WO2010050097A1 - Clock division circuit, clock distribution circuit, clock division method, and clock distribution method - Google Patents

Clock division circuit, clock distribution circuit, clock division method, and clock distribution method Download PDF

Info

Publication number
WO2010050097A1
WO2010050097A1 PCT/JP2009/003631 JP2009003631W WO2010050097A1 WO 2010050097 A1 WO2010050097 A1 WO 2010050097A1 JP 2009003631 W JP2009003631 W JP 2009003631W WO 2010050097 A1 WO2010050097 A1 WO 2010050097A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
circuit
division ratio
frequency division
signal
Prior art date
Application number
PCT/JP2009/003631
Other languages
French (fr)
Japanese (ja)
Inventor
柴山充文
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010535621A priority Critical patent/JP5522050B2/en
Priority to US13/058,463 priority patent/US8422619B2/en
Publication of WO2010050097A1 publication Critical patent/WO2010050097A1/en
Priority to US13/798,711 priority patent/US8629703B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B19/00Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K23/00Pulse counters comprising counting chains; Frequency dividers comprising counting chains
    • H03K23/64Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two
    • H03K23/66Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses
    • H03K23/662Pulse counters comprising counting chains; Frequency dividers comprising counting chains with a base or radix other than a power of two with a variable counting base, e.g. by presetting or by adding or suppressing pulses by adding or suppressing pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/1506Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages

Definitions

  • the present invention relates to a clock dividing circuit, a clock distributing circuit, a clock dividing method, and a clock distributing method, and more particularly, a clock dividing circuit and a clock distributing circuit that generate and distribute clock signals having different frequencies to each of a plurality of functional blocks.
  • the present invention relates to a clock dividing method and a clock distributing method.
  • the frequency division ratio that is, the ratio of the frequency of the clock signal before frequency division to the frequency of the clock signal after frequency division is 1 /.
  • a frequency dividing circuit (integer frequency dividing circuit) of M (M is an integer) can be easily realized by using a counter circuit.
  • a frequency dividing circuit capable of frequency division even when the frequency dividing ratio is N / M (N and M are integers) has been proposed (for example, Patent Document 1 and Patent Document). 2).
  • a value for setting the numerator of the division ratio (the value of N in the division ratio N / M) is cumulatively added for each cycle of the input clock signal.
  • M is subtracted from the addition result.
  • clock skew becomes a relative phase shift between clock signals distributed on the semiconductor device.
  • the clock skew becomes large, the upper limit of the operating frequency of the synchronous circuit is limited, so that the performance is degraded.
  • a clock tree circuit in which a clock buffer and clock wiring are configured in a tree shape is known.
  • This clock tree circuit uses a clock buffer in each hierarchy of the clock tree. Furthermore, the delay of the clock propagation path from the input end of the clock tree to each output end is made the same by performing the design layout so that the load capacitance and the wiring resistance are the same. Therefore, the phase difference of the clock signal between the output terminals becomes relatively small, and it can be expected that the clock skew is reduced.
  • FIG. 8 shows a circuit Ai (i is an integer satisfying 1 ⁇ i ⁇ 64) operating with a clock Ai (i is an integer satisfying 1 ⁇ i ⁇ 64), a communication circuit N operating with a clock N, a clock tree circuit 20, and a plurality of 2 is an example of a semiconductor integrated circuit including a clock frequency dividing circuit 100.
  • the circuits Ai are connected to the communication circuit N and communicate with each other through the communication circuit N.
  • a clock frequency divider circuit 100 is connected to each output terminal of the clock tree circuit 20 to constitute a clock distribution circuit composed of the clock tree circuit 20 and a plurality of clock frequency divider circuits 100.
  • the clock tree circuit 20 uses the clock buffer 22 in each hierarchy of the clock tree and performs a design layout so that the load capacitance and wiring resistance are the same. Thereby, the clock skew of the clock S and the clock Ai is reduced. Further, the clock N is also distributed by a clock tree circuit (not shown), so that the distribution delays of the clock N and the clock S are the same. As a result, the clock skew of the clock N, the clock S, and the clock Ai is reduced, and the circuit Ai and the communication circuit N communicate with each other synchronously.
  • the background clock division circuit 100 generates a clock Ai by rationally dividing the clock S distributed by the clock tree circuit 20 based on the input division ratio setting.
  • the clock frequency dividing circuit 100 realizes frequency division by selectively masking the clock pulse of the input clock signal.
  • communication with the communication circuit N that operates with clocks having different frequencies is not considered. Therefore, when communicating with the communication circuit N, there is a problem that a special clock change circuit and a special timing design are required. Further, as a result, there is a problem that communication performance deteriorates. Further, when the frequency division ratio is changed, there is a problem that the timing of communication with the communication circuit N needs to be changed accordingly.
  • FIG. 9 is a timing diagram showing an example of clock division by the clock divider circuit 100 according to the background art.
  • a clock Ai generated by dividing the clock S by a frequency division ratio of 11/12 to 4/12 is shown.
  • the clock Ai can be generated by appropriately masking the clock pulse of the input clock S.
  • a clock Ai with a division ratio of 9/12 masks three clock pulses at timings T3, T8, and T11 among twelve clock pulses at timings T0 to T11 of the clock S. It is generated with.
  • the phase relationship between the clock N and the clock Ai circulates in 12 cycles of the clock S.
  • the timing of 12 cycles in which this phase relationship makes a round is indicated by T0 to T11.
  • the circuit Ai and the communication circuit N communicate at timings T0, T3, T6, and T9, which are all rising timings of the clock N. More specifically, the circuit Ai outputs a signal to the communication circuit N and inputs a signal from the communication circuit N at timings T0, T3, T6, and T9. Similarly, at timings T0, T3, T6, and T9, the communication circuit N outputs a signal to the circuit Ai and inputs a signal from the circuit Ai.
  • the clock frequency dividing circuit 100 does not consider communication with clocks having different frequencies. Therefore, even at the timing of this communication, the clock Ai may be generated by masking the clock pulse of the clock S.
  • the clock Ai may be generated by masking the clock pulse of the clock S at T3, T6, and T9 among the communication timings. Specifically, at timing T3, the clock pulse is masked when the frequency division ratio is 9/12 (110a), 6/12 (110b), and 5/12 (110c). Similarly, at timing T6, the clock pulse is masked in the case of 5/12 (110d). Similarly, at timing T9, the clock pulse is masked when the frequency division ratio is 7/12 (110e), 6/12 (110f), and 5/12 (110g).
  • the clock Ai When the clock Ai is generated by masking the clock pulse of the clock S at the timing of communication as in the above case, the signal output from the communication circuit N operating at the clock N is transferred to the circuit Ai operating at the clock Ai. It will not be possible to input at the expected timing. Similarly, the circuit Ai operating with the clock Ai cannot output a signal at the timing expected by the communication circuit N operating with the clock N.
  • the clock divider circuit requires a special clock transfer circuit and a special timing design in order to realize the expected correct communication operation in communication with a circuit operating with a clock of a different frequency.
  • the frequency division ratio is changed, there is a problem that the timing of communication with a clock having a different frequency needs to be changed accordingly.
  • the clock distribution circuit in which the clock divider circuit 100 is connected to each output terminal of the clock tree circuit 20 shown in FIG. 8, the clock S distributed by the clock tree circuit 20 has a frequency that is not always divided. High clock signal. Therefore, there is a problem that the power consumption of the clock tree circuit 20 is large.
  • the clock frequency dividing circuit and the clock distribution circuit cause the first problem that it is difficult to perform a correct communication operation expected in communication with a circuit operating with a clock having a different frequency. .
  • a second problem occurs that the power consumption of the clock tree circuit is large.
  • An object of the present invention is invented in view of the first problem, and generates a clock signal that enables a correct communication operation expected in communication with a circuit operating with a clock of a different frequency. It is an object of the present invention to provide a clock frequency divider circuit, a clock distribution circuit, a clock frequency division method, and a clock distribution method. Another object of the present invention according to another aspect is to provide a clock divider circuit, a clock distribution circuit, a clock division method, and a clock distribution method that can reduce the power consumption of the clock tree circuit in order to solve the second problem. It is in.
  • the clock frequency dividing circuit according to the present invention is based on a frequency dividing ratio defined by N / S (N is a positive integer, S is a positive integer larger than N), out of S clock pulses of the input clock signal.
  • N is a positive integer
  • S is a positive integer larger than N
  • (S ⁇ N) clock divider circuits for generating an output clock signal obtained by dividing the input clock signal by N / S by reducing the number of clock pulses.
  • a processing circuit is provided for generating the output clock signal by reducing clock pulses of the input clock signal in response to the signal.
  • the clock distribution circuit includes a clock tree circuit, a first clock frequency dividing circuit that performs first frequency division on the input clock signal and outputs the clock signal to the clock tree circuit, and the clock signal.
  • the clock frequency dividing method according to the present invention is based on a frequency dividing ratio defined by N / S (N is a positive integer, S is a positive integer larger than N), out of S clock pulses of an input clock signal.
  • N is a positive integer
  • S is a positive integer larger than N
  • the first frequency division is performed on the input clock signal
  • the clock signal on which the first frequency division is performed is divided into a plurality
  • the second clock signal is distributed to the distributed clock signal. Is divided and output to a plurality of circuits.
  • a clock frequency dividing circuit a clock distribution circuit, a clock frequency dividing method, and a clock for generating a clock signal that enable a correct communication operation expected in communication with a circuit operating with a clock having a different frequency.
  • a distribution method can be provided.
  • FIG. 1 is a configuration diagram of a clock frequency dividing circuit according to a first embodiment of the invention; It is a timing diagram which shows the example of a clock frequency division concerning Embodiment 1 of invention. It is a timing diagram which shows the example of a clock frequency division concerning Embodiment 1 of invention. It is a block diagram of the clock frequency divider circuit concerning Embodiment 2 of invention. It is a timing diagram which shows operation
  • FIG. 1 shows a circuit Ai (i is an integer satisfying 1 ⁇ i ⁇ 64) operating with a clock Ai (i is an integer satisfying 1 ⁇ i ⁇ 64), a communication circuit N operating with a clock N, a clock tree circuit 20, and a clock component.
  • This is an example of a semiconductor integrated circuit including peripheral circuits 10a and 10b. The same components as those in the example of the semiconductor integrated circuit according to the background art shown in FIG.
  • the circuits Ai are connected to the communication circuit N and communicate with each other through the communication circuit N.
  • a clock frequency divider circuit 10a is connected to each output terminal of the clock tree circuit 20, and a clock frequency divider circuit 10b is connected to an input terminal of the clock tree circuit 20 to constitute a clock distribution circuit.
  • the clock tree circuit 20 reduces the clock skew of the clock S by using the clock buffer 22 in each hierarchy of the clock tree and performing the design layout so that the load capacitance and the wiring resistance are the same. Further, the clock N is also distributed by a clock tree circuit (not shown), so that the distribution delays of the clock N and the clock S are the same. As a result, the clock skew of the clock N, the clock S, and the clock Ai is reduced, and the circuit Ai and the communication circuit N communicate with each other synchronously.
  • FIG. 2 is a configuration diagram showing the configuration of the clock frequency dividing circuit 10 in the present embodiment.
  • the clock frequency dividing circuit 10 is given by a frequency dividing ratio defined by N / M (N is a positive integer, M is a positive integer larger than N) given by the frequency dividing ratio setting 35 and input clock frequency dividing ratio information 61.
  • N is a positive integer
  • M is a positive integer larger than N
  • S is a positive integer
  • S is a positive integer
  • M is a positive integer larger than S
  • (S ⁇ N) clock pulses are masked.
  • the clock frequency dividing circuit 10 generates a clock OUT (output clock signal) obtained by dividing the clock IN by a rational number with a frequency division ratio of N / S.
  • the clock IN is a clock divided by S / M. Therefore, the clock frequency dividing circuit 10 generates the clock OUT divided by the N / M frequency dividing ratio with respect to the clock signal that has not been frequency-divided.
  • the clock frequency dividing circuit 10 is input based on the frequency division ratio S / M given by the input clock frequency division ratio information 61 based on the frequency division ratio N / M given by the frequency division ratio setting 35.
  • the clock signal is divided by a rational number with a frequency division ratio of N / S.
  • the clock frequency dividing circuit 10 further receives communication timing information 36 indicating the timing at which a circuit operating with the clock OUT performs communication. Based on the above, a clock OUT is generated in consideration of the communication timing.
  • the clock frequency dividing circuit 10 includes a mask circuit 50 and a mask control circuit 30 as main circuits.
  • the mask circuit 50 is a processing circuit having a function of generating and outputting the clock OUT by masking the clock pulse of the clock IN in accordance with the input mask signal 39.
  • the mask control circuit 30 is a control circuit having a function of outputting a mask signal 39 to the mask circuit 50 based on communication timing information 36 indicating a timing at which a circuit operating with the clock OUT performs communication.
  • the mask signal 39 is a number (S ⁇ N) that is a difference between S and N with respect to other timings except for the communication timing at which the communication is performed, among the timings of S clock pulses that are continuous. This is a signal to which a mask timing for masking the minute clock pulse is assigned.
  • the mask control circuit 30 has a larger division ratio (N / M) than the timing to which the mask timing is assigned when the division ratio is small (the value of N / M or N / S is large). Even when the value of M or N / S is small), the mask signal 39 to which the mask timing is assigned is always output to the mask circuit 50.
  • the clock frequency dividing circuits 10 a and 10 b are clock frequency dividing circuits having the same configuration as the clock frequency dividing circuit 10.
  • the clock frequency dividing circuit 10a rationally divides the clock S ′ distributed by the clock tree circuit 20 based on the input frequency division ratio setting 35, the communication timing information 36, and the input clock frequency division ratio information 61.
  • a clock Ai is generated.
  • the clock frequency dividing circuit 10b divides the clock S by a rational number based on the input frequency division ratio setting 35, communication timing information 36, and input clock frequency division ratio information 61, thereby distributing the clock S distributed by the clock tree circuit 20. Generate '.
  • All the circuits Ai communicate with the communication circuit N at the same timing, for example, the timing of all rising edges of the clock N. Accordingly, all the clock frequency dividing circuits 10a and 10b are supplied with the same communication timing information 36 indicating the timing.
  • each circuit Ai may have a different operating frequency. Accordingly, each clock frequency dividing circuit 10a may be supplied with a frequency division ratio setting 35 having a different value. Further, in the frequency division ratio setting 35 of the clock frequency division circuit 10b, the frequency division ratio setting 35 in which the smallest frequency division ratio (the value of N / M is large) among all the clock frequency division circuits 10a is set. Is supplied with the same value.
  • each clock frequency dividing circuit 10a is supplied with input clock frequency dividing ratio information 61 indicating the frequency of the clock S ′ that is the input clock of the clock frequency dividing circuit 10a.
  • input clock frequency division ratio information 61 indicating the frequency of the clock S that is the input clock of the clock frequency dividing circuit 10b is supplied to the clock frequency dividing circuit 10b.
  • the above-described frequency division ratio setting 35, communication timing information 36, and input clock frequency division ratio information 61 supplied to the clock frequency dividing circuits 10a and 10b may be supplied by an upper circuit (not shown) or the circuit Ai. Either of these may be supplied.
  • FIG. 3 is a timing chart showing the operation of the clock divider circuit 10b according to the first exemplary embodiment of the present invention.
  • An example in which the clock S ′ is generated by dividing the clock S by a frequency division ratio of 11/12 to 3/12 will be described.
  • the phase relationship between the clock N and the clock S ′ circulates in 12 cycles of the clock S.
  • T0 to T11 indicate the timings of 12 cycles in which this phase relationship makes a round.
  • the circuit Ai performs data communication at timings T0, T4, and T8 corresponding to the rising timing of the clock N.
  • the difference between the clock divider circuit 10 according to the first embodiment of the present invention and the clock divider circuit 100 according to the background art is that the clock divider circuit 10 according to the first embodiment of the present invention indicates the timing of the communication.
  • the timing information is input and rational number division is performed in consideration of the communication timing based on the timing information.
  • rational frequency division is realized by masking clock pulses that are not in communication timing without masking clock pulses that are in communication timing at all times.
  • the division ratio is small (the value of N / M or N / S is large)
  • the division ratio is larger (N / M or N / S) than the timing at which the clock pulse is masked. Even when the value is small), rational number division is realized by always masking at this timing.
  • the mask control circuit 30 masks SN clock pulses for any of the timings T1, T2, T3, T5, T6, T7, T9, T10, and T11 that are not the timing of the communication.
  • a mask signal 39 to which a mask timing for masking is always assigned even when the frequency division ratio is large is generated.
  • Such a clock S ′ can be generated by additionally assigning the timing for masking the clock pulse from the case where the frequency division ratio is small.
  • a clock with a division ratio of 11/12 S ′ can be generated.
  • a mask timing is additionally assigned to T5
  • a clock S ′ having a frequency division ratio of 10/12 can be generated.
  • a clock S ′ having a frequency division ratio of 9/12 can be generated.
  • a clock S ′ having a frequency division ratio of 8/12 can be generated.
  • a clock S ′ having a frequency division ratio of 7/12 can be generated. Furthermore, if additional allocation is performed for T3, a clock S ′ having a frequency division ratio of 6/12 can be generated. Furthermore, if additional allocation is performed for T2, a clock S ′ having a frequency division ratio of 5/12 can be generated. Furthermore, if additional allocation is performed for T10, a clock S ′ having a frequency division ratio of 4/12 can be generated. Furthermore, if additional allocation is made for T6, a clock S ′ having a frequency division ratio of 3/12 can be generated.
  • FIG. 4 is a timing chart showing the operation of the clock divider circuit 10a according to the first exemplary embodiment of the present invention.
  • the operation of the clock frequency dividing circuit 10a is the same as that of the clock frequency dividing circuit 10b shown in FIG. 3 except that the input clock is a clock S ′ that may be frequency-divided by the clock frequency dividing circuit 10b. is there.
  • the timing for masking the clock pulse with respect to the clock S is also the same.
  • this is an example in which the clock Ai is generated by dividing the clock S ′ having the division ratio of 9/12 by the division ratio of 9/9 to 3/9. Accordingly, this is an example in which the clock Ai corresponding to the clock signal obtained by dividing the clock S by the frequency division ratio 9/12 to 3/12 is generated.
  • the frequency dividing ratio setting 35 of the clock frequency dividing circuit 10b is the frequency dividing ratio in which the smallest frequency dividing ratio (the value of N / M is large) among all the clock frequency dividing circuits 10a is set.
  • the same value as the ratio setting 35 is supplied. Therefore, in this example, the clock frequency dividing circuit 10a generates the clock Ai divided by any of the frequency dividing ratios 9/12 to 3/12.
  • FIG. 4 also shows the waveform of the clock Ai when the division ratio is 11/12 and 10/12 for comparison with FIG. 3, but in this example, those division ratios are set. There is no.
  • the clock S ′ is generated by dividing the clock S by a frequency division ratio of 9/12.
  • the phase relationship between the clock N and the clock S ′ or the clock Ai makes a round in 12 cycles of the clock S.
  • the timing of 12 cycles in which this phase relationship makes a round is indicated by T0 to T11.
  • the circuit Ai and the communication circuit N perform data communication at timings T0, T4, and T8 corresponding to the rising timing of the clock N.
  • timings T0, T4, and T8 which are communication timings
  • clock pulses are not always masked
  • timings T1, T2, T3, T5, T6, T7, T9, T10 which are not other communication timings
  • Mask the clock pulse at any of T11
  • the timing is always masked at the timing when the division ratio is large. As a result, the clock Ai is generated.
  • the mask control circuit 30 masks SN clock pulses for any of timings T1, T2, T3, T5, T6, T7, T9, T10, and T11 that are not the timing of this communication.
  • a mask signal 39 is generated in which a mask timing that is always masked at this timing is assigned to the timing at which the clock pulse is masked when the frequency division ratio is small, even when the frequency division ratio is large.
  • the clock distribution circuit uses the frequency division ratio S / G given by the input clock frequency division ratio information 61 based on the frequency division ratio N / M given by the frequency division ratio setting 35.
  • the input clock signal divided by M is divided by a rational number at a division ratio of N / S, thereby corresponding to a clock signal obtained by dividing an undivided clock signal by a division ratio of N / M.
  • An output clock signal is generated. Therefore, the frequency can be reduced by dividing the input clock signal in advance.
  • the clock distribution circuit always generates a clock by masking the timing at which the clock pulse is masked when the frequency division ratio is small, even when the frequency division ratio is large.
  • the frequency division ratio setting of the clock frequency dividing circuit 10b is the frequency division ratio in which the smallest frequency dividing ratio (the value of N / M or N / S is large) is set among all the clock frequency dividing circuits 10a. The same value as the setting is supplied. Therefore, the clock frequency dividing circuit 10a can generate a clock Ai having a frequency dividing ratio equal to or larger than the frequency dividing ratio of the clock S ′ from the clock S ′ divided by the clock frequency dividing circuit 10b. . This is because at the timing masked with the clock S ′, it is always masked even with the clock Ai, and at the timing not masked with the clock Ai, it is not masked with the clock S ′.
  • the clock S ′ can be divided by the same division ratio as the smallest division ratio (the value of N / M is large). For this reason, the frequency of the clock signal (clock S ′) distributed by the clock tree circuit 20 can be reduced. Therefore, the power consumption of the clock tree circuit 20 can be reduced.
  • the smallest division among all the clocks Ai is not necessarily used.
  • the clock S ′ cannot be divided by the same division ratio as the ratio.
  • the mask control circuit 30 generates the mask signal 39 and outputs it to the mask circuit 50.
  • the mask signal 39 masks the clock pulse with respect to other timings excluding the communication timing at which the communication is performed based on the communication timing information 36 indicating the timing of the communication performed between the circuit Ai and the communication circuit N. This signal is assigned with mask timing.
  • the clock pulse is masked from the clock S and the clock S ′ and the clock Ai are generated at other timings except the communication timing at which communication is performed between the circuit Ai and the communication circuit N.
  • the clock pulse of the clock Ai is not masked at the communication timing, and the clock pulse is always output to the clock Ai at the communication timing.
  • the circuit Ai can receive the signal output from the communication circuit N at an expected timing. Similarly, the circuit Ai can output a signal at the timing expected by the communication circuit N.
  • clock frequency dividing circuit According to the clock frequency dividing circuit according to the first embodiment, communication performance is not deteriorated even with a communication partner circuit (communication circuit N) operating with a clock signal (clock N) having a different frequency.
  • An output clock signal (clock Ai) capable of data communication can be generated. This eliminates the need for special timing design and special clock transfer circuit for communication with clock signals of different frequencies, and can divide the clock signal by a rational number with low power, low area, and low design cost. It becomes possible.
  • the mask control circuit 30 masks the clock pulse with respect to other timings excluding the communication timing at which communication is performed in the communication partner circuit in accordance with the frequency division ratio setting 35. Added mask timing. Therefore, for example, even when the division ratio N / M is changed to any one of 11/12 to 3/12, the clock pulses of the clocks S and S ′ are generated at timings other than the communication timings T0, T4, and T8. Can be masked. Therefore, even when the division ratio is changed, it is not necessary to change the clock N or communication timing of the communication circuit N, and it is possible to cope with the change of the division ratio extremely flexibly.
  • FIG. 5 is a block diagram showing a configuration of a clock frequency divider circuit according to the second exemplary embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a clock frequency divider circuit according to the second exemplary embodiment of the present invention.
  • specific examples of the mask circuit 50 and the mask control circuit 30 of the clock frequency dividing circuit 10 according to the first embodiment will be described.
  • a mask circuit 50 has a function of referring to an input mask signal 39 and selecting either masking the clock IN pulse or outputting it directly to the clock OUT without masking. ing.
  • the mask circuit 50 includes a latch circuit 52 and a gate circuit 53.
  • the latch circuit 52 latches the mask signal 39 at the timing when the clock IN falls, thereby limiting the transition of the mask signal 39 input to the gate circuit 53 to the timing when the value of the clock IN is “0”. It has a function.
  • the gate circuit 53 has a function of masking the clock IN based on the mask signal 39 latched by the latch circuit 52. When the value of the mask signal 39 is “0”, the clock IN is masked. When the value of the mask signal 39 is “1”, the clock IN is not masked.
  • the latch circuit 52 By providing the latch circuit 52, it is possible to suppress the occurrence of a glitch in the clock OUT. Although there is an effect that the timing design is facilitated, the latch circuit 52 may be omitted when the occurrence of a glitch is avoided by strictly designing the timing.
  • an AND circuit is used as the gate circuit 53 for masking the clock IN.
  • An OR circuit may be used, or a circuit having an equivalent function may be used.
  • the mask control circuit 30 counts clock pulses of the clock IN based on the frequency division ratio setting 35, the communication timing information 36, and the input clock frequency division ratio information 61. Thus, a counter value indicating the relative phase between the clock IN and the clock OUT is generated, and a mask signal 39 to which a mask timing is assigned based on the counter value is generated and output.
  • the mask control circuit 30 includes a counter 33 and a table circuit 31.
  • the frequency division ratio setting 35 includes a frequency division ratio denominator M and a frequency division ratio numerator N composed of parallel data of a plurality of bits, and defines the frequency division ratio setting N / M.
  • the communication timing information 36 includes a timing selection signal 37 and a phase signal 38.
  • the timing selection signal 37 is obtained from each timing in a period in which the phase relationship between the clock OUT (clock S ′ or clock Ai) and the clock signal (clock N) that drives the communication partner circuit operating on the clock OUT is completed. , A signal for selecting a communication timing.
  • the timing selection signal 37 is composed of a plurality of bits of parallel data indicating a value specifying the communication timing, and the value does not change unless the communication timing is changed.
  • the phase signal 38 is a signal indicating a relative phase relationship between the clock OUT and a clock signal (hereinafter, referred to as a communication partner clock signal) that drives a communication partner circuit of a circuit that operates on the clock OUT.
  • the input clock frequency division ratio information 61 is composed of a frequency division ratio numerator S composed of parallel data of a plurality of bits, and defines the frequency division ratio S / M of the input clock signal.
  • the value of the denominator M is the same as the value in the frequency division ratio setting 35, and the input of the frequency division ratio denominator M constituting the frequency division ratio setting 35 is used, and redundant input is omitted.
  • the counter 33 counts the clock pulses of the clock IN, and resets the counter value in accordance with the timing of the phase signal 38 when the phase relationship between the clock OUT and the communication partner clock signal makes a round, and communicates with the clock OUT. It has a function of outputting a counter value 34 indicating a relative phase with the counterpart clock signal. As a result, the counter 33 outputs, as the counter value 34, the number of cycles in which the phase relationship between the clock OUT and the communication partner clock signal makes a round.
  • the table circuit 31 is a combination of a counter value 34, a division ratio denominator M and a division ratio numerator N that are division ratio settings 35, a division ratio numerator S that is input clock division ratio information 61, and a timing selection signal 37.
  • Each has a function of preliminarily holding table data 32 indicating the necessity of masking in a table format and a function of selecting and outputting table data corresponding to a combination of these inputted values as a mask signal 39. Yes.
  • the mask circuit 50 masks the clock pulse of the clock IN in accordance with the frequency division ratio denominator M, the frequency division ratio numerator N, the counter value 34, the frequency division ratio numerator S, and the timing selection signal 37 from the table circuit 31.
  • a mask signal 39 for controlling whether or not to perform is output for each clock pulse of the clock IN.
  • FIG. 6 is a timing chart showing the operation of the clock divider circuit 10b according to the second exemplary embodiment of the present invention.
  • the circuit Ai and the communication circuit N perform data communication at all rising timings of the clock N, and the clock N is synchronized with the clock S, and the frequency division ratio thereof is 1/4. . In other words, the circuit Ai and the communication circuit N communicate at timings T0, T4, and T8.
  • the timing selection signal 37 is a signal indicating that the timing of this communication is the timing T0, T4, T8, and the value does not change unless the communication timing is changed.
  • the phase signal 38 is a signal that becomes “1” in any one cycle of the rising timing of the clock N while the phase relationship between the clock S ′ and the clock N makes a round, and becomes “0” otherwise.
  • the phase relationship becomes “1” at the timing T ⁇ b> 0 that is one cycle of the 12 cycles of the clock S that makes a round.
  • the counter 33 resets the counter value at the timing when the phase signal 38 becomes “1”. Thereafter, the clock pulses of the clock S are counted by repeating 12 cycles in which the phase relationship between the clock S ′ and the clock N is completed. As a result, a counter value 34 indicating the relative phase relationship between the clock S ′ and the clock N is output from the counter 33.
  • the timing at which the counter value 34 takes a value from “0” to “11” corresponds to the timing T0 to T11. That is, the counter value 34 is “0” at timing T0, “1” at timing T1, and “11” at timing T11. Thereafter, it becomes “0” again at the timing T0.
  • the table data 32 of the table circuit 31 includes a pulse of the next cycle of the clock S for each combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37. “0” is preset when masking, and “1” is preset when not masking. Therefore, the value of the table data 32 corresponding to the combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37 input at each timing is the mask signal 39. Is output as
  • the table circuit 31 includes combinations of timings T0 to T11 corresponding to other timings T1, T5, and T9 other than the communication timing of data communication performed between the circuit Ai and the communication circuit N.
  • Table data 32 to which mask timing is assigned is set in advance. Further, non-mask timings are assigned to combinations corresponding to timings T0, T2, T3, T4, T6, T7, T8, T10, and T11 other than these.
  • the counter value is “1”, “5”, “9”, “0” indicating the mask timing as the table data 32, and “0” indicating the non-mask timing as the table data 32 otherwise.
  • 1 is output from the table circuit 31 as the mask signal 39.
  • the mask circuit 50 refers to the mask signal 39, masks the pulse of the clock S at timings T1, T5, and T9, and outputs it to the clock S ′ without masking the pulses at other timings.
  • the clock pulse of the clock S is not always masked and is output as the clock S ′.
  • clock pulses at other timings that are not communication timings here, timings T1, T5, and T9 are masked and are not output as the clock S ′.
  • FIG. 6 shows a generation example in the case where the frequency division ratio of the clock S ′ is 9/12, the frequency of the clock N is 1/4 of the clock S, and communication is performed at all rising timings of the clock N.
  • the value of the table data 32 is appropriately set for each combination of the communication timing information 36, the division ratio setting 35, the input clock division ratio information 61, and the counter value 34 indicating the relative phase relationship between the clock S ′ and the clock N.
  • the values of the frequency division ratio denominator M, the frequency division ratio numerator N, the frequency division ratio numerator S, etc., which are input to the mask control circuit 30 are constant. As long as it is within the range in which the table data 32 corresponding to is held, it can be appropriately changed during operation.
  • FIG. 7 is a timing chart showing the operation of the clock frequency dividing circuit 10a according to the second exemplary embodiment of the present invention.
  • the timing selection signal 37 is a signal indicating that the timing of this communication is the timing T0, T4, T8, and the value does not change unless the communication timing is changed.
  • the phase signal 38 is a signal that becomes “1” in any one cycle of the rising timing of the clock N while the phase relationship between the clock Ai and the clock N completes, and becomes “0” otherwise. In the case of FIG. 7, the phase relationship becomes “1” at the timing T ⁇ b> 0, which is one cycle of the 12 cycles of the clock S.
  • the value 9 is set in the division ratio numerator S.
  • the counter 33 resets the counter value at the timing when the phase signal 38 becomes “1”, and then repeats the 12 cycles of the clock S and the 9 cycles of the clock S ′ in which the phase relationship between the clock Ai and the clock N goes around. To count the clock pulses of the clock S ′. As a result, a counter value 34 indicating the relative phase relationship between the clock Ai and the clock N is output from the counter 33. Since the counter 33 operates with the clock S ′, the counter value 34 takes values “0” to “8” corresponding to nine cycles of the clock S ′.
  • the timing at which the counter value 34 takes a value from “0” to “8” corresponds to the timing T0 to T11. That is, the counter value 34 is “0” at timing T0, “1” at timings T1 and T2, “2” at timing T3, “3” at timing T4, “4” at timings T5 and T6, and “4” at timing T7. 5 ”,“ 6 ”at timing T8,“ 7 ”at timings T9 and T10, and“ 8 ”at timing T11. Thereafter, it becomes “0” again at the timing T0.
  • the table data 32 of the table circuit 31 includes a pulse of the next cycle of the clock S ′ for each combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37. “0” is set in advance when masking is set, and “1” is set when not masking. Therefore, the value of the table data 32 corresponding to the combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37 input at each timing is the mask signal 39. Is output as
  • the table circuit 31 includes other timings T1, T2, T3, T5, T7, T9 other than the communication timing of data communication performed between the circuit Ai and the communication circuit N among the timings T0 to T11.
  • Table data 32 in which mask timings are assigned to combinations corresponding to T11 is set in advance. Further, non-mask timing is assigned to combinations corresponding to timings T0, T4, T6, T8, and T10 other than these.
  • the mask circuit 50 refers to the mask signal 39, masks the pulse of the clock S ′ at timings T1, T2, T3, T5, T7, T9, and T11, and does not mask the pulses at other timings. Output to clock Ai.
  • the clock pulse of the clock S ′ is not always masked and is output as the clock Ai.
  • clock pulses at other timings that are not communication timings here, timings T1, T2, T3, T5, T7, T9, and T11 are masked and are not output as the clock Ai.
  • the frequency division ratio of the clock S ′ is 9/12
  • the frequency division ratio of the clock Ai is 5/12
  • the frequency of the clock N is 1/4 of the clock S, and at every rising timing of the clock N.
  • the value of the table data 32 is appropriately set for each combination of the communication timing information 36, the division ratio setting 35, the input clock division ratio information 61, and the counter value 34 indicating the relative phase relationship between the clock Ai and the clock N.
  • the values of the frequency division ratio denominator M, the frequency division ratio numerator N, the frequency division ratio numerator S, and the like input to the mask control circuit 30 are constant. As long as it is within the range in which the table data 32 corresponding to is held, it can be changed appropriately during operation.
  • the clock pulse of the input clock signal is counted by the counter, and the output clock signal and the circuit that is the communication partner of the circuit that operates on the output clock signal are driven.
  • a count value that indicates the relative phase of communication timing with respect to the input clock signal is generated by resetting the count value when the phase relationship with the clock signal is completed, and a mask that is assigned a mask timing based on this count value Since the signal is generated, the relative phase of the communication timing with respect to the input clock signal can be derived with a very simple circuit configuration called a counter, and the mask timing can be accurately assigned from a timing other than the communication timing. .
  • table data indicating whether or not masking is necessary for each combination of at least the communication timing information, the division ratio setting, the input clock division ratio information, and the count value is previously stored in the table circuit.
  • the table data output from the table circuit according to these input combinations is output as a mask signal, so the input clock can be used from a timing other than the communication timing with a very simple circuit configuration called a table circuit.
  • a desired mask timing according to the relative phase of the communication timing with respect to the signal can be accurately assigned.
  • table data indicating whether or not masking is necessary for each combination of at least the communication timing information, the division ratio setting, the input clock division ratio information, and the count value is previously stored in the table circuit.
  • the table data output from the table circuit is output as a mask signal in accordance with these input combinations, so that even if the input clock signal is a divided clock signal, other than the communication timing From the timing, a desired mask timing according to the relative phase of the communication timing with respect to the input clock signal can be accurately assigned.
  • the frequency division ratio setting 35 input by the mask control circuit 30 includes the frequency division ratio denominator M indicating the denominator value of the frequency division ratio and the frequency division indicating the numerator value of the frequency division ratio.
  • the communication timing information input by the mask control circuit 30 is composed of a timing selection signal 37 for selecting the communication timing, and a phase signal 38 indicating the phase relationship between the output clock signal and the communication partner clock signal.
  • a timing selection signal 37 for selecting the communication timing and a phase signal 38 indicating the phase relationship between the output clock signal and the communication partner clock signal.
  • another format may be used as long as the communication timing can be designated.
  • signals unnecessary for setting the frequency division ratio and specifying the communication timing may be omitted as appropriate. For example, when the communication timing is only a specific timing, it is not necessary to prepare the table data 32 for each value of the timing selection signal 37, so that the timing selection signal 37 can be omitted.
  • the clock divider circuit 10 is composed of only a digital logic circuit, and selects either whether or not the clock IN is masked to realize rational frequency division.
  • the layout area is small. Further, since an analog circuit or a circuit that requires a dedicated design is not used, the design / verification cost is low.
  • the present invention can be widely applied to the field of semiconductor circuits that distribute clock signals having different frequencies to a plurality of circuit blocks, and electronic equipment using the same.

Abstract

Provided is a clock division circuit which generates a clock signal enabling execution or a correct communication expected in the communication with a circuit operating at a different frequency clock.  The clock division circuits (10a, b) reduce S clock pulses in the input clock signal by S – N clock pulses in accordance with the division ratio defined by the N/S so as to generate an output clock signal obtained by N/S-dividing the input clock signal.  The clock division circuits (10a, b) generates a control signal which reduces with a higher priority, the clock pulses other  than those at the communication timing of the data communication performed by a target circuit using the output clock signal among the S clock pulses of the input clock signal.  Furthermore, the clock pulses of the input clock signal are reduced in accordance with the generated control signal, thereby generating an output clock signal.

Description

クロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法Clock dividing circuit, clock distributing circuit, clock dividing method and clock distributing method
 本発明は、クロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法に関し、特に、複数の機能ブロックのそれぞれに周波数の異なるクロック信号を生成し分配するクロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法に関する。 The present invention relates to a clock dividing circuit, a clock distributing circuit, a clock dividing method, and a clock distributing method, and more particularly, a clock dividing circuit and a clock distributing circuit that generate and distribute clock signals having different frequencies to each of a plurality of functional blocks. The present invention relates to a clock dividing method and a clock distributing method.
 半導体装置に集積された複数の回路(機能ブロック)のそれぞれに、周波数の異なるクロック信号を分配する方法として、ある周波数のクロック信号から、機能ブロック毎に、より低い周波数のクロック信号を分周して生成し、それぞれの機能ブロックに分配する方法が提案されている。 As a method of distributing clock signals with different frequencies to each of a plurality of circuits (functional blocks) integrated in a semiconductor device, a clock signal with a lower frequency is divided from a clock signal with a certain frequency for each functional block. A method of generating and distributing to each functional block has been proposed.
 ある周波数のクロック信号から、より低い周波数のクロック信号を分周するクロック分周回路において、分周比、すなわち分周前のクロック信号の周波数と分周後のクロック信号の周波数の比が1/M(Mは整数)の分周回路(整数分周回路)は、カウンタ回路を用いて容易に実現することができる。 In a clock frequency dividing circuit that divides a clock signal having a lower frequency from a clock signal having a certain frequency, the frequency division ratio, that is, the ratio of the frequency of the clock signal before frequency division to the frequency of the clock signal after frequency division is 1 /. A frequency dividing circuit (integer frequency dividing circuit) of M (M is an integer) can be easily realized by using a counter circuit.
 一方、分周比がN/M(N、Mは整数)であっても、分周が可能な分周回路(有理数分周回路)が、提案されている(例えば、特許文献1、特許文献2)。これらの背景技術によると、まず、分周比の分子を設定する値(分周比N/MにおけるNの値)を、入力クロック信号のサイクル毎に累積的に加算する。次に、その加算結果が分周比の分母を設定する値(分周比N/MにおけるMの値)より大きくなった場合には、その加算結果からMを引く。これらの動作を行い、その加算結果を参照して、入力クロック信号のクロック・パルスを適切にマスクする(間引く)ことにより有理数分周を実現している。 On the other hand, a frequency dividing circuit (rational number frequency dividing circuit) capable of frequency division even when the frequency dividing ratio is N / M (N and M are integers) has been proposed (for example, Patent Document 1 and Patent Document). 2). According to these background arts, first, a value for setting the numerator of the division ratio (the value of N in the division ratio N / M) is cumulatively added for each cycle of the input clock signal. Next, when the addition result becomes larger than a value for setting the denominator of the division ratio (the value of M in the division ratio N / M), M is subtracted from the addition result. By performing these operations and referring to the result of the addition, the rational pulse division is realized by appropriately masking (thinning out) the clock pulses of the input clock signal.
 また、半導体装置がますます大規模化し、その動作周波数が増加するにつれて、半導体装置上に分配されたクロック信号間の相対的な位相ずれ、いわゆるクロックスキューが大きな問題となっている。クロックスキューが大きくなると、同期式回路の動作周波数の上限が制限されるため、性能を低下させてしまう。 Also, as the semiconductor device becomes larger and its operating frequency increases, a relative phase shift between clock signals distributed on the semiconductor device, so-called clock skew, becomes a big problem. When the clock skew becomes large, the upper limit of the operating frequency of the synchronous circuit is limited, so that the performance is degraded.
 クロックスキューを低減する技術として、クロックバッファ及びクロック配線をツリー状に構成したクロックツリー回路が知られている。このクロックツリー回路は、クロックツリーの各階層においてクロックバッファを使用する。さらに負荷容量や配線抵抗が同一になるように設計レイアウトを行うことによって、クロックツリーの入力端から各出力端までのクロック伝播経路の遅延を同一とする。そのため、各出力端間におけるクロック信号の位相差は相対的に小さくなり、クロックスキューを低減することが期待できる。 As a technique for reducing clock skew, a clock tree circuit in which a clock buffer and clock wiring are configured in a tree shape is known. This clock tree circuit uses a clock buffer in each hierarchy of the clock tree. Furthermore, the delay of the clock propagation path from the input end of the clock tree to each output end is made the same by performing the design layout so that the load capacitance and the wiring resistance are the same. Therefore, the phase difference of the clock signal between the output terminals becomes relatively small, and it can be expected that the clock skew is reduced.
 図8および図9を参照して、上記背景技術によるクロック分周回路およびクロック分配回路における問題の具体例を説明する。 Referring to FIG. 8 and FIG. 9, a specific example of a problem in the clock divider circuit and the clock distribution circuit according to the background art will be described.
 図8は、クロックAi(iは1≦i≦64の整数)で動作する回路Ai(iは1≦i≦64の整数)、クロックNで動作する通信回路N、クロックツリー回路20、複数のクロック分周回路100とを含んだ半導体集積回路の例である。回路Aiは、通信回路Nに接続され、通信回路Nを通じて互いに通信する。クロックツリー回路20の各出力端にはクロック分周回路100が接続され、クロックツリー回路20と複数のクロック分周回路100から構成されるクロック分配回路を構成する。 FIG. 8 shows a circuit Ai (i is an integer satisfying 1 ≦ i ≦ 64) operating with a clock Ai (i is an integer satisfying 1 ≦ i ≦ 64), a communication circuit N operating with a clock N, a clock tree circuit 20, and a plurality of 2 is an example of a semiconductor integrated circuit including a clock frequency dividing circuit 100. FIG. The circuits Ai are connected to the communication circuit N and communicate with each other through the communication circuit N. A clock frequency divider circuit 100 is connected to each output terminal of the clock tree circuit 20 to constitute a clock distribution circuit composed of the clock tree circuit 20 and a plurality of clock frequency divider circuits 100.
 クロックツリー回路20は、クロックツリーの各階層において、クロックバッファ22を使用し、かつ負荷容量や配線抵抗が同一になるように設計レイアウトを行う。これにより、クロックSおよびクロックAiのクロックスキューを低減する。さらに、クロックNもまたクロックツリー回路(図示せず)により分配することにより、クロックNとクロックSの分配遅延を同一とする。これによって、クロックN、クロックSおよびクロックAiのクロックスキューを低減し、回路Aiと通信回路Nとが同期的に通信することを実現する。 The clock tree circuit 20 uses the clock buffer 22 in each hierarchy of the clock tree and performs a design layout so that the load capacitance and wiring resistance are the same. Thereby, the clock skew of the clock S and the clock Ai is reduced. Further, the clock N is also distributed by a clock tree circuit (not shown), so that the distribution delays of the clock N and the clock S are the same. As a result, the clock skew of the clock N, the clock S, and the clock Ai is reduced, and the circuit Ai and the communication circuit N communicate with each other synchronously.
 背景技術によるクロック分周回路100は、入力する分周比設定に基づいて、クロックツリー回路20により分配されたクロックSを有理数分周することで、クロックAiを生成する。 The background clock division circuit 100 generates a clock Ai by rationally dividing the clock S distributed by the clock tree circuit 20 based on the input division ratio setting.
 背景技術によるクロック分周回路100は、入力クロック信号のクロック・パルスを選択的にマスクすることで分周を実現している。しかし、異なる周波数のクロックで動作する通信回路Nとの通信を考慮していない。そのため、通信回路Nと通信を行う場合、特別なクロック乗せ換え回路や、特別なタイミング設計が必要になる、という問題がある。さらにその結果、通信の性能が低下してしまう、という問題もある。また、分周比を変更する場合、それに応じて通信回路Nとの通信のタイミングも変更する必要がある、という問題がある。 The clock frequency dividing circuit 100 according to the background art realizes frequency division by selectively masking the clock pulse of the input clock signal. However, communication with the communication circuit N that operates with clocks having different frequencies is not considered. Therefore, when communicating with the communication circuit N, there is a problem that a special clock change circuit and a special timing design are required. Further, as a result, there is a problem that communication performance deteriorates. Further, when the frequency division ratio is changed, there is a problem that the timing of communication with the communication circuit N needs to be changed accordingly.
 図9は、背景技術にかかるクロック分周回路100によるクロック分周例を示すタイミング図である。クロックSを分周比11/12~4/12で分周して生成したクロックAiを図示している。クロックAiは、入力するクロックSのクロック・パルスを適切にマスクすることにより生成することができる。例えば、分周比が9/12のクロックAiは、クロックSのタイミングT0~T11にある12個のクロック・パルスのうち、タイミングT3、T8、T11にある3個のクロック・パルスをマスクすることで生成している。 FIG. 9 is a timing diagram showing an example of clock division by the clock divider circuit 100 according to the background art. A clock Ai generated by dividing the clock S by a frequency division ratio of 11/12 to 4/12 is shown. The clock Ai can be generated by appropriately masking the clock pulse of the input clock S. For example, a clock Ai with a division ratio of 9/12 masks three clock pulses at timings T3, T8, and T11 among twelve clock pulses at timings T0 to T11 of the clock S. It is generated with.
 ここで、クロックNの周波数はクロックSの1/3であるとする。すわなち、クロックNのクロックSに対する分周比は1/3(=4/12)である。このとき、クロックNとクロックAiの位相関係は、クロックSの12サイクルで一巡する。この位相関係が一巡する12サイクルのタイミングを、T0~T11で示している。 Here, it is assumed that the frequency of the clock N is 1/3 of the clock S. That is, the frequency division ratio of the clock N to the clock S is 1/3 (= 4/12). At this time, the phase relationship between the clock N and the clock Ai circulates in 12 cycles of the clock S. The timing of 12 cycles in which this phase relationship makes a round is indicated by T0 to T11.
 ここで、回路Aiと通信回路Nは、クロックNのすべての立ち上がりのタイミングであるタイミングT0、T3、T6、T9、で通信するとする。より詳細には、タイミングT0、T3、T6、T9、において、回路Aiは通信回路Nに信号を出力し、通信回路Nからの信号を入力する。同様に、タイミングT0、T3、T6、T9、において、通信回路Nは回路Aiに信号を出力し、回路Aiからの信号を入力する。 Here, it is assumed that the circuit Ai and the communication circuit N communicate at timings T0, T3, T6, and T9, which are all rising timings of the clock N. More specifically, the circuit Ai outputs a signal to the communication circuit N and inputs a signal from the communication circuit N at timings T0, T3, T6, and T9. Similarly, at timings T0, T3, T6, and T9, the communication circuit N outputs a signal to the circuit Ai and inputs a signal from the circuit Ai.
 ところが、背景技術にかかるクロック分周回路100は、異なる周波数のクロックとの通信を考慮していない。そのため、この通信のタイミングにおいても、クロックSのクロック・パルスをマスクしてクロックAiを生成してしまう場合がある。 However, the clock frequency dividing circuit 100 according to the background art does not consider communication with clocks having different frequencies. Therefore, even at the timing of this communication, the clock Ai may be generated by masking the clock pulse of the clock S.
 図9の例の場合、通信のタイミングのうち、T3、T6、T9において、クロックSのクロック・パルスをマスクしてクロックAiを生成している場合がある。具体的には、タイミングT3において、分周比が9/12の場合(110a)、6/12の場合(110b)、5/12の場合(110c)にクロック・パルスをマスクしている。同様に、タイミングT6において、5/12の場合(110d)にクロック・パルスをマスクしている。同様に、タイミングT9において、分周比が7/12の場合(110e)、6/12の場合(110f)、5/12の場合(110g)にクロック・パルスをマスクしている。 In the case of the example of FIG. 9, the clock Ai may be generated by masking the clock pulse of the clock S at T3, T6, and T9 among the communication timings. Specifically, at timing T3, the clock pulse is masked when the frequency division ratio is 9/12 (110a), 6/12 (110b), and 5/12 (110c). Similarly, at timing T6, the clock pulse is masked in the case of 5/12 (110d). Similarly, at timing T9, the clock pulse is masked when the frequency division ratio is 7/12 (110e), 6/12 (110f), and 5/12 (110g).
 上記の場合のように、通信のタイミングでクロックSのクロック・パルスをマスクしてクロックAiを生成した場合、クロックNで動作する通信回路Nが出力した信号を、クロックAiで動作する回路Aiが期待したタイミングで入力できないことになる。同様に、クロックNで動作する通信回路Nが期待したタイミングで、クロックAiで動作する回路Aiが信号を出力できないことになる。 When the clock Ai is generated by masking the clock pulse of the clock S at the timing of communication as in the above case, the signal output from the communication circuit N operating at the clock N is transferred to the circuit Ai operating at the clock Ai. It will not be possible to input at the expected timing. Similarly, the circuit Ai operating with the clock Ai cannot output a signal at the timing expected by the communication circuit N operating with the clock N.
 従って、背景技術にかかるクロック分周回路では、異なる周波数のクロックにより動作する回路との通信において、期待した正しい通信動作を実現するために、特別なクロック乗せ換え回路や、特別なタイミング設計が必要となる、という問題がある。その結果、通信の性能が低下してしまう、という問題がある。さらに、分周比を変更する場合、それに応じて異なる周波数のクロックとの通信のタイミングも変更する必要がある、という問題がある。
 さらに、図8に示したクロックツリー回路20の各出力端にクロック分周回路100を接続するクロック分配回路においては、クロックツリー回路20により分配されるクロックSは、常に分周されていない周波数の高いクロック信号である。そのため、クロックツリー回路20の消費電力が大きいという問題がある。
Therefore, the clock divider circuit according to the background art requires a special clock transfer circuit and a special timing design in order to realize the expected correct communication operation in communication with a circuit operating with a clock of a different frequency. There is a problem of becoming. As a result, there is a problem that communication performance is degraded. Furthermore, when the frequency division ratio is changed, there is a problem that the timing of communication with a clock having a different frequency needs to be changed accordingly.
Further, in the clock distribution circuit in which the clock divider circuit 100 is connected to each output terminal of the clock tree circuit 20 shown in FIG. 8, the clock S distributed by the clock tree circuit 20 has a frequency that is not always divided. High clock signal. Therefore, there is a problem that the power consumption of the clock tree circuit 20 is large.
特開2005-45507号公報JP 2005-45507 A 特開2006-148807号公報JP 2006-148807 A
 以上、説明したように、背景技術にかかるクロック分周回路及びクロック分配回路では、異なる周波数のクロックにより動作する回路との通信において期待した正しい通信動作を行うことが困難という第1の問題を生じる。
 また、クロックツリー回路の消費電力が大きいという第2の問題を生じる。
As described above, the clock frequency dividing circuit and the clock distribution circuit according to the background art cause the first problem that it is difficult to perform a correct communication operation expected in communication with a circuit operating with a clock having a different frequency. .
In addition, a second problem occurs that the power consumption of the clock tree circuit is large.
 本発明の目的は、第1の問題点を鑑みて発明されたものであり、異なる周波数のクロックにより動作する回路との通信において期待した正しい通信動作を行うことを可能とするクロック信号を生成するクロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法を提供することにある。
 他の観点による本発明の目的は、第2の問題を解決するために、クロックツリー回路の消費電力を低減できるクロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法を提供することにある。
An object of the present invention is invented in view of the first problem, and generates a clock signal that enables a correct communication operation expected in communication with a circuit operating with a clock of a different frequency. It is an object of the present invention to provide a clock frequency divider circuit, a clock distribution circuit, a clock frequency division method, and a clock distribution method.
Another object of the present invention according to another aspect is to provide a clock divider circuit, a clock distribution circuit, a clock division method, and a clock distribution method that can reduce the power consumption of the clock tree circuit in order to solve the second problem. It is in.
 本発明にかかるクロック分周回路は、N/S(Nは正整数,SはNより大きい正整数)により規定された分周比に基づいて、入力クロック信号のS個のクロック・パルスのうち、(S-N)個分のクロック・パルスを減少させることにより、当該入力クロック信号をN/S分周した出力クロック信号を生成するクロック分周回路であって、前記入力クロック信号のS個のクロック・パルスのうち、前記出力クロック信号を用いる対象回路が行うデータ通信の通信タイミング以外のクロック・パルスを優先的に減少させる制御信号を生成する制御回路と、前記制御回路によって生成された制御信号に応じて、前記入力クロック信号のクロック・パルスを減少させることによって前記出力クロック信号を生成する処理回路を備えたものである。 The clock frequency dividing circuit according to the present invention is based on a frequency dividing ratio defined by N / S (N is a positive integer, S is a positive integer larger than N), out of S clock pulses of the input clock signal. , (S−N) clock divider circuits for generating an output clock signal obtained by dividing the input clock signal by N / S by reducing the number of clock pulses. A control circuit for generating a control signal for preferentially reducing clock pulses other than the communication timing of data communication performed by the target circuit using the output clock signal, and the control generated by the control circuit A processing circuit is provided for generating the output clock signal by reducing clock pulses of the input clock signal in response to the signal.
 また、本発明にかかるクロック分配回路は、クロックツリー回路と、入力されたクロック信号に対して第1の分周を行い、前記クロックツリー回路に出力する第1のクロック分周回路と、前記クロックツリー回路から出力される複数のクロック信号を入力し、それぞれのクロック信号に対して第2の分周を行い、複数の対象回路に出力する第2のクロック分周回路とを備えたものである。 The clock distribution circuit according to the present invention includes a clock tree circuit, a first clock frequency dividing circuit that performs first frequency division on the input clock signal and outputs the clock signal to the clock tree circuit, and the clock signal. A plurality of clock signals output from the tree circuit, a second frequency dividing circuit for each of the clock signals, and a second clock frequency dividing circuit for outputting to the plurality of target circuits. .
 本発明にかかるクロック分周方法は、N/S(Nは正整数,SはNより大きい正整数)により規定された分周比に基づいて、入力クロック信号のS個のクロック・パルスのうち、S-N個分のクロック・パルスを減少させることにより、当該入力クロック信号をN/S分周した出力クロック信号を生成するクロック分周方法であって、前記入力クロック信号のS個のクロック・パルスのうち、前記出力クロック信号を用いる対象回路で行うデータ通信の通信タイミング以外のクロック・パルスを決定し、決定されたクロック・パルスを減少させることによって前記出力クロック信号を生成する。 The clock frequency dividing method according to the present invention is based on a frequency dividing ratio defined by N / S (N is a positive integer, S is a positive integer larger than N), out of S clock pulses of an input clock signal. , A clock dividing method for generating an output clock signal obtained by dividing the input clock signal by N / S by reducing S−N clock pulses, the S clocks of the input clock signal being Among the pulses, a clock pulse other than the communication timing of data communication performed in the target circuit using the output clock signal is determined, and the output clock signal is generated by decreasing the determined clock pulse.
 本発明にかかるクロック分配方法は、入力されたクロック信号に対して第1の分周を行い、第1の分周が行われたクロック信号を複数に分配し、分配されたクロック信号に第2の分周を行い、複数の回路に出力する。 In the clock distribution method according to the present invention, the first frequency division is performed on the input clock signal, the clock signal on which the first frequency division is performed is divided into a plurality, and the second clock signal is distributed to the distributed clock signal. Is divided and output to a plurality of circuits.
 本発明によれば、異なる周波数のクロックにより動作する回路との通信において期待した正しい通信動作を行うことを可能とするクロック信号を生成するクロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法を提供することができる。
 また、他の観点による本発明によれば、クロックツリー回路の消費電力を低減できるクロック分周回路、クロック分配回路、クロック分周方法及びクロック分配方法を提供することができる。
According to the present invention, a clock frequency dividing circuit, a clock distribution circuit, a clock frequency dividing method, and a clock for generating a clock signal that enable a correct communication operation expected in communication with a circuit operating with a clock having a different frequency. A distribution method can be provided.
In addition, according to another aspect of the present invention, it is possible to provide a clock divider circuit, a clock distribution circuit, a clock division method, and a clock distribution method that can reduce the power consumption of the clock tree circuit.
本発明における半導体集積回路の構成図である。It is a block diagram of the semiconductor integrated circuit in this invention. 発明の実施の形態1にかかるクロック分周回路の構成図である。1 is a configuration diagram of a clock frequency dividing circuit according to a first embodiment of the invention; 発明の実施の形態1にかかるクロック分周例を示すタイミング図である。It is a timing diagram which shows the example of a clock frequency division concerning Embodiment 1 of invention. 発明の実施の形態1にかかるクロック分周例を示すタイミング図である。It is a timing diagram which shows the example of a clock frequency division concerning Embodiment 1 of invention. 発明の実施の形態2にかかるクロック分周回路の構成図である。It is a block diagram of the clock frequency divider circuit concerning Embodiment 2 of invention. 発明の実施の形態2にかかるクロック分周回路の動作を示すタイミング図である。It is a timing diagram which shows operation | movement of the clock frequency divider circuit concerning Embodiment 2 of invention. 発明の実施の形態2にかかるクロック分周回路の動作を示すタイミング図である。It is a timing diagram which shows operation | movement of the clock frequency divider circuit concerning Embodiment 2 of invention. 背景技術による半導体集積回路の構成図である。It is a block diagram of the semiconductor integrated circuit by background art. 背景技術によるクロック分周例を示すタイミング図である。It is a timing diagram which shows the example of clock division by background art.
発明の実施の形態1.
 まず、図1を参照して、本発明の実施の形態1にかかるクロック分配回路について説明する。図1は、クロックAi(iは1≦i≦64の整数)で動作する回路Ai(iは1≦i≦64の整数)、クロックNで動作する通信回路N、クロックツリー回路20、クロック分周回路10aおよび10bとを備えた半導体集積回路の例である。図8で示した背景技術にかかる半導体集積回路の例と同一の構成要素には同一の符号を付してある。
Embodiment 1 of the Invention
First, the clock distribution circuit according to the first exemplary embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a circuit Ai (i is an integer satisfying 1 ≦ i ≦ 64) operating with a clock Ai (i is an integer satisfying 1 ≦ i ≦ 64), a communication circuit N operating with a clock N, a clock tree circuit 20, and a clock component. This is an example of a semiconductor integrated circuit including peripheral circuits 10a and 10b. The same components as those in the example of the semiconductor integrated circuit according to the background art shown in FIG.
 回路Aiは、通信回路Nに接続され、通信回路Nを通じて互いに通信する。クロックツリー回路20の各出力端にはクロック分周回路10aが接続されるとともに、クロックツリー回路20の入力端にはクロック分周回路10bが接続され、クロック分配回路を構成する。 The circuits Ai are connected to the communication circuit N and communicate with each other through the communication circuit N. A clock frequency divider circuit 10a is connected to each output terminal of the clock tree circuit 20, and a clock frequency divider circuit 10b is connected to an input terminal of the clock tree circuit 20 to constitute a clock distribution circuit.
 クロックツリー回路20は、クロックツリーの各階層においてクロックバッファ22を使用し、かつ負荷容量や配線抵抗が同一になるように設計レイアウトを行うことによって、クロックSのクロックスキューを低減する。さらに、クロックNもまたクロックツリー回路(図示せず)により分配することにより、クロックNとクロックSの分配遅延を同一とする。これによって、クロックN、クロックSおよびクロックAiのクロックスキューを低減し、回路Aiと通信回路Nとが同期的に通信することを実現する。 The clock tree circuit 20 reduces the clock skew of the clock S by using the clock buffer 22 in each hierarchy of the clock tree and performing the design layout so that the load capacitance and the wiring resistance are the same. Further, the clock N is also distributed by a clock tree circuit (not shown), so that the distribution delays of the clock N and the clock S are the same. As a result, the clock skew of the clock N, the clock S, and the clock Ai is reduced, and the circuit Ai and the communication circuit N communicate with each other synchronously.
 図2は、本実施形態におけるクロック分周回路10の構成を示す構成図である。クロック分周回路10は、分周比設定35で与えられるN/M(Nは正整数,MはNより大きい正整数)で規定された分周比と、入力クロック分周比情報61で与えられるS/M(Sは正整数,MはSより大きい正整数)で規定されたクロックINの分周比情報に基づいて、クロックIN(入力クロック信号)の連続するS個のクロック・パルスのうち、(S-N)個分のクロック・パルスをマスクする。これにより、クロック分周回路10は、クロックINをN/Sの分周比で有理数分周したクロックOUT(出力クロック信号)を生成する。 FIG. 2 is a configuration diagram showing the configuration of the clock frequency dividing circuit 10 in the present embodiment. The clock frequency dividing circuit 10 is given by a frequency dividing ratio defined by N / M (N is a positive integer, M is a positive integer larger than N) given by the frequency dividing ratio setting 35 and input clock frequency dividing ratio information 61. Of the S clock pulses of the clock IN (input clock signal) consecutively based on the frequency division ratio information of the clock IN defined by S / M (S is a positive integer, M is a positive integer larger than S). Of these, (S−N) clock pulses are masked. As a result, the clock frequency dividing circuit 10 generates a clock OUT (output clock signal) obtained by dividing the clock IN by a rational number with a frequency division ratio of N / S.
 ここで、クロックINはS/Mで分周されたクロックである。従って、クロック分周回路10は、分周されていないクロック信号に対してN/Mの分周比で分周されたクロックOUTを生成することになる。言い換えると、クロック分周回路10は、分周比設定35で与えられる分周比N/Mに基づいて、入力クロック分周比情報61で与えられる分周比S/Mで分周された入力クロック信号を、N/Sの分周比で有理数分周する。これにより、クロック分周回路10は、分周されていないクロック信号をN/M(=(S/M)×(N/S))の分周比で分周したクロック信号に相当する出力クロック信号を生成する。 Here, the clock IN is a clock divided by S / M. Therefore, the clock frequency dividing circuit 10 generates the clock OUT divided by the N / M frequency dividing ratio with respect to the clock signal that has not been frequency-divided. In other words, the clock frequency dividing circuit 10 is input based on the frequency division ratio S / M given by the input clock frequency division ratio information 61 based on the frequency division ratio N / M given by the frequency division ratio setting 35. The clock signal is divided by a rational number with a frequency division ratio of N / S. As a result, the clock frequency dividing circuit 10 outputs an output clock corresponding to a clock signal obtained by dividing the clock signal that has not been divided by a frequency dividing ratio of N / M (= (S / M) × (N / S)). Generate a signal.
 クロック分周回路10は、さらに、上記した分周比設定35および入力クロック分周比情報61に加えて、クロックOUTで動作する回路が通信を行うタイミングを示す通信タイミング情報36を入力し、これらに基づいて通信タイミングを考慮したクロックOUTを生成する。 In addition to the above-described frequency division ratio setting 35 and input clock frequency division ratio information 61, the clock frequency dividing circuit 10 further receives communication timing information 36 indicating the timing at which a circuit operating with the clock OUT performs communication. Based on the above, a clock OUT is generated in consideration of the communication timing.
 このクロック分周回路10は、主な回路として、マスク回路50とマスク制御回路30とを含んでいる。
 マスク回路50は、入力されたマスク信号39に応じてクロックINのクロック・パルスをマスクすることにより、クロックOUTを生成して出力する機能を有する処理回路である。
The clock frequency dividing circuit 10 includes a mask circuit 50 and a mask control circuit 30 as main circuits.
The mask circuit 50 is a processing circuit having a function of generating and outputting the clock OUT by masking the clock pulse of the clock IN in accordance with the input mask signal 39.
 マスク制御回路30は、クロックOUTで動作する回路が通信を行うタイミングを示す通信タイミング情報36に基づいて、マスク信号39をマスク回路50へ出力する機能を有する制御回路である。マスク信号39は、連続するS個のクロック・パルスのタイミングのうち、当該通信が行われる通信タイミングを除く他のタイミングに対して、S個とN個の差分となる個数(S-N)個分のクロック・パルスをマスクするマスクタイミングを割り当てた信号である。 The mask control circuit 30 is a control circuit having a function of outputting a mask signal 39 to the mask circuit 50 based on communication timing information 36 indicating a timing at which a circuit operating with the clock OUT performs communication. The mask signal 39 is a number (S−N) that is a difference between S and N with respect to other timings except for the communication timing at which the communication is performed, among the timings of S clock pulses that are continuous. This is a signal to which a mask timing for masking the minute clock pulse is assigned.
 マスク制御回路30は、さらに、分周比の小さい(N/MまたはN/Sの値が大きい)場合において、マスクタイミングを割り当てたタイミングに対して、それよりも分周比の大きい(N/MまたはN/Sの値が小さい)場合においても、必ずマスクタイミングを割り当てたマスク信号39をマスク回路50へ出力する機能を有している。 Further, the mask control circuit 30 has a larger division ratio (N / M) than the timing to which the mask timing is assigned when the division ratio is small (the value of N / M or N / S is large). Even when the value of M or N / S is small), the mask signal 39 to which the mask timing is assigned is always output to the mask circuit 50.
 図1に示した本実施形態において、クロック分周回路10aおよび10bは、クロック分周回路10と同一の構成を有するクロック分周回路である。クロック分周回路10aは、入力する分周比設定35、通信タイミング情報36、入力クロック分周比情報61に基づいて、クロックツリー回路20により分配されたクロックS'を有理数分周することで、クロックAiを生成する。クロック分周回路10bは、入力する分周比設定35、通信タイミング情報36、入力クロック分周比情報61に基づいて、クロックSを有理数分周することで、クロックツリー回路20によって分配するクロックS'を生成する。 In the present embodiment shown in FIG. 1, the clock frequency dividing circuits 10 a and 10 b are clock frequency dividing circuits having the same configuration as the clock frequency dividing circuit 10. The clock frequency dividing circuit 10a rationally divides the clock S ′ distributed by the clock tree circuit 20 based on the input frequency division ratio setting 35, the communication timing information 36, and the input clock frequency division ratio information 61. A clock Ai is generated. The clock frequency dividing circuit 10b divides the clock S by a rational number based on the input frequency division ratio setting 35, communication timing information 36, and input clock frequency division ratio information 61, thereby distributing the clock S distributed by the clock tree circuit 20. Generate '.
 すべての回路Aiは通信回路Nと、同一のタイミング、例えばクロックNのすべての立ち上がりエッジのタイミングで通信を行う。従って、すべてのクロック分周回路10aおよび10bは、当該タイミングを示す同一の通信タイミング情報36が供給される。 All the circuits Ai communicate with the communication circuit N at the same timing, for example, the timing of all rising edges of the clock N. Accordingly, all the clock frequency dividing circuits 10a and 10b are supplied with the same communication timing information 36 indicating the timing.
 一方、各回路Aiは、それぞれ動作周波数が異なっていてもよい。従って、各クロック分周回路10aには、それぞれ値が異なる分周比設定35が供給されてもよい。また、クロック分周回路10bの分周比設定35には、すべてのクロック分周回路10aのうち、最も小さい分周比(N/Mの値が大きい)が設定されている分周比設定35と同一の値が供給される。 On the other hand, each circuit Ai may have a different operating frequency. Accordingly, each clock frequency dividing circuit 10a may be supplied with a frequency division ratio setting 35 having a different value. Further, in the frequency division ratio setting 35 of the clock frequency division circuit 10b, the frequency division ratio setting 35 in which the smallest frequency division ratio (the value of N / M is large) among all the clock frequency division circuits 10a is set. Is supplied with the same value.
 また、各クロック分周回路10aには、クロック分周回路10aの入力クロックであるクロックS'の周波数を示す入力クロック分周比情報61が供給される。同様にクロック分周回路10bには、クロック分周回路10bの入力クロックであるクロックSの周波数を示す入力クロック分周比情報61が供給される。 Further, each clock frequency dividing circuit 10a is supplied with input clock frequency dividing ratio information 61 indicating the frequency of the clock S ′ that is the input clock of the clock frequency dividing circuit 10a. Similarly, input clock frequency division ratio information 61 indicating the frequency of the clock S that is the input clock of the clock frequency dividing circuit 10b is supplied to the clock frequency dividing circuit 10b.
 上記したクロック分周回路10aおよび10bに供給される分周比設定35、通信タイミング情報36、入力クロック分周比情報61は、上位回路(図示せず)が供給してもよいし、回路Aiのいずれかが供給してもよい。 The above-described frequency division ratio setting 35, communication timing information 36, and input clock frequency division ratio information 61 supplied to the clock frequency dividing circuits 10a and 10b may be supplied by an upper circuit (not shown) or the circuit Ai. Either of these may be supplied.
 次に、図3および図4を参照して、本発明の実施の形態1にかかるクロック分周回路の動作について説明する。 Next, the operation of the clock frequency dividing circuit according to the first exemplary embodiment of the present invention will be described with reference to FIG. 3 and FIG.
 図3は、本発明の実施の形態1にかかるクロック分周回路10bの動作を示すタイミングチャートである。ここでは、分周比分母M=12、分周比分子N=11~3としている。クロックSを分周比11/12~3/12で分周してクロックS'を生成する場合を例として説明する。 FIG. 3 is a timing chart showing the operation of the clock divider circuit 10b according to the first exemplary embodiment of the present invention. Here, the division ratio denominator M = 12, and the division ratio numerator N = 11-3. An example in which the clock S ′ is generated by dividing the clock S by a frequency division ratio of 11/12 to 3/12 will be described.
 また、入力クロック信号であるクロックSは分周されていないクロック信号である。そのため、入力クロック分周比情報61で与えられるクロックSの分周比S/Mにおいて、入力クロック分周比分子S=12、入力クロック分周比分母M=12である。従って、この例では、N/M=N/Sである。 Also, the clock S that is the input clock signal is a clock signal that is not divided. Therefore, in the frequency division ratio S / M of the clock S given by the input clock frequency division ratio information 61, the input clock frequency division ratio numerator S = 12, and the input clock frequency division ratio denominator M = 12. Therefore, in this example, N / M = N / S.
 図3では、クロックNの周波数がクロックSの1/4である。すなわちクロックNのクロックSに対する分周比が1/4(=3/12)で、クロックNがクロックSに同期している場合が示されている。この際、クロックNとクロックS'の位相関係は、クロックSの12サイクルで一巡する。図3では、この位相関係が一巡する12サイクルのタイミングがT0~T11で示されている。回路Aiは、クロックNの立ち上がりタイミングに相当するタイミングT0,T4,T8でデータ通信を行う。 In FIG. 3, the frequency of the clock N is 1/4 of the clock S. That is, the frequency division ratio of the clock N to the clock S is 1/4 (= 3/12), and the clock N is synchronized with the clock S. At this time, the phase relationship between the clock N and the clock S ′ circulates in 12 cycles of the clock S. In FIG. 3, T0 to T11 indicate the timings of 12 cycles in which this phase relationship makes a round. The circuit Ai performs data communication at timings T0, T4, and T8 corresponding to the rising timing of the clock N.
 本発明の実施の形態1によるクロック分周回路10と、背景技術にかかるクロック分周回路100との違いは、本発明の実施の形態1によるクロック分周回路10が上記通信のタイミングを示す通信タイミング情報を入力し、それに基づいて通信のタイミングを考慮した有理数分周を行うことにある。具体的には、通信のタイミングにあるクロック・パルスは常にマスクをせずに、それ以外の通信のタイミングにないクロック・パルスをマスクすることで、有理数分周を実現することを特徴とする。さらに、分周比の小さい(N/MまたはN/Sの値が大きい)場合においてクロック・パルスをマスクしたタイミングに対して、それよりも分周比の大きい(N/MまたはN/Sの値が小さい)場合にも当該タイミングで必ずマスクすることで、有理数分周を実現することを特徴とする。 The difference between the clock divider circuit 10 according to the first embodiment of the present invention and the clock divider circuit 100 according to the background art is that the clock divider circuit 10 according to the first embodiment of the present invention indicates the timing of the communication. The timing information is input and rational number division is performed in consideration of the communication timing based on the timing information. Specifically, it is characterized in that rational frequency division is realized by masking clock pulses that are not in communication timing without masking clock pulses that are in communication timing at all times. Further, when the division ratio is small (the value of N / M or N / S is large), the division ratio is larger (N / M or N / S) than the timing at which the clock pulse is masked. Even when the value is small), rational number division is realized by always masking at this timing.
 図3のクロック分周例においては、
(1)通信のタイミングであるタイミングT0、T4、T8では、常にクロック・パルスをマスクせず、それ以外の通信のタイミングではないタイミングT1、T2、T3、T5、T6、T7、T9、T10、T11のいずれかにあるクロック・パルスをマスクする、
かつ、
(2)分周比の小さい場合においてクロック・パルスをマスクしたタイミングに対して、分周比の大きい場合にも当該タイミングで必ずマスクする、
ことによって、クロックS'を生成している。
In the clock division example of FIG.
(1) At timings T0, T4, and T8, which are communication timings, clock pulses are not always masked, and timings T1, T2, T3, T5, T6, T7, T9, T10, which are not other communication timings, Mask the clock pulse at any of T11,
And,
(2) In contrast to the timing when the clock pulse is masked when the division ratio is small, the timing is always masked at the timing when the division ratio is large.
Thus, the clock S ′ is generated.
 従って、マスク制御回路30は、上記通信のタイミングではないタイミングT1、T2、T3、T5、T6、T7、T9、T10、T11のいずれかに対して、S-N個分のクロック・パルスをマスクし、かつ、分周比の小さい場合にクロック・パルスをマスクしたタイミングでは、分周比の大きい場合にも必ずマスクするマスクタイミングを割り当てたマスク信号39を生成する。 Therefore, the mask control circuit 30 masks SN clock pulses for any of the timings T1, T2, T3, T5, T6, T7, T9, T10, and T11 that are not the timing of the communication. At the timing when the clock pulse is masked when the frequency division ratio is small, a mask signal 39 to which a mask timing for masking is always assigned even when the frequency division ratio is large is generated.
 このようなクロックS'は、分周比の小さい場合から、クロック・パルスをマスクするタイミングを追加割り当てしていくことで、生成することができる。 Such a clock S ′ can be generated by additionally assigning the timing for masking the clock pulse from the case where the frequency division ratio is small.
 例えば、クロックSのタイミングT0~T11にある12個のクロック・パルスのうち、T0、T4、T8以外のタイミング、例えばタイミングT9に対してマスクタイミングを割り当てれば、分周比11/12のクロックS'を生成できる。さらに、T5に対してマスクタイミングを追加割り当てすれば、分周比10/12のクロックS'を生成できる。さらにT1に対して追加割り当てすれば、分周比の9/12のクロックS'を生成できる。さらにT7に対して追加割り当てすれば、分周比の8/12のクロックS'を生成できる。 For example, if a mask timing is assigned to timings other than T0, T4, T8, for example, timing T9 out of 12 clock pulses at timings T0 to T11 of clock S, a clock with a division ratio of 11/12 S ′ can be generated. Furthermore, if a mask timing is additionally assigned to T5, a clock S ′ having a frequency division ratio of 10/12 can be generated. Furthermore, by additionally assigning to T1, a clock S ′ having a frequency division ratio of 9/12 can be generated. Furthermore, if additional allocation is made for T7, a clock S ′ having a frequency division ratio of 8/12 can be generated.
 また、さらにT11に対して追加割り当てすれば、分周比7/12のクロックS'を生成できる。さらに、T3に対して追加割り当てすれば、分周比6/12のクロックS'を生成できる。さらにT2に対して追加割り当てすれば、分周比の5/12のクロックS'を生成できる。さらにT10に対して追加割り当てすれば、分周比の4/12のクロックS'を生成できる。さらにT6に対して追加割り当てすれば、分周比の3/12のクロックS'を生成できる。 Furthermore, if additional allocation is made to T11, a clock S ′ having a frequency division ratio of 7/12 can be generated. Furthermore, if additional allocation is performed for T3, a clock S ′ having a frequency division ratio of 6/12 can be generated. Furthermore, if additional allocation is performed for T2, a clock S ′ having a frequency division ratio of 5/12 can be generated. Furthermore, if additional allocation is performed for T10, a clock S ′ having a frequency division ratio of 4/12 can be generated. Furthermore, if additional allocation is made for T6, a clock S ′ having a frequency division ratio of 3/12 can be generated.
 図4は、本発明の実施の形態1にかかるクロック分周回路10aの動作を示すタイミングチャートである。クロック分周回路10aの動作は、入力クロックがクロック分周回路10bにより分周される場合のあるクロックS'であることを除けば、図3に示したクロック分周回路10bと同一の動作である。クロックSに対してクロック・パルスをマスクするタイミングも同一である。 FIG. 4 is a timing chart showing the operation of the clock divider circuit 10a according to the first exemplary embodiment of the present invention. The operation of the clock frequency dividing circuit 10a is the same as that of the clock frequency dividing circuit 10b shown in FIG. 3 except that the input clock is a clock S ′ that may be frequency-divided by the clock frequency dividing circuit 10b. is there. The timing for masking the clock pulse with respect to the clock S is also the same.
 ここでは、分周比設定35で与えられる分周比N/Mにおいて、分周比分母M=12、分周比分子N=9~3とした場合を例として説明する。このとき、入力クロック信号であるクロックS'はクロックSを分周比9/12で分周したクロックであるとする。従って、入力クロック分周比情報61で与えられるクロックS'の分周比を規定する分周比S/Mにおいて、入力クロック分周比分子S=9、入力クロック分周比分母M=12である。 Here, the case where the division ratio N / M given by the division ratio setting 35 is set to the division ratio denominator M = 12, and the division ratio numerator N = 9 to 3 will be described as an example. At this time, it is assumed that the clock S ′ as the input clock signal is a clock obtained by dividing the clock S by a division ratio of 9/12. Therefore, in the division ratio S / M that defines the division ratio of the clock S ′ given by the input clock division ratio information 61, the input clock division ratio numerator S = 9 and the input clock division ratio denominator M = 12. is there.
 すなわち、分周比が9/12のクロックS'を分周比9/9~3/9で分周してクロックAiを生成する場合の例である。従って、クロックSを分周比9/12~3/12で分周したクロック信号に相当するクロックAiを生成する場合の例である。 In other words, this is an example in which the clock Ai is generated by dividing the clock S ′ having the division ratio of 9/12 by the division ratio of 9/9 to 3/9. Accordingly, this is an example in which the clock Ai corresponding to the clock signal obtained by dividing the clock S by the frequency division ratio 9/12 to 3/12 is generated.
 前述したように、クロック分周回路10bの分周比設定35には、すべてのクロック分周回路10aのうち、最も小さい(N/Mの値が大きい)分周比が設定されている分周比設定35と同一の値が供給される。従って、この例では、クロック分周回路10aは、分周比9/12~3/12のいずれかで分周したクロックAiを生成する。図4には分周比が11/12および10/12の場合のクロックAiの波形も図3との比較のために図示しているが、この例ではそれらの分周比が設定されることはない。 As described above, the frequency dividing ratio setting 35 of the clock frequency dividing circuit 10b is the frequency dividing ratio in which the smallest frequency dividing ratio (the value of N / M is large) among all the clock frequency dividing circuits 10a is set. The same value as the ratio setting 35 is supplied. Therefore, in this example, the clock frequency dividing circuit 10a generates the clock Ai divided by any of the frequency dividing ratios 9/12 to 3/12. FIG. 4 also shows the waveform of the clock Ai when the division ratio is 11/12 and 10/12 for comparison with FIG. 3, but in this example, those division ratios are set. There is no.
 図4では、図3と同様に、クロックNの周波数がクロックSの1/4である。すなわちクロックNのクロックSに対する分周比が1/4(=3/12)で、クロックNがクロックSに同期している場合が示されている。また、クロックS'はクロックSを分周比9/12で分周して生成されている。この際、クロックNとクロックS'やクロックAiとの位相関係は、クロックSの12サイクルで一巡する。図4では、この位相関係が一巡する12サイクルのタイミングがT0~T11で示されている。回路Aiおよび通信回路Nは、クロックNの立ち上がりタイミングに相当するタイミングT0、T4、T8でデータ通信を行う。 4, the frequency of the clock N is ¼ of the clock S, as in FIG. 3. That is, the frequency division ratio of the clock N to the clock S is 1/4 (= 3/12), and the clock N is synchronized with the clock S. The clock S ′ is generated by dividing the clock S by a frequency division ratio of 9/12. At this time, the phase relationship between the clock N and the clock S ′ or the clock Ai makes a round in 12 cycles of the clock S. In FIG. 4, the timing of 12 cycles in which this phase relationship makes a round is indicated by T0 to T11. The circuit Ai and the communication circuit N perform data communication at timings T0, T4, and T8 corresponding to the rising timing of the clock N.
 図4のクロック分周例においても、
(1)通信のタイミングであるタイミングT0、T4、T8では、常にクロック・パルスをマスクせず、それ以外の通信のタイミングではないタイミングT1、T2、T3、T5、T6、T7、T9、T10、T11のいずれかにあるクロック・パルスをマスクする、
かつ、
(2)分周比の小さい場合においてクロック・パルスをマスクしたタイミングに対して、分周比の大きい場合にも当該タイミングで必ずマスクする、
ことによって、クロックAiを生成する。
Also in the clock division example of FIG.
(1) At timings T0, T4, and T8, which are communication timings, clock pulses are not always masked, and timings T1, T2, T3, T5, T6, T7, T9, T10, which are not other communication timings, Mask the clock pulse at any of T11,
And,
(2) In contrast to the timing when the clock pulse is masked when the division ratio is small, the timing is always masked at the timing when the division ratio is large.
As a result, the clock Ai is generated.
 従って、マスク制御回路30は、この通信のタイミングではないタイミングT1、T2、T3、T5、T6、T7、T9、T10、T11のいずれかに対して、S-N個分のクロック・パルスをマスクし、かつ、分周比の小さい場合にクロック・パルスをマスクしたタイミングに対して、分周比の大きい場合にも当該タイミングで必ずマスクするマスクタイミングを割り当てたマスク信号39を生成する。 Therefore, the mask control circuit 30 masks SN clock pulses for any of timings T1, T2, T3, T5, T6, T7, T9, T10, and T11 that are not the timing of this communication. In addition, a mask signal 39 is generated in which a mask timing that is always masked at this timing is assigned to the timing at which the clock pulse is masked when the frequency division ratio is small, even when the frequency division ratio is large.
 以上説明したように、本実施の形態1のクロック分配回路は、分周比設定35で与えられる分周比N/Mに基づいて、入力クロック分周比情報61で与えられる分周比S/Mで分周された入力クロック信号を、N/Sの分周比で有理数分周することで、分周されていないクロック信号をN/Mの分周比で分周したクロック信号に相当する出力クロック信号を生成する。従って、入力クロック信号をあらかじめ分周して周波数を低減することができる。 As described above, the clock distribution circuit according to the first embodiment uses the frequency division ratio S / G given by the input clock frequency division ratio information 61 based on the frequency division ratio N / M given by the frequency division ratio setting 35. The input clock signal divided by M is divided by a rational number at a division ratio of N / S, thereby corresponding to a clock signal obtained by dividing an undivided clock signal by a division ratio of N / M. An output clock signal is generated. Therefore, the frequency can be reduced by dividing the input clock signal in advance.
 さらに、本実施の形態1のクロック分配回路は、分周比の小さい場合にクロック・パルスをマスクしたタイミングに対して、分周比の大きい場合にも当該タイミングで必ずマスクしてクロックを生成する。さらに、クロック分周回路10bの分周比設定は、すべてのクロック分周回路10aのうち、最も小さい(N/MまたはN/Sの値が大きい)分周比が設定されている分周比設定と同一の値が供給される。従って、クロック分周回路10aは、クロック分周回路10bにより分周されたクロックS'から、クロックS'の分周比と同じか、それより大きい分周比のクロックAiを生成することができる。なぜなら、クロックS'でマスクされるタイミングでは、クロックAiにおいても必ずマスクされ、クロックAiにおいてマスクされないタイミングでは、クロックS'においてもマスクされないからである。 Further, the clock distribution circuit according to the first embodiment always generates a clock by masking the timing at which the clock pulse is masked when the frequency division ratio is small, even when the frequency division ratio is large. . Further, the frequency division ratio setting of the clock frequency dividing circuit 10b is the frequency division ratio in which the smallest frequency dividing ratio (the value of N / M or N / S is large) is set among all the clock frequency dividing circuits 10a. The same value as the setting is supplied. Therefore, the clock frequency dividing circuit 10a can generate a clock Ai having a frequency dividing ratio equal to or larger than the frequency dividing ratio of the clock S ′ from the clock S ′ divided by the clock frequency dividing circuit 10b. . This is because at the timing masked with the clock S ′, it is always masked even with the clock Ai, and at the timing not masked with the clock Ai, it is not masked with the clock S ′.
 言い換えると、すべてのクロックAiのうち、最も小さい(N/Mの値が大きい)分周比と同一の分周比で、クロックS'を分周することができる。このため、クロックツリー回路20により分配するクロック信号(クロックS')の周波数を低減することができる。従って、クロックツリー回路20の消費電力を削減することができるという効果がある。 In other words, among all the clocks Ai, the clock S ′ can be divided by the same division ratio as the smallest division ratio (the value of N / M is large). For this reason, the frequency of the clock signal (clock S ′) distributed by the clock tree circuit 20 can be reduced. Therefore, the power consumption of the clock tree circuit 20 can be reduced.
 一方、図9に示した背景技術にかかるクロック分周例のように、クロックツリー回路の入力端で分周することを考慮しないクロック分配方法では、必ずしもすべてのクロックAiのうち、最も小さい分周比と同一の分周比でクロックS'を分周することができない。 On the other hand, as in the clock division example according to the background art shown in FIG. 9, in the clock distribution method that does not consider the division at the input end of the clock tree circuit, the smallest division among all the clocks Ai is not necessarily used. The clock S ′ cannot be divided by the same division ratio as the ratio.
 例えば図9の例では、分周比9/12のクロックS'において、タイミングT3およびT8にはクロック・パルスがない。従って、分周比9/12のクロックS'からは、タイミングT3またはT8においてクロック・パルスが必要な分周比が8/12、7/12、6/12、4/12のクロックAiを生成することができない。このため、仮にすべてのクロックAiのうち、最も小さい分周比が9/12であったとしても、必ずしもクロックS'を9/12の分周比で分周することができない。従って、仮にクロックツリーの入力端にもクロック分周回路を接続したとしても、クロックツリー回路の消費電力を十分に削減することができない。 For example, in the example of FIG. 9, there is no clock pulse at timings T3 and T8 in the clock S ′ having a frequency division ratio of 9/12. Therefore, a clock Ai having a division ratio of 8/12, 7/12, 6/12, 4/12, which requires a clock pulse at timing T3 or T8, is generated from the clock S ′ having a division ratio of 9/12. Can not do it. For this reason, even if the smallest dividing ratio among all the clocks Ai is 9/12, the clock S ′ cannot necessarily be divided by the dividing ratio of 9/12. Therefore, even if a clock divider circuit is connected to the input end of the clock tree, the power consumption of the clock tree circuit cannot be reduced sufficiently.
 さらに、本実施の形態1では、マスク制御回路30により、マスク信号39を生成してマスク回路50へ出力している。マスク信号39は、回路Aiと通信回路Nとの間で行う通信のタイミングを示す通信タイミング情報36に基づいて、通信が行われる通信タイミングを除く他のタイミングに対して、クロック・パルスをマスクするマスクタイミングを割り当てた信号である。これにより、回路Aiと通信回路Nとの間で通信が行われる通信タイミングを除く他のタイミングにおいて、クロックSからクロック・パルスがマスクされてクロックS'およびクロックAiが生成される。 Further, in the first embodiment, the mask control circuit 30 generates the mask signal 39 and outputs it to the mask circuit 50. The mask signal 39 masks the clock pulse with respect to other timings excluding the communication timing at which the communication is performed based on the communication timing information 36 indicating the timing of the communication performed between the circuit Ai and the communication circuit N. This signal is assigned with mask timing. As a result, the clock pulse is masked from the clock S and the clock S ′ and the clock Ai are generated at other timings except the communication timing at which communication is performed between the circuit Ai and the communication circuit N.
 このため、通信タイミングでは、クロックAiのクロック・パルスがマスクされなくなり、通信タイミングには必ずクロックAiにクロック・パルスが出力される。これに応じて、回路Aiは、通信回路Nが出力した信号を、期待したタイミングで受け取ることができる。同様に回路Aiは、通信回路Nが期待したタイミングで、信号を出力することができる。 Therefore, the clock pulse of the clock Ai is not masked at the communication timing, and the clock pulse is always output to the clock Ai at the communication timing. In response to this, the circuit Ai can receive the signal output from the communication circuit N at an expected timing. Similarly, the circuit Ai can output a signal at the timing expected by the communication circuit N.
 したがって、本実施の形態1にかかるクロック分周回路によれば、異なる周波数のクロック信号(クロックN)で動作する通信相手の回路(通信回路N)との間でも、通信性能を低下させずにデータ通信を行える出力クロック信号(クロックAi)を生成することが可能となる。これにより、異なる周波数のクロック信号との通信のために、特別なタイミング設計や特別なクロック乗せ換え回路が不要となり、低電力、低面積かつ低設計コストで、クロック信号を有理数分周することが可能となる。 Therefore, according to the clock frequency dividing circuit according to the first embodiment, communication performance is not deteriorated even with a communication partner circuit (communication circuit N) operating with a clock signal (clock N) having a different frequency. An output clock signal (clock Ai) capable of data communication can be generated. This eliminates the need for special timing design and special clock transfer circuit for communication with clock signals of different frequencies, and can divide the clock signal by a rational number with low power, low area, and low design cost. It becomes possible.
 また、本実施の形態1では、マスク制御回路30において、分周比設定35に応じて、通信相手の回路で通信が行われる通信タイミングを除く他のタイミングに対して、クロック・パルスをマスクするマスクタイミングを割り当てるようにした。そのため例えば、分周比N/Mが11/12~3/12のうちのいずれかに変更される場合でも、通信タイミングT0、T4、T8以外のタイミングでクロックSおよびS'のクロック・パルスをマスクすることができる。したがって、分周比を変更する場合でも、通信回路NのクロックNや通信タイミングを変更する必要がなくなり、極めて柔軟に分周比の変更に対応することが可能となる。 In the first embodiment, the mask control circuit 30 masks the clock pulse with respect to other timings excluding the communication timing at which communication is performed in the communication partner circuit in accordance with the frequency division ratio setting 35. Added mask timing. Therefore, for example, even when the division ratio N / M is changed to any one of 11/12 to 3/12, the clock pulses of the clocks S and S ′ are generated at timings other than the communication timings T0, T4, and T8. Can be masked. Therefore, even when the division ratio is changed, it is not necessary to change the clock N or communication timing of the communication circuit N, and it is possible to cope with the change of the division ratio extremely flexibly.
発明の実施の形態2.
 次に、図5を参照して、本発明の実施の形態2にかかるクロック分周回路について説明する。図5は、本発明の実施の形態2にかかるクロック分周回路の構成を示すブロック図である。本発明の実施の形態2では、実施の形態1にかかるクロック分周回路10のマスク回路50およびマスク制御回路30の具体例について説明する。
Embodiment 2 of the Invention
Next, with reference to FIG. 5, a clock divider circuit according to the second exemplary embodiment of the present invention will be described. FIG. 5 is a block diagram showing a configuration of a clock frequency divider circuit according to the second exemplary embodiment of the present invention. In the second embodiment of the present invention, specific examples of the mask circuit 50 and the mask control circuit 30 of the clock frequency dividing circuit 10 according to the first embodiment will be described.
 図5において、マスク回路50は、入力するマスク信号39を参照して、クロックINパルスをマスクするか、あるいはマスクせずにそのままクロックOUTに出力するか、のいずれかを選択する機能を有している。本実施の形態2において、このマスク回路50は、ラッチ回路52とゲート回路53とから構成されている。 In FIG. 5, a mask circuit 50 has a function of referring to an input mask signal 39 and selecting either masking the clock IN pulse or outputting it directly to the clock OUT without masking. ing. In the second embodiment, the mask circuit 50 includes a latch circuit 52 and a gate circuit 53.
 ラッチ回路52は、クロックINの立ち下りのタイミングでマスク信号39をラッチすることで、ゲート回路53に入力されるマスク信号39の遷移を、クロックINの値が「0」であるタイミングに限定する機能を有している。ゲート回路53は、ラッチ回路52でラッチされたマスク信号39に基づいてクロックINをマスクする機能を有する。マスク信号39の値が「0」の場合、クロックINをマスクする。マスク信号39の値が「1」の場合、クロックINをマスクしない。 The latch circuit 52 latches the mask signal 39 at the timing when the clock IN falls, thereby limiting the transition of the mask signal 39 input to the gate circuit 53 to the timing when the value of the clock IN is “0”. It has a function. The gate circuit 53 has a function of masking the clock IN based on the mask signal 39 latched by the latch circuit 52. When the value of the mask signal 39 is “0”, the clock IN is masked. When the value of the mask signal 39 is “1”, the clock IN is not masked.
 ラッチ回路52を設けることで、クロックOUTにグリッチが発生することを抑制できる。タイミング設計が容易になるという効果があるが、タイミング設計を厳密に行うことでグリッチの発生を回避する場合には、ラッチ回路52を省略してもよい。また、図5では、クロックINをマスクするゲート回路53としてAND回路が用いられているが、これに限るものではない。OR回路を用いてもよいし、その他、同等の機能を有する回路を用いてもよい。 By providing the latch circuit 52, it is possible to suppress the occurrence of a glitch in the clock OUT. Although there is an effect that the timing design is facilitated, the latch circuit 52 may be omitted when the occurrence of a glitch is avoided by strictly designing the timing. In FIG. 5, an AND circuit is used as the gate circuit 53 for masking the clock IN. However, the present invention is not limited to this. An OR circuit may be used, or a circuit having an equivalent function may be used.
 マスク制御回路30は、分周比設定35、通信タイミング情報36、入力クロック分周比情報61に基づいて、クロックINのクロック・パルスをカウントする。これによって、クロックINとクロックOUTとの相対的な位相を示すカウンタ値を生成し、このカウンタ値に基づいてマスクタイミングを割り当てたマスク信号39を生成して出力する機能を有している。 The mask control circuit 30 counts clock pulses of the clock IN based on the frequency division ratio setting 35, the communication timing information 36, and the input clock frequency division ratio information 61. Thus, a counter value indicating the relative phase between the clock IN and the clock OUT is generated, and a mask signal 39 to which a mask timing is assigned based on the counter value is generated and output.
 本実施の形態2において、このマスク制御回路30は、カウンタ33とテーブル回路31とから構成されている。また、分周比設定35は、複数ビットの並列データからなる分周比分母Mと分周比分子Nとから構成されており、分周比設定N/Mを規定する。 In the second embodiment, the mask control circuit 30 includes a counter 33 and a table circuit 31. The frequency division ratio setting 35 includes a frequency division ratio denominator M and a frequency division ratio numerator N composed of parallel data of a plurality of bits, and defines the frequency division ratio setting N / M.
 また、通信タイミング情報36は、タイミング選択信号37と位相信号38とから構成されている。タイミング選択信号37は、クロックOUT(クロックS'やクロックAi)と、クロックOUTで動作する回路の通信相手の回路を駆動するクロック信号(クロックN)との位相関係が一巡する期間の各タイミングから、通信タイミングを選択するための信号である。タイミング選択信号37は、通信タイミングを特定する値を示す複数ビットの並列データからなり、通信タイミングが変更されない限り値は変化しない。位相信号38は、クロックOUTと、クロックOUTで動作する回路の通信相手の回路を駆動するクロック信号(以下では通信相手クロック信号と表記する)との相対的な位相関係を示す信号である。 The communication timing information 36 includes a timing selection signal 37 and a phase signal 38. The timing selection signal 37 is obtained from each timing in a period in which the phase relationship between the clock OUT (clock S ′ or clock Ai) and the clock signal (clock N) that drives the communication partner circuit operating on the clock OUT is completed. , A signal for selecting a communication timing. The timing selection signal 37 is composed of a plurality of bits of parallel data indicating a value specifying the communication timing, and the value does not change unless the communication timing is changed. The phase signal 38 is a signal indicating a relative phase relationship between the clock OUT and a clock signal (hereinafter, referred to as a communication partner clock signal) that drives a communication partner circuit of a circuit that operates on the clock OUT.
 入力クロック分周比情報61は、複数ビットの並列データからなる分周比分子Sから構成されており、入力クロック信号の分周比S/Mを規定する。分母Mの値は分周比設定35における値と同一であり、分周比設定35を構成する分周比分母Mの値を使用するとして、重複した入力を省略している。 The input clock frequency division ratio information 61 is composed of a frequency division ratio numerator S composed of parallel data of a plurality of bits, and defines the frequency division ratio S / M of the input clock signal. The value of the denominator M is the same as the value in the frequency division ratio setting 35, and the input of the frequency division ratio denominator M constituting the frequency division ratio setting 35 is used, and redundant input is omitted.
 カウンタ33は、クロックINのクロック・パルスをカウントするとともに、クロックOUTと通信相手クロック信号との位相関係が一巡した時点で、位相信号38のタイミングに合わせてカウンタ値をリセットし、クロックOUTと通信相手クロック信号との相対的な位相を示すカウンタ値34を出力する機能を有している。これにより、カウンタ33から、クロックOUTと通信相手クロック信号との位相関係が一巡するサイクル数がカウンタ値34として出力される。 The counter 33 counts the clock pulses of the clock IN, and resets the counter value in accordance with the timing of the phase signal 38 when the phase relationship between the clock OUT and the communication partner clock signal makes a round, and communicates with the clock OUT. It has a function of outputting a counter value 34 indicating a relative phase with the counterpart clock signal. As a result, the counter 33 outputs, as the counter value 34, the number of cycles in which the phase relationship between the clock OUT and the communication partner clock signal makes a round.
 テーブル回路31は、カウンタ値34、分周比設定35である分周比分母Mと分周比分子N、入力クロック分周比情報61である分周比分子S、およびタイミング選択信号37の組合せごとに、マスクの要否を示すテーブルデータ32を予めテーブル形式で保持する機能と、入力されたこれら値の組合せに応じたテーブルデータをマスク信号39として選択して出力する機能とを有している。これにより、テーブル回路31から、分周比分母M、分周比分子N、カウンタ値34、分周比分子S、タイミング選択信号37に応じて、マスク回路50でクロックINのクロック・パルスをマスクするか否かを制御するマスク信号39が、クロックINのクロック・パルスごとに出力される。 The table circuit 31 is a combination of a counter value 34, a division ratio denominator M and a division ratio numerator N that are division ratio settings 35, a division ratio numerator S that is input clock division ratio information 61, and a timing selection signal 37. Each has a function of preliminarily holding table data 32 indicating the necessity of masking in a table format and a function of selecting and outputting table data corresponding to a combination of these inputted values as a mask signal 39. Yes. Thus, the mask circuit 50 masks the clock pulse of the clock IN in accordance with the frequency division ratio denominator M, the frequency division ratio numerator N, the counter value 34, the frequency division ratio numerator S, and the timing selection signal 37 from the table circuit 31. A mask signal 39 for controlling whether or not to perform is output for each clock pulse of the clock IN.
 次に、図6および図7を参照して、本発明の実施の形態2にかかるクロック分周回路の動作について説明する。 Next, with reference to FIG. 6 and FIG. 7, the operation of the clock divider circuit according to the second exemplary embodiment of the present invention will be described.
 図6は、本発明の実施の形態2にかかるクロック分周回路10bの動作を示すタイミングチャートである。 FIG. 6 is a timing chart showing the operation of the clock divider circuit 10b according to the second exemplary embodiment of the present invention.
 ここでは、クロックSから分周比9/12のクロックS'を生成する場合について説明する。なお、回路Aiと通信回路Nは、クロックNのすべての立ち上がりのタイミングでデータ通信を行うものとし、クロックNはクロックSに同期しており、その分周比が1/4であるものとする。すわなち、回路Aiと通信回路Nは、タイミングT0、T4、T8で通信を行う。 Here, a case where a clock S ′ having a frequency division ratio of 9/12 is generated from the clock S will be described. Note that the circuit Ai and the communication circuit N perform data communication at all rising timings of the clock N, and the clock N is synchronized with the clock S, and the frequency division ratio thereof is 1/4. . In other words, the circuit Ai and the communication circuit N communicate at timings T0, T4, and T8.
 タイミング選択信号37は、この通信のタイミングがタイミングT0、T4、T8であることを示す信号であり、通信タイミングが変更されない限り値は変化しない。 The timing selection signal 37 is a signal indicating that the timing of this communication is the timing T0, T4, T8, and the value does not change unless the communication timing is changed.
 位相信号38は、クロックS'とクロックNの位相関係が一巡する間において、クロックNの立ち上がりのタイミングのいずれかの1サイクルで「1」となり、それ以外で「0」となる信号である。図6の場合、位相関係が一巡するクロックSの12サイクルのうちの1サイクルであるタイミングT0で「1」になる。 The phase signal 38 is a signal that becomes “1” in any one cycle of the rising timing of the clock N while the phase relationship between the clock S ′ and the clock N makes a round, and becomes “0” otherwise. In the case of FIG. 6, the phase relationship becomes “1” at the timing T <b> 0 that is one cycle of the 12 cycles of the clock S that makes a round.
 入力クロック信号であるクロックSは分周されていないクロック信号である。従って分周比は1、すなわちS/M=12/12であるので、分周比分子Sには値12が設定されている。 The clock S that is an input clock signal is a clock signal that is not divided. Therefore, since the frequency division ratio is 1, that is, S / M = 12/12, a value 12 is set for the frequency division ratio numerator S.
 カウンタ33は、位相信号38が「1」となるタイミングでカウンタ値をリセットする。その後、クロックS'とクロックNの位相関係が一巡する12サイクル分を繰り返してクロックSのクロック・パルスをカウントする。これにより、クロックS'とクロックNの相対的な位相関係を示すカウンタ値34がカウンタ33から出力される。 The counter 33 resets the counter value at the timing when the phase signal 38 becomes “1”. Thereafter, the clock pulses of the clock S are counted by repeating 12 cycles in which the phase relationship between the clock S ′ and the clock N is completed. As a result, a counter value 34 indicating the relative phase relationship between the clock S ′ and the clock N is output from the counter 33.
 図6では、カウンタ値34が「0」~「11」の値をとるタイミングとタイミングT0~T11とが対応している。すなわち、カウンタ値34は、タイミングT0で「0」、タイミングT1で「1」、タイミングT11で「11」となる。その後再びタイミングT0で「0」になる。 In FIG. 6, the timing at which the counter value 34 takes a value from “0” to “11” corresponds to the timing T0 to T11. That is, the counter value 34 is “0” at timing T0, “1” at timing T1, and “11” at timing T11. Thereafter, it becomes “0” again at the timing T0.
 テーブル回路31のテーブルデータ32には、分周比分母M、分周比分子N、カウンタ値34、分周比分子S、タイミング選択信号37の組合せごとに、クロックSの次のサイクルのパルスをマスクする場合は「0」、マスクしない場合は「1」が予め設定されている。したがって、各タイミングに入力された、分周比分母M、分周比分子N、カウンタ値34、分周比分子S、タイミング選択信号37の組合せに応じたテーブルデータ32の値が、マスク信号39として出力される。 The table data 32 of the table circuit 31 includes a pulse of the next cycle of the clock S for each combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37. “0” is preset when masking, and “1” is preset when not masking. Therefore, the value of the table data 32 corresponding to the combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37 input at each timing is the mask signal 39. Is output as
 図6の場合、テーブル回路31には、タイミングT0~T11のうち、回路Aiと通信回路Nとの間で行うデータ通信の通信タイミングを除く他のタイミングT1、T5、T9に対応する組合せに対してマスクタイミングを割り当てたテーブルデータ32が予め設定されている。また、これら以外のタイミングT0、T2、T3、T4、T6、T7、T8、T10、T11に対応する組合わせについては、非マスクタイミングが割り当てられている。 In the case of FIG. 6, the table circuit 31 includes combinations of timings T0 to T11 corresponding to other timings T1, T5, and T9 other than the communication timing of data communication performed between the circuit Ai and the communication circuit N. Table data 32 to which mask timing is assigned is set in advance. Further, non-mask timings are assigned to combinations corresponding to timings T0, T2, T3, T4, T6, T7, T8, T10, and T11 other than these.
 これにより、例えばカウンタ値が「1」、「5」、「9」の場合は、テーブルデータ32としてマスクタイミングを示す「0」、それ以外の場合は、テーブルデータ32として非マスクタイミングを示す「1」が、テーブル回路31からマスク信号39として出力される。マスク回路50は、このマスク信号39を参照して、タイミングT1、T5、T9において、クロックSのパルスをマスクし、それ以外のタイミングではパルスをマスクしないで、クロックS'に出力する。 Thus, for example, when the counter value is “1”, “5”, “9”, “0” indicating the mask timing as the table data 32, and “0” indicating the non-mask timing as the table data 32 otherwise. 1 ”is output from the table circuit 31 as the mask signal 39. The mask circuit 50 refers to the mask signal 39, masks the pulse of the clock S at timings T1, T5, and T9, and outputs it to the clock S ′ without masking the pulses at other timings.
 したがって、タイミングT0~T11のうち、通信タイミングであるタイミングT0、T4、T8では、常にクロックSのクロック・パルスがマスクされずクロックS'として出力される。また、タイミングT0~T11のうち、通信タイミングではないそれ以外のタイミング、ここではタイミングT1、T5、T9にあるクロック・パルスがマスクされてクロックS'として出力されない。 Therefore, among the timings T0 to T11, at the communication timings T0, T4, and T8, the clock pulse of the clock S is not always masked and is output as the clock S ′. In addition, among the timings T0 to T11, clock pulses at other timings that are not communication timings, here, timings T1, T5, and T9 are masked and are not output as the clock S ′.
 図6では、クロックS'の分周比が9/12、クロックNの周波数がクロックSの1/4であり、クロックNのすべての立ち上がりのタイミングで通信を行う場合の生成例を示したが、その他の場合であっても同様である。通信タイミング情報36、分周比設定35、入力クロック分周比情報61、およびクロックS'とクロックNの相対的な位相関係を示すカウンタ値34の組合せごとに、テーブルデータ32の値を適切に設定することで、通信タイミングにあるクロック・パルスは常にマスクをせずに、それ以外の通信のタイミングにないクロック・パルスをマスクすることによる任意の有理数分周を実現することができる。 FIG. 6 shows a generation example in the case where the frequency division ratio of the clock S ′ is 9/12, the frequency of the clock N is 1/4 of the clock S, and communication is performed at all rising timings of the clock N. The same applies to other cases. The value of the table data 32 is appropriately set for each combination of the communication timing information 36, the division ratio setting 35, the input clock division ratio information 61, and the counter value 34 indicating the relative phase relationship between the clock S ′ and the clock N. By setting, it is possible to achieve any rational division by masking clock pulses that are not in communication timing without always masking clock pulses in communication timing.
 また、図6では、マスク制御回路30に入力される、分周比分母M、分周比分子N、分周比分子S、などの値は一定であったが、テーブル回路31がそれらの値に対応するテーブルデータ32を保持する範囲内であれば、適宜動作中に変更することもできる。 In FIG. 6, the values of the frequency division ratio denominator M, the frequency division ratio numerator N, the frequency division ratio numerator S, etc., which are input to the mask control circuit 30 are constant. As long as it is within the range in which the table data 32 corresponding to is held, it can be appropriately changed during operation.
 図7は、本発明の実施の形態2にかかるクロック分周回路10aの動作を示すタイミングチャートである。 FIG. 7 is a timing chart showing the operation of the clock frequency dividing circuit 10a according to the second exemplary embodiment of the present invention.
 ここでは、クロック分周回路10bが生成した分周比9/12のクロックS'から、分周比5/12のクロックAiを生成する場合について説明する。なお、回路Aiと通信回路Nは、クロックNのすべての立ち上がりのタイミングでデータ通信を行うものとし、クロックNはクロックSに同期しており、その分周比が1/4であるものとする。すわなち、回路Aiと通信回路Nは、タイミングT0、T4、T8で通信を行う。 Here, a case where a clock Ai having a frequency division ratio of 5/12 is generated from a clock S ′ having a frequency division ratio of 9/12 generated by the clock frequency dividing circuit 10b will be described. Note that the circuit Ai and the communication circuit N perform data communication at all rising timings of the clock N, and the clock N is synchronized with the clock S, and the frequency division ratio thereof is 1/4. . In other words, the circuit Ai and the communication circuit N communicate at timings T0, T4, and T8.
 タイミング選択信号37は、この通信のタイミングがタイミングT0、T4、T8であることを示す信号であり、通信タイミングが変更されない限り値は変化しない。 The timing selection signal 37 is a signal indicating that the timing of this communication is the timing T0, T4, T8, and the value does not change unless the communication timing is changed.
 位相信号38は、クロックAiとクロックNの位相関係が一巡する間において、クロックNの立ち上がりのタイミングのいずれかの1サイクルで「1」となり、それ以外で「0」となる信号である。図7の場合、位相関係が一巡するクロックSの12サイクルのうちの1サイクルであるタイミングT0で「1」になる。 The phase signal 38 is a signal that becomes “1” in any one cycle of the rising timing of the clock N while the phase relationship between the clock Ai and the clock N completes, and becomes “0” otherwise. In the case of FIG. 7, the phase relationship becomes “1” at the timing T <b> 0, which is one cycle of the 12 cycles of the clock S.
 入力クロック信号であるクロックS'の分周比S/Mは9/12であるので、分周比分子Sには値9が設定されている。 Since the division ratio S / M of the clock S ′ that is the input clock signal is 9/12, the value 9 is set in the division ratio numerator S.
 カウンタ33は、位相信号38が「1」となるタイミングでカウンタ値をリセットし、その後、クロックAiとクロックNの位相関係が一巡するクロックSの12サイクル分、クロックS'の9サイクル分を繰り返してクロックS'のクロック・パルスをカウントする。これにより、クロックAiとクロックNの相対的な位相関係を示すカウンタ値34がカウンタ33から出力される。カウンタ33は、クロックS'で動作するので、カウンタ値34はクロックS'の9サイクル分に対応する「0」~「8」の値をとる。 The counter 33 resets the counter value at the timing when the phase signal 38 becomes “1”, and then repeats the 12 cycles of the clock S and the 9 cycles of the clock S ′ in which the phase relationship between the clock Ai and the clock N goes around. To count the clock pulses of the clock S ′. As a result, a counter value 34 indicating the relative phase relationship between the clock Ai and the clock N is output from the counter 33. Since the counter 33 operates with the clock S ′, the counter value 34 takes values “0” to “8” corresponding to nine cycles of the clock S ′.
 図7では、カウンタ値34が「0」~「8」の値をとるタイミングとタイミングT0~T11とが対応している。すなわち、カウンタ値34は、タイミングT0で「0」、タイミングT1およびT2で「1」、タイミングT3で「2」、タイミングT4で「3」、タイミングT5およびT6で「4」、タイミングT7で「5」、タイミングT8で「6」、タイミングT9およびT10で「7」、タイミングT11で「8」となる。その後再びタイミングT0で「0」になる。 In FIG. 7, the timing at which the counter value 34 takes a value from “0” to “8” corresponds to the timing T0 to T11. That is, the counter value 34 is “0” at timing T0, “1” at timings T1 and T2, “2” at timing T3, “3” at timing T4, “4” at timings T5 and T6, and “4” at timing T7. 5 ”,“ 6 ”at timing T8,“ 7 ”at timings T9 and T10, and“ 8 ”at timing T11. Thereafter, it becomes “0” again at the timing T0.
 テーブル回路31のテーブルデータ32には、分周比分母M、分周比分子N、カウンタ値34、分周比分子S、タイミング選択信号37の組合せごとに、クロックS'の次のサイクルのパルスをマスクする場合は「0」、マスクしない場合は「1」が予め設定されている。したがって、各タイミングに入力された、分周比分母M、分周比分子N、カウンタ値34、分周比分子S、タイミング選択信号37の組合せに応じたテーブルデータ32の値が、マスク信号39として出力される。 The table data 32 of the table circuit 31 includes a pulse of the next cycle of the clock S ′ for each combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37. “0” is set in advance when masking is set, and “1” is set when not masking. Therefore, the value of the table data 32 corresponding to the combination of the division ratio denominator M, the division ratio numerator N, the counter value 34, the division ratio numerator S, and the timing selection signal 37 input at each timing is the mask signal 39. Is output as
 図7の場合、テーブル回路31には、タイミングT0~T11のうち、回路Aiと通信回路Nとの間で行うデータ通信の通信タイミング除く他のタイミングT1、T2、T3、T5、T7、T9、T11に対応する組合せに対してマスクタイミングを割り当てたテーブルデータ32が予め設定されている。また、これら以外のタイミングT0、T4、T6、T8、T10に対応する組合わせについては、非マスクタイミングが割り当てられている。 In the case of FIG. 7, the table circuit 31 includes other timings T1, T2, T3, T5, T7, T9 other than the communication timing of data communication performed between the circuit Ai and the communication circuit N among the timings T0 to T11. Table data 32 in which mask timings are assigned to combinations corresponding to T11 is set in advance. Further, non-mask timing is assigned to combinations corresponding to timings T0, T4, T6, T8, and T10 other than these.
 これにより、例えばカウンタ値が「1」、「2」、「5」、「8」の場合は、テーブルデータ32としてマスクタイミングを示す「0」、それ以外の場合は、テーブルデータ32として非マスクタイミングを示す「1」が、テーブル回路31からマスク信号39として出力される。マスク回路50は、このマスク信号39を参照して、タイミングT1、T2、T3、T5、T7、T9、T11において、クロックS'のパルスをマスクし、それ以外のタイミングではパルスをマスクしないで、クロックAiに出力する。 Thus, for example, when the counter value is “1”, “2”, “5”, “8”, “0” indicating the mask timing as the table data 32, otherwise, the table data 32 is not masked. “1” indicating the timing is output as a mask signal 39 from the table circuit 31. The mask circuit 50 refers to the mask signal 39, masks the pulse of the clock S ′ at timings T1, T2, T3, T5, T7, T9, and T11, and does not mask the pulses at other timings. Output to clock Ai.
 したがってタイミングT0~T11のうち、通信タイミングであるタイミングT0、T4、T8では、常にクロックS'のクロック・パルスがマスクされずクロックAiとして出力される。また、タイミングT0~T11のうち、通信タイミングではないそれ以外のタイミング、ここではタイミングT1、T2、T3、T5、T7、T9、T11にあるクロック・パルスがマスクされてクロックAiとして出力されない。 Therefore, among the timings T0 to T11, at the timings T0, T4, and T8 which are communication timings, the clock pulse of the clock S ′ is not always masked and is output as the clock Ai. In addition, among the timings T0 to T11, clock pulses at other timings that are not communication timings, here, timings T1, T2, T3, T5, T7, T9, and T11 are masked and are not output as the clock Ai.
 図7では、クロックS'の分周比が9/12、クロックAiの分周比が5/12、クロックNの周波数がクロックSの1/4であり、クロックNのすべての立ち上がりのタイミングで通信を行う場合の生成例を示したが、その他の場合であっても同様である。通信タイミング情報36、分周比設定35、入力クロック分周比情報61、およびクロックAiとクロックNの相対的な位相関係を示すカウンタ値34の組合せごとに、テーブルデータ32の値を適切に設定することで、通信タイミングにあるクロック・パルスは常にマスクをせずに、それ以外の通信のタイミングにないクロック・パルスをマスクすることによる任意の有理数分周を実現することができる。 In FIG. 7, the frequency division ratio of the clock S ′ is 9/12, the frequency division ratio of the clock Ai is 5/12, the frequency of the clock N is 1/4 of the clock S, and at every rising timing of the clock N. Although an example of generation in the case of performing communication is shown, the same applies to other cases. The value of the table data 32 is appropriately set for each combination of the communication timing information 36, the division ratio setting 35, the input clock division ratio information 61, and the counter value 34 indicating the relative phase relationship between the clock Ai and the clock N. By doing so, it is possible to realize arbitrary division of rational numbers by masking clock pulses that are not in communication timing without always masking clock pulses in communication timing.
 また、図7では、マスク制御回路30に入力される、分周比分母M、分周比分子N、分周比分子S、などの値は一定であったが、テーブル回路31がそれらの値に対応するテーブルデータ32を保持する範囲内であれば、適宜動作中に変更することもできる。 In FIG. 7, the values of the frequency division ratio denominator M, the frequency division ratio numerator N, the frequency division ratio numerator S, and the like input to the mask control circuit 30 are constant. As long as it is within the range in which the table data 32 corresponding to is held, it can be changed appropriately during operation.
 このように、本実施の形態2では、マスク制御回路において、入力クロック信号のクロック・パルスをカウンタでカウントするとともに、出力クロック信号と、出力クロック信号で動作する回路の通信相手の回路を駆動するクロック信号との位相関係が一巡した時点でカウント値をリセットすることにより、入力クロック信号に対する通信タイミングの相対的な位相を示すカウント値を生成し、このカウント値に基づいてマスクタイミングを割り当てたマスク信号を生成するようにしたので、カウンタという極めて簡単な回路構成で、入力クロック信号に対する通信タイミングの相対的な位相を導出でき、通信タイミング以外のタイミングからマスクタイミングを正確に割り当てることが可能となる。 As described above, in the second embodiment, in the mask control circuit, the clock pulse of the input clock signal is counted by the counter, and the output clock signal and the circuit that is the communication partner of the circuit that operates on the output clock signal are driven. A count value that indicates the relative phase of communication timing with respect to the input clock signal is generated by resetting the count value when the phase relationship with the clock signal is completed, and a mask that is assigned a mask timing based on this count value Since the signal is generated, the relative phase of the communication timing with respect to the input clock signal can be derived with a very simple circuit configuration called a counter, and the mask timing can be accurately assigned from a timing other than the communication timing. .
 また、本実施の形態2では、マスク制御回路において、少なくとも通信タイミング情報、分周比設定、入力クロック分周比情報、およびカウント値の組合せごとにマスクの要否を示すテーブルデータを予めテーブル回路で保持し、入力されたこれら組合せに応じてテーブル回路から出力されたテーブルデータをマスク信号として出力するようにしたので、テーブル回路という極めて簡単な回路構成で、通信タイミング以外のタイミングから、入力クロック信号に対する通信タイミングの相対的な位相に応じた所望のマスクタイミングを正確に割り当てることが可能となる。 In the second embodiment, in the mask control circuit, table data indicating whether or not masking is necessary for each combination of at least the communication timing information, the division ratio setting, the input clock division ratio information, and the count value is previously stored in the table circuit. The table data output from the table circuit according to these input combinations is output as a mask signal, so the input clock can be used from a timing other than the communication timing with a very simple circuit configuration called a table circuit. A desired mask timing according to the relative phase of the communication timing with respect to the signal can be accurately assigned.
 また、本実施の形態2では、マスク制御回路において、少なくとも通信タイミング情報、分周比設定、入力クロック分周比情報、およびカウント値の組合せごとにマスクの要否を示すテーブルデータを予めテーブル回路で保持し、入力されたこれら組合せに応じてテーブル回路から出力されたテーブルデータをマスク信号として出力するようにしたので、入力クロック信号が分周されたクロック信号であっても、通信タイミング以外のタイミングから、入力クロック信号に対する通信タイミングの相対的な位相に応じた所望のマスクタイミングを正確に割り当てることが可能となる。 In the second embodiment, in the mask control circuit, table data indicating whether or not masking is necessary for each combination of at least the communication timing information, the division ratio setting, the input clock division ratio information, and the count value is previously stored in the table circuit. The table data output from the table circuit is output as a mask signal in accordance with these input combinations, so that even if the input clock signal is a divided clock signal, other than the communication timing From the timing, a desired mask timing according to the relative phase of the communication timing with respect to the input clock signal can be accurately assigned.
 また、本実施の形態2では、マスク制御回路30が入力する分周比設定35は、分周比の分母の値を示す分周比分母Mと、分周比の分子の値を示す分周比分子Nから構成されるとしたが、分周比を設定できるものであれば、別の形式であってもよい。同様に、マスク制御回路30が入力する通信タイミング情報は、通信タイミングを選択するタイミング選択信号37と、出力クロック信号と通信相手のクロック信号との位相関係を示す位相信号38から構成されるとしたが、通信タイミングを指定できるものであれば、別の形式であってもよい。また、分周比の設定や、通信タイミングの指定に不要の信号は適宜省略してもよい。例えば、通信タイミングがある特定のタイミングのみである場合には、テーブルデータ32をタイミング選択信号37の値ごとに備える必要がないので、タイミング選択信号37を省略することができる。 In the second embodiment, the frequency division ratio setting 35 input by the mask control circuit 30 includes the frequency division ratio denominator M indicating the denominator value of the frequency division ratio and the frequency division indicating the numerator value of the frequency division ratio. Although it is composed of the specific numerator N, another form may be used as long as the division ratio can be set. Similarly, the communication timing information input by the mask control circuit 30 is composed of a timing selection signal 37 for selecting the communication timing, and a phase signal 38 indicating the phase relationship between the output clock signal and the communication partner clock signal. However, another format may be used as long as the communication timing can be designated. Further, signals unnecessary for setting the frequency division ratio and specifying the communication timing may be omitted as appropriate. For example, when the communication timing is only a specific timing, it is not necessary to prepare the table data 32 for each value of the timing selection signal 37, so that the timing selection signal 37 can be omitted.
 また、本実施の形態2によるクロック分周回路10は、ディジタル論理回路のみで構成され、クロックINをマスクするか否かのいずれかを選択して、有理数分周を実現するので、消費電力やレイアウト面積が小さいという特徴がある。また、アナログ回路や専用設計を必要とする回路を使用しないので、設計・検証コストが小さいという特徴がある。 Further, the clock divider circuit 10 according to the second embodiment is composed of only a digital logic circuit, and selects either whether or not the clock IN is masked to realize rational frequency division. The layout area is small. Further, since an analog circuit or a circuit that requires a dedicated design is not used, the design / verification cost is low.
 この出願は、2008年10月29日に出願された日本出願特願2008-278497を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-278497 filed on Oct. 29, 2008, the entire disclosure of which is incorporated herein.
 本発明は、複数の回路ブロックに異なる周波数のクロック信号を分配する半導体回路、及びこれを用いた電子機器の分野に広く適用することができる。 The present invention can be widely applied to the field of semiconductor circuits that distribute clock signals having different frequencies to a plurality of circuit blocks, and electronic equipment using the same.
10、10a、10b クロック分周回路
20 クロックツリー回路
22 クロックバッファ
30 マスク制御回路
31 テーブル回路
32 テーブルデータ
33 カウンタ
34 カウンタ値
35 分周比設定
36 通信タイミング情報
37 タイミング選択信号
38 位相信号
39 マスク信号
50 マスク回路
52 ラッチ回路
53 ゲート回路
61 入力クロック分周比情報
100 クロック分周回路
10, 10a, 10b Clock divider circuit 20 Clock tree circuit 22 Clock buffer 30 Mask control circuit 31 Table circuit 32 Table data 33 Counter 34 Counter value 35 Division ratio setting 36 Communication timing information 37 Timing selection signal 38 Phase signal 39 Mask signal 50 mask circuit 52 latch circuit 53 gate circuit 61 input clock division ratio information 100 clock division circuit

Claims (17)

  1.  N/S(Nは正整数,SはNより大きい正整数)により規定された分周比に基づいて、入力クロック信号のS個のクロック・パルスのうち、(S-N)個分のクロック・パルスを減少させることにより、当該入力クロック信号をN/S分周した出力クロック信号を生成するクロック分周回路であって、
     前記入力クロック信号のS個のクロック・パルスのうち、前記出力クロック信号を用いる対象回路が行うデータ通信の通信タイミング以外のクロック・パルスを優先的に減少させる制御信号を生成する制御回路と、
     前記制御回路によって生成された制御信号に応じて、前記入力クロック信号のクロック・パルスを減少させることによって前記出力クロック信号を生成する処理回路と、を備えたクロック分周回路。
    Based on the frequency division ratio defined by N / S (N is a positive integer, S is a positive integer greater than N), (S−N) clocks out of S clock pulses of the input clock signal A clock frequency dividing circuit for generating an output clock signal obtained by dividing the input clock signal by N / S by reducing the pulse;
    A control circuit that generates a control signal that preferentially decreases clock pulses other than the communication timing of data communication performed by the target circuit using the output clock signal among S clock pulses of the input clock signal;
    And a processing circuit that generates the output clock signal by reducing clock pulses of the input clock signal in accordance with a control signal generated by the control circuit.
  2.  前記処理回路は、前記制御信号に応じて、前記入力クロック信号に含まれる複数のクロック・パルスのうち、一部のクロック・パルスをマスクすることによって前記出力クロック信号を生成する処理回路を備えたことを特徴とする請求項1記載のクロック分周回路。 The processing circuit includes a processing circuit that generates the output clock signal by masking a part of a plurality of clock pulses included in the input clock signal according to the control signal. 2. The clock frequency dividing circuit according to claim 1, wherein:
  3.  前記制御回路は、分周比の小さい場合にマスク対象となったクロック・パルスに対しては、それよりも分周比の大きい場合にマスク対象に含めることを特徴とする請求項2記載のクロック分周回路。 3. The clock circuit according to claim 2, wherein the control circuit includes a clock pulse that is a mask target when the frequency division ratio is small and that is included in the mask target when the frequency division ratio is larger than the clock pulse. Divider circuit.
  4.  前記制御回路は、少なくとも前記分周比を規定する分周比分母Sおよび分周比分子Nの組合せごとにマスクの要否を示すテーブルデータを予め保持するテーブル回路を備え、入力されたこれら組合せに応じて前記テーブル回路から出力されたテーブルデータを前記制御信号として出力することを特徴とする請求項2記載のクロック分周回路。 The control circuit includes a table circuit that preliminarily stores table data indicating whether or not a mask is necessary for each combination of a frequency division ratio denominator S and a frequency division ratio numerator N that define the frequency division ratio. 3. The clock frequency dividing circuit according to claim 2, wherein the table data output from the table circuit is output as the control signal in response to.
  5.  前記テーブル回路は、前記分周比分母Sおよび前記分周比分子Nに、前記入力クロック信号の分周比を規定するS/M(Sは正整数,MはSより大きい正整数)の分周比分母Mを加えた組合せごとにマスクの要否を示すテーブルデータを予め保持することを特徴とする請求項4記載のクロック分周回路。 The table circuit divides S / M (S is a positive integer, M is a positive integer larger than S) that defines the frequency division ratio of the input clock signal in the frequency division ratio denominator S and the frequency division ratio numerator N. 5. The clock frequency dividing circuit according to claim 4, wherein table data indicating whether or not a mask is necessary is held in advance for each combination to which a frequency ratio denominator M is added.
  6.  前記制御回路は、前記入力クロック信号のクロック・パルスをカウンタでカウントするとともに、当該カウント値が分周比分母Sに達した時点でカウント値をリセットすることにより、当該入力クロック信号に対する前記通信タイミングの相対的な位相を示すカウント値を生成し、このカウント値に基づいて前記制御信号を生成することを特徴とする請求項2~5いずれかに記載のクロック分周回路。 The control circuit counts clock pulses of the input clock signal with a counter, and resets the count value when the count value reaches the frequency division ratio denominator S, whereby the communication timing for the input clock signal is set. 6. The clock frequency dividing circuit according to claim 2, wherein a count value indicating a relative phase of the clock is generated, and the control signal is generated based on the count value.
  7.  前記テーブル回路は、前記分周比分母S、前記分周比分子Nおよび前記分周比分母Mに、前記通信タイミングに関する情報および前記カウント値を加えた組合せごとにマスクの要否を示すテーブルデータを予めテーブル回路で保持し、入力されたこれら組合せに応じて前記テーブル回路から出力されたテーブルデータを前記制御信号として出力することを特徴とする請求項4記載のクロック分周回路。 The table circuit indicates whether or not a mask is necessary for each combination of the frequency division ratio denominator S, the frequency division ratio numerator N, and the frequency division ratio denominator M plus the information related to the communication timing and the count value. 5. The clock divider circuit according to claim 4, wherein the clock data is held in advance in a table circuit, and table data output from the table circuit is output as the control signal in accordance with the input combination.
  8.  前記通信タイミングに関する情報は、前記対象回路における通信動作に用いるクロック信号と前記出力クロック信号との位相関係が一巡する期間の各タイミングから前記対象回路での通信タイミングを選択する通信タイミング選択情報をさらに含むことを特徴とする請求項1~7いずれかに記載のクロック分周回路。 The information on the communication timing further includes communication timing selection information for selecting a communication timing in the target circuit from each timing in a period in which the phase relationship between the clock signal used for the communication operation in the target circuit and the output clock signal goes around. 8. The clock divider circuit according to claim 1, further comprising a clock divider circuit.
  9.  クロックツリー回路と、
     入力されたクロック信号に対して第1の分周を行い、前記クロックツリー回路に出力する第1のクロック分周回路と、
     前記クロックツリー回路から出力される複数のクロック信号を入力し、それぞれのクロック信号に対して第2の分周を行い、複数の対象回路に出力する第2のクロック分周回路とを備えたクロック分配回路。
    A clock tree circuit;
    A first clock frequency dividing circuit for performing a first frequency division on the input clock signal and outputting to the clock tree circuit;
    A clock including a plurality of clock signals output from the clock tree circuit, a second frequency division for each of the clock signals, and a second clock frequency dividing circuit for outputting to the plurality of target circuits Distribution circuit.
  10.  前記第1のクロック分周回路は、前記第2のクロック分周回路における第2の分周のうち、最も小さい分周比と同一の分周比に基づいて、第1の分周を行うことを特徴とする請求項9記載のクロック分配回路。 The first clock frequency dividing circuit performs the first frequency division based on the same frequency division ratio as the smallest frequency division ratio among the second frequency divisions in the second clock frequency dividing circuit. The clock distribution circuit according to claim 9.
  11.  前記第2のクロック分周回路から出力されるクロック信号は、前記複数の対象回路がデータ通信を行うタイミングに相当するクロック・パルスを全て含むことを特徴とする請求項9又は10記載のクロック分配回路。 11. The clock distribution according to claim 9, wherein the clock signal output from the second clock divider circuit includes all clock pulses corresponding to timings at which the plurality of target circuits perform data communication. circuit.
  12.  N/S(Nは正整数,SはNより大きい正整数)により規定された分周比に基づいて、入力クロック信号のS個のクロック・パルスのうち、(S-N)個分のクロック・パルスを減少させることにより、当該入力クロック信号をN/S分周した出力クロック信号を生成するクロック分周方法であって、
     前記入力クロック信号のS個のクロック・パルスのうち、前記出力クロック信号を用いる対象回路で行うデータ通信の通信タイミング以外のクロック・パルスを決定し、
     決定されたクロック・パルスを減少させることによって前記出力クロック信号を生成する、クロック分周方法。
    Based on the frequency division ratio defined by N / S (N is a positive integer, S is a positive integer greater than N), (S−N) clocks out of S clock pulses of the input clock signal A clock dividing method for generating an output clock signal obtained by dividing the input clock signal by N / S by reducing pulses;
    Of the S clock pulses of the input clock signal, determine a clock pulse other than the communication timing of data communication performed in the target circuit using the output clock signal,
    A clock frequency dividing method for generating the output clock signal by reducing the determined clock pulse.
  13.  前記出力クロック信号を生成するに際し、前記入力クロック信号に含まれる複数のクロック・パルスのうち、一部のクロック・パルスをマスクすることによって前記出力クロック信号を生成することを特徴とする請求項12記載のクロック分周方法。 13. The output clock signal is generated by masking a part of a plurality of clock pulses included in the input clock signal when generating the output clock signal. Clock division method described.
  14.  分周比の小さい場合にマスク対象となったクロック・パルスに対しては、それよりも分周比の大きい場合にマスク対象に含めることを特徴とする請求項13記載のクロック分周方法。 14. The clock frequency dividing method according to claim 13, wherein a clock pulse that is a mask target when the frequency division ratio is small is included in the mask target when the frequency division ratio is larger than that.
  15.  入力されたクロック信号に対して第1の分周を行い、
     第1の分周が行われたクロック信号を複数に分配し、
     分配されたクロック信号に第2の分周を行い、複数の回路に出力する、クロック分配方法。
    Performs first frequency division on the input clock signal,
    Distributing the clock signal having undergone the first frequency division to a plurality of times,
    A clock distribution method for performing a second frequency division on a distributed clock signal and outputting the result to a plurality of circuits.
  16.  前記第1の分周を行うに際し、前記第2の分周のうち、最も小さい分周比と同一の分周比に基づいて、第1の分周を行うことを特徴とする請求項15記載のクロック分配方法。 16. The first frequency division is performed based on a frequency division ratio that is the same as a smallest frequency division ratio among the second frequency divisions when performing the first frequency division. Clock distribution method.
  17.  前記第2のクロック分周回路から出力されるクロック信号は、前記複数の対象回路がデータ通信を行うタイミングに相当するクロック・パルスを全て含むことを特徴とする請求項15又は16記載のクロック分配方法。 17. The clock distribution according to claim 15, wherein the clock signal output from the second clock divider circuit includes all clock pulses corresponding to timings at which the plurality of target circuits perform data communication. Method.
PCT/JP2009/003631 2008-10-29 2009-07-30 Clock division circuit, clock distribution circuit, clock division method, and clock distribution method WO2010050097A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010535621A JP5522050B2 (en) 2008-10-29 2009-07-30 Clock dividing circuit, clock distributing circuit, clock dividing method and clock distributing method
US13/058,463 US8422619B2 (en) 2008-10-29 2009-07-30 Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method
US13/798,711 US8629703B2 (en) 2008-10-29 2013-03-13 Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-278497 2008-10-29
JP2008278497 2008-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/058,463 A-371-Of-International US8422619B2 (en) 2008-10-29 2009-07-30 Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method
US13/798,711 Division US8629703B2 (en) 2008-10-29 2013-03-13 Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method

Publications (1)

Publication Number Publication Date
WO2010050097A1 true WO2010050097A1 (en) 2010-05-06

Family

ID=42128471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003631 WO2010050097A1 (en) 2008-10-29 2009-07-30 Clock division circuit, clock distribution circuit, clock division method, and clock distribution method

Country Status (3)

Country Link
US (2) US8422619B2 (en)
JP (1) JP5522050B2 (en)
WO (1) WO2010050097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549354A3 (en) * 2011-07-18 2017-03-15 Apple Inc. Dynamic frequency control using coarse clock gating

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413367B2 (en) * 2008-07-23 2014-02-12 日本電気株式会社 Semiconductor device and communication method
WO2010050098A1 (en) * 2008-10-29 2010-05-06 日本電気株式会社 Clock division circuit, clock distribution circuit, clock division method, and clock distribution method
US8422619B2 (en) * 2008-10-29 2013-04-16 Nec Corporation Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method
US8904115B2 (en) * 2010-09-28 2014-12-02 Texas Instruments Incorporated Cache with multiple access pipelines
CN102508804A (en) * 2011-10-20 2012-06-20 豪威科技(上海)有限公司 Secure digital (SD)/secure digital input and output (SDIO) master controller
JP6115715B2 (en) * 2013-03-26 2017-04-19 セイコーエプソン株式会社 CLOCK GENERATION DEVICE, ELECTRONIC DEVICE, MOBILE BODY, AND CLOCK GENERATION METHOD
KR20150082911A (en) * 2014-01-08 2015-07-16 삼성전자주식회사 Semiconductor device and method for controlling the same
US9214943B1 (en) * 2014-10-16 2015-12-15 Freescale Semiconductor, Inc. Fractional frequency divider
CN106992770B (en) * 2016-01-21 2021-03-30 华为技术有限公司 Clock circuit and method for transmitting clock signal
CN109831191B (en) * 2016-09-13 2021-10-26 华为技术有限公司 Multi-channel clock distribution circuit and electronic equipment
CN109863728B (en) * 2017-03-24 2021-03-05 华为技术有限公司 Mobile terminal
TWI627832B (en) * 2017-04-07 2018-06-21 奇景光電股份有限公司 Method and circuit for dividing clock frequency
KR20220063579A (en) * 2020-11-10 2022-05-17 삼성전자주식회사 A memory device, a memory system and an operation method thereof
US11422586B1 (en) * 2021-02-24 2022-08-23 Texas Instruments Incorporated Methods and systems for generation of balanced secondary clocks from root clock

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035832A (en) * 1998-07-21 2000-02-02 Nec Corp Semiconductor integrated circuit and its clock distributing method
JP2001127618A (en) * 1999-10-26 2001-05-11 Yokogawa Electric Corp Clock signal generating circuit
JP2001320022A (en) * 2000-05-10 2001-11-16 Nec Corp Integrated circuit
JP2006245631A (en) * 2005-02-28 2006-09-14 Canon Inc Pulse generating circuit, image pickup device and camera

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151217A (en) * 1986-12-16 1988-06-23 Fujitsu Ltd Frequency divider circuit whose output frequency is partly missing
US5239215A (en) * 1988-05-16 1993-08-24 Matsushita Electric Industrial Co., Ltd. Large scale integrated circuit configured to eliminate clock signal skew effects
US5043596A (en) * 1988-09-14 1991-08-27 Hitachi, Ltd. Clock signal supplying device having a phase compensation circuit
US5040197A (en) * 1990-03-09 1991-08-13 Codex Corp. Fractional frequency divider for providing a symmetrical output signal
US5088057A (en) * 1990-04-05 1992-02-11 At&T Bell Laboratories Rational rate frequency generator
JPH05160721A (en) * 1991-12-05 1993-06-25 Toshiba Corp Frequency divider circuit
JPH0946222A (en) * 1995-07-25 1997-02-14 Nippon Steel Corp Variable clock generation circuit
JP2923882B2 (en) * 1997-03-31 1999-07-26 日本電気株式会社 Semiconductor integrated circuit having clock supply circuit
JP3879265B2 (en) 1998-07-17 2007-02-07 ソニー株式会社 E-mail providing apparatus, communication terminal apparatus, and e-mail system
US6639443B1 (en) * 2002-04-22 2003-10-28 Broadcom Corporation Conditional clock buffer circuit
JP2005045507A (en) 2003-07-28 2005-02-17 Yamaha Corp Non-integer frequency divider
JP4371046B2 (en) 2004-11-24 2009-11-25 ソニー株式会社 Clock divider circuit
US7893742B2 (en) * 2006-11-10 2011-02-22 Nec Corporation Clock signal dividing circuit
JP5240850B2 (en) * 2006-11-29 2013-07-17 日本電気株式会社 Clock signal dividing circuit and clock signal dividing method
US7956665B2 (en) * 2008-02-29 2011-06-07 Qimonda Ag Methods and articles of manufacture for operating electronic devices on a plurality of clock signals
US8253450B2 (en) * 2008-03-17 2012-08-28 Nec Corporation Clock signal frequency dividing circuit and method
US8422619B2 (en) * 2008-10-29 2013-04-16 Nec Corporation Clock frequency divider circuit, clock distribution circuit, clock frequency division method, and clock distribution method
WO2010050098A1 (en) * 2008-10-29 2010-05-06 日本電気株式会社 Clock division circuit, clock distribution circuit, clock division method, and clock distribution method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035832A (en) * 1998-07-21 2000-02-02 Nec Corp Semiconductor integrated circuit and its clock distributing method
JP2001127618A (en) * 1999-10-26 2001-05-11 Yokogawa Electric Corp Clock signal generating circuit
JP2001320022A (en) * 2000-05-10 2001-11-16 Nec Corp Integrated circuit
JP2006245631A (en) * 2005-02-28 2006-09-14 Canon Inc Pulse generating circuit, image pickup device and camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2549354A3 (en) * 2011-07-18 2017-03-15 Apple Inc. Dynamic frequency control using coarse clock gating

Also Published As

Publication number Publication date
US20110200162A1 (en) 2011-08-18
JPWO2010050097A1 (en) 2012-03-29
US8422619B2 (en) 2013-04-16
JP5522050B2 (en) 2014-06-18
US20130194008A1 (en) 2013-08-01
US8629703B2 (en) 2014-01-14

Similar Documents

Publication Publication Date Title
JP5522050B2 (en) Clock dividing circuit, clock distributing circuit, clock dividing method and clock distributing method
JP5488470B2 (en) Clock dividing circuit, clock distributing circuit, clock dividing method and clock distributing method
JP5338819B2 (en) Clock dividing circuit and clock dividing method
JP5343966B2 (en) Clock signal divider circuit and method
JP4560039B2 (en) Quadrature clock divider
EP3350928B1 (en) High-speed programmable clock divider
JP4418954B2 (en) Data pattern generator
CN108039885B (en) High-speed frequency division method and high-speed frequency divider with duty ratio adjusting function
US6667638B1 (en) Apparatus and method for a frequency divider with an asynchronous slip
JP5493591B2 (en) Clock divider circuit and method
US7973584B2 (en) Waveform generator
JP5223696B2 (en) Clock dividing circuit and clock dividing method
CN108111163B (en) High-speed frequency divider
US7253673B2 (en) Multi-phase clock generator and generating method for network controller
US8078900B2 (en) Asynchronous absorption circuit with transfer performance optimizing function
US20040267848A1 (en) Clock divider with glitch free dynamic divide-by change
JP2005322075A (en) Clock signal output device
WO2009116399A1 (en) Clock signal division circuit and method
JP2014086951A (en) Frequency-divided pulse generation circuit
JP2010258761A (en) Clock frequency divider circuit
KR20010045774A (en) Counter minimizing effect by error
JP2003168979A (en) Binary code generator
JP2007096417A (en) Pattern generator
JPH09232912A (en) Digital filter
JPH0884130A (en) Test signal inserting circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13058463

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010535621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823214

Country of ref document: EP

Kind code of ref document: A1