JP2008210998A - Reactor element with air gap - Google Patents

Reactor element with air gap Download PDF

Info

Publication number
JP2008210998A
JP2008210998A JP2007046435A JP2007046435A JP2008210998A JP 2008210998 A JP2008210998 A JP 2008210998A JP 2007046435 A JP2007046435 A JP 2007046435A JP 2007046435 A JP2007046435 A JP 2007046435A JP 2008210998 A JP2008210998 A JP 2008210998A
Authority
JP
Japan
Prior art keywords
winding
terminal
magnetic
magnetic leg
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007046435A
Other languages
Japanese (ja)
Inventor
Shinichiro Nagai
真一郎 長井
Kazu Takahashi
計 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PONY DENKI KK
Original Assignee
PONY DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PONY DENKI KK filed Critical PONY DENKI KK
Priority to JP2007046435A priority Critical patent/JP2008210998A/en
Publication of JP2008210998A publication Critical patent/JP2008210998A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding structure with a low cost which can easily improve a loss by reducing an eddy current loss caused by a leakage magnetic flux generated in the vicinity of the air gap of a core in a reactor element with an air gap. <P>SOLUTION: In the reactor element with an air gap, a copper material is divided into two of copper material divisions 1 and 2 separated by a division line having a spatial width, and the division line, and the division line is located in the vicinity of the air gap. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

電力変換装置に使うリアクトル素子       Reactor elements used in power converters

複数の電力用スイッチで構成され、直流電力を、PWM制御によって交流電力に変換する電力変換装置は、モーター駆動用インバータ、無停電電源装置などに用いられている。中でも共振回路を利用した共振DCリンク方式にてスイッチング損失を低減する共振型変換器が注目されている。
半導体を使用した電力変換装置にはほとんどの場合、リアクトルを使うことが多い。中でもパワー系の電力変換器には大型のリアクトルを使用することが多い。このリアクトルは電力変換装置の中でも電力損失が大きく、エネルギー問題やCO2削減の問題からもリアクトルの損失低減に注目が集まっている。
リアクトルの損失は大きく(1)銅損失、(2)鉄損失、(3)渦電流損失の3つに分けられる。
(1)の銅損失は銅材に流れる電流量と周波数によって変わる抵抗値による損失である。
(2)の鉄損失は磁性体内のヒステリシス損失とコア内の渦電流損失による損失である。
(3)の渦電流損失はエアギャップをもつリアクトルの漏れ磁束により、コイルなどにて渦電流が流れることによる損失である。
渦電流損失の現象は従来から分かっていた内容であるがその対策については未開な部分も多い。
従来(1)は巻線の断面積を大きくしたり、高周波の場合は表皮効果によりリッツ線を使用して抵抗値を減らす工夫はおこなわれている。
図1,2のエッジワイズリアクトルは銅断面積を大きくしたものである。
(2)は鉄(コア)形状を変えたり、磁性体の断面積を大きくすることで損失改善をする工夫はおこなわれている。
(3)の渦電流損失改善は「特許文献1」にあるように特に高周波で使われるボビンにて検討される例がある。
これは、エアギャップ付近に渦電流損失が発生するため、巻線をおこなうボビンにあらかじめ、ボビン成型時に凸型にし、この部分に巻線をおこなわない工夫をしているものである。
ただし、これはボビンを使用する小型のリアクトルに対する技術である。
ボビンを使用しない大型のリアクトルに対する技術は未開である。
「特許文献1」 特開平07−302720号広報
A power conversion device configured by a plurality of power switches and converting DC power into AC power by PWM control is used for an inverter for driving a motor, an uninterruptible power supply, and the like. In particular, a resonant converter that reduces switching loss by a resonant DC link method using a resonant circuit has attracted attention.
In most cases, reactors are often used for power conversion devices using semiconductors. In particular, large power reactors are often used for power system power converters. This reactor has a large power loss among power conversion devices, and attention is focused on reducing the loss of the reactor from the viewpoint of energy problems and CO2 reduction.
The reactor loss can be broadly divided into (1) copper loss, (2) iron loss, and (3) eddy current loss.
The copper loss in (1) is a loss due to the resistance value that varies depending on the amount of current flowing through the copper material and the frequency.
The iron loss in (2) is due to hysteresis loss in the magnetic body and eddy current loss in the core.
The eddy current loss in (3) is a loss caused by the eddy current flowing in the coil or the like due to the leakage magnetic flux of the reactor having an air gap.
The phenomenon of eddy current loss has been known in the past, but there are many unexplained countermeasures.
Conventionally (1) has been devised to increase the cross-sectional area of the winding or to reduce the resistance value by using litz wire due to the skin effect in the case of high frequency.
The edgewise reactors of FIGS. 1 and 2 have a large copper cross-sectional area.
(2) has been devised to improve the loss by changing the iron (core) shape or increasing the cross-sectional area of the magnetic material.
The improvement of eddy current loss in (3) is studied in particular on a bobbin used at a high frequency as described in “Patent Document 1”.
This is because an eddy current loss occurs in the vicinity of the air gap, so that the bobbin for winding is made convex in advance at the time of bobbin molding, and the winding is not performed on this part.
However, this is a technology for small reactors that use bobbins.
Technology for large reactors that do not use bobbins has not been developed yet.
"Patent Document 1" Japanese Patent Application Laid-Open No. 07-302720

図1,2の構成では、リアクトルのエアギャップ付近の漏れ磁束により、渦電流が流れ易くなり、渦電流が多く流れる。
この場合、渦電流損失がコイルにて多く発生するため、前記(3)の渦電流損失が大きくなる。
図3,5の構成では、リアクトルのエアギャップ付近の漏れ磁束による、渦電流が絶縁材により遮断されるため渦電流が流れにくい。
このため、前記の渦電流損失よりは改善するものの、エアギャップ直近の漏れ磁束が大きい部分の渦電流損失は発生する。
これらのような構成の場合、渦電流損失が大きいため、損失が大きくなってしまう。
エアギャップ近傍の漏れ磁束の大きい部分の渦電流を抑制し、渦電流損失を減らす巻線構造を提案する。
In the configuration of FIGS. 1 and 2, eddy currents easily flow due to leakage magnetic flux in the vicinity of the air gap of the reactor, and a large amount of eddy current flows.
In this case, since eddy current loss occurs frequently in the coil, the eddy current loss of (3) becomes large.
3 and 5, the eddy current due to the leakage magnetic flux in the vicinity of the air gap of the reactor is blocked by the insulating material, so that the eddy current hardly flows.
For this reason, although the eddy current loss is improved, the eddy current loss occurs in the portion where the leakage magnetic flux near the air gap is large.
In the case of such a configuration, since the eddy current loss is large, the loss becomes large.
We propose a winding structure that suppresses eddy currents in the vicinity of the air gap where leakage flux is large and reduces eddy current loss.

(請求項1)
上記目的を達成するため,請求項1記載の発明は,
2つの磁性体(2、10)を具備し、第一の磁性体(2)の外側磁脚1と第二の磁性体(10)の第二の外側磁脚2を接続し、同時に第一の磁性体の外側磁脚2と第二の磁性体(10)の外側磁脚1を接続し、第一の磁性体(2)と第二の磁性体(10)の中央磁脚はエアギャップ(9)を介して接続したコアシステム(11)を具備し、
2つの端子(6,7)を具備し、第一の端子(6)から銅材A(1)を中央磁脚(12)に、少なくとも1回以上巻き付け、第二の端子(7)に接続した少なくとも1つの巻線を有するコイル(14)を具備することを特徴とするリアクトル素子において、
該銅材1(1)は2分割した分割銅板1(16)と分割銅板2(17)に空間幅を儲けた部分である分割点(15)を具備し、
エアギャップ(9)近傍に分割点(15)を配置する構成することを特徴としたエアギャップ付きリアクトル素子であることを特徴とする。
(請求項2)
上記目的を達成するため,請求項2記載の発明は,
2つの磁性体(20、21)を具備し、第一の磁性体(20)の磁脚1と第二の磁性体(21)の磁脚2はエアギャップ1(28)を介して接続した磁脚Aを具備し、
同時に第一の磁性体の磁脚2と第二の磁性体の磁脚1は該同様のエアギャップ2(29)を介して接続した磁脚Bを具備したコアシステム(11)を具備し、
4つの端子(22〜24)を具備し、端子1(22)から銅材A(30)を磁脚A(19)に、少なくとも1回以上巻き付け、端子2(23)に接続する少なくとも1つの巻線を有するコイル(27)を具備し、
同様に磁脚B(26)に端子3(24)から銅材B(31)を少なくとも1回以上巻き付け、端子4(25)に接続する少なくとも1つの巻線を有するコイル(27
)を具備することを特徴とするリアクトル素子において、
該銅材A(30)と該銅材B(31)は2分割した薄型銅板1(34)と薄型銅板2(35)に空間幅を儲けた部分である分割点(32)を具備し、
エアギャップ1(28)とエアギャップ2(29)の近傍に分割点(32)を配置する分割銅板(16)を構成することを特徴としたエアギャップ付きリアクトル素子であることを特徴とする。
(請求項3)
上記目的を達成するため,請求項3記載の発明は,
2つの磁性体(20、21)を具備し、第一の磁性体(20)の磁脚1と第二の磁性体(21)の磁脚2はエアギャップ1(28)を介して接続した磁脚Aを具備し、
同時に第一の磁性体の磁脚2と第二の磁性体の磁脚1は該同様のエアギャップ2(29)を介して接続した磁脚Bを具備したコアシステム(11)を具備し、
端子1(22)から銅材A(30)を磁脚A(19)に少なくとも1回以上巻き付け、巻き終りを端子2(23)に接続したコイルA(27)を具備し、
同様に
端子3(24)から磁脚B(26)に銅材B(31)を少なくとも1回以上巻き付け、巻き終りを端子4(25)に接続するコイルB(33)を具備することを特徴とするリアクトル素子において、
該銅材A(30)と該銅材B(31)とは
エアギャップ付近の巻線を無くした巻線レスエリア(42)を設けたN回巻いた丸線又は平角線で構成させる巻線2(41)と
巻線2(41)よりも太い線径を巻線2(41)の外側にN回巻いた丸線又は平角線で構成させる巻線1(40)であり、
磁脚Aから近い位置に巻線2(41)を構成し、磁脚Aから遠い位置に巻線1(40)を構成し、
端子1は巻線1の巻き始めの端子11(43)と巻線2の巻き始めの端子21(44)を接続したものにより構成し、
端子2は巻線1の巻き終りの端子12(45)と巻線2の巻き終りの端子22(46)を接続したものにより構成し、
同様に
磁脚Bから近い位置に巻線3(51)を構成し、磁脚Bから遠い位置に巻線4(52)を構成し、
端子3は巻線3の巻き始めの端子13(45)と巻線4の巻き始めの端子23(49
)を接続したものにより構成し、
端子4は巻線3の巻き終りの端子14(46)と巻線4の巻き終りの端子24(50)を接続したものにより
構成することを特徴としたエアギャップ付きリアクトル素子であることを特徴とする。
(Claim 1)
In order to achieve the above object, the invention described in claim 1
Two magnetic bodies (2, 10) are provided, and the outer magnetic leg 1 of the first magnetic body (2) and the second outer magnetic leg 2 of the second magnetic body (10) are connected to each other at the same time. The outer magnetic leg 2 of the magnetic body and the outer magnetic leg 1 of the second magnetic body (10) are connected, and the central magnetic leg of the first magnetic body (2) and the second magnetic body (10) is an air gap. Comprising a core system (11) connected via (9),
Two terminals (6, 7) are provided, and the copper material A (1) is wound from the first terminal (6) around the central magnetic leg (12) at least once and connected to the second terminal (7). A reactor element comprising a coil (14) having at least one winding,
The copper material 1 (1) includes a dividing point (15) which is a portion where a space width is provided on a divided copper plate 1 (16) and a divided copper plate 2 (17) divided into two parts,
It is a reactor element with an air gap characterized by arranging the dividing point (15) in the vicinity of the air gap (9).
(Claim 2)
In order to achieve the above object, the invention described in claim 2
Two magnetic bodies (20, 21) are provided, and the magnetic leg 1 of the first magnetic body (20) and the magnetic leg 2 of the second magnetic body (21) are connected via an air gap 1 (28). It has a magnetic leg A,
At the same time, the magnetic leg 2 of the first magnetic body and the magnetic leg 1 of the second magnetic body comprise a core system (11) having a magnetic leg B connected through the same air gap 2 (29),
It comprises four terminals (22-24), and at least one of the copper material A (30) is wound around the magnetic leg A (19) from the terminal 1 (22) at least once and connected to the terminal 2 (23). Comprising a coil (27) having windings;
Similarly, a coil (27) having at least one winding connected to the terminal 4 (25) by winding the copper material B (31) from the terminal 3 (24) at least once around the magnetic leg B (26).
In the reactor element characterized by comprising:
The copper material A (30) and the copper material B (31) include a dividing point (32) which is a portion where a space width is provided in the thin copper plate 1 (34) and the thin copper plate 2 (35) divided into two parts,
It is a reactor element with an air gap characterized by comprising the division | segmentation copper plate (16) which arrange | positions a division | segmentation point (32) in the vicinity of the air gap 1 (28) and the air gap 2 (29).
(Claim 3)
In order to achieve the above object, the invention described in claim 3
Two magnetic bodies (20, 21) are provided, and the magnetic leg 1 of the first magnetic body (20) and the magnetic leg 2 of the second magnetic body (21) are connected via an air gap 1 (28). It has a magnetic leg A,
At the same time, the magnetic leg 2 of the first magnetic body and the magnetic leg 1 of the second magnetic body comprise a core system (11) comprising a magnetic leg B connected through the same air gap 2 (29),
A coil A (27) in which the copper material A (30) is wound around the magnetic leg A (19) at least once from the terminal 1 (22) and the end of the winding is connected to the terminal 2 (23);
Similarly, a coil B (33) is provided, in which the copper material B (31) is wound at least once from the terminal 3 (24) to the magnetic leg B (26) and the end of winding is connected to the terminal 4 (25). In the reactor element
The copper material A (30) and the copper material B (31) are composed of a round wire or a rectangular wire wound with N turns provided with a winding-less area (42) in which a winding near the air gap is eliminated. 2 (41) and winding 1 (40) comprising a round wire or a rectangular wire having a wire diameter larger than winding 2 (41) N times on the outside of winding 2 (41),
The winding 2 (41) is configured at a position close to the magnetic leg A, and the winding 1 (40) is configured at a position far from the magnetic leg A,
The terminal 1 is constituted by connecting a terminal 11 (43) at the beginning of winding 1 and a terminal 21 (44) at the beginning of winding 2;
Terminal 2 is constituted by connecting terminal 12 (45) at the end of winding of winding 1 and terminal 22 (46) at the end of winding of winding 2,
Similarly, the winding 3 (51) is configured at a position close to the magnetic leg B, and the winding 4 (52) is configured at a position far from the magnetic leg B.
The terminal 3 includes a terminal 13 (45) at the beginning of winding of the winding 3 and a terminal 23 (49 at the beginning of winding of the winding 4).
) Is connected,
The terminal 4 is a reactor element with an air gap characterized by comprising a terminal 14 (46) at the end of winding of the winding 3 and a terminal 24 (50) at the end of winding of the winding 4 connected to each other. And

(請求項1)
この様な構成では,銅板を使用している。
このため、エッジワイズリアクトルの渦電流損失より損失改善する。
また2分割した銅板の分割点(15)付近にエアギャップがあるため、漏れ磁束はこの分割点(15)付近を通る。
このため、漏れ磁束の最も多いエアギャップ直近の銅材が無いため、漏れ磁束によって発生する渦電流損失が従来の銅版リアクトルより少ない。
(請求項2)
この様な構成では,銅板を使用している。
このため、エッジワイズリアクトルの渦電流損失より損失改善する。
また2分割した銅板の分割点(32)付近にエアギャップ(28、29)があるため、漏れ磁束はこの分割点(32)付近を通る。
このため、漏れ磁束の最も多いエアギャップ直近の銅材が無いため、漏れ磁束によって発生する渦電流損失が少ない。
(請求項3)
この様な構成では,巻線レスエリアを設けている。
巻線レスエリア(42)付近にエアギャップ(28、29)があるため、漏れ磁束はこの巻線レスエリア(42)付近を通る。
このため、漏れ磁束の最も多いエアギャップ直近の銅材が無いため、漏れ磁束によって発生する渦電流損失がエッジワイズリアクトルや従来の銅版リアクトルより少ない。
以上述べたように本発明によれば,
エアギャップ部の漏れ磁束から発生する渦電流損失を低減することができる。
また、銅板を2分割にすることや丸線(又は平角線)の線径を変え、巻線レスエリアを設ける程度で実現できるため、製造も簡単であり、コスト増加も少ない。
このため、低コスト、高効率なリアクトルを製造することができる。
(Claim 1)
In such a configuration, a copper plate is used.
For this reason, the loss is improved from the eddy current loss of the edgewise reactor.
Further, since there is an air gap near the dividing point (15) of the copper plate divided into two, the leakage magnetic flux passes near the dividing point (15).
For this reason, since there is no copper material in the immediate vicinity of the air gap with the largest leakage flux, eddy current loss caused by the leakage flux is less than that of a conventional copper plate reactor.
(Claim 2)
In such a configuration, a copper plate is used.
For this reason, the loss is improved from the eddy current loss of the edgewise reactor.
Further, since there is an air gap (28, 29) in the vicinity of the dividing point (32) of the copper plate divided into two, the leakage magnetic flux passes near the dividing point (32).
For this reason, since there is no copper material in the immediate vicinity of the air gap with the largest leakage flux, eddy current loss caused by the leakage flux is small.
(Claim 3)
In such a configuration, a winding-less area is provided.
Since there is an air gap (28, 29) in the vicinity of the winding-less area (42), the leakage magnetic flux passes near the winding-less area (42).
For this reason, since there is no copper material in the immediate vicinity of the air gap with the largest leakage flux, eddy current loss caused by the leakage flux is less than that of an edgewise reactor or a conventional copper reactor.
As described above, according to the present invention,
Eddy current loss generated from leakage magnetic flux in the air gap can be reduced.
Moreover, since it can be realized by dividing the copper plate into two parts, changing the wire diameter of the round wire (or flat wire), and providing a winding-less area, the manufacturing is simple and the cost increase is small.
For this reason, a low-cost and highly efficient reactor can be manufactured.

(請求項1)
本発明の第1実施例について図4を用いて説明する。
図4において,2、10はフェライトコア、16は分割銅板1、17は分割銅板2、6は分割銅板1,2の巻き始めと接続した端子、7は分割銅板1,2の巻き終りと接続した端子、9がエアギャップ、15が分割点に対応する。
エアギャップはフェライトコアの中央磁脚を研磨して幅を設ける。
分割巻線は例えば0.5mm×25mmの銅板、2枚を巻き始め端子6に接続して巻き、巻き終りに端子7を取り付ける。
分割点は銅板を端子に取り付ける位置によって3mm程度にする。
同図の作用は以下の通りである。
端子6から端子7へ高周波電流を導通させるとエアギャップ9の漏れ磁束3が発生する。
漏れ磁束3の磁路に銅材が少ないため銅材に流れる渦電流が少なくなる。
渦電流が少ないため、この電流によって発生する渦電流損失が少なくなる。
本提案方式のようにエアギャップ付近に銅材を減らした構造にすると、渦電流損失を少なくすることができる。
また、銅板を2分割するだけなので、製造も簡単であり、低コスト、低損失のリアクトルを製作することができる。
(請求項2)
本発明の第2実施例について図6を用いて説明する。
図6において,20、21は珪素鋼板のカットコア、34は薄型(分割)銅板1、35は薄型(分割)銅板2、6は分割銅板1,2の巻き始めと接続した端子1及び端子3、7は分割銅板1,2の巻き終りと接続した端子2及び端子4、28,29がエアギャップ、32が分割点に対応する。
エアギャップはカットコアの磁脚A,Bに同じエアギャップ材(ノーメックス、ルミラーなど)を使用してエアギャップ幅を設ける。
分割巻線は例えば0.5mm×50mmの銅板、2枚を巻き始め端子1(及び端子3)に接続して巻き、巻き終りに端子2(及び端子4)を取り付ける。
分割点は銅板を端子に取り付ける位置によって5mm程度にする。
同図の作用は以下の通りである。
端子1から端子2、端子3ら端子4へ高周波電流を導通させるとエアギャップ28、29の漏れ磁束3が発生する。
漏れ磁束3の磁路に銅材が少ないため銅材に流れる渦電流が少なくなる。
渦電流が少ないため、この電流によって発生する渦電流損失が少なくなる。
本提案方式のようにエアギャップ付近に銅材を減らした構造にすると、渦電流損失を少なくすることができる。
また、銅板を2分割するだけなので、製造も簡単であり、低コスト、低損失のリアクトルを製作することができる。
(請求項3)
本発明の第3実施例について図7を用いて説明する。
図7において,20、21は珪素鋼板のカットコア、41、42、51、52は丸線(又は平角線)で形成する巻線1、2、3、4、
巻線1は巻き始めを端子11とし巻き終りを端子12とする巻線、巻線2は巻き始めを端子21とし巻き終りを端子22とする巻線を示す。
また28,29がエアギャップ、42は巻線レスエリアに対応する。
端子11と21、端子12と22はそれぞれ接続する。
巻線レスエリアはテープなどで5mm程度スペースを作る。
巻線1と巻線2の巻数は同じとして、巻線レスエリアの分を確保するだけ巻線2は細い線径を使用する。
エアギャップはカットコアの磁脚A,Bに同じエアギャップ材(ノーメックス、ルミラーなど)を使用してエアギャップ幅を設ける。
磁脚AとBの両方を作成する。
同図の作用は以下の通りである。
端子1から端子2、端子3ら端子4へ高周波電流を導通させるとエアギャップ28、29の漏れ磁束3が発生する。
漏れ磁束3の磁路に銅材が少ないため銅材に流れる渦電流が少なくなる。
渦電流が少ないため、この電流によって発生する渦電流損失が少なくなる。
本提案方式のようにエアギャップ付近に銅材を減らした構造にすると、渦電流損失を少なくすることができる。
また、巻線2の丸線(又は平角線)線径を若干細くするだけなので、製造も簡単であり、低コスト、低損失のリアクトルを製作することができる。
(Claim 1)
A first embodiment of the present invention will be described with reference to FIG.
4, 2 and 10 are ferrite cores, 16 is a divided copper plate 1, 17 is a divided copper plate 2, 6 is a terminal connected to the start of winding of the divided copper plates 1 and 2, and 7 is connected to the end of winding of the divided copper plates 1 and 2. The corresponding terminals, 9 corresponds to the air gap, and 15 corresponds to the dividing point.
The air gap is provided with a width by polishing the central magnetic leg of the ferrite core.
The divided winding is, for example, a copper plate of 0.5 mm × 25 mm, two windings are connected to the terminal 6 and wound, and the terminal 7 is attached at the end of winding.
The dividing point is about 3 mm depending on the position where the copper plate is attached to the terminal.
The operation of the figure is as follows.
When a high-frequency current is conducted from the terminal 6 to the terminal 7, a leakage magnetic flux 3 in the air gap 9 is generated.
Since there is little copper material in the magnetic path of the leakage magnetic flux 3, the eddy current which flows into copper material decreases.
Since eddy current is small, eddy current loss caused by this current is reduced.
If a structure is used in which the copper material is reduced near the air gap as in the proposed method, eddy current loss can be reduced.
Moreover, since the copper plate is only divided into two, the manufacture is simple, and a low-cost and low-loss reactor can be manufactured.
(Claim 2)
A second embodiment of the present invention will be described with reference to FIG.
In FIG. 6, 20 and 21 are cut cores of a silicon steel plate, 34 is a thin (divided) copper plate 1, 35 is a thin (divided) copper plate 2, and 6 is a terminal 1 and a terminal 3 connected to the start of winding of the divided copper plates 1 and 2. , 7 corresponds to the terminal 2 and the terminals 4, 28, 29 connected to the end of winding of the divided copper plates 1, 2, and 32 corresponds to the dividing point.
The air gap is formed by using the same air gap material (Nomex, Lumirror, etc.) for the magnetic legs A and B of the cut core.
The divided winding is, for example, two copper plates of 0.5 mm × 50 mm, connected to the terminal 1 (and terminal 3) at the beginning of winding and wound, and the terminal 2 (and terminal 4) is attached at the end of winding.
The dividing point is about 5 mm depending on the position where the copper plate is attached to the terminal.
The operation of the figure is as follows.
When a high-frequency current is conducted from terminal 1 to terminal 2 and terminal 3 to terminal 4, leakage flux 3 in air gaps 28 and 29 is generated.
Since there is little copper material in the magnetic path of the leakage magnetic flux 3, the eddy current which flows into copper material decreases.
Since eddy current is small, eddy current loss caused by this current is reduced.
If a structure is used in which the copper material is reduced near the air gap as in the proposed method, eddy current loss can be reduced.
Moreover, since the copper plate is only divided into two, the manufacture is simple, and a low-cost and low-loss reactor can be manufactured.
(Claim 3)
A third embodiment of the present invention will be described with reference to FIG.
In FIG. 7, 20 and 21 are cut cores of silicon steel plates, 41, 42, 51 and 52 are windings 1, 2, 3, 4 and 4 formed by round wires (or flat wires).
Winding 1 indicates a winding with terminal 11 as the start of winding and terminal 12 as the end of winding, and winding 2 indicates a winding with terminal 21 as the start of winding and terminal 22 as the end of winding.
28 and 29 correspond to an air gap, and 42 corresponds to a winding-less area.
Terminals 11 and 21 and terminals 12 and 22 are connected to each other.
In the winding-less area, make a space of about 5mm with tape.
The number of turns of the winding 1 and the winding 2 is the same, and the winding 2 uses a thin wire diameter only to secure the portion of the winding-less area.
The air gap is formed by using the same air gap material (Nomex, Lumirror, etc.) for the magnetic legs A and B of the cut core.
Create both magnetic legs A and B.
The operation of the figure is as follows.
When a high-frequency current is conducted from terminal 1 to terminal 2 and terminal 3 to terminal 4, leakage flux 3 in air gaps 28 and 29 is generated.
Since there is little copper material in the magnetic path of the leakage magnetic flux 3, the eddy current which flows into copper material decreases.
Since eddy current is small, eddy current loss caused by this current is reduced.
If a structure is used in which the copper material is reduced near the air gap as in the proposed method, eddy current loss can be reduced.
Further, since the round wire (or flat wire) wire diameter of the winding 2 is only slightly reduced, the manufacture is easy, and a low-cost, low-loss reactor can be manufactured.

本発明の対象となる従来のエッジワイズリアクトル構成図Configuration of a conventional edgewise reactor that is an object of the present invention 本発明の対象となる従来のエッジワイズリアクトル断面図Sectional view of a conventional edgewise reactor that is the subject of the present invention 本発明の対象となる従来の銅板リアクトル断面図Cross-sectional view of a conventional copper plate reactor that is the subject of the present invention 本発明の係わる第1実施例における提案型損失改善リアクトル断面図Sectional view of the proposed loss improving reactor in the first embodiment according to the present invention 本発明の対象となる従来の銅板リアクトル構成図Conventional copper plate reactor configuration diagram subject to the present invention 本発明の係わる第2実施例における提案型低損失銅板形リアクトル(カットコア図)Proposed low-loss copper plate reactor (cut core diagram) in the second embodiment of the present invention 本発明の係わる第3実施例における提案型低損失丸線型リアクトル(カットコア図)Proposed low-loss round wire reactor (cut core diagram) in the third embodiment of the present invention

符号の説明Explanation of symbols

1 エッジワイズ銅線
2 磁性体
3 漏れ磁束
4 渦電流
5 絶縁材
6 端子(巻き始め側)
7 端子(巻き終り側)
8 銅板
9 エアギャップ
10 磁性体
11 コアシステム
12 中央磁脚
13 外側磁脚
14 コイル
16 分割銅板1
17 分割銅板2
19 磁脚A
20 磁性体
21 磁性体
22 端子1(巻き始め側)
23 端子2(巻き終り側)
24 端子3(巻き始め側)
25 端子4(巻き終り側)
26 磁脚B
27 コイルA
28 エアギャップ
29 エアギャップ
30 銅材A
31 銅材B
32 分割点
33 コイルB
34 薄型銅板1
35 薄型銅板2
40 巻線1
41 巻線2
42 巻線レスエリア
43 端子11(太線端子)(巻き始め側)
44 端子12(太線端子)(巻き終り側)
45 端子13(太線端子)(巻き始め側)
46 端子14(太線端子)(巻き終り側)
47 端子21(細線端子)(巻き始め側)
48 端子22(細線端子)(巻き終り側)
49 端子23(細線端子)(巻き始め側)
50 端子24(細線端子)(巻き終り側)
51 巻線3
52 巻線4
DESCRIPTION OF SYMBOLS 1 Edgewise copper wire 2 Magnetic body 3 Leakage magnetic flux 4 Eddy current 5 Insulation material 6 Terminal (winding start side)
7 terminals (winding end side)
8 Copper plate 9 Air gap 10 Magnetic body 11 Core system 12 Central magnetic leg 13 Outer magnetic leg 14 Coil 16 Divided copper plate 1
17 Split copper plate 2
19 Magnetic leg A
20 Magnetic body 21 Magnetic body 22 Terminal 1 (winding start side)
23 Terminal 2 (winding end side)
24 Terminal 3 (winding start side)
25 Terminal 4 (winding end side)
26 Magnetic leg B
27 Coil A
28 Air gap 29 Air gap 30 Copper material A
31 Copper material B
32 Dividing point 33 Coil B
34 Thin copper plate 1
35 Thin copper plate 2
40 Winding 1
41 Winding 2
42 Winding-less area 43 Terminal 11 (thick wire terminal) (winding start side)
44 Terminal 12 (thick wire terminal) (winding end side)
45 Terminal 13 (thick wire terminal) (winding start side)
46 Terminal 14 (thick terminal) (winding end side)
47 Terminal 21 (fine wire terminal) (winding start side)
48 Terminal 22 (fine wire terminal) (winding end side)
49 Terminal 23 (fine wire terminal) (winding start side)
50 Terminal 24 (fine wire terminal) (winding end side)
51 Winding 3
52 Winding 4

Claims (5)

2つの磁性体を具備し、第一の磁性体の外側磁脚1と第二の磁性体の外側磁脚2を接続し、同時に第一の磁性体の外側磁脚2と第二の磁性体の外側磁脚1を接続し、第一の磁性体の中央磁脚と第二の磁性体の中央磁脚はエアギャップを介して接続したコアシステムを具備し、2つの端子を具備し、第一の端子から銅材Aを
中央磁脚に、少なくとも1回以上巻き付け、第二の端子に接続した少なくとも1つの巻線を有するコイルを具備することを特徴とするリアクトル素子において、
該銅材Aは2分割した分割銅板1と分割銅板2に空間幅を儲けた部分である分割点を具備し、
エアギャップ近傍に分割点を配置する構成することを特徴としたエアギャップ付きリアクトル素子。
Two magnetic bodies are provided, the outer magnetic leg 1 of the first magnetic body and the outer magnetic leg 2 of the second magnetic body are connected, and at the same time, the outer magnetic leg 2 of the first magnetic body and the second magnetic body The outer magnetic leg 1 is connected, the central magnetic leg of the first magnetic body and the central magnetic leg of the second magnetic body have a core system connected via an air gap, have two terminals, In the reactor element, comprising: a coil having at least one winding connected to the second terminal by winding the copper material A from one terminal around the central magnetic leg at least once;
The copper material A includes a dividing point which is a portion where a space width is provided in the divided copper plate 1 and the divided copper plate 2 divided into two parts,
A reactor element with an air gap, characterized in that a dividing point is arranged in the vicinity of an air gap.
2つの磁性体を具備し、第一の磁性体の磁脚1と第二の磁性体の磁脚2はエアギャップ1を介して接続した磁脚Aを具備し、
同時に第一の磁性体の磁脚2と第二の磁性体の磁脚1は該同様のエアギャップ2を介して接続した磁脚Bを具備したコアシステムを具備し、
4つの端子を具備し、端子1から銅材Aを磁脚Aに、少なくとも1回以上巻き付け、端子2に接続する少なくとも1つの巻線を有するコイルを具備し、
同様に磁脚Bに端子3から銅材Bを少なくとも1回以上巻き付け、端子4に接続する少なくとも1つの巻線を有するコイルを具備することを特徴とするリアクトル素子において、
該銅材Aは2分割した薄型銅板1と薄型銅板2に空間幅を儲けた部分である分割点を有するコイルAを具備し、
該銅材Bも同様に2分割した薄型銅板1と薄型銅板2に空間幅を儲けた部分である分割点を有するコイルBを具備し、
エアギャップ1とエアギャップ2の近傍に分割点を配置するコイルAとコイルBを構成することを特徴としたエアギャップ付きリアクトル素子。
Comprising two magnetic bodies, the magnetic leg 1 of the first magnetic body and the magnetic leg 2 of the second magnetic body comprise a magnetic leg A connected via an air gap 1;
At the same time, the magnetic leg 2 of the first magnetic body and the magnetic leg 1 of the second magnetic body have a core system including a magnetic leg B connected through the same air gap 2,
Comprising four terminals, comprising a coil having at least one winding connected to the terminal 2 by winding the copper material A from the terminal 1 around the magnetic leg A at least once, and connecting to the terminal 2;
Similarly, in the reactor element characterized by comprising a coil having at least one winding connected to the terminal 4 by winding the copper material B around the magnetic leg B from the terminal 3 at least once.
The copper material A includes a thin copper plate 1 divided into two and a coil A having a dividing point which is a portion where a space width is provided in the thin copper plate 2;
Similarly, the copper material B includes a thin copper plate 1 divided into two and a coil B having a dividing point which is a portion where a space width is provided in the thin copper plate 2.
A reactor element with an air gap, characterized in that a coil A and a coil B are arranged in the vicinity of an air gap 1 and an air gap 2 and a dividing point is arranged.
2つの磁性体を具備し、第一の磁性体の磁脚1と第二の磁性体の磁脚2はエアギャップ1を介して接続した磁脚Aを具備し、
同時に第一の磁性体の磁脚2と第二の磁性体の磁脚1は該同様のエアギャップ2を介して接続した磁脚Bを具備したコアシステムを具備し、
端子1から銅材Aを磁脚Aに少なくとも1回以上巻き付け、巻き終りを端子2に接続したコイルAを具備し、
同様に
端子3から磁脚Bに銅材Bを少なくとも1回以上巻き付け、巻き終りを端子4に接続するコイルBを具備することを特徴とするリアクトル素子において、
該銅材Aとはエアギャップ1付近の巻線を無くした巻線レスエリアを設けたN回巻いた丸線又は平角線で構成させる巻線2と巻線2よりも太い線径を巻線2の外側にN回巻いた丸線又は平角線で構成させる巻線1であり、
該銅材Bとは該銅材Aと同様に、
エアギャップ2付近の巻線を無くした巻線レスエリアを設けたN回巻いた丸線又は平角線で構成させる巻線4と
巻線4よりも太い線径を巻線4の外側にN回巻いた丸線又は平角線で構成させる巻線3であり、
磁脚Aから近い位置に巻線2を構成し、磁脚Aから遠い位置に巻線1を構成し、
端子1は巻線1の巻き始めの端子11と巻線2の巻き始めの端子21を接続したものにより構成し、
端子2は巻線1の巻き終りの端子12と巻線2の巻き終りの端子22を接続したものにより構成し、
同様に
磁脚Bから近い位置に巻線3を構成し、磁脚Bから遠い位置に巻線4を構成し、
端子3は巻線3の巻き始めの端子13と巻線4の巻き始めの端子23を接続したものにより構成し、
端子4は巻線3の巻き終りの端子14と巻線4の巻き終りの端子24を接続したものにより
構成することを特徴としたエアギャップ付きリアクトル素子。
Comprising two magnetic bodies, the magnetic leg 1 of the first magnetic body and the magnetic leg 2 of the second magnetic body comprise a magnetic leg A connected via an air gap 1;
At the same time, the magnetic leg 2 of the first magnetic body and the magnetic leg 1 of the second magnetic body have a core system including a magnetic leg B connected through the same air gap 2,
A coil A in which the copper material A is wound around the magnetic leg A at least once from the terminal 1 and the end of the winding is connected to the terminal 2 is provided.
Similarly, in the reactor element characterized by comprising a coil B for winding the copper material B from the terminal 3 to the magnetic leg B at least once and connecting the end of winding to the terminal 4.
The copper material A has a winding 2 having a winding-less area in which the windings in the vicinity of the air gap 1 are eliminated and a winding 2 made of N round wires or rectangular wires, and a wire diameter larger than the winding 2 is wound. 2 is a winding 1 composed of a round wire or a rectangular wire wound N times outside of 2,
The copper material B is the same as the copper material A,
Winding 4 made up of round wire or rectangular wire wound with N turns provided with a winding-less area that eliminates the winding near the air gap 2 and a wire diameter thicker than the winding 4 N times outside the winding 4 A winding 3 composed of a wound round wire or a rectangular wire,
The winding 2 is configured at a position close to the magnetic leg A, the winding 1 is configured at a position far from the magnetic leg A,
The terminal 1 is composed of a terminal 11 at the beginning of winding 1 and a terminal 21 at the beginning of winding 2 connected to each other.
Terminal 2 is constituted by connecting terminal 12 at the end of winding of winding 1 and terminal 22 at the end of winding of winding 2,
Similarly, the winding 3 is configured at a position close to the magnetic leg B, and the winding 4 is configured at a position far from the magnetic leg B.
The terminal 3 is composed of a terminal 13 at the beginning of winding 3 and a terminal 23 at the beginning of winding 4 connected to each other.
A reactor element with an air gap, wherein the terminal 4 is constituted by connecting a terminal 14 at the end of winding of the winding 3 and a terminal 24 at the end of winding of the winding 4.
請求項2、3のエアギャップ付きリアクトル素子において、
磁脚Aの銅材Aから出力される巻き初めの端子1と磁脚Bの銅材Bから出力される巻き初めの端子3を接続し、
磁脚Aの鋼材Aから出力される巻終わりの端子2と磁脚Bの鋼材Bから出力される巻終わりの端子4を接続し、
巻線を並列接続したことを特徴とするリアクトル素子。
In the reactor element with an air gap according to claims 2 and 3,
A winding start terminal 1 output from the copper material A of the magnetic leg A and a winding start terminal 3 output from the copper material B of the magnetic leg B are connected,
Connecting the terminal 2 at the end of winding output from the steel material A of the magnetic leg A and the terminal 4 at the end of winding output from the steel B of the magnetic leg B;
A reactor element characterized by connecting windings in parallel.
請求項2、3のエアギャップ付きリアクトル素子において、
磁脚Aの銅材Aから出力される巻き終りの端子2と磁脚Bの銅材Bから出力される巻き始めの端子3接続し、
巻線を直列接続したことを特徴とするリアクトル素子。
In the reactor element with an air gap according to claims 2 and 3,
The terminal 2 at the end of winding output from the copper material A of the magnetic leg A and the terminal 3 of winding start output from the copper material B of the magnetic leg B are connected,
A reactor element characterized by connecting windings in series.
JP2007046435A 2007-02-27 2007-02-27 Reactor element with air gap Pending JP2008210998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046435A JP2008210998A (en) 2007-02-27 2007-02-27 Reactor element with air gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046435A JP2008210998A (en) 2007-02-27 2007-02-27 Reactor element with air gap

Publications (1)

Publication Number Publication Date
JP2008210998A true JP2008210998A (en) 2008-09-11

Family

ID=39787046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046435A Pending JP2008210998A (en) 2007-02-27 2007-02-27 Reactor element with air gap

Country Status (1)

Country Link
JP (1) JP2008210998A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118004A1 (en) * 2010-03-25 2011-09-29 パナソニック電工株式会社 Transformer
WO2012017616A1 (en) * 2010-08-06 2012-02-09 三菱電機株式会社 Reactor
WO2012032715A1 (en) * 2010-09-06 2012-03-15 株式会社神戸製鋼所 Winding element
JP2012109351A (en) * 2010-11-16 2012-06-07 Nec Tokin Corp Coil component and power supply circuit using the same
JP2012134291A (en) * 2010-12-21 2012-07-12 Sanken Electric Co Ltd Electronic circuit device
CN107210123A (en) * 2014-08-07 2017-09-26 达特茅斯学院托管理事会 Magnetic devices including low AC resistance paper tinsel winding and Gapped magnet core
DE102018115941A1 (en) 2017-07-07 2019-01-10 Fanuc Corporation Throttle with cover sections, which have mounting parts which are put on each other
DE102018116762A1 (en) 2017-07-18 2019-01-24 Fanuc Corporation THROTTLE WITH A CONNECTOR BLOCK
DE102018005704A1 (en) 2017-07-26 2019-01-31 Fanuc Corporation Throttle with iron cores and coils
DE102018005653A1 (en) 2017-07-25 2019-01-31 Fanuc Corporation Choke coil with a mounting groove having base
US10490339B2 (en) 2016-09-08 2019-11-26 Fanuc Corporation Reactor including first end plate and second end plate
US10580565B2 (en) 2016-09-08 2020-03-03 Fanuc Corporation Reactor including first end plate and second end plate
US10593455B2 (en) 2016-12-22 2020-03-17 Fanuc Corporation Reactor including iron cores and rectifier, LC filter, and motor drive apparatus including the same
US10600551B2 (en) 2017-06-05 2020-03-24 Fanuc Corporation Reaction having outer peripheral iron core
US10636559B2 (en) 2017-06-12 2020-04-28 Fanuc Corporation Reactor having terminal and base
US10643779B2 (en) 2017-07-04 2020-05-05 Fanuc Corporation Reactor having outer peripheral iron core and iron core coils
US10650960B2 (en) 2017-07-25 2020-05-12 Fanuc Corporation Reactor having end plate and pedestal
US10650956B2 (en) 2017-06-16 2020-05-12 Fanuc Corporation Reactor having iron cores and coils
US10699838B2 (en) 2017-07-04 2020-06-30 Fanuc Corporation Reactor and method for production of core body
US10702848B2 (en) 2017-04-27 2020-07-07 Fanuc Corporation Reactor including end plate including end plate formed of a plurality of end plate parts
US10714248B2 (en) 2017-05-22 2020-07-14 Fanuc Corporation Reactor having outer peripheral iron core divided into multiple portions and production method therefor
US10784037B2 (en) 2017-07-13 2020-09-22 Fanuc Corporation Reactor having temperature sensor attached to terminal base unit
CN112259351A (en) * 2020-10-19 2021-01-22 无锡汇普电子有限公司 High-frequency inductor manufacturing method capable of reducing line loss
US11742706B2 (en) 2016-12-22 2023-08-29 Fanuc Corporation Structure of single-phase reactor

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8570133B2 (en) 2010-03-25 2013-10-29 Panasonic Corporation Transformer
CN102782780A (en) * 2010-03-25 2012-11-14 松下电器产业株式会社 Transformer
KR101381532B1 (en) * 2010-03-25 2014-04-04 파나소닉 주식회사 Transformer
WO2011118004A1 (en) * 2010-03-25 2011-09-29 パナソニック電工株式会社 Transformer
WO2012017616A1 (en) * 2010-08-06 2012-02-09 三菱電機株式会社 Reactor
JP5310952B2 (en) * 2010-08-06 2013-10-09 三菱電機株式会社 Reactor
WO2012032715A1 (en) * 2010-09-06 2012-03-15 株式会社神戸製鋼所 Winding element
JP2012080068A (en) * 2010-09-06 2012-04-19 Kobe Steel Ltd Winding element
CN103081045A (en) * 2010-09-06 2013-05-01 株式会社神户制钢所 Winding element
JP2012109351A (en) * 2010-11-16 2012-06-07 Nec Tokin Corp Coil component and power supply circuit using the same
JP2012134291A (en) * 2010-12-21 2012-07-12 Sanken Electric Co Ltd Electronic circuit device
EP3499526A1 (en) * 2014-08-07 2019-06-19 The Trustees Of Dartmouth College Magnetic devices including low ac resistance foil windings and gapped magnetic cores
CN107210123A (en) * 2014-08-07 2017-09-26 达特茅斯学院托管理事会 Magnetic devices including low AC resistance paper tinsel winding and Gapped magnet core
US10490339B2 (en) 2016-09-08 2019-11-26 Fanuc Corporation Reactor including first end plate and second end plate
DE102017120135B4 (en) 2016-09-08 2022-08-04 Fanuc Corporation Choke coil with a first end plate and a second end plate
DE102017120137B4 (en) 2016-09-08 2022-06-02 Fanuc Corporation Choke coil with a first end plate and a second end plate
US10580565B2 (en) 2016-09-08 2020-03-03 Fanuc Corporation Reactor including first end plate and second end plate
US11056260B2 (en) 2016-12-22 2021-07-06 Fanuc Corporation Reactor including iron cores and rectifier, LC filter, and motor drive apparatus including the same
US10593455B2 (en) 2016-12-22 2020-03-17 Fanuc Corporation Reactor including iron cores and rectifier, LC filter, and motor drive apparatus including the same
US11742706B2 (en) 2016-12-22 2023-08-29 Fanuc Corporation Structure of single-phase reactor
US10702848B2 (en) 2017-04-27 2020-07-07 Fanuc Corporation Reactor including end plate including end plate formed of a plurality of end plate parts
US10714248B2 (en) 2017-05-22 2020-07-14 Fanuc Corporation Reactor having outer peripheral iron core divided into multiple portions and production method therefor
DE102018112785B4 (en) 2017-06-05 2023-07-20 Fanuc Corporation Choke with an outer circumferential iron core
US10600551B2 (en) 2017-06-05 2020-03-24 Fanuc Corporation Reaction having outer peripheral iron core
US10636559B2 (en) 2017-06-12 2020-04-28 Fanuc Corporation Reactor having terminal and base
DE102018113904B4 (en) 2017-06-12 2024-03-28 Fanuc Corporation Choke with connection and base
US10650956B2 (en) 2017-06-16 2020-05-12 Fanuc Corporation Reactor having iron cores and coils
US11004590B2 (en) 2017-06-16 2021-05-11 Fanuc Corporation Reactor having iron cores and coils
US10699838B2 (en) 2017-07-04 2020-06-30 Fanuc Corporation Reactor and method for production of core body
DE102018005108B4 (en) 2017-07-04 2023-11-02 Fanuc Corporation Choke with outer circumferential iron core and iron core coils
US10643779B2 (en) 2017-07-04 2020-05-05 Fanuc Corporation Reactor having outer peripheral iron core and iron core coils
US10937587B2 (en) 2017-07-04 2021-03-02 Fanuc Corporation Reactor and method for production of core body
DE102018115941A1 (en) 2017-07-07 2019-01-10 Fanuc Corporation Throttle with cover sections, which have mounting parts which are put on each other
US10818423B2 (en) 2017-07-07 2020-10-27 Fanuc Corporation Reactor having covering portions having fitting parts fitted to each other
US10784037B2 (en) 2017-07-13 2020-09-22 Fanuc Corporation Reactor having temperature sensor attached to terminal base unit
DE102018116762A1 (en) 2017-07-18 2019-01-24 Fanuc Corporation THROTTLE WITH A CONNECTOR BLOCK
US10438738B2 (en) 2017-07-18 2019-10-08 Fanuc Corporation Reactor having terminal block
DE102018005653A1 (en) 2017-07-25 2019-01-31 Fanuc Corporation Choke coil with a mounting groove having base
US10790082B2 (en) 2017-07-25 2020-09-29 Fanuc Corporation Reactor having base having securing notches
US10650960B2 (en) 2017-07-25 2020-05-12 Fanuc Corporation Reactor having end plate and pedestal
DE102018005704A1 (en) 2017-07-26 2019-01-31 Fanuc Corporation Throttle with iron cores and coils
DE102018005704B4 (en) 2017-07-26 2023-04-20 Fanuc Corporation Choke with iron cores and coils
US10685774B2 (en) 2017-07-26 2020-06-16 Fanuc Corporation Reactor having iron cores and coils
CN112259351A (en) * 2020-10-19 2021-01-22 无锡汇普电子有限公司 High-frequency inductor manufacturing method capable of reducing line loss

Similar Documents

Publication Publication Date Title
JP2008210998A (en) Reactor element with air gap
JP6098870B2 (en) Reactor, converter, and power converter
JP4800451B1 (en) High frequency transformer
CN103890874A (en) Reactor, transformer, and power conversion apparatus using same
JP2012089838A (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
JP5818431B2 (en) Transformer
JP2015065345A (en) Reactor device and power conversion device
TW201320122A (en) Reactor and electrical device
EP2827484B1 (en) Dc-dc converter
EP2439756A2 (en) Multi-phase transformer
US9768652B2 (en) Superconducting field pole
JP2012023090A (en) Reactor
JP2008159817A (en) Reactor and power supply device using it
CN110112844B (en) Doubly salient permanent magnet motor
JP2006286880A (en) Transformer
JP2015099818A (en) High-frequency reactor, and method for designing the same
KR101506698B1 (en) iron core winding assembly for transformer
JP7029920B2 (en) Transformer
TWM446964U (en) Edge-winding type winding transformer
JP5189637B2 (en) Coil parts and power supply circuit using the same
US10381151B2 (en) Transformer using coupling coil
JP2011142218A (en) Single-phase transformer and distribution system using the same
JP2021019104A (en) Reactor device
JP2006100513A (en) Reactor
JP2011044534A (en) Low-loss high-frequency reactor, transformer, and common mode choke coil