間の循環電流を抑制することができるので、銅損の増加を防ぐことができる。ここで、第1側脚54aの中心線54caは、脚部54apと脚部54aqとが対抗する面のそれぞれの中心を結んで第1側脚54aの延伸方向に伸ばした線に相当する。巻線B1aおよび巻線B2aについても同様に、単線とリッツ線とを入れ替える巻回の仕方を施す。また、ギャップ53a、53bの部分では、実施の形態1と同様に、漏れ磁束が顕著に鎖交する内周側の巻線にリッツ線を用いた巻線A1a、B1aが配置されているので、巻線部分での渦電流損失も低減することができる。さらに、巻線の並列数を増加できるので、巻線抵抗をさらに低減することができる。 As in the second embodiment, the litz wire (winding) is a single winding of the windings wound twice by applying the winding method to replace the single wire and the litz wire in this way. The average distance between the line A1a) and the center line 54ca of the first side leg 54a is the same as the single wire (winding A2a) that is the other single winding of the windings wound twice. It can be made substantially equal to the average distance between the center line 54ca of the first leg 54a. For this reason, the inductance of the winding A1a and the inductance of the winding A2a can be equalized, and the circulating current between the winding A1a and the winding A2a can be suppressed, thereby preventing an increase in copper loss. be able to. Here, the center line 54ca of the first side leg 54a corresponds to a line extending in the extending direction of the first side leg 54a by connecting the centers of the surfaces of the leg portion 54ap and the leg portion 54aq facing each other. Similarly, the winding B1a and the winding B2a are also wound by replacing the single wire and the litz wire. Further, in the gaps 53a and 53b, as in the first embodiment, the windings A1a and B1a using the litz wires are arranged on the inner peripheral winding where the leakage magnetic flux is remarkably linked. Eddy current loss at the winding portion can also be reduced. Furthermore, since the number of parallel windings can be increased, the winding resistance can be further reduced.
 図18では、単線とリッツ線との入れ替えを2回行ったが、二重に巻回される巻線のうちの一重分の巻線であるリッツ線(巻線A1a)と第1側脚54aの中心線54caとの間の平均距離が、多重に巻回される巻線のうちの他の一重分の巻線である単線(巻線A2a)と第1側脚54aの中心線54caとの間の平均距離に略等しく、かつ、ギャップ53aを囲む領域においてリッツ線を用いる巻線A1aが、第1側脚54aに近接する内周側に配置されれば、単線とリッツ線とを入れ替える回数、入れ替える箇所とは関係なく、同等の効果を得ることができる。巻線B1aおよび巻線B2aについても、同様の巻回の仕方を施すことによって、同様の効果が得られる。 In FIG. 18, the single wire and the litz wire are switched twice, but the litz wire (winding A1a) that is a single winding of the windings wound twice and the first side leg 54a. The average distance between the center line 54ca and the center line 54ca of the first side leg 54a is a single wire (winding A2a) that is one of the other windings of the multiple windings. If the winding A1a using the litz wire in the region surrounding the gap 53a is disposed on the inner peripheral side close to the first side leg 54a, the number of times the single wire and the litz wire are switched. The same effect can be obtained regardless of the place to be replaced. The same effect can be obtained for the winding B1a and the winding B2a by applying the same winding method.
 なお、前述の図18による説明では、巻線全体は二重巻きとなっているが、三重以上の多重巻きにしてもよい。図19は、本発明の実施の形態4における別のリアクトルの断面図である。図19に示すように、リアクトル80では、一側脚あたり任意の多重巻数nを使用し、図16に示すように巻線1から巻線nの端部がインダクタンスを損なわない巻き方向で並列に接続してもよい。この場合でも、多重に巻回される巻線のうちの一重分の巻線である巻線A1aと第1側脚54aの中心線54caとの間の平均距離が、巻線A1a以外の各一重分の巻線(巻線A2a(図示せず)~巻線Ana)と第1側脚54aの中心線54caとの間のそれぞれの平均距離と略等しくなるように巻回する。さらに、ギャップ53aを囲む領域において、リッツ線を用いるx重の巻線(巻線A1aから巻線Aja)が第1側脚54aに近接する内周側に配置されるように、単線を用いるy重の巻線(巻線Akaから巻線Ana)とリッツ線を用いるx重の巻線との入れ替えを行う。巻線B1aから巻線Bnaについても同様に構成されている。このように多重巻数xを調整して並列数を増加すると、ギャップ53aからの漏れ磁束による渦電流損失の低減効果とインダクタンスの違いによる循環電流の抑制効果を維持したまま、巻線を施すスペースの有効利用が可能となり、巻線抵抗を低減することができる。 In the description with reference to FIG. 18 described above, the entire winding is a double winding, but a multiple winding of triple or more may be used. FIG. 19 is a cross-sectional view of another reactor according to Embodiment 4 of the present invention. As shown in FIG. 19, the reactor 80 uses an arbitrary number of multiple turns n per side leg, and as shown in FIG. 16, the ends of the windings 1 to n are arranged in parallel in a winding direction that does not impair the inductance. You may connect. Even in this case, the average distance between the winding A1a, which is a single winding among the multiple windings, and the center line 54ca of the first side leg 54a is equal to each single winding other than the winding A1a. The minute windings (winding A2a (not shown) to winding Ana) are wound so as to be substantially equal to the respective average distances between the center line 54ca of the first side leg 54a. Further, in the region surrounding the gap 53a, a single wire is used so that the x-fold windings using the litz wire (winding A1a to winding Aja) are arranged on the inner peripheral side close to the first side leg 54a. The heavy windings (winding Aka to winding Ana) and the x-folding winding using the litz wire are replaced. The windings B1a to Bna are similarly configured. Thus, when the number of parallel turns is increased by adjusting the number of multiple turns x, the space for winding is maintained while maintaining the effect of reducing the eddy current loss due to the leakage magnetic flux from the gap 53a and the effect of suppressing the circulating current due to the difference in inductance. Effective use is possible, and winding resistance can be reduced.
 本実施の形態において、巻線の接続については実施の形態3と同様に、図12、図16に示すように、インダクタンスを損なわない巻き方向で並列に接続する。また、図13、図17に示すように接続して、単相の電力変換装置に適用してもよい。 In this embodiment, the windings are connected in parallel in the winding direction that does not impair the inductance, as shown in FIGS. 12 and 16, as in the third embodiment. Moreover, you may connect as shown in FIG. 13, FIG. 17, and may apply to a single phase power converter device.
実施の形態5.
 図20は、本発明の実施の形態5におけるリアクトルの断面図である。実施の形態1~4において、鉄心の脚1つに対して1つのギャップが1つ設けられた場合を例にして説明したが、図20のように、鉄心の1つの脚に対して複数のギャップを設けてもよい。図20において、リアクトル90は、ブロック状の磁性材料の鉄心91、92、93、94、95を組合せて構成されている。図20の場合、2つのギャップ96、97が形成されている。
Embodiment 5 FIG.
FIG. 20 is a cross-sectional view of the reactor in the fifth embodiment of the present invention. In the first to fourth embodiments, the case where one gap is provided for one leg of the iron core has been described as an example. However, as shown in FIG. 20, a plurality of legs are provided for one leg of the iron core. A gap may be provided. In FIG. 20, a reactor 90 is configured by combining iron cores 91, 92, 93, 94, and 95 of a block-shaped magnetic material. In the case of FIG. 20, two gaps 96 and 97 are formed.
 図20に示すように、2つ以上のギャップ96、97が形成されていても、ギャップ96、97を設けた中央脚98に、単線(巻線ka~na)と素線が多数撚り合わされたリッツ線(巻線1a~ja)とが多重に巻回されている。ギャップ96、97を囲む領域において巻線全体の最内周がリッツ線で構成され、巻線全体の最外周が単線で構成されるので、高周波数領域での巻線部分の渦電流損失の低減と、低周波数領域での巻線抵抗の低減を両立でき、より低損失なリアクトルを実現することができる。また、図20に示すように、各巻線1a~naのインダクタンスを均等にするような巻回の仕方を施すことによって、循環電流を抑制することができる。 As shown in FIG. 20, even when two or more gaps 96 and 97 are formed, a large number of single wires (windings ka to na) and strands are twisted on the central leg 98 provided with the gaps 96 and 97. A litz wire (windings 1a to ja) is wound in multiple layers. In the region surrounding the gaps 96 and 97, the innermost circumference of the entire winding is composed of a litz wire, and the outermost circumference of the entire winding is composed of a single wire, thereby reducing eddy current loss of the winding portion in a high frequency region. In addition, it is possible to achieve both a reduction in winding resistance in a low frequency region and to realize a reactor with lower loss. Further, as shown in FIG. 20, the circulating current can be suppressed by applying a winding method that equalizes the inductances of the windings 1a to na.
 なお、全ての実施の形態において、巻線を鉄心に直接施すように図示しているが、ボビンに巻線を施してから、鉄心にボビンを装着してもよい。また、全ての実施の形態において、巻線と巻線との間に絶縁紙を挿入することを言及していないが、巻線間の絶縁を確保する目的で巻線間に絶縁紙を挿入してもよい。ただし、巻線を並列に接続する場合は、巻線同士の重なり合う部分はほぼ同電位であり、絶縁紙を挿入せずに、巻線の上に巻線を施すことも可能である。図21に巻線配置の一例を示す断面図である。この場合、図21(a)のように1層目に巻きつけた1層目の巻線(WL1)の真上に2層目の巻線(WL2)を巻き付け、2層目の巻線(WL2)の真上に3層目の巻線(WL3)を巻き付けてもよいが、図21(b)のように1層目の巻線(WL1)の隙間に2層目の巻線(WL2)を巻き付け、2層目の巻線(WL2)の隙間に3層目の巻線(WL3)を巻き付けるようにすれば、導体の占積率が上昇し並列数を増加できるので、巻線抵抗をさらに低減することができる。 In all the embodiments, the winding is illustrated as being directly applied to the iron core. However, the bobbin may be mounted on the iron core after the bobbin is wound. Moreover, in all the embodiments, it is not mentioned that the insulating paper is inserted between the windings. However, in order to ensure the insulation between the windings, the insulating paper is inserted between the windings. May be. However, when the windings are connected in parallel, the overlapping portions of the windings have substantially the same potential, and the winding can be applied on the windings without inserting insulating paper. FIG. 21 is a cross-sectional view showing an example of a winding arrangement. In this case, as shown in FIG. 21A, the second layer winding (WL2) is wound just above the first layer winding (WL1) wound on the first layer, and the second layer winding ( The third layer winding (WL3) may be wound just above WL2), but the second layer winding (WL2) is inserted in the gap between the first layer winding (WL1) as shown in FIG. ) And winding the third layer winding (WL3) in the gap between the second layer winding (WL2), the space factor of the conductor can be increased and the number of parallels can be increased. Can be further reduced.
 1~j,A1~Aj,B1~Bj,1a~ja,A1a~Aja,B1a~Bja 巻線(リッツ線)、2,k~n,A2,Ak~An,B2,Bk~Bn,2a,ka~na,A2a,Aka~Ana,B2a,Bka~Bna 巻線(単線)、10,20,30,40,50,60,70,80,90、103,113 リアクトル、11,12 E形鉄心、51,52 U形鉄心、91,92,93,94,95 鉄心、13,53a,53b,96,97 ギャップ、14,98 中央脚、14c,54ca,54cb 中心線、14p,14q,54ap,54aq,54bp,54bq 脚部、15 磁束、54a 第1側脚、54b 第2側脚、101,111 三相系統電源、102,112 コンデンサ、104,114 電力変換器。 1 to j, A1 to Aj, B1 to Bj, 1a to ja, A1a to Aja, B1a to Bja winding (Litz wire), 2, k to n, A2, Ak to An, B2, Bk to Bn, 2a, ka-na, A2a, Aka-Ana, B2a, Bka-Bna winding (single wire) 10, 20, 30, 40, 50, 60, 70, 80, 90, 103, 113 reactor, 11, 12 E-shaped core 51, 52 U-shaped iron core, 91, 92, 93, 94, 95 iron core, 13, 53a, 53b, 96, 97 gap, 14, 98 center leg, 14c, 54ca, 54cb center line, 14p, 14q, 54ap, 54 aq, 54 bp, 54 bq leg, 15 magnetic flux, 54 a first side leg, 54 b second side leg, 101, 111 three-phase power supply, 102, 112 capacitor, 104, 11 Power converter.

Claims (7)

  1. 対向する少なくとも一組の脚部を有し、前記一組の脚部によってギャップが形成される鉄心と、
    前記一組の脚部の延伸方向に沿って前記一組の脚部に巻回され、かつ、前記延伸方向に略垂直な方向に重なるように多重に巻回される巻線とを備え、
    前記ギャップを囲む領域において、前記巻線の最内周が素線を多数撚り合わされたリッツ線で構成され、前記巻線の最外周が単線で構成されることを特徴とするリアクトル。
    An iron core having at least one pair of legs facing each other, the gap being formed by the pair of legs;
    A winding wound around the set of leg portions along the extending direction of the set of leg portions and wound in multiple layers so as to overlap in a direction substantially perpendicular to the extending direction;
    In the region surrounding the gap, the innermost circumference of the winding is constituted by a litz wire in which a number of strands are twisted, and the outermost circumference of the winding is constituted by a single wire.
  2. 前記リッツ線の外径は、前記単線の外径と略等しいことを特徴とする請求項1に記載のリアクトル。 The reactor according to claim 1, wherein an outer diameter of the litz wire is substantially equal to an outer diameter of the single wire.
  3. 前記巻線は、前記ギャップおよび前記一組の脚部を囲む全ての領域において、前記巻線の最内周が前記リッツ線で構成され、前記巻線の最外周が前記単線で構成されることを特徴とする請求項1または2に記載のリアクトル。 In the winding, the innermost circumference of the winding is constituted by the litz wire and the outermost circumference of the winding is constituted by the single wire in all regions surrounding the gap and the set of leg portions. The reactor of Claim 1 or 2 characterized by these.
  4. 前記巻線は、前記一組の脚部を囲む一部の領域において、前記巻線の最内周が前記単線で構成され、前記巻線の最外周が前記リッツ線で構成されることを特徴とする請求項1または2に記載のリアクトル。 In the partial area surrounding the pair of legs, the innermost circumference of the winding is constituted by the single wire, and the outermost circumference of the winding is constituted by the litz wire. The reactor according to claim 1 or 2.
  5. 前記一組の脚部が対向する面の中心を前記延伸方向に伸ばした線を前記一組の脚部の中心線とし、
    前記巻線は、前記多重に巻回される巻線のうちの一重分の巻線と前記中心線との間の平均距離が、前記多重に巻回される巻線のうちの他の一重分の巻線と前記中心線との間の平均距離に略等しくなるように構成されることを特徴とする請求項1または2に記載のリアクトル。
    A line obtained by extending the center of the surface facing the set of legs in the extending direction is a center line of the set of legs,
    In the winding, the average distance between a single winding of the multiple windings and the center line is equal to the other single winding of the multiple windings. The reactor according to claim 1, wherein the reactor is configured to be substantially equal to an average distance between a winding of the coil and the center line.
  6. 前記鉄心は、対向する複数組の脚部を有し、前記複数組の脚部によって複数のギャップが形成されるものであり、
    前記巻線は、前記複数組の脚部に対してそれぞれ巻回され、かつ、前記巻線のインダクタンスが消失しない巻き方向で並列に接続されることを特徴とする請求項1~5のいずれか1項に記載のリアクトル。
    The iron core has a plurality of opposing leg portions, and a plurality of gaps are formed by the plurality of leg portions,
    The winding is wound around each of the plurality of sets of leg portions and connected in parallel in a winding direction in which the inductance of the winding does not disappear. The reactor according to item 1.
  7. 前記鉄心は、対向する複数組の脚部を有し、前記複数組の脚部によって複数のギャップが形成されるものであり、
    前記巻線は、前記複数組の脚部に対してそれぞれ巻回され、かつ、前記それぞれの組の脚部に巻回された巻線毎に前記巻線のインダクタンスが消失しない巻き方向で並列に接続されることを特徴とする請求項1~5のいずれか1項に記載のリアクトル。
    The iron core has a plurality of opposing leg portions, and a plurality of gaps are formed by the plurality of leg portions,
    The windings are respectively wound around the plurality of sets of leg portions, and are parallel to each other in the winding direction in which the inductance of the winding does not disappear for each winding wound around the leg portions of the respective sets. The reactor according to any one of claims 1 to 5, wherein the reactor is connected.
PCT/JP2011/004195 2010-08-06 2011-07-26 Reactor WO2012017616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012527578A JP5310952B2 (en) 2010-08-06 2011-07-26 Reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177715 2010-08-06
JP2010-177715 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012017616A1 true WO2012017616A1 (en) 2012-02-09

Family

ID=45559139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004195 WO2012017616A1 (en) 2010-08-06 2011-07-26 Reactor

Country Status (2)

Country Link
JP (1) JP5310952B2 (en)
WO (1) WO2012017616A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015366A (en) * 2014-07-01 2016-01-28 Tdk株式会社 Coil component
EP3085431A1 (en) 2015-04-24 2016-10-26 HeidelbergCement AG Treatment of exhaust gases from the production of concrete
JP2017175017A (en) * 2016-03-24 2017-09-28 パナソニックIpマネジメント株式会社 Reactor
WO2018007514A1 (en) * 2016-07-07 2018-01-11 Abb Schweiz Ag Transformer with a winding arrangemnet of litz wires
JPWO2017126078A1 (en) * 2016-01-21 2018-01-25 三菱電機株式会社 Reactor
CN107808731A (en) * 2016-09-08 2018-03-16 发那科株式会社 Reactor
EP3648126A1 (en) * 2018-10-31 2020-05-06 ABB Schweiz AG Electrical component, especially transfomer or inductor
JP2022090665A (en) * 2020-12-08 2022-06-20 株式会社明電舎 Reactor structure of power conversion device
US11557423B2 (en) 2017-02-22 2023-01-17 Autonetworks Technologies, Ltd. Coil and reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN
JPS5849423U (en) * 1981-09-28 1983-04-04 東芝ライテック株式会社 winding structure
JPH05243060A (en) * 1992-03-02 1993-09-21 Nippon Telegr & Teleph Corp <Ntt> Chalk and transformer for switching power supply
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JP2001297922A (en) * 2000-04-14 2001-10-26 Cosel Co Ltd Coil structure
JP2008210998A (en) * 2007-02-27 2008-09-11 Pony Denki Kk Reactor element with air gap

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170998U (en) * 1983-04-30 1984-11-15 明治ナシヨナル工業株式会社 discharge lamp lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN
JPS5849423U (en) * 1981-09-28 1983-04-04 東芝ライテック株式会社 winding structure
JPH05243060A (en) * 1992-03-02 1993-09-21 Nippon Telegr & Teleph Corp <Ntt> Chalk and transformer for switching power supply
JPH08203736A (en) * 1995-01-30 1996-08-09 Murata Mfg Co Ltd Coil device with core
JP2001297922A (en) * 2000-04-14 2001-10-26 Cosel Co Ltd Coil structure
JP2008210998A (en) * 2007-02-27 2008-09-11 Pony Denki Kk Reactor element with air gap

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015366A (en) * 2014-07-01 2016-01-28 Tdk株式会社 Coil component
EP3085431A1 (en) 2015-04-24 2016-10-26 HeidelbergCement AG Treatment of exhaust gases from the production of concrete
WO2016169638A1 (en) 2015-04-24 2016-10-27 Heidelbergcement Ag Treatment of exhaust gases from cement clinker production
JPWO2017126078A1 (en) * 2016-01-21 2018-01-25 三菱電機株式会社 Reactor
JP2017175017A (en) * 2016-03-24 2017-09-28 パナソニックIpマネジメント株式会社 Reactor
WO2018007514A1 (en) * 2016-07-07 2018-01-11 Abb Schweiz Ag Transformer with a winding arrangemnet of litz wires
CN107808731A (en) * 2016-09-08 2018-03-16 发那科株式会社 Reactor
CN107808731B (en) * 2016-09-08 2021-09-17 发那科株式会社 Electric reactor
US11557423B2 (en) 2017-02-22 2023-01-17 Autonetworks Technologies, Ltd. Coil and reactor
EP3648126A1 (en) * 2018-10-31 2020-05-06 ABB Schweiz AG Electrical component, especially transfomer or inductor
WO2020089228A1 (en) * 2018-10-31 2020-05-07 Abb Schweiz Ag Electrical component, especially transformer or inductor
CN112955986A (en) * 2018-10-31 2021-06-11 Abb电网瑞士股份公司 Electrical component, in particular a transformer or an inductor
CN112955986B (en) * 2018-10-31 2022-03-29 日立能源瑞士股份公司 Electrical component
JP2022090665A (en) * 2020-12-08 2022-06-20 株式会社明電舎 Reactor structure of power conversion device
JP7472768B2 (en) 2020-12-08 2024-04-23 株式会社明電舎 Reactor structure of power conversion device

Also Published As

Publication number Publication date
JPWO2012017616A1 (en) 2013-09-19
JP5310952B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5310952B2 (en) Reactor
US7256678B2 (en) Magnetically controlled inductive device
WO2013065095A1 (en) Reactor, transformer, and power conversion apparatus using same
JP2008210998A (en) Reactor element with air gap
US9570995B2 (en) Magnetically coupled reactor and power converter
JP2004207729A (en) Coil structure of variable inductance
TWI390560B (en) Transformer
JP5824211B2 (en) Composite magnetic component and switching power supply using the same
TW201030777A (en) Transformer
WO2013031711A1 (en) Reactor and electrical device
JP2004525505A (en) Toroidal guidance device and manufacturing method thereof
US11749439B2 (en) Common mode choke coil
JP5004260B2 (en) Outer iron type power transformer and power converter using the same
KR101665317B1 (en) Coupled Inductor for Current Balance
JP6922131B2 (en) Transformer and DC-DC converter
JP3574955B2 (en) Transformer winding core
CN112652470A (en) Transformer
CN214588368U (en) Transformer and isolation converter
JPH03238806A (en) Swinging choke coil
WO2023279925A1 (en) Inductor
JP4300494B2 (en) High frequency power transformer and power conversion device using the same
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JP4277485B2 (en) Trance
CN117457347A (en) Magnetic control transformer
JP2020025040A (en) Coupled inductor for multi-phase converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527578

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814254

Country of ref document: EP

Kind code of ref document: A1