WO2009125754A1 - Device - Google Patents

Device Download PDF

Info

Publication number
WO2009125754A1
WO2009125754A1 PCT/JP2009/057092 JP2009057092W WO2009125754A1 WO 2009125754 A1 WO2009125754 A1 WO 2009125754A1 JP 2009057092 W JP2009057092 W JP 2009057092W WO 2009125754 A1 WO2009125754 A1 WO 2009125754A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
liquid crystal
walled carbon
substrate
resin
Prior art date
Application number
PCT/JP2009/057092
Other languages
French (fr)
Japanese (ja)
Inventor
北野 高広
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008100372A external-priority patent/JP5388021B2/en
Priority claimed from JP2008100373A external-priority patent/JP5319951B2/en
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2009125754A1 publication Critical patent/WO2009125754A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a device having a conductive layer composed of entangled single-walled carbon nanotubes and fullerene (but not using a binder resin).
  • This device is, for example, a liquid crystal display device or a solar battery.
  • liquid crystal display devices are required to be thinner.
  • a liquid crystal display device using a resin film substrate instead of a glass substrate has been proposed.
  • a conductive layer for applying voltage to liquid crystal molecules is necessary.
  • a ceramic material typified by indium tin oxide (ITO) has been used.
  • a dye-sensitized solar characterized in that a nanocarbon film made of fibrous carbon having a diameter of nanometer size selected from the group of single wall carbon nanotubes, multiwall carbon nanotubes, and carbon nanofibers is used as an electrode.
  • a battery has been proposed (Japanese Patent Application Laid-Open No. 2004-111216).
  • a dye-sensitized solar cell electrode substrate having a transparent substrate and a transparent electrode formed on one side of the transparent substrate, the transparent electrode being formed on the transparent substrate,
  • a transparent first conductive layer made of a metal oxide such as ITO or ZnO
  • a second conductive layer made of a metal such as Pt, Au, or Ni formed on the first conductive layer
  • the second For a dye-sensitized solar cell, comprising a third conductive layer formed on a conductive layer, for example, one or two or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes
  • the p-type semiconductor material or the n-type semiconductor material is in a state where a plurality of carbon nanotubes are electrically connected to each other.
  • a solar cell characterized in that it is made of a structure film arranged in the form of JP-A-2006-237204. JP2004-202948 JP 2005-255985 JP2004-1111216 JP 2005-142088 A JP 2006-237204 A
  • the first problem to be solved by the present invention is to provide a device with high durability.
  • the second problem to be solved by the present invention is to provide a high-quality liquid crystal display device that is flexible, hardly damaged, durable, and hardly causes malfunction.
  • a third problem to be solved by the present invention is to provide a low-cost and highly durable solar cell device.
  • a device having a conductive layer comprising:
  • the conductive layer is Having entangled single-walled carbon nanotubes and fullerenes, This is solved by a device characterized by having no binder resin.
  • the single-walled carbon nanotubes contained in the conductive layer of the device are preferably single-walled carbon nanotubes obtained by an arc discharge method.
  • the single-walled carbon nanotubes contained in the conductive layer of the device are preferably acid-treated single-walled carbon nanotubes.
  • the fullerene contained in the conductive layer of the device is particularly preferably a fullerene hydroxide.
  • the amount of fullerene contained in the conductive layer of the device is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube.
  • a protective layer is provided on the conductive layer of the device.
  • the conductive layer of the device is preferably provided on a resin substrate.
  • the second problem is A device for a liquid crystal display in which a liquid crystal layer is provided between a conductive layer and a conductive layer, This is solved by a device characterized in that at least one of the conductive layers is a conductive layer of the device.
  • the third problem is A solar cell device comprising an electrode substrate having a conductive layer, Solved by a device characterized in that the conductive layer is a conductive layer of the device.
  • the solar cell is preferably a solar cell using a redox reaction of a dye.
  • the device of this invention is excellent in electroconductivity. In addition, it has excellent durability.
  • the conductive layer is rich in flexibility.
  • the conductive layer can be bent following a substrate made of a resin film, for example. Therefore, this device is not easily damaged and is highly durable. Even in the case of a device that requires operability, it is difficult for malfunction to occur. In addition, the operability is excellent.
  • the conductive layer of the present invention when the conductive layer of the present invention is applied to a solar cell, this layer has excellent conductivity and durability. And since a conductive layer can be comprised simply, a high quality and highly durable solar cell can be obtained at low cost.
  • a substrate layer made of a transparent resin and a conductive layer laminated on the substrate layer are provided so that the conductive layer is disposed to face the substrate side conductive layer and the substrate side conductive
  • a sheet-like resin laminate for a touch panel which is in an energized state in contact with a layer
  • the conductive layer is made of a resin composition in which carbon nanowires are dispersed in a transparent matrix resin Sheet-like resin laminate "A state in which a sheet-like resin laminate for a touch panel comprising a base material layer made of a transparent resin and a conductive layer laminated on the base material layer faces the conductive layer on the substrate-side conductive layer
  • Patent Document 2 states that “in the carbon nanotube-containing coating film applied on the substrate, the carbon nanotube-containing coating film has a three-dimensional network structure, and the carbon nanotube-containing coating film is a carbon nanotube-containing coating film”.
  • a carbon nanotube-containing coating film characterized by being exposed on the surface is disclosed.
  • Patent Documents 1 and 2 do not disclose any liquid crystal cells. In addition, a description resemble of a liquid crystal cell is not recognized. That is, Patent Document 1 is only used for a touch panel. Patent Document 2 discloses ESD protection, EMI / RFI shielding, low visibility, polymer electronics (for example, transparent conductive layers of OLED displays, EL lamps, plastic chips, etc.) as applications of carbon nanotube-containing coating films. It has only been done.
  • the carbon nanotube is used for the electrode of a solar cell.
  • a solar cell with high durability cannot be obtained only by using carbon nanotubes. That is, with the thing of patent document 3, the feature which this invention show
  • Patent Document 4 describes the use of one or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes.
  • the conductive layer of the electrode substrate is made of, for example, a transparent first conductive layer made of a metal oxide such as ITO or ZnO, and formed on the first conductive layer, for example, Pt, Au, Ni.
  • a second conductive layer made of a metal such as a third conductive layer formed on the second conductive layer, for example, one or two or more carbons selected from the group consisting of fullerenes, fullerene derivatives, and carbon nanotubes And a three-layer laminated conductive layer. For this reason, the flexibility of the conductive layer is lacking.
  • the above-mentioned hard conductive layer cannot follow such a flexible substrate, and damage is likely to occur. That is, the durability is inferior. Furthermore, as a result of research by the present inventor, it was found that the latter is more durable when only the carbon nanotubes are used in the conductive layer and when the carbon nanotubes and fullerenes are used in combination. It is.
  • Patent Document 4 describes “a third conductive layer made of one or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes”, and details of the invention of the specification In the description column, for example, paragraph number [0044] describes that “fullerene, fullerene derivative or carbon nanotube is preferably used”, and “combination of carbon nanotube and fullerene” is not described at all. . Furthermore, even in the examples in which the best mode of the invention is described, there is no description about “combination of carbon nanotube and fullerene”. Moreover, in the thing of patent document 4, binder resin is used for the structure of a conductive layer, As a result, electroconductivity falls. Furthermore, since the conductive layer has a three-layer structure, the cost is high.
  • Patent Document 5 carbon nanotubes are used for solar cells, but carbon nanotubes are not used for the conductive layer of the electrode substrate.
  • the present invention is a device having a conductive layer.
  • This device is a liquid crystal display device or a solar cell device.
  • a liquid crystal display device in which a liquid crystal layer is provided between a conductive layer and a conductive layer.
  • the device of the solar cell which comprised the electrode substrate which has a conductive layer.
  • the conductive layer constituting the device. That is, the conductive layer (at least one conductive layer in the case of a device for a liquid crystal display) is configured by using both entangled single-walled carbon nanotubes and fullerenes. That is, the conductive layer has entangled single-walled carbon nanotubes and fullerenes. However, the conductive layer does not have a binder resin. As shown in FIG. 1, the conductive layer 12 is provided on a substrate (for example, a resin substrate) 11. The conductive layer 12 is configured without using a binder resin.
  • single-walled carbon nanotubes constituting the conductive layer 12 have a structure in which the single-walled carbon nanotubes are intertwined with each other. As a result, the single-walled carbon nanotubes are in direct contact with each other. Therefore, since there is no intervening insulator, the conductivity is good. In addition, since the single-walled carbon nanotubes are entangled with each other, the conductive layer 12 does not require a binder resin. If the surface of the conductive layer is observed with a scanning electron microscope, it can be confirmed / determined whether the single-walled carbon nanotubes are intertwined.
  • the single-walled carbon nanotube may be a single-walled carbon nanotube obtained by any manufacturing method.
  • single-walled carbon nanotubes obtained by production methods such as arc discharge, chemical vapor deposition, and laser evaporation can be used.
  • single-walled carbon nanotubes obtained by an arc discharge method are preferred from the viewpoint of crystallinity. And this thing is also easily available.
  • the single-walled carbon nanotube is preferably a single-walled carbon nanotube subjected to acid treatment.
  • the acid treatment is performed by immersing single-walled carbon nanotubes in an acidic liquid.
  • a technique called spraying may be employed instead of immersion.
  • Various kinds of acidic liquids are used.
  • an inorganic acid or an organic acid is used.
  • inorganic acids are preferred.
  • nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or a mixture thereof can be used.
  • acid treatment using nitric acid or a mixed acid of nitric acid and sulfuric acid is preferable.
  • Preferable acid treatment conditions are conditions in which the reaction is carried out at a temperature of 80 ° C. to 100 ° C.
  • the single-walled carbon nanotube is preferably a single-walled carbon nanotube in which impurities are removed by filtration and purity is improved. This is because a decrease in conductivity and a decrease in light transmittance due to impurities are prevented.
  • Various methods are employed for filtration. For example, suction filtration, pressure filtration, cross flow filtration and the like are used. Among these, from the viewpoint of scale-up, it is preferable to employ cross flow filtration using a hollow fiber membrane.
  • the conductive layer 12 includes not only entangled single-walled carbon nanotubes but also fullerenes (in the present specification, “fullerene” includes “fullerene analogues”, the same shall apply hereinafter). This is because the heat resistance is improved by including fullerene. Moreover, it is because it was excellent also in electroconductivity.
  • the fullerene may be any fullerene.
  • C60, C70, C76, C78, C82, C84, C90, C96 etc. are mentioned.
  • a mixture of plural kinds of fullerenes may be used.
  • C60 is particularly preferable from the viewpoint of dispersion performance.
  • C60 is easy to obtain.
  • not only C60 but also a mixture of C60 and another kind of fullerene (for example, C70) may be used.
  • the metal atom may be included in the fullerene.
  • Examples of the fullerene analog include those containing a functional group (for example, a functional group such as OH group, epoxy group, ester group, amide group, sulfonyl group, ether group).
  • fullerene having an OH group (hydroxyl group) (fullerene hydroxide) is preferable. This is because the dispersibility during coating of the single-walled carbon nanotube dispersion was high. In addition, when there is little quantity of a hydroxyl group, the dispersibility improvement degree of a single-walled carbon nanotube will fall. On the other hand, if too much, synthesis is difficult. Accordingly, the amount of OH groups is preferably 5 to 30 per molecule of fullerene. In particular, 8 to 15 are preferable.
  • the amount of fullerene is preferably 10 to 1000 parts by mass (particularly 20 parts by mass or more and 100 parts by mass or less) with respect to 100 parts by mass of single-walled carbon nanotubes.
  • a protective layer 13 is provided on the conductive layer 12 in the device of the present invention.
  • the material used for the protective layer 13 for example, a thermoplastic resin such as a polyester resin, a cellulose resin, a polyvinyl alcohol resin, a vinyl resin, a cycloolefin resin, a polycarbonate resin, an acrylic resin, or an ABS resin is used.
  • well-known coating materials such as a photocurable resin and a thermosetting resin, may be used.
  • the material of the protective layer 13 is preferably the same (same system) material as the substrate 11 from the viewpoint of adhesion.
  • the protective layer 13 is also preferably a polyester resin.
  • the thickness of the protective layer 13 is preferably 1 nm to 1 ⁇ m. In particular, 10 nm or more is preferable. Moreover, 100 nm or less is preferable.
  • a liquid crystal cell is provided with a liquid crystal layer between a conductive layer and a conductive layer. More specifically, in the liquid crystal cell, a layer (liquid crystal layer) made of liquid crystal molecules is provided between the electrode substrate and the electrode substrate.
  • the electrode substrate is obtained by providing a conductive layer on a transparent substrate, for example.
  • at least one of the conductive layers is composed of the conductive layer of the present invention (binder resin is not included. Entangled single-walled carbon nanotubes and fullerenes are included).
  • both conductive layers are composed of the conductive layer of the present invention. However, only one of them has an effect.
  • the liquid crystal cell is used to form a liquid crystal display device.
  • the basic structure of a liquid crystal cell is one in which a conductive layer is provided on at least one substrate.
  • an alignment film is provided on the substrate. This alignment film is arranged in opposition to the inside.
  • liquid crystal molecules are sealed between the alignment films arranged opposite to each other.
  • the conductive layer in such a liquid crystal display element is generally configured in the form of a display pattern such as a stripe shape or a lattice shape on a substrate.
  • the alignment film is provided by coating (or vapor deposition) on the entire surface of the transparent electrode and the exposed substrate (other than the display pattern).
  • Each of the transparent electrode substrates including the two conductive layers is arranged with the alignment film inside.
  • a liquid crystal cell is formed by enclosing a liquid crystal material in the meantime. Accordingly, the encapsulated liquid crystal molecules are generally in contact only with the alignment film.
  • the alignment film is provided because it is necessary to align (that is, align) the liquid crystals in a certain direction. Thereby, the liquid crystal molecules are aligne
  • TN Transmission T Nematic
  • VA Vertical Alignment
  • IPS In-Plane Switching
  • OCB optically ⁇ compensated birefringence
  • liquid crystal molecules are used.
  • a rod-like molecular compound is preferably used.
  • liquid crystal compounds of TN, VA, IPS, and OCB examples include the liquid crystal compounds described in JP-A-11-302653, JP-A-9-249481, JP-A-2002-193853, and JP-A-2003-73670.
  • a color filter layer can be provided.
  • the electrode substrate is preferably a sheet or film.
  • the substrate preferably has a total light transmittance of 80% to 100%.
  • the material of the substrate A flexible transparent substrate is preferable.
  • thermoplastic resins for example, polyester resin, cellulose resin, polyvinyl alcohol resin, vinyl chloride resin, cycloolefin resin, polycarbonate resin, acrylic resin, ABS resin, etc.
  • a photocurable resin or a thermosetting resin is also used.
  • the thickness of the transparent substrate 11 depends on the application. When a sheet shape is required, it is about 500 ⁇ m to 10 mm. When a film shape is required, it is about 10 ⁇ m to 500 ⁇ m.
  • any of the two substrates may be a sheet or a film. One may be a sheet and the other may be a film.
  • the device of the present invention may be one in which only the conductive layer provided on one transparent substrate is composed of the single-walled carbon nanotubes of the present invention. That is, the conductive layer provided on the other electrode substrate may be made of, for example, ITO. Of course, it is preferable that both conductive layers are composed of single-walled carbon nanotubes.
  • the total light transmittance of the electrode substrate at the stage where the conductive layer is laminated on the substrate is preferably 60% to 100%.
  • the surface resistance value is 1 ⁇ / ⁇ to 1000 ⁇ / ⁇ . This is because if the total light transmittance is too low, the visibility is lowered.
  • a conductive layer using single-walled carbon nanotubes has a trade-off relationship between the total light transmittance and the surface resistance value. Accordingly, the surface resistance value is preferably low as long as the liquid crystal cell operates.
  • the total light transmittance is the total light transmittance including not only the conductive layer containing single-walled carbon nanotubes but also the base material.
  • the total light transmittance is 70% or more, and the surface resistance value is 10 ⁇ / ⁇ to 100 ⁇ / ⁇ .
  • the total light transmittance is 80% or more and the surface resistance is 10 ⁇ / ⁇ to 50 ⁇ / ⁇ .
  • the liquid crystal cell of the present invention can be produced by the following steps.
  • Step 1 Process for obtaining crude carbon nanotubes
  • Step 2 Acid treatment process for treating crude carbon nanotubes with acid
  • Step 3 Filtration process for filtering single-walled carbon nanotubes obtained in Step 2
  • Step 4 With single-walled carbon nanotubes Dispersion process step 5 in which the solvent is mixed and ultrasonic irradiation is performed: Single-walled carbon nanotube dispersion obtained in step 4 is applied onto the substrate.
  • Application step 6 On the electrode substrate obtained in step 5
  • Step 7 in which an alignment film is formed
  • Step Step in which the electrode substrate obtained in Step 6 is opposed to each other through a spacer and liquid crystal molecules are filled in the gaps. Steps 1 to 7 are performed in this order. Are preferred.
  • Step 1 There are no particular restrictions on the method of obtaining the crude carbon nanotube. Any manufacturing method such as an arc discharge method, a chemical vapor phase method, or a laser evaporation method can be used. From the viewpoint of crystallinity, the arc discharge method is preferably used. And this thing is also easy to obtain.
  • Any manufacturing method such as an arc discharge method, a chemical vapor phase method, or a laser evaporation method can be used. From the viewpoint of crystallinity, the arc discharge method is preferably used. And this thing is also easy to obtain.
  • Step 2 is a step in which single-walled carbon nanotubes are heated in an acidic liquid.
  • acidic liquids There are no particular restrictions on acidic liquids.
  • nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and a mixture thereof can be used.
  • Nitric acid or a mixed acid of nitric acid and sulfuric acid is preferably used.
  • the heating temperature is preferably 80 ° C. to 100 ° C.
  • the heating time is preferably 1 to 7 days.
  • Step 3 is a step in which the single-walled carbon nanotubes obtained in Step 2 are filtered. Thereby, impurities such as carbon particles are removed. That is, the carbon nanotube solution after acid treatment is dispersed (or precipitated) in the solution in a state where, for example, impurity particles having a diameter of about 20 nm and carbon nanotube bundles are separated. For this reason, the impurities are removed by filtration using a filter having a pore size larger than the impurities and smaller than the bundle of carbon nanotubes.
  • Various methods can be adopted as the filtration method. For example, suction filtration, pressure filtration, cross flow filtration and the like are used. Among these, from the viewpoint of scale-up, cross flow filtration using a hollow fiber membrane is preferable.
  • Step 4 is a step in which a single-walled carbon nanotube dispersion is produced.
  • fullerene is added.
  • the fullerene is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube.
  • the fullerene concentration is preferably 1 to 100,000 ppm.
  • the fullerene is preferably a fullerene having a functional group.
  • fullerene having an OH group fulllerene hydroxide
  • Various methods can be adopted as the ultrasonic irradiation method.
  • a bus type ultrasonic irradiator or a chip type ultrasonic irradiator is used. From the viewpoint of processing in a shorter time, it is preferable to employ a chip-type ultrasonic irradiator.
  • a solvent having a boiling point of 200 ° C. or lower preferably lower limit is 25 ° C., further 30 ° C.
  • the low boiling point solvent is preferred because it is easy to dry after coating.
  • alcohol for example, alcohol such as methanol, ethanol, normal propanol, and isopropanol (particularly alcohol having 7 or less carbon atoms, particularly aliphatic alcohol)
  • a mixture thereof is preferable.
  • alcohol for example, alcohol such as methanol, ethanol, normal propanol, and isopropanol (particularly alcohol having 7 or less carbon atoms, particularly aliphatic alcohol)
  • a mixture thereof is preferable.
  • ketone compounds eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • ester compounds eg, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, methoxyethyl acetate, etc.
  • ether compounds For example, diethyl ether, ethylene glycol dimethyl ether, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, dioxane etc.), aromatic compounds (eg toluene, xylene etc.), aliphatic compounds (eg pentane, hexane etc.), halogenated hydrocarbons (eg For example, methylene chloride, chlorobenzene, chloroform, etc.), and mixtures thereof may be used.
  • ester compounds eg, methyl acetate, ethyl
  • Step 5 is a step in which the single-walled carbon nanotube dispersion obtained in step 4 is applied onto the substrate. That is, it is a step in which a conductive layer is formed on the substrate. Specifically, this is a step in which the dispersion is applied onto a transparent substrate by a desired application method (for example, spray coating, bar coating, roll coating, ink jet method, screen coating, die coating, etc.). If necessary, drying is performed after the coating step in order to remove the solvent contained in the coating film. A drying device (for example, a heating furnace, a far infrared furnace, a super far infrared furnace, or the like) is used for drying. Further, the substrate is cleaned as necessary.
  • a desired application method for example, spray coating, bar coating, roll coating, ink jet method, screen coating, die coating, etc.
  • Step 6 is a step in which an alignment film is formed on the electrode substrate obtained in step 5.
  • an alignment film necessary for aligning liquid crystal molecules is formed.
  • a polymer film such as polyimide is provided on a substrate such as glass.
  • a method (rubbing) called friction with a cloth or the like in one direction is used.
  • the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel to the rubbing direction.
  • a technique such as a photo-alignment method that does not require rubbing may be used.
  • a photo-alignment group a compound having a group (hereinafter, abbreviated as a photo-alignment group) whose light absorption ability varies depending on the direction of the electric vector of polarized light.
  • a photo-alignment group arranges in a fixed direction, and liquid crystal alignment ability expresses.
  • the photoalignment group include a group causing a photoisomerization reaction such as azobenzene, a group causing a photodimerization reaction such as a cinnamoyl group, a coumarin group, and a chalcone group, a group causing a photocrosslinking reaction such as a benzophenone group, or the like.
  • a polyimide, a silane compound, etc. are known.
  • Step 7 In step 7, usually, first, a sealing material is applied to the peripheral edge of the surface of one of the substrates. At that time, a liquid crystal injection port is formed in a part of the sealing material. Next, a spacer is provided inside the sealing material. And the other board
  • a droplet assembly method in which liquid crystal is applied onto a substrate using a droplet discharge device such as an inkjet may be used. Specifically, first, a sealing material made of a thermosetting resin or the like is applied to the surface peripheral portion of one substrate. Next, a predetermined amount of liquid crystal is dropped inside the sealing material by a droplet discharge device. Finally, the other substrate is bonded through a sealing material, whereby a liquid crystal cell is obtained.
  • a liquid crystal display device is obtained by combining a liquid crystal cell obtained as described above with a polarizing filter, a retardation film, or the like.
  • Examples of solar cells that require a conductive layer include dye-sensitized solar cells, single crystal silicon solar cells, other crystal silicon solar cells, and solar cells using indirect transition semiconductors such as amorphous silicon solar cells. It is done. Further, CuInSe 2 (CIS), Cu (In, Ga) solar cell using a direct transition type semiconductor such as Se 2 (CIGS) can also be mentioned. However, a dye-sensitized solar cell (a solar cell using a redox reaction of a dye) is particularly preferable.
  • the layer configuration of transparent substrate / transparent electrode layer / photocatalyst layer / electrolyte layer / transparent electrode layer / substrate is exemplified.
  • a layer configuration of transparent substrate / transparent electrode / p-type semiconductor / n-type semiconductor is given as an example.
  • the layer configuration of substrate / electrode / light absorption layer / buffer layer / transparent electrode layer / antireflection layer is an example.
  • the present invention is suitably used for a dye-sensitized solar cell. Therefore, in the following, the dye-sensitized solar cell will be described in detail.
  • At least one of the two substrates has light transmittance. Specifically, the total light transmittance is 80% or more and 100% or less. And preferably, a sheet form or a film form is used.
  • the board material there are no special restrictions on the board material.
  • ceramic such as glass can be used.
  • thermoplastic resins such as polyester resin, cellulose resin, vinyl alcohol resin, vinyl chloride resin, cycloolefin resin, polycarbonate resin, acrylic resin, and ABS resin can be used.
  • a photocurable resin, a thermosetting resin, etc. are mentioned.
  • it is preferably made of resin.
  • the thickness of the substrate depends on the application. In the case of a sheet shape, for example, it is 500 ⁇ m to 10 mm. In the case of a film, it is, for example, 10 ⁇ m to 500 ⁇ m.
  • An oxide for example, anatase type titanium oxide, rutile type titanium oxide, zinc oxide, tin oxide, nibismuth trioxide, etc.
  • sol-like anatase-type titanium oxide TiO 2 is preferable. This is because when a sol-like anatase-type titanium oxide TiO 2 is used, an extremely smooth surface is formed when the contacting side is hydrophilic.
  • the film thickness of the photocatalyst layer is preferably 0.01 ⁇ m to 10 ⁇ m when anatase TiO 2 is used. This is because when the film thickness is less than 0.01 ⁇ m, problems such as coating defects such as pinholes are likely to occur. Conversely, if the film thickness exceeds 10 ⁇ m and becomes too thick, the light transmittance decreases.
  • the photocatalyst layer is formed by forming (or adsorbing) a dye layer made of a ruthenium complex on the surface of titanium oxide TiO 2 .
  • a dye may be any substance that has an improved absorption function in the wavelength range of sunlight. For example, chlorophyll and rhodamine are used.
  • a redox redox solution is used for the electrolyte layer.
  • a couple of anions that rapidly change between a plurality of different oxidation states by light irradiation and electron supply are used as the electrolyte.
  • the anion couple having such a property include halogen couples such as iodine (I ⁇ / I 3 ⁇ ), bromine (Br 2 ⁇ / Br ⁇ ), and chlorine (ClO ⁇ / Cl ⁇ ).
  • the degree of ionization is I>Br> Cl.
  • the electrolytic solution may be impregnated and used in a porous material typified by cloth, paper or the like.
  • the conductive layer in the solar cell preferably has a total light transmittance of 60% to 100%.
  • the surface resistance value is 10 ⁇ / ⁇ to 1000 ⁇ / ⁇ or less. This is because if the total light transmittance is too low, the power generation is reduced.
  • the surface resistivity is preferably higher as long as the solar cell operates.
  • the solar cell of the present invention can be produced by the following steps.
  • Step 11 Step for obtaining crude carbon nanotube
  • Step 12 Acid treatment step for acid treatment of crude carbon nanotube
  • Step 13 Filtration step for filtering the single-walled carbon nanotube obtained in Step 12
  • Step 14 Single-walled carbon nanotube and solvent Are dispersed and ultrasonic irradiation is performed.
  • Dispersion process step 15 Single-walled carbon nanotube dispersion obtained in step 14 is applied onto the substrate.
  • Application step 16 On the electrode substrate obtained in step 15. Step for Forming Photoelectric Conversion Layer
  • the above steps 11 to 16 are preferably performed in this order.
  • Step 11 is performed in the same manner as step 1.
  • Step 12 is performed in the same manner as step 2.
  • Step 13 is performed in the same manner as step 3.
  • Step 14 is performed in the same manner as step 4.
  • Step 15 is performed in the same manner as step 5.
  • Step 16 is a step in which a photoelectric conversion layer is formed on the electrode substrate obtained in Step 15.
  • a known method is used for each of the solar cell types, that is, a dye-sensitized solar cell, a silicon-based solar cell, and a CIGS-based solar cell.
  • the process heated in the process 16 1500 degrees C or less is preferable.
  • inert gas atmosphere such as nitrogen, neon, and argon.
  • Example 1 [Production of electrode substrate] Single-walled carbon nanotubes produced by the arc discharge method were treated with acid (treated with 63% nitric acid at 85 ° C. for 2 days (reaction)). Filtration was then performed. As a result, single-walled carbon nanotubes were purified and recovered. 10 mg of this single-walled carbon nanotube, 10 mg of hydroxyl group-containing fullerene (trade name Nanomuspectra D-100 Frontier Carbon), 1 mg of sodium hydroxide (Wako Pure Chemical Industries), 5 ml of water, 5 ml of 2-propanol, Were mixed.
  • the transparent conductive layer was immersed in a solution diluted with 2-propanol so that the solid content concentration of the acrylic resin (trade name Watersol S-707-IM) was 1% by mass. Then, a protective layer having a wet thickness of 10 nm was formed, and an electrode substrate was obtained. In addition, it was 31 ⁇ / ⁇ where the surface resistance after being left in an oven at 80 ° C. for 10 days was measured. That is, it can be seen that the resistance value hardly changes, and the durability is excellent.
  • An electrode substrate obtained by spray-coating the above single-walled carbon nanotube dispersion on a PET film (trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) was wound around a rod.
  • the surface resistance was measured by the two-terminal method while being pulled with a constant load.
  • the limit radius of curvature was 2 mm or less.
  • the critical curvature radius of the PET film with ITO in which the conductive layer was made of ITO was examined, it was 10 mm. This indicates that the conductive layer according to the present invention is rich in flexibility.
  • the electrode substrate was cut into 25 mm squares and arranged such that the conductive layers faced each other.
  • the two electrode substrates were fixed with a room temperature curing type epoxy resin (trade name: Quick5 manufactured by Konishi Co., Ltd.) through a 50 ⁇ m spacer. After the epoxy resin was cured, the spacer was removed. Liquid crystal molecules (4-cyano-4′-pentylbiphenyl, manufactured by Tokyo Chemical Industry Co., Ltd.) were injected. After the injection, the injection port was sealed with a room temperature curable epoxy resin. As a result, a liquid crystal cell was produced (see FIGS. 1, 2 and 3). Thereafter, polarizing plates were bonded to both surfaces of the liquid crystal cell (see FIG. 4).
  • the bonded polarizing plates are orthogonal to each other. Then, a polarizing plate was bonded, and a voltage (500 Hz, 10 v) was applied to the liquid crystal cell. The transmittance before and after this was measured with a spectrophotometer. The result is shown in FIG. From FIG. 5, it can be seen that the light transmittance is lower after the voltage application than before the voltage application, and operates as a liquid crystal cell.
  • Example 1 In Example 1, the same procedure was performed except that the hydroxyl group-containing fullerene was not used when preparing the single-walled carbon nanotube dispersion.
  • the liquid crystal cell of this comparative example was examined in the same manner as in Example 1. As a result, it was found to operate as a liquid crystal cell. However, the liquid crystal cell produced with the electrode after being held at 80 ° C. for 10 days did not operate. This indicates that the liquid crystal cell of this comparative example is inferior in durability and reliability as compared with the liquid crystal cell of the present invention in which the conductive layer has fullerene.
  • Example 2 In Example 1, the same procedure was performed except that 0.1 mg of polyvinylpyrrolidone was used as the binder resin when the single-walled carbon nanotube dispersion was prepared.
  • the liquid crystal cell of this comparative example was examined in the same manner as in Example 1. As a result, it was found to operate as a liquid crystal cell. However, operation required a voltage of 30V. This indicates that the liquid crystal cell of this comparative example is inferior to the liquid crystal cell of the present invention in which the conductive layer does not contain a binder resin.
  • mallow blue (Asahi Sangyo Co., Ltd.) was immersed in distilled water. And the mallow blue aqueous solution was produced. Then, the fired electrode was immersed in a mallow blue aqueous solution. As a result, mallow blue was adsorbed on the titanium oxide layer. Next, the electrode with a titanium oxide layer and the untreated electrode were stacked so that the electrodes face each other. Then, the two opposite sides were fixed with a room temperature curable epoxy resin (trade name: Quick5 manufactured by Konishi Co., Ltd.).
  • an iodide electrolyte solution (a mixture of 0.5 M potassium iodide solution and 0.05 M iodine solution) was injected between the electrodes.
  • an iodide electrolyte solution (a mixture of 0.5 M potassium iodide solution and 0.05 M iodine solution) was injected between the electrodes.
  • a dye-sensitized solar cell was produced (see FIGS. 7 and 8).
  • the solar cell obtained as described above was irradiated with UV by a UV irradiation device (trade name Toscure 401, manufactured by Harrison Toshiba Lighting). As a result, power with a voltage of 260 mV and a current of 2.1 ⁇ A was obtained.
  • Example 11 In Example 11, the same procedure was performed except that 0.1 mg of polyvinyl pyrrolidone was used as the binder resin when preparing the single-walled carbon nanotube dispersion. The durability of the electrode substrate of the solar cell thus obtained was examined. As a result, the resistance (30 ⁇ / ⁇ ) before being left in an 80 ° C. oven for 10 days was 32 ⁇ / ⁇ after being left in an 80 ° C. oven for 10 days. The power characteristics examined in the same manner as in Example 11 were a voltage of 200 mV and a current of 1.8 ⁇ A. This shows that the solar cell of this comparative example is inferior to the solar cell of Example 11.
  • Example 12 In Example 11, the same procedure was performed except that the hydroxyl group-containing fullerene was not used. The durability of the electrode substrate of the solar cell thus obtained was examined. As a result, the resistance (30 ⁇ / ⁇ ) before being left in an oven at 80 ° C. for 10 days increased to 300 ⁇ / ⁇ after being left in an oven at 80 ° C. for 10 days, which was inferior in durability.
  • the power characteristics examined in the same manner as in Example 11 were a voltage of 40 mV and a current of 0.3 ⁇ A. This shows that the solar cell of this comparative example is inferior to the solar cell of Example 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a device of high durability. In a device having a conductive layer, the conductive layer comprises intertwined single-layer carbon nanotubes and fullerenes, but does not comprise binding resin.

Description

デバイスdevice
 本発明は、絡み合った単層カーボンナノチューブ及びフラーレンを用いて(但し、バインダ樹脂を用いない)構成された導電層を有するデバイスに関する。このデバイスは、例えば液晶ディスプレイ装置や太陽電池である。 The present invention relates to a device having a conductive layer composed of entangled single-walled carbon nanotubes and fullerene (but not using a binder resin). This device is, for example, a liquid crystal display device or a solar battery.
 液晶ディスプレイ装置は、その市場拡大に伴い、より薄型のものが求められている。そして、より薄型化する為、ガラス基板では無く、樹脂フィルム基板が用いられた液晶ディスプレイ装置が提案されている。この液晶ディスプレイ装置を動作させる為には、液晶分子に電圧を掛ける為の導電層が必要である。この導電層の材料として、インジウム錫酸化物(ITO)に代表されるセラミック材料が用いられて来た。 As the market expands, liquid crystal display devices are required to be thinner. In order to reduce the thickness, a liquid crystal display device using a resin film substrate instead of a glass substrate has been proposed. In order to operate this liquid crystal display device, a conductive layer for applying voltage to liquid crystal molecules is necessary. As a material for this conductive layer, a ceramic material typified by indium tin oxide (ITO) has been used.
 しかしながら、ITOなどのセラミック材料は柔軟性が乏しい。従って、基板材料として樹脂フィルムが用いられると、ITOを用いた導電層は基板の柔軟性に追随でき難い。この為、導電層が損傷する恐れが高い。そして、液晶ディスプレイ装置が動作しない場合が起き易い。 However, ceramic materials such as ITO have poor flexibility. Therefore, when a resin film is used as the substrate material, it is difficult for the conductive layer using ITO to follow the flexibility of the substrate. For this reason, there is a high possibility that the conductive layer is damaged. A case where the liquid crystal display device does not operate easily occurs.
 又、カーボンナノチューブを電極膜とした太陽電池が注目を集めている。
 例えば、シングルウォールカーボンナノチューブ、マルチウォールカーボンナノチューブ、及びカーボンナノファイバーの群より選択された直径がナノメートルサイズの繊維状炭素からなるナノカーボン膜を電極としたことを特徴とする色素増感型太陽電池が提案(特開2004-111216)されている。
Further, solar cells using carbon nanotubes as electrode films have attracted attention.
For example, a dye-sensitized solar characterized in that a nanocarbon film made of fibrous carbon having a diameter of nanometer size selected from the group of single wall carbon nanotubes, multiwall carbon nanotubes, and carbon nanofibers is used as an electrode. A battery has been proposed (Japanese Patent Application Laid-Open No. 2004-111216).
 又、透明基材と、該透明基材の片面に形成された透明電極とを有する色素増感型太陽電池用電極基板であって、前記透明電極が、透明基材の上に形成された、例えばITO,ZnO等の金属酸化物製の透明な第1導電層、該第1導電層の上に形成された、例えばPt,Au,Ni等の金属製の第2導電層、及び該第2導電層の上に形成された、例えばフラーレン、フラーレン誘導体及びカーボンナノチューブからなる群から選ばれる一種又は二種以上のカーボンからなる第3導電層を有することを特徴とする色素増感型太陽電池用電極基板、並びに表面に色素が担持された半導体微粒子からなる多孔質半導体電極を有する光電極基板と、該光電極基板に対向して配置された対極基板と、前記光電極基板と前記対極基板との間に介在する電解質層とを備えた色素増感型太陽電池であって、前記光電極基板が前記の色素増感型太陽電池用電極基板であることを特徴とする色素増感型太陽電池が提案(特開2005-142088)されている。 Further, a dye-sensitized solar cell electrode substrate having a transparent substrate and a transparent electrode formed on one side of the transparent substrate, the transparent electrode being formed on the transparent substrate, For example, a transparent first conductive layer made of a metal oxide such as ITO or ZnO, a second conductive layer made of a metal such as Pt, Au, or Ni formed on the first conductive layer, and the second For a dye-sensitized solar cell, comprising a third conductive layer formed on a conductive layer, for example, one or two or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes An electrode substrate, a photoelectrode substrate having a porous semiconductor electrode made of semiconductor fine particles having a dye supported on the surface, a counter electrode substrate disposed opposite to the photoelectrode substrate, the photoelectrode substrate, and the counter electrode substrate, Electrolysis intervening between Proposed is a dye-sensitized solar cell comprising a layer, wherein the photoelectrode substrate is the electrode substrate for a dye-sensitized solar cell (Japanese Patent Laid-Open No. 2005). -142088).
 又、p型半導体物質とn型半導体物質とをpn接合またはpin接合させてなる太陽電池において、前記p型半導体物質または前記n型半導体物質が複数のカーボンナノチューブが互いに電気的に接続された状態で配されてなる構造体膜からなることを特徴とする太陽電池が提案(特開2006-237204)されている。
特開2004-202948 特開2005-255985 特開2004-111216 特開2005-142088 特開2006-237204
In a solar cell in which a p-type semiconductor material and an n-type semiconductor material are pn-junction or pin-junction, the p-type semiconductor material or the n-type semiconductor material is in a state where a plurality of carbon nanotubes are electrically connected to each other. There has been proposed a solar cell characterized in that it is made of a structure film arranged in the form of JP-A-2006-237204.
JP2004-202948 JP 2005-255985 JP2004-1111216 JP 2005-142088 A JP 2006-237204 A
 さて、上記提案の技術では、何れも、耐久性などの点において問題が残されていた。 Now, all of the above proposed techniques still have problems in terms of durability.
 従って、本発明が解決しようとする第1の課題は、耐久性に富むデバイスを提供することである。 Therefore, the first problem to be solved by the present invention is to provide a device with high durability.
 本発明が解決しようとする第2の課題は、柔軟性に富み、かつ、損傷し難く、耐久性に富み、そして動作不良が起き難い高品質な液晶ディスプレイ用のデバイスを提供することである。 The second problem to be solved by the present invention is to provide a high-quality liquid crystal display device that is flexible, hardly damaged, durable, and hardly causes malfunction.
 本発明が解決しようとする第3の課題は、低コストで、かつ、耐久性が高い太陽電池のデバイスを提供することである。 A third problem to be solved by the present invention is to provide a low-cost and highly durable solar cell device.
 前記の課題は、
 導電層を有するデバイスであって、
 前記導電層は、
  絡み合った単層カーボンナノチューブと、フラーレンとを有し、
  バインダ樹脂を有さない
ことを特徴とするデバイスによって解決される。
The above issues are
A device having a conductive layer comprising:
The conductive layer is
Having entangled single-walled carbon nanotubes and fullerenes,
This is solved by a device characterized by having no binder resin.
 前記デバイスの導電層中に含まれる単層カーボンナノチューブはアーク放電法によって得られた単層カーボンナノチューブが好ましい。 The single-walled carbon nanotubes contained in the conductive layer of the device are preferably single-walled carbon nanotubes obtained by an arc discharge method.
 前記デバイスの導電層中に含まれる単層カーボンナノチューブは酸処理された単層カーボンナノチューブが好ましい。 The single-walled carbon nanotubes contained in the conductive layer of the device are preferably acid-treated single-walled carbon nanotubes.
 前記デバイスの導電層中に含まれるフラーレンは、特に、水酸化フラーレンが好ましい。 The fullerene contained in the conductive layer of the device is particularly preferably a fullerene hydroxide.
 前記デバイスの導電層中に含まれるフラーレンの量は、前記単層カーボンナノチューブ100質量部に対して10~1000質量部が好ましい。 The amount of fullerene contained in the conductive layer of the device is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube.
 前記デバイスの導電層上には保護層が設けられていることが好ましい。 It is preferable that a protective layer is provided on the conductive layer of the device.
 前記デバイスの導電層は樹脂製の基板上に設けられていることが好ましい。 The conductive layer of the device is preferably provided on a resin substrate.
 前記第2の課題は、
 導電層と導電層との間に液晶層が設けられた液晶ディスプレイ用のデバイスであって、
 前記導電層の中の少なくとも一方の導電層が、前記デバイスの導電層である
ことを特徴とするデバイスによって解決される。
The second problem is
A device for a liquid crystal display in which a liquid crystal layer is provided between a conductive layer and a conductive layer,
This is solved by a device characterized in that at least one of the conductive layers is a conductive layer of the device.
 前記第3の課題は、
 導電層を有する電極基板を具備した太陽電池のデバイスであって、
 前記導電層が、前記デバイスの導電層である
ことを特徴とするデバイスによって解決される。
The third problem is
A solar cell device comprising an electrode substrate having a conductive layer,
Solved by a device characterized in that the conductive layer is a conductive layer of the device.
 前記太陽電池は、好ましくは、色素の酸化還元反応を利用した太陽電池である。 The solar cell is preferably a solar cell using a redox reaction of a dye.
 本発明は、絡み合った単層カーボンナノチューブとフラーレンとが用い(但し、バインダ樹脂を用いない。)られて、導電層が構成された。この為、本発明のデバイスは、導電性に優れている。かつ、耐久性にも優れている。 In the present invention, entangled single-walled carbon nanotubes and fullerenes were used (however, no binder resin was used) to form a conductive layer. For this reason, the device of this invention is excellent in electroconductivity. In addition, it has excellent durability.
 そして、導電層は柔軟性に富む。この為、導電層に柔軟性が要求されるデバイス(例えば、液晶ディスプレイ装置)の場合、例えば樹脂フィルム製の基板に追随して、導電層は撓むことが出来る。従って、このデバイスは損傷が起き難く、耐久性に富む。又、動作性が求められるデバイスの場合であっても、動作不良が起き難い。又、動作性に優れている。 And the conductive layer is rich in flexibility. For this reason, in the case of a device (for example, a liquid crystal display device) in which flexibility is required for the conductive layer, the conductive layer can be bent following a substrate made of a resin film, for example. Therefore, this device is not easily damaged and is highly durable. Even in the case of a device that requires operability, it is difficult for malfunction to occur. In addition, the operability is excellent.
 又、本発明の導電層が太陽電池に適用された場合、このものは、導電性に優れ、かつ、耐久性にも優れている。そして、導電層を簡単に構成できることから、低廉なコストで高品質・高耐久性の太陽電池が得られる。 In addition, when the conductive layer of the present invention is applied to a solar cell, this layer has excellent conductivity and durability. And since a conductive layer can be comprised simply, a high quality and highly durable solar cell can be obtained at low cost.
 尚、前記特許文献1には、「透明樹脂からなる基材層と、基材層に積層される導電層とを備え、前記導電層が基板側導電層と対面して配置されて基板側導電層と接触して通電状態になるタッチパネル用シート状樹脂積層体であって、前記導電層が透明なマトリックス樹脂にカーボンナノ線条体が分散された樹脂組成物からなることを特徴とするタッチパネル用シート状樹脂積層体」「透明樹脂からなる基材層と、基材層に積層される導電層とを備えるタッチパネル用シート状樹脂積層体が、前記導電層を基板側導電層に対面させた状態でスペーサを介して基板の上側に所定間隔で配設されているタッチパネルであって、前記タッチパネル用シート状樹脂積層体の導電層が透明なマトリックス樹脂にカーボンナノ線条体が分散された樹脂組成物からなることを特徴とするタッチパネル」が開示されている。特許文献2には、「基材上に塗布されたカーボンナノチューブ含有コーティングフィルムにおいて、前記カーボンナノチューブ含有コーティングフィルムは、カーボンナノチューブが三次元網目構造を有していて、かつ、カーボンナノチューブ含有コーティングフィルムの表面上に露出していることを特徴とするカーボンナノチューブ含有コーティングフィルム」が開示されている。 The above-mentioned patent document 1 discloses that “a substrate layer made of a transparent resin and a conductive layer laminated on the substrate layer are provided so that the conductive layer is disposed to face the substrate side conductive layer and the substrate side conductive A sheet-like resin laminate for a touch panel, which is in an energized state in contact with a layer, wherein the conductive layer is made of a resin composition in which carbon nanowires are dispersed in a transparent matrix resin Sheet-like resin laminate "A state in which a sheet-like resin laminate for a touch panel comprising a base material layer made of a transparent resin and a conductive layer laminated on the base material layer faces the conductive layer on the substrate-side conductive layer A resin composition in which carbon nanowires are dispersed in a matrix resin in which a conductive layer of the sheet-like resin laminate for a touch panel is transparent and disposed at predetermined intervals on a substrate via spacers Touch panel ", characterized in that it consists is disclosed. Patent Document 2 states that “in the carbon nanotube-containing coating film applied on the substrate, the carbon nanotube-containing coating film has a three-dimensional network structure, and the carbon nanotube-containing coating film is a carbon nanotube-containing coating film”. A carbon nanotube-containing coating film characterized by being exposed on the surface is disclosed.
 しかしながら、特許文献1,2には、液晶セルに関する開示は皆無である。かつ、液晶セルを想起させる記載も認められない。すなわち、特許文献1はタッチパネルに用いられるものに過ぎない。そして、特許文献2には、カーボンナノチューブ含有コーティングフィルムの用途として、ESD保護、EMI/RFIシールド、低視認性、ポリマーエレクトロニクス(例えば、OLEDディスプレイの透明導電層、ELランプ、プラスチックチップなど)が開示されているに過ぎない。 However, Patent Documents 1 and 2 do not disclose any liquid crystal cells. In addition, a description reminiscent of a liquid crystal cell is not recognized. That is, Patent Document 1 is only used for a touch panel. Patent Document 2 discloses ESD protection, EMI / RFI shielding, low visibility, polymer electronics (for example, transparent conductive layers of OLED displays, EL lamps, plastic chips, etc.) as applications of carbon nanotube-containing coating films. It has only been done.
 そして、引用文献1,2のものでは、カーボンナノチューブを樹脂中に分散せしめていることから、導電層の導電性が芳しく無い。従って、特許文献1,2のものを液晶セルに用いたとしても、その動作性は良く無い。すなわち、本願発明は特許文献1,2のものでは到底に奏することが出来ない特長を奏する。 And in the thing of the cited references 1 and 2, since the carbon nanotube is disperse | distributed in resin, the electroconductivity of a conductive layer is not good. Therefore, even if the liquid crystal cells of Patent Documents 1 and 2 are used, their operability is not good. In other words, the present invention has a feature that cannot be achieved with the ones of Patent Documents 1 and 2.
 又、前記特許文献3では、太陽電池の電極にカーボンナノチューブが用いられている。しかしながら、カーボンナノチューブを用いたのみでは、耐久性に富む太陽電池は得られなかった。すなわち、特許文献3のものでは、本願発明が奏する特長を到底に奏することが出来ないものであった。 Moreover, in the said patent document 3, the carbon nanotube is used for the electrode of a solar cell. However, a solar cell with high durability cannot be obtained only by using carbon nanotubes. That is, with the thing of patent document 3, the feature which this invention show | plays cannot fully be show | played.
 特許文献4のものでは、フラーレン、フラーレン誘導体及びカーボンナノチューブからなる群から選ばれる一種又は二種以上のカーボンを用いることが記載されている。しかしながら、このものは、電極基板の導電層を、例えばITO,ZnO等の金属酸化物製の透明な第1導電層と、該第1導電層の上に形成された、例えばPt,Au,Ni等の金属製の第2導電層と、該第2導電層の上に形成された、例えばフラーレン、フラーレン誘導体及びカーボンナノチューブからなる群から選ばれる一種又は二種以上のカーボンからなる第3導電層との三層積層導電層で構成させている。この為、導電層の柔軟性が欠ける。例えば、基板として樹脂製フィルムや樹脂製シートが用いられた場合、このような柔軟な基板に上記した硬質な導電層が追随できず、損傷が起き易い。すなわち、耐久性に劣るものになる。更に、本発明者による研究の結果、導電層にカーボンナノチューブのみが用いられた場合と、カーボンナノチューブとフラーレンとが併用された場合とを比較すると、後者の方が耐久性に富むことが判明したのである。さて、特許文献4には、「フラーレン、フラーレン誘導体及びカーボンナノチューブからなる群から選ばれる一種又は二種以上のカーボンからなる第3導電層」と記載されているが、当該明細書の発明の詳細な説明の欄、例えば段落番号[0044]には「フラーレン、フラーレン誘導体又はカーボンナノチューブを用いることが好ましい。」と記載されており、「カーボンナノチューブとフラーレンとの併用」については記載が皆無である。更には、発明のベストモードを記載した実施例でも、「カーボンナノチューブとフラーレンとの併用」については記載が皆無である。又、特許文献4のものでは、導電層の構成にバインダ樹脂を用いており、この結果、導電性が低下するものとなっている。更には、導電層が三層構造の為、コストが高いものになる。 Patent Document 4 describes the use of one or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes. However, in this method, the conductive layer of the electrode substrate is made of, for example, a transparent first conductive layer made of a metal oxide such as ITO or ZnO, and formed on the first conductive layer, for example, Pt, Au, Ni. A second conductive layer made of a metal such as a third conductive layer formed on the second conductive layer, for example, one or two or more carbons selected from the group consisting of fullerenes, fullerene derivatives, and carbon nanotubes And a three-layer laminated conductive layer. For this reason, the flexibility of the conductive layer is lacking. For example, when a resin film or a resin sheet is used as the substrate, the above-mentioned hard conductive layer cannot follow such a flexible substrate, and damage is likely to occur. That is, the durability is inferior. Furthermore, as a result of research by the present inventor, it was found that the latter is more durable when only the carbon nanotubes are used in the conductive layer and when the carbon nanotubes and fullerenes are used in combination. It is. Patent Document 4 describes “a third conductive layer made of one or more carbons selected from the group consisting of fullerenes, fullerene derivatives and carbon nanotubes”, and details of the invention of the specification In the description column, for example, paragraph number [0044] describes that “fullerene, fullerene derivative or carbon nanotube is preferably used”, and “combination of carbon nanotube and fullerene” is not described at all. . Furthermore, even in the examples in which the best mode of the invention is described, there is no description about “combination of carbon nanotube and fullerene”. Moreover, in the thing of patent document 4, binder resin is used for the structure of a conductive layer, As a result, electroconductivity falls. Furthermore, since the conductive layer has a three-layer structure, the cost is high.
 特許文献5のものでは、カーボンナノチューブが太陽電池に用いられているものの、電極基板の導電層にカーボンナノチューブが用いられたものでは無い。 In Patent Document 5, carbon nanotubes are used for solar cells, but carbon nanotubes are not used for the conductive layer of the electrode substrate.
電極基板の概略側面図Schematic side view of electrode substrate 液晶セルの構成図(上面図)Configuration diagram of liquid crystal cell (top view) 液晶セルの構成図(断面図)Configuration diagram of liquid crystal cell (cross section) 偏光板付液晶セルの構成図(断面図)Block diagram of liquid crystal cell with polarizing plate (cross section) 液晶セルの透過率の測定結果Measurement results of liquid crystal cell transmittance 酸化チタン積層電極の構成図(上面図)Titanium oxide multilayer electrode configuration diagram (top view) 太陽電池セルの構成図(上面図)Solar cell configuration (top view) 太陽電池セルの構成図(断面図)Solar cell configuration diagram (cross section)
1    液晶分子
2    エポキシ樹脂
3,4  電極基板
5    偏光板
6    酸化チタン層
7,9  透明電極基板
8    エポキシ樹脂
10   電解質溶液
11  基板
12  導電層
13  保護層
DESCRIPTION OF SYMBOLS 1 Liquid crystal molecule 2 Epoxy resin 3, 4 Electrode substrate 5 Polarizing plate 6 Titanium oxide layer 7, 9 Transparent electrode substrate 8 Epoxy resin 10 Electrolyte solution 11 Substrate 12 Conductive layer 13 Protective layer
 本発明は、導電層を有するデバイスである。このデバイスは、液晶ディスプレイ用のデバイスとか、太陽電池のデバイスである。例えば、導電層と導電層との間に液晶層が設けられた液晶ディスプレイ用のデバイスである。或いは、導電層を有する電極基板を具備した太陽電池のデバイスである。 The present invention is a device having a conductive layer. This device is a liquid crystal display device or a solar cell device. For example, a liquid crystal display device in which a liquid crystal layer is provided between a conductive layer and a conductive layer. Or it is the device of the solar cell which comprised the electrode substrate which has a conductive layer.
 本発明における最大の特徴はデバイスを構成する導電層にある。すなわち、前記導電層(液晶ディスプレイ用のデバイスの場合には、少なくとも一方の導電層)は、絡み合った単層カーボンナノチューブとフラーレンとが共に用いられて構成されている。すなわち、前記導電層は、絡み合った単層カーボンナノチューブとフラーレンとを有する。しかし、前記導電層はバインダ樹脂を有さない。前記導電層12は、図1に示される如く、基板(例えば、樹脂製の基板)11上に設けられている。この導電層12は、バインダ樹脂を用いないで構成されたものである。バインダ樹脂を不要なものとする為、導電層12を構成する単層カーボンナノチューブとして、互いの単層カーボンナノチューブが絡み合った構造のものが用いられた。これによって、単層カーボンナノチューブ同士が、直接、接触した構造となる。従って、間に絶縁物が介在してないことから、導電性が良い。しかも、単層カーボンナノチューブ同士が絡み合っていることから、導電層12にバインダ樹脂が不要なものとなった。尚、走査型電子顕微鏡で導電層表面を観察したならば、単層カーボンナノチューブが絡み合った構造であるか否かを確認・判定できる。 The greatest feature of the present invention is the conductive layer constituting the device. That is, the conductive layer (at least one conductive layer in the case of a device for a liquid crystal display) is configured by using both entangled single-walled carbon nanotubes and fullerenes. That is, the conductive layer has entangled single-walled carbon nanotubes and fullerenes. However, the conductive layer does not have a binder resin. As shown in FIG. 1, the conductive layer 12 is provided on a substrate (for example, a resin substrate) 11. The conductive layer 12 is configured without using a binder resin. In order to make the binder resin unnecessary, single-walled carbon nanotubes constituting the conductive layer 12 have a structure in which the single-walled carbon nanotubes are intertwined with each other. As a result, the single-walled carbon nanotubes are in direct contact with each other. Therefore, since there is no intervening insulator, the conductivity is good. In addition, since the single-walled carbon nanotubes are entangled with each other, the conductive layer 12 does not require a binder resin. If the surface of the conductive layer is observed with a scanning electron microscope, it can be confirmed / determined whether the single-walled carbon nanotubes are intertwined.
 前記単層カーボンナノチューブは、如何なる製法によって得られた単層カーボンナノチューブでも良い。例えば、アーク放電法、化学気相法、レーザー蒸発法などの製法で得られた単層カーボンナノチューブを用いることが出来る。但し、結晶性の観点から、アーク放電法で得られた単層カーボンナノチューブが好ましい。そして、このものは入手も容易である。 The single-walled carbon nanotube may be a single-walled carbon nanotube obtained by any manufacturing method. For example, single-walled carbon nanotubes obtained by production methods such as arc discharge, chemical vapor deposition, and laser evaporation can be used. However, single-walled carbon nanotubes obtained by an arc discharge method are preferred from the viewpoint of crystallinity. And this thing is also easily available.
 前記単層カーボンナノチューブは、酸処理が施された単層カーボンナノチューブが好ましい。酸処理は、酸性液体中に単層カーボンナノチューブが浸漬されることで実施される。浸漬の代わりに噴霧と言った手法が採用されても良い。酸性液体は各種のものが用いられる。例えば、無機酸や有機酸が用いられる。但し、無機酸が好ましい。例えば、硝酸、塩酸、硫酸、リン酸、或いはこれらの混合物が挙げられる。中でも、硝酸、或いは硝酸と硫酸との混酸を用いた酸処理が好ましい。好ましい酸処理条件は、80℃~100℃の温度下で、1日~7日間掛けて反応させる条件である。この酸処理によって、単層カーボンナノチューブと炭素微粒子とがアモルファスカーボンを介して物理的に結合している場合に、アモルファスカーボンを分解して両者を分離したり、単層カーボンナノチューブ作製時に使用した金属触媒の微粒子を分解することになる。従って、本発明にあっては、単層カーボンナノチューブの酸処理はかなり大事な要件である。例えば、酸処理が施されて無い場合に比べ、導電性が向上した。 The single-walled carbon nanotube is preferably a single-walled carbon nanotube subjected to acid treatment. The acid treatment is performed by immersing single-walled carbon nanotubes in an acidic liquid. A technique called spraying may be employed instead of immersion. Various kinds of acidic liquids are used. For example, an inorganic acid or an organic acid is used. However, inorganic acids are preferred. For example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, or a mixture thereof can be used. Among these, acid treatment using nitric acid or a mixed acid of nitric acid and sulfuric acid is preferable. Preferable acid treatment conditions are conditions in which the reaction is carried out at a temperature of 80 ° C. to 100 ° C. for 1 day to 7 days. By this acid treatment, when single-walled carbon nanotubes and carbon fine particles are physically bonded via amorphous carbon, the amorphous carbon is decomposed and separated from each other, or the metal used for producing single-walled carbon nanotubes The fine particles of the catalyst will be decomposed. Therefore, in the present invention, acid treatment of single-walled carbon nanotubes is a very important requirement. For example, the conductivity is improved as compared with the case where acid treatment is not performed.
 前記単層カーボンナノチューブは、濾過によって不純物が除去され、純度が向上した単層カーボンナノチューブが好ましい。その理由は、不純物による導電性の低下や光透過率の低下が防止されるからである。濾過には各種の手法が採用される。例えば、吸引濾過、加圧濾過、クロスフロー濾過などが用いられる。中でも、スケールアップの観点から、中空糸膜を用いたクロスフロー濾過の採用が好ましい。 The single-walled carbon nanotube is preferably a single-walled carbon nanotube in which impurities are removed by filtration and purity is improved. This is because a decrease in conductivity and a decrease in light transmittance due to impurities are prevented. Various methods are employed for filtration. For example, suction filtration, pressure filtration, cross flow filtration and the like are used. Among these, from the viewpoint of scale-up, it is preferable to employ cross flow filtration using a hollow fiber membrane.
 導電層12には、絡み合った単層カーボンナノチューブだけでは無く、フラーレン(本明細書にあっては、「フラーレン」には「フラーレン類縁体」も含まれる。以下、同様。)も含れる。これは、フラーレンを含ませておくことにより、耐熱性が向上したからである。又、導電性にも優れていたからである。 The conductive layer 12 includes not only entangled single-walled carbon nanotubes but also fullerenes (in the present specification, “fullerene” includes “fullerene analogues”, the same shall apply hereinafter). This is because the heat resistance is improved by including fullerene. Moreover, it is because it was excellent also in electroconductivity.
 前記フラーレンは如何なるフラーレンでも良い。例えば、C60,C70,C76,C78,C82,C84,C90,C96等が挙げられる。勿論、複数種のフラーレンの混合物でも良い。分散性能の観点からはC60が特に好ましい。更に、C60は入手し易い。又、C60のみでは無く、C60と他の種類のフラーレン(例えば、C70)との混合物でも良い。又、フラーレン内部に金属原子が内包されたものでも良い。フラーレン類縁体としては、官能基(例えば、OH基、エポキシ基、エステル基、アミド基、スルホニル基、エーテル基などの官能基)を含むものが挙げられる。又、フェニル-C61-プロピル酸アルキルエステル、フェニル-C61-ブチル酸アルキルエステルを持つものも挙げられる。又、水素化フラーレンなども挙げられる。中でも、OH基(水酸基)を持つフラーレン(水酸化フラーレン)が好ましい。それは、単層カーボンナノチューブ分散液の塗工時の分散性が高かったからである。尚、水酸基の量が少ないと、単層カーボンナノチューブの分散性向上度が低下する。逆に、多すぎると、合成が困難である。従って、OH基の量はフラーレン1分子当り5~30個が好ましい。特に、8~15個が好ましい。 The fullerene may be any fullerene. For example, C60, C70, C76, C78, C82, C84, C90, C96 etc. are mentioned. Of course, a mixture of plural kinds of fullerenes may be used. C60 is particularly preferable from the viewpoint of dispersion performance. Furthermore, C60 is easy to obtain. Further, not only C60 but also a mixture of C60 and another kind of fullerene (for example, C70) may be used. Moreover, the metal atom may be included in the fullerene. Examples of the fullerene analog include those containing a functional group (for example, a functional group such as OH group, epoxy group, ester group, amide group, sulfonyl group, ether group). Further, those having phenyl-C61-propyl acid alkyl ester and phenyl-C61-butyric acid alkyl ester are also included. In addition, hydrogenated fullerene is also included. Among them, fullerene having an OH group (hydroxyl group) (fullerene hydroxide) is preferable. This is because the dispersibility during coating of the single-walled carbon nanotube dispersion was high. In addition, when there is little quantity of a hydroxyl group, the dispersibility improvement degree of a single-walled carbon nanotube will fall. On the other hand, if too much, synthesis is difficult. Accordingly, the amount of OH groups is preferably 5 to 30 per molecule of fullerene. In particular, 8 to 15 are preferable.
 フラーレンの添加量(含有量)は、多すぎると、導電性が低下する。逆に、少なすぎると、効果が乏しい。従って、フラーレン量は、好ましくは、単層カーボンナノチューブ100質量部に対して10~1000質量部(特に、20質量部以上。100質量部以下。)である。 If the addition amount (content) of fullerene is too large, the conductivity decreases. Conversely, if the amount is too small, the effect is poor. Accordingly, the amount of fullerene is preferably 10 to 1000 parts by mass (particularly 20 parts by mass or more and 100 parts by mass or less) with respect to 100 parts by mass of single-walled carbon nanotubes.
 本発明のデバイスにおける導電層12上には保護層13が設けられていることが好ましい。この保護層13に用いられる材料には格別な制限は無い。例えば、ポリエステル樹脂、セルロース樹脂、ポリビニルアルコール樹脂、ビニル樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂などの熱可塑性樹脂が用いられる。又、光硬化性樹脂や熱硬化性樹脂などの公知のコーティング材料が用いられても良い。但し、保護層13の材料は、密着性の観点から、基板11と同じ(同系統)材料が好ましい。例えば、基板11がポリエステル樹脂の場合は、保護層13もポリエステル樹脂が好ましい。保護層13の膜厚が厚すぎると、透明導電層の接触抵抗が大きくなる。逆に、保護層13の膜厚が薄すぎると、保護層としての効果が得られない。従って、保護層13の厚さは1nm~1μmが好ましい。特に、10nm以上が好ましい。又、100nm以下が好ましい。 It is preferable that a protective layer 13 is provided on the conductive layer 12 in the device of the present invention. There is no particular limitation on the material used for the protective layer 13. For example, a thermoplastic resin such as a polyester resin, a cellulose resin, a polyvinyl alcohol resin, a vinyl resin, a cycloolefin resin, a polycarbonate resin, an acrylic resin, or an ABS resin is used. Moreover, well-known coating materials, such as a photocurable resin and a thermosetting resin, may be used. However, the material of the protective layer 13 is preferably the same (same system) material as the substrate 11 from the viewpoint of adhesion. For example, when the substrate 11 is a polyester resin, the protective layer 13 is also preferably a polyester resin. When the thickness of the protective layer 13 is too thick, the contact resistance of the transparent conductive layer increases. On the contrary, if the thickness of the protective layer 13 is too thin, the effect as the protective layer cannot be obtained. Therefore, the thickness of the protective layer 13 is preferably 1 nm to 1 μm. In particular, 10 nm or more is preferable. Moreover, 100 nm or less is preferable.
 次に、前記導電層が液晶セル(液晶ディスプレイ装置の液晶セル)に応用された場合について説明する。知られている通り、液晶セルは、導電層と導電層との間に液晶層が設けられている。更に具体的に説明すると、液晶セルは、電極基板と電極基板との間に、液晶分子からなる層(液晶層)が設けられたものである。電極基板は、例えば透明な基板上に導電層が設けられたものである。本発明では、これ等の導電層の中の少なくとも一方の導電層が、前記本発明の導電層(バインダ樹脂は含まれない。絡み合った単層カーボンナノチューブとフラーレンとが含まれる。)で構成される。尚、双方の導電層が前記本発明の導電層で構成される方が好ましい。但し、一方のみでも、それなりに、効果を奏する。そして、上記液晶セルが用いられて液晶ディスプレイ装置が構成される。 Next, a case where the conductive layer is applied to a liquid crystal cell (a liquid crystal cell of a liquid crystal display device) will be described. As is known, a liquid crystal cell is provided with a liquid crystal layer between a conductive layer and a conductive layer. More specifically, in the liquid crystal cell, a layer (liquid crystal layer) made of liquid crystal molecules is provided between the electrode substrate and the electrode substrate. The electrode substrate is obtained by providing a conductive layer on a transparent substrate, for example. In the present invention, at least one of the conductive layers is composed of the conductive layer of the present invention (binder resin is not included. Entangled single-walled carbon nanotubes and fullerenes are included). The In addition, it is preferable that both conductive layers are composed of the conductive layer of the present invention. However, only one of them has an effect. The liquid crystal cell is used to form a liquid crystal display device.
 液晶セルの基本構造は、少なくとも一方の基板に導電層が設けられたものである。かつ、基板上に配向膜が設けられたものである。この配向膜が内側に対抗配置されたものである。この対向配置された配向膜の間に液晶分子が封入された構造である。このような液晶表示素子における導電層は、一般に、基板上にストライプ状または格子状などの表示パターンの形で構成されている。そして、配向膜は、この透明電極および露出した(表示パターン以外の)基板の全面に塗布(又は蒸着)により設けられている。この二枚の導電層を含む透明電極基板は、各々、配向膜が内側にして配置される。この間に液晶材料が封入されることで、液晶セルが構成される。従って、封入された液晶分子は、一般に、配向膜のみに接している。一般に、配向膜は、液晶を或る方向に揃えて配列(即ち、配向)させる必要がある為に設けられている。これによって、液晶分子が配向させられる。 The basic structure of a liquid crystal cell is one in which a conductive layer is provided on at least one substrate. In addition, an alignment film is provided on the substrate. This alignment film is arranged in opposition to the inside. In this structure, liquid crystal molecules are sealed between the alignment films arranged opposite to each other. The conductive layer in such a liquid crystal display element is generally configured in the form of a display pattern such as a stripe shape or a lattice shape on a substrate. The alignment film is provided by coating (or vapor deposition) on the entire surface of the transparent electrode and the exposed substrate (other than the display pattern). Each of the transparent electrode substrates including the two conductive layers is arranged with the alignment film inside. A liquid crystal cell is formed by enclosing a liquid crystal material in the meantime. Accordingly, the encapsulated liquid crystal molecules are generally in contact only with the alignment film. Generally, the alignment film is provided because it is necessary to align (that is, align) the liquid crystals in a certain direction. Thereby, the liquid crystal molecules are aligned.
 液晶セルには、TN(Twisted Nematic),VA(Vertical Alignment),IPS(In-Plane Switching),OCB(optically compensated birefringence)等の各種モードが知られている。 Various modes such as TN (Twisted T Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (optically 等 compensated birefringence) are known for the liquid crystal cell.
 液晶分子としては各種のものが用いられる。好ましくは棒状分子化合物が用いられる。例えば、好ましいものとして、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類が用いられる。尚、TN,VA,IPS,OCBの液晶化合物としては、特開平11-302653、特開平9-249881、特開2002-193853、特開2003-73670に記載の液晶化合物が挙げられる。 Various kinds of liquid crystal molecules are used. A rod-like molecular compound is preferably used. For example, preferred are azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano substituted phenylpyrimidines, alkoxy substituted phenylpyrimidines, Phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are used. Examples of the liquid crystal compounds of TN, VA, IPS, and OCB include the liquid crystal compounds described in JP-A-11-302653, JP-A-9-249481, JP-A-2002-193853, and JP-A-2003-73670.
 又、カラーフィルター層を設けることも出来る。 Also, a color filter layer can be provided.
 電極基板は、好ましくは、シート状またはフィルム状のものである。そして、基板は、好ましくは、全光線透過率が80%~100%のものである。基板の材質に格別な制約は無い。尚、フレキシブルな透明基板は好ましい。透明基板の材質に格別な制限は無い。例えば、ガラス等のセラミックの他にも、熱可塑性樹脂が(例えば、ポリエステル樹脂、セルロース樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂など)が用いられる。或いは、光硬化性樹脂、又は熱硬化性樹脂なども用いられる。透明基板11の厚さは、用途によって決まる。シート状が要求される場合には、500μm~10mm程度である。フィルム状が要求される場合には、10μm~500μm程度である。そして、本発明の液晶セルは、二つの基板の中の何れもがシート状であっても良く、フィルム状であっても良い。一方がシート状で、他方がフィルム状であっても良い。 The electrode substrate is preferably a sheet or film. The substrate preferably has a total light transmittance of 80% to 100%. There are no particular restrictions on the material of the substrate. A flexible transparent substrate is preferable. There are no particular restrictions on the material of the transparent substrate. For example, in addition to ceramics such as glass, thermoplastic resins (for example, polyester resin, cellulose resin, polyvinyl alcohol resin, vinyl chloride resin, cycloolefin resin, polycarbonate resin, acrylic resin, ABS resin, etc.) are used. . Alternatively, a photocurable resin or a thermosetting resin is also used. The thickness of the transparent substrate 11 depends on the application. When a sheet shape is required, it is about 500 μm to 10 mm. When a film shape is required, it is about 10 μm to 500 μm. In the liquid crystal cell of the present invention, any of the two substrates may be a sheet or a film. One may be a sheet and the other may be a film.
 本発明のデバイスは、一方の透明基板上に設けられた導電層のみが本発明の単層カーボンナノチューブで構成されたものでも良い。すなわち、他方の電極基板上に設けられる導電層が、例えばITOで構成されていても良い。勿論、双方の導電層が単層カーボンナノチューブで構成されている方が好ましい。 The device of the present invention may be one in which only the conductive layer provided on one transparent substrate is composed of the single-walled carbon nanotubes of the present invention. That is, the conductive layer provided on the other electrode substrate may be made of, for example, ITO. Of course, it is preferable that both conductive layers are composed of single-walled carbon nanotubes.
 上記基板上に導電層が積層された段階の電極基板の全光線透過率は、好ましくは、60%~100%である。そして、表面抵抗値が1Ω/□~1000Ω/□である。それは、全光線透過率が低すぎると、視認性が低下したからである。単層カーボンナノチューブが用いられた導電層は、全光線透過率と表面抵抗値との間にはトレードオフの関係がある。従って、表面抵抗値は、液晶セルが動作する限り、低いほうが好ましい。尚、ここで、全光線透過率は、単層カーボンナノチューブを含む導電層のみならず、基材を含めた全光線透過率である。尚、更に好ましくは、全光線透過率が70%以上で、かつ、表面抵抗値が10Ω/□~100Ω/□である。特に、全光線透過率が80%以上で、かつ、表面抵抗値が10Ω/□~50Ω/□のものである。 The total light transmittance of the electrode substrate at the stage where the conductive layer is laminated on the substrate is preferably 60% to 100%. The surface resistance value is 1Ω / □ to 1000Ω / □. This is because if the total light transmittance is too low, the visibility is lowered. A conductive layer using single-walled carbon nanotubes has a trade-off relationship between the total light transmittance and the surface resistance value. Accordingly, the surface resistance value is preferably low as long as the liquid crystal cell operates. Here, the total light transmittance is the total light transmittance including not only the conductive layer containing single-walled carbon nanotubes but also the base material. More preferably, the total light transmittance is 70% or more, and the surface resistance value is 10Ω / □ to 100Ω / □. In particular, the total light transmittance is 80% or more and the surface resistance is 10Ω / □ to 50Ω / □.
 本発明の液晶セルは以下の工程にて作製できる。
工程1:粗カーボンナノチューブを得る工程
工程2:粗カーボンナノチューブが酸処理される酸処理工程
工程3:工程2で得られた単層カーボンナノチューブが濾過される濾過工程
工程4:単層カーボンナノチューブと溶媒とが混合され、超音波照射が行われる分散工程
工程5:工程4で得られた単層カーボンナノチューブ分散液が基板上に塗布される塗布工程
工程6:工程5で得られた電極基板上に配向膜が形成される工程
工程7:工程6で得られた電極基板を、スペーサを介して、対向させ、間隙に液晶分子が充填される工程
 尚、上記工程1~7はこの順番で行われることが好ましい。
The liquid crystal cell of the present invention can be produced by the following steps.
Step 1: Process for obtaining crude carbon nanotubes Step 2: Acid treatment process for treating crude carbon nanotubes with acid Step 3: Filtration process for filtering single-walled carbon nanotubes obtained in Step 2 Step 4: With single-walled carbon nanotubes Dispersion process step 5 in which the solvent is mixed and ultrasonic irradiation is performed: Single-walled carbon nanotube dispersion obtained in step 4 is applied onto the substrate. Application step 6: On the electrode substrate obtained in step 5 Step 7 in which an alignment film is formed Step: Step in which the electrode substrate obtained in Step 6 is opposed to each other through a spacer and liquid crystal molecules are filled in the gaps. Steps 1 to 7 are performed in this order. Are preferred.
 以下、各々の工程について更に詳しく説明する。
 [工程1]
 粗カーボンナノチューブを得る手法には格別な制約は無い。アーク放電法、化学気相法、レーザー蒸発法など何れの製法も利用できる。結晶性の観点から、アーク放電法が用いられることが好ましい。そして、このものは、入手も容易である。
Hereinafter, each process will be described in more detail.
[Step 1]
There are no particular restrictions on the method of obtaining the crude carbon nanotube. Any manufacturing method such as an arc discharge method, a chemical vapor phase method, or a laser evaporation method can be used. From the viewpoint of crystallinity, the arc discharge method is preferably used. And this thing is also easy to obtain.
 [工程2]
 工程2は、酸性液体中で、単層カーボンナノチューブが加熱される工程である。酸性液体には格別な制限は無い。例えば、硝酸、塩酸、硫酸、リン酸及びこれらの混合物を用いることが出来る。尚、硝酸、或いは硝酸と硫酸との混酸を用いるのが好ましい。加熱温度は、好ましくは、80℃~100℃である。加熱時間は、好ましくは、1日~7日間である。
[Step 2]
Step 2 is a step in which single-walled carbon nanotubes are heated in an acidic liquid. There are no particular restrictions on acidic liquids. For example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and a mixture thereof can be used. Nitric acid or a mixed acid of nitric acid and sulfuric acid is preferably used. The heating temperature is preferably 80 ° C. to 100 ° C. The heating time is preferably 1 to 7 days.
 [工程3]
 工程3は、工程2で得られた単層カーボンナノチューブが濾過される工程である。これによって、炭素粒子などの不純物が除去される。すなわち、酸処理後のカーボンナノチューブの溶液は、例えば直径20nm程度の不純物の粒子とカーボンナノチューブのバンドルとが分離された状態で溶液中に分散(或いは沈殿)している。この為、不純物よりも大きく、かつ、カーボンナノチューブのバンドルよりも小さい孔径のフィルタが用いられての濾過によって、不純物が取り除かれる。濾過方法としては各種の手法が採用できる。例えば、吸引濾過、加圧濾過、クロスフロー濾過などが用いられる。中でも、スケールアップの観点から、中空糸膜を用いたクロスフロー濾過は好ましい。
[Step 3]
Step 3 is a step in which the single-walled carbon nanotubes obtained in Step 2 are filtered. Thereby, impurities such as carbon particles are removed. That is, the carbon nanotube solution after acid treatment is dispersed (or precipitated) in the solution in a state where, for example, impurity particles having a diameter of about 20 nm and carbon nanotube bundles are separated. For this reason, the impurities are removed by filtration using a filter having a pore size larger than the impurities and smaller than the bundle of carbon nanotubes. Various methods can be adopted as the filtration method. For example, suction filtration, pressure filtration, cross flow filtration and the like are used. Among these, from the viewpoint of scale-up, cross flow filtration using a hollow fiber membrane is preferable.
 [工程4]
 工程4は、単層カーボンナノチューブの分散液が作製される工程である。この工程ではフラーレンが添加される。単層カーボンナノチューブとフラーレンとの割合には格別な制限は無い。但し、単層カーボンナノチューブ100質量部に対して、フラーレンが10~1000質量部が好ましい。そして、フラーレン濃度は1~100000ppmが好ましい。尚、フラーレンは官能基を有するフラーレンが好ましい。特に、OH基を有するフラーレン(水酸化フラーレン)が好ましい。超音波照射方法には各種の手法が採用できる。例えば、バス型超音波照射機やチップ型超音波照射機が用いられる。より短時間で処理する観点からは、チップ型超音波照射機の採用が好ましい。本発明で用いられる溶媒には格別な制限は無い。但し、沸点が200℃以下(好ましい下限値は25℃、更には30℃)の溶媒が好ましい。低沸点溶剤が好ましいのは、塗工後の乾燥が容易であるからによる。具体的には、水、アルコール(例えば、メタノール、エタノール、ノルマルプロパノール、イソプロパノール等のアルコール(特に、炭素数が7以下のアルコール、特に脂肪族アルコール))、或いはこれ等の混合物が好ましい。その理由は、水酸基含有フラーレンの溶解性が高いので、より高濃度な単層カーボンナノチューブ分散液が得られるからである。他にも、ケトン系化合物(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エステル系化合物(例えば、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸メトキシエチル等)、エーテル系化合物(例えば、ジエチルエーテル、エチレングリコールジメチルエーテル、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、ジオキサン等)、芳香族化合物(例えば、トルエン、キシレン等)、脂肪族化合物(例えば、ペンタン、ヘキサン等)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロベンゼン、クロロホルム等)、及びこれらの混合物が用いられても良い。
[Step 4]
Step 4 is a step in which a single-walled carbon nanotube dispersion is produced. In this step, fullerene is added. There are no particular restrictions on the ratio of single-walled carbon nanotubes to fullerenes. However, the fullerene is preferably 10 to 1000 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube. The fullerene concentration is preferably 1 to 100,000 ppm. The fullerene is preferably a fullerene having a functional group. In particular, fullerene having an OH group (fullerene hydroxide) is preferable. Various methods can be adopted as the ultrasonic irradiation method. For example, a bus type ultrasonic irradiator or a chip type ultrasonic irradiator is used. From the viewpoint of processing in a shorter time, it is preferable to employ a chip-type ultrasonic irradiator. There is no special restriction | limiting in the solvent used by this invention. However, a solvent having a boiling point of 200 ° C. or lower (preferably lower limit is 25 ° C., further 30 ° C.) is preferable. The low boiling point solvent is preferred because it is easy to dry after coating. Specifically, water, alcohol (for example, alcohol such as methanol, ethanol, normal propanol, and isopropanol (particularly alcohol having 7 or less carbon atoms, particularly aliphatic alcohol)), or a mixture thereof is preferable. This is because the hydroxyl group-containing fullerene has high solubility, and thus a single-walled carbon nanotube dispersion with a higher concentration can be obtained. In addition, ketone compounds (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ester compounds (eg, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, methoxyethyl acetate, etc.), ether compounds ( For example, diethyl ether, ethylene glycol dimethyl ether, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, dioxane etc.), aromatic compounds (eg toluene, xylene etc.), aliphatic compounds (eg pentane, hexane etc.), halogenated hydrocarbons (eg For example, methylene chloride, chlorobenzene, chloroform, etc.), and mixtures thereof may be used.
 [工程5]
 工程5は、工程4で得られた単層カーボンナノチューブ分散液が基板上に塗布される工程である。すなわち、基板上に導電層が形成される工程である。具体的には、分散液が、透明基板上に、所望の塗布方法(例えば、スプレーコート、バーコート、ロールコート、インクジェット法、スクリーンコート、ダイコート等)で塗布される工程である。尚、必要に応じて、上記塗布工程後、塗膜中に含まれる溶媒を除去する為、乾燥が行なわれる。乾燥には乾燥装置(例えば、加熱炉、遠赤外炉、超遠赤外炉など)が用いられる。又、必要に応じて、基板の洗浄が行われる。
[Step 5]
Step 5 is a step in which the single-walled carbon nanotube dispersion obtained in step 4 is applied onto the substrate. That is, it is a step in which a conductive layer is formed on the substrate. Specifically, this is a step in which the dispersion is applied onto a transparent substrate by a desired application method (for example, spray coating, bar coating, roll coating, ink jet method, screen coating, die coating, etc.). If necessary, drying is performed after the coating step in order to remove the solvent contained in the coating film. A drying device (for example, a heating furnace, a far infrared furnace, a super far infrared furnace, or the like) is used for drying. Further, the substrate is cleaned as necessary.
 [工程6]
 工程6は、工程5で得られた電極基板上に配向膜が形成される工程である。本工程では液晶分子を配向させる為に必要な配向膜が形成される。通常、配向処理には、ガラス等の基板上にポリイミド等の高分子の膜が設けられる。そして、一方向に布等で摩擦と言った方法(ラビング)が用いられる。これにより、基板に接する液晶分子はその長軸(ダイレクタ)がラビングの方向に平行になるように配列する。又、ラビングが不要な光配向法などの技術が用いられても良い。具体的には、光の吸収能が偏光の電気ベクトルの方向によって異なる基(以下、光配向性基と略す)を有する化合物に光が照射される。これにより、光配向性基が一定の方向に配列し、液晶配向能が発現する。尚、光配向性基としては、例えばアゾベンゼン等の光異性化反応を生じる基、シンナモイル基、クマリン基、カルコン基等の光二量化反応を生じる基、ベンゾフェノン基等の光架橋反応を生じる基、或いはポリイミド、シラン化合物等が知られている。
[Step 6]
Step 6 is a step in which an alignment film is formed on the electrode substrate obtained in step 5. In this step, an alignment film necessary for aligning liquid crystal molecules is formed. Usually, in the alignment treatment, a polymer film such as polyimide is provided on a substrate such as glass. A method (rubbing) called friction with a cloth or the like in one direction is used. As a result, the liquid crystal molecules in contact with the substrate are arranged so that their long axes (directors) are parallel to the rubbing direction. A technique such as a photo-alignment method that does not require rubbing may be used. Specifically, light is irradiated to a compound having a group (hereinafter, abbreviated as a photo-alignment group) whose light absorption ability varies depending on the direction of the electric vector of polarized light. Thereby, a photo-alignment group arranges in a fixed direction, and liquid crystal alignment ability expresses. Examples of the photoalignment group include a group causing a photoisomerization reaction such as azobenzene, a group causing a photodimerization reaction such as a cinnamoyl group, a coumarin group, and a chalcone group, a group causing a photocrosslinking reaction such as a benzophenone group, or the like. A polyimide, a silane compound, etc. are known.
 [工程7]
 工程7では、通常、先ず、一方の基板の表面周縁部にシール材が塗布される。その際、シール材の一部に液晶の注入口が形成される。次に、シール材の内側にスペーサが設けられる。そして、シール材を介して他方の基板が貼り合わされる。これにより、一対の基板とシール材とによって囲まれた領域に液晶セルが形成される。次に、真空中で液晶セル内が脱気される。そして、液晶注入口が液晶槽内に浸漬された状態で、全体が大気圧下に戻される。この結果、液晶セルと外部との圧力差および表面張力によって、液晶セル内に液晶が充填される。或いは、インクジェット等の液滴吐出装置が用いられ、基板上に液晶が塗布される滴下組立法が用いられても良い。具体的には、先ず、一方の基板の表面周縁部に、熱硬化性樹脂等からなるシール材が塗布される。次に、そのシール材の内側に、液滴吐出装置により所定量の液晶が滴下される。最後に、シール材を介して他方の基板が貼り合わされることにより、液晶セルが得られる。
[Step 7]
In step 7, usually, first, a sealing material is applied to the peripheral edge of the surface of one of the substrates. At that time, a liquid crystal injection port is formed in a part of the sealing material. Next, a spacer is provided inside the sealing material. And the other board | substrate is bonded together through a sealing material. Thereby, a liquid crystal cell is formed in a region surrounded by the pair of substrates and the sealing material. Next, the inside of the liquid crystal cell is deaerated in a vacuum. And the whole is returned to atmospheric pressure in the state where the liquid crystal inlet was immersed in the liquid crystal tank. As a result, the liquid crystal is filled in the liquid crystal cell by the pressure difference between the liquid crystal cell and the outside and the surface tension. Alternatively, a droplet assembly method in which liquid crystal is applied onto a substrate using a droplet discharge device such as an inkjet may be used. Specifically, first, a sealing material made of a thermosetting resin or the like is applied to the surface peripheral portion of one substrate. Next, a predetermined amount of liquid crystal is dropped inside the sealing material by a droplet discharge device. Finally, the other substrate is bonded through a sealing material, whereby a liquid crystal cell is obtained.
 上記のようにして得られた液晶セルに偏光フィルタや位相差膜等が組み合わされることによって、液晶ディスプレイ装置が得られる。 A liquid crystal display device is obtained by combining a liquid crystal cell obtained as described above with a polarizing filter, a retardation film, or the like.
 次に、前記導電層が太陽電池に応用された場合が説明される。導電層が必要な太陽電池としては、例えば色素増感型太陽電池、単結晶シリコン系太陽電池、他結晶シリコン系太陽電池、アモルファスシリコン系太陽電池などの間接遷移型半導体を用いた太陽電池が挙げられる。又、CuInSe2(CIS),Cu(In,Ga)Se2(CIGS)等の直接遷移型半導体を用いた太陽電池も挙げられる。但し、特に好ましくは色素増感型太陽電池(色素の酸化還元反応を利用した太陽電池)である。 Next, a case where the conductive layer is applied to a solar cell will be described. Examples of solar cells that require a conductive layer include dye-sensitized solar cells, single crystal silicon solar cells, other crystal silicon solar cells, and solar cells using indirect transition semiconductors such as amorphous silicon solar cells. It is done. Further, CuInSe 2 (CIS), Cu (In, Ga) solar cell using a direct transition type semiconductor such as Se 2 (CIGS) can also be mentioned. However, a dye-sensitized solar cell (a solar cell using a redox reaction of a dye) is particularly preferable.
 太陽電池の層構成には格別な制限は無い。例えば、色素増感型太陽電池では、透明基板/透明電極層/光触媒層/電解質層/透明電極層/基板の層構成が一例として挙げられる。シリコン系太陽電池では、透明基板/透明電極/p型半導体/n型半導体の層構成が一例として挙げられる。CIS系太陽電池では、基板/電極/光吸収層/バッファー層/透明電極層/反射防止層の層構成が一例として挙げられる。 太陽 There are no particular restrictions on the layer structure of solar cells. For example, in a dye-sensitized solar cell, the layer configuration of transparent substrate / transparent electrode layer / photocatalyst layer / electrolyte layer / transparent electrode layer / substrate is exemplified. In the silicon-based solar cell, a layer configuration of transparent substrate / transparent electrode / p-type semiconductor / n-type semiconductor is given as an example. In the CIS solar cell, the layer configuration of substrate / electrode / light absorption layer / buffer layer / transparent electrode layer / antireflection layer is an example.
 上述した通り、本発明は、色素増感型太陽電池に好適に用いられる。従って、以下では、色素増感型太陽電池について詳しく説明する。 As described above, the present invention is suitably used for a dye-sensitized solar cell. Therefore, in the following, the dye-sensitized solar cell will be described in detail.
 基板は2枚必要である。この2枚の基板の中の少なくとも一方が光透過性を有する。具体的には、全光線透過率が80%以上、100%以下である。そして、好ましくは、シート状またはフィルム状のものが用いられる。 Two boards are required. At least one of the two substrates has light transmittance. Specifically, the total light transmittance is 80% or more and 100% or less. And preferably, a sheet form or a film form is used.
 基板の材質に格別な制限は無い。例えば、ガラスなどのセラミックが挙げられる。又、ポリエステル樹脂、セルロース樹脂、ビニルアルコール樹脂、塩化ビニル樹脂、シクロオレフィン系樹脂、ポリカーボネート樹脂、アクリル樹脂、ABS樹脂等の熱可塑性樹脂が挙げられる。その他にも、光硬化性樹脂や熱硬化性樹脂などが挙げられる。尚、好ましくは、柔軟性の観点から、樹脂製のものである。 There are no special restrictions on the board material. For example, ceramic such as glass can be used. In addition, thermoplastic resins such as polyester resin, cellulose resin, vinyl alcohol resin, vinyl chloride resin, cycloolefin resin, polycarbonate resin, acrylic resin, and ABS resin can be used. In addition, a photocurable resin, a thermosetting resin, etc. are mentioned. In addition, from the viewpoint of flexibility, it is preferably made of resin.
 基板の厚みは用途によって決まる。シート状の場合には、例えば500μm~10mmである。フィルム状の場合には、例えば10μm~500μmである。 The thickness of the substrate depends on the application. In the case of a sheet shape, for example, it is 500 μm to 10 mm. In the case of a film, it is, for example, 10 μm to 500 μm.
 光触媒層には酸化物(例えば、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化亜鉛、酸化錫、三酸化ニビスマス等)が用いられる。中でも、ゾル状のアナターゼ型酸化チタンTiOは好ましい。それは、ゾル状のアナターゼ型酸化チタンTiOが用いられた場合、接触する相手側が親水性の場合、極めて平滑な面が構成されるからである。 An oxide (for example, anatase type titanium oxide, rutile type titanium oxide, zinc oxide, tin oxide, nibismuth trioxide, etc.) is used for the photocatalyst layer. Among these, sol-like anatase-type titanium oxide TiO 2 is preferable. This is because when a sol-like anatase-type titanium oxide TiO 2 is used, an extremely smooth surface is formed when the contacting side is hydrophilic.
 光触媒層の膜厚は、アナターゼ型TiOが用いられた場合、好ましくは、0.01μm~10μmである。それは、膜厚が0.01μm未満の薄い場合には、ピンホール等の塗装欠陥などの不具合が起き易いからである。逆に、膜厚が10μmを越えて厚くなり過ぎると、光透過率が低くなるからである。 The film thickness of the photocatalyst layer is preferably 0.01 μm to 10 μm when anatase TiO 2 is used. This is because when the film thickness is less than 0.01 μm, problems such as coating defects such as pinholes are likely to occur. Conversely, if the film thickness exceeds 10 μm and becomes too thick, the light transmittance decreases.
 光触媒層は、酸化チタンTiOの表面にルテニウム錯体からなる色素層が形成(或いは、吸着)されることで構成される。斯かる色素としては、太陽光の波長範囲に吸収機能が改善される物質であれば良い。例えば、クロロフィルやローダミンが用いられる。 The photocatalyst layer is formed by forming (or adsorbing) a dye layer made of a ruthenium complex on the surface of titanium oxide TiO 2 . Such a dye may be any substance that has an improved absorption function in the wavelength range of sunlight. For example, chlorophyll and rhodamine are used.
 電解質層にはレドックス酸化還元溶液が用いられる。具体的には、光の照射と電子の供給によって異なる複数の酸化状態の間を迅速に変化する陰イオンのカップルが電解質として用いられる。このような性質の陰イオンカップルとしては、ヨウ素(I- /I3-)、臭素(Br2-/Br-)、塩素(ClO- /Cl- )などのハロゲンカップルが挙げられる。イオン化の程度はI>Br>Clである。尚、電解液は布、紙等にて代表される多孔質材に含浸・使用されても良い。 A redox redox solution is used for the electrolyte layer. Specifically, a couple of anions that rapidly change between a plurality of different oxidation states by light irradiation and electron supply are used as the electrolyte. Examples of the anion couple having such a property include halogen couples such as iodine (I / I 3− ), bromine (Br 2− / Br ), and chlorine (ClO / Cl ). The degree of ionization is I>Br> Cl. The electrolytic solution may be impregnated and used in a porous material typified by cloth, paper or the like.
 太陽電池における導電層は、好ましくは、全光線透過率が60%~100%である。又、好ましくは、表面抵抗値が10Ω/□~1000Ω/□以下である。それは、全光線透過率が低すぎると、発電力が低下するからである。尚、単層カーボンナノチューブが用いられた導電層は、全光線透過率と表面抵抗値との間にはトレードオフの関係がある。従って、表面抵抗率は、太陽電池が動作する限り高い方が好ましいからである。 The conductive layer in the solar cell preferably has a total light transmittance of 60% to 100%. Preferably, the surface resistance value is 10Ω / □ to 1000Ω / □ or less. This is because if the total light transmittance is too low, the power generation is reduced. In the conductive layer using single-walled carbon nanotubes, there is a trade-off relationship between the total light transmittance and the surface resistance value. Therefore, the surface resistivity is preferably higher as long as the solar cell operates.
 本発明の太陽電池は以下の工程にて作製できる。
工程11:粗カーボンナノチューブを得る工程
工程12:粗カーボンナノチューブを酸処理する酸処理工程
工程13:工程12で得られた単層カーボンナノチューブが濾過される濾過工程
工程14:単層カーボンナノチューブと溶媒とが混合され、超音波照射が行われる分散工程
工程15:工程14で得られた単層カーボンナノチューブ分散液が基板上に塗布される塗布工程
工程16:工程15で得られた電極基板上に光電変換層が形成される工程
 尚、上記工程11~16はこの順番で行うことが好ましい。
The solar cell of the present invention can be produced by the following steps.
Step 11: Step for obtaining crude carbon nanotube Step 12: Acid treatment step for acid treatment of crude carbon nanotube Step 13: Filtration step for filtering the single-walled carbon nanotube obtained in Step 12 Step 14: Single-walled carbon nanotube and solvent Are dispersed and ultrasonic irradiation is performed. Dispersion process step 15: Single-walled carbon nanotube dispersion obtained in step 14 is applied onto the substrate. Application step 16: On the electrode substrate obtained in step 15. Step for Forming Photoelectric Conversion Layer The above steps 11 to 16 are preferably performed in this order.
 以下、各々の工程について更に詳しく説明する。 Hereinafter, each process will be described in more detail.
 [工程11]
 工程11は工程1と同様に行われる。
[Step 11]
Step 11 is performed in the same manner as step 1.
 [工程12]
 工程12は工程2と同様に行われる。
[Step 12]
Step 12 is performed in the same manner as step 2.
 [工程13]
 工程13は工程3と同様に行われる。
[Step 13]
Step 13 is performed in the same manner as step 3.
 [工程14]
 工程14は工程4と同様に行われる。
[Step 14]
Step 14 is performed in the same manner as step 4.
 [工程15]
 工程15は工程5と同様に行われる。
[Step 15]
Step 15 is performed in the same manner as step 5.
 [工程16]
 工程16は工程15で得られた電極基板上に光電変換層が形成される工程である。そして、目的とする太陽電池の形式、即ち、色素増感型太陽電池、シリコン系太陽電池、CIGS系太陽電池にもよって異なるが、何れも、公知の方法が用いられる。尚、工程16において加熱する工程が有る場合は、1500℃以下が好ましい。又、窒素、ネオン、アルゴン等の不活性ガス雰囲気下であることが好ましい。又、低圧あるいは真空中であることが好ましい。それは、単層カーボンナノチューブが破壊される危険性が高くなるからである。
 以下、更に、具体的に説明する。
[Step 16]
Step 16 is a step in which a photoelectric conversion layer is formed on the electrode substrate obtained in Step 15. A known method is used for each of the solar cell types, that is, a dye-sensitized solar cell, a silicon-based solar cell, and a CIGS-based solar cell. In addition, when there exists the process heated in the process 16, 1500 degrees C or less is preferable. Moreover, it is preferable that it is under inert gas atmosphere, such as nitrogen, neon, and argon. Further, it is preferably in a low pressure or in a vacuum. This is because there is a high risk that the single-walled carbon nanotube is destroyed.
Hereinafter, more specific description will be given.
  [液晶ディスプレイ装置]
  [実施例1]
 [電極基板の作製]
 アーク放電法によって作製された単層カーボンナノチューブが酸処理(63%硝酸にて85℃で2日間処理(反応))された。そして、濾過が行なわれた。これにより、単層カーボンナノチューブが精製・回収された。
 この単層カーボンナノチューブ10mgと、水酸基含有フラーレン(商品名 ナノムスペクトラ D-100 フロンティアカーボン社製)10mgと、水酸化ナトリウム(和光純薬工業社製)1mgと、水5mlと、2-プロパノール5mlとが混合された。そして、1分間の超音波照射(装置名ULTRASONIC HOMOGENIZER MODEL UH-600SR、エスエムテー社製)が行なわれた。これにより、単層カーボンナノチューブ分散液が得られた。
 この単層カーボンナノチューブ分散液が、樹脂製基板上に、表面抵抗が30Ω/□(装置名 ロレスタ-FP、ダイアインスツルメンツ社製)になるようスプレーコートされた。そして、80℃で3分間の乾燥が行われ、透明導電層が形成された。尚、全光線透過率は63%であった(装置名 直読ヘーズコンピュータ、スガ試験機社製)。そして、塗工面がメタノールで洗浄された。この後、アクリル樹脂(商品名 ウォーターゾール S-707-IM)の固形分濃度が1質量%になるように2-プロパノールで希釈された溶液中に、透明導電層が浸漬された。そして、ウェット膜厚で10nmの保護層が形成され、電極基板が得られた。尚、80℃のオーブンで10日間放置された後の表面抵抗が測定された処、31Ω/□であった。すなわち、抵抗値に変化が殆ど見られず、耐久性に優れていることが判る。
 又、PETフィルム(商品名:コスモシャイン A4100 東洋紡社製)に上記単層カーボンナノチューブ分散液がスプレーコートされて出来た電極基板が棒に巻き付られた。そして、一定荷重で引っ張られながら表面抵抗が2端子法で測定された。表面抵抗値が急激に上昇した半径(限界曲率半径)が調べられた処、限界曲率半径は2mm以下であった。これに対して、導電層をITOで構成したITO付PETフィルムの限界曲率半径が調べられた処、10mmであった。このことは、本発明になる導電層が柔軟性に富むことを示している。
[Liquid crystal display device]
[Example 1]
[Production of electrode substrate]
Single-walled carbon nanotubes produced by the arc discharge method were treated with acid (treated with 63% nitric acid at 85 ° C. for 2 days (reaction)). Filtration was then performed. As a result, single-walled carbon nanotubes were purified and recovered.
10 mg of this single-walled carbon nanotube, 10 mg of hydroxyl group-containing fullerene (trade name Nanomuspectra D-100 Frontier Carbon), 1 mg of sodium hydroxide (Wako Pure Chemical Industries), 5 ml of water, 5 ml of 2-propanol, Were mixed. Then, ultrasonic irradiation for 1 minute (device name: ULTRASONIC HOMOGENIZER MODEL UH-600SR, manufactured by SMT Corporation) was performed. As a result, a single-walled carbon nanotube dispersion was obtained.
This single-walled carbon nanotube dispersion was spray-coated on a resin substrate so that the surface resistance was 30Ω / □ (device name: Loresta-FP, manufactured by Dia Instruments). And it dried for 3 minutes at 80 degreeC, and the transparent conductive layer was formed. The total light transmittance was 63% (device name: direct reading haze computer, manufactured by Suga Test Instruments Co., Ltd.). The coated surface was washed with methanol. Thereafter, the transparent conductive layer was immersed in a solution diluted with 2-propanol so that the solid content concentration of the acrylic resin (trade name Watersol S-707-IM) was 1% by mass. Then, a protective layer having a wet thickness of 10 nm was formed, and an electrode substrate was obtained. In addition, it was 31Ω / □ where the surface resistance after being left in an oven at 80 ° C. for 10 days was measured. That is, it can be seen that the resistance value hardly changes, and the durability is excellent.
An electrode substrate obtained by spray-coating the above single-walled carbon nanotube dispersion on a PET film (trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) was wound around a rod. The surface resistance was measured by the two-terminal method while being pulled with a constant load. When the radius at which the surface resistance value suddenly increased (limit radius of curvature) was examined, the limit radius of curvature was 2 mm or less. On the other hand, when the critical curvature radius of the PET film with ITO in which the conductive layer was made of ITO was examined, it was 10 mm. This indicates that the conductive layer according to the present invention is rich in flexibility.
 [液晶セルの作製]
 電極基板が25mm角に切断され、導電層同士が向い合うように配置された。この2枚の電極基板が、50μmのスペーサを介して、常温硬化型エポキシ樹脂(商品名 クイック5 コニシ株式会社製)で固定された。エポキシ樹脂が硬化した後、スペーサが外された。そして、液晶分子(4-シアノ-4‘-ペンチルビフェニル 東京化成工業社製)が注入された。注入後、注入口が常温硬化型エポキシ樹脂で封止された。これによって、液晶セルが作製された(図1,2,3参照)。
 この後、液晶セルの両面に偏光板が貼り合わされた(図4参照)。尚、貼り合わされた偏光板は互いに直交状態である。
 そして、偏光板が貼り合わされ液晶セルに電圧(500Hz,10v)が掛けられた。この前後の透過率が分光光度計にて測定された。この結果が図5に示される。
 この図5から、電圧印加前に比べ印加後の方が光透過率は低下しており、液晶セルとして動作することが判る。
[Production of liquid crystal cell]
The electrode substrate was cut into 25 mm squares and arranged such that the conductive layers faced each other. The two electrode substrates were fixed with a room temperature curing type epoxy resin (trade name: Quick5 manufactured by Konishi Co., Ltd.) through a 50 μm spacer. After the epoxy resin was cured, the spacer was removed. Liquid crystal molecules (4-cyano-4′-pentylbiphenyl, manufactured by Tokyo Chemical Industry Co., Ltd.) were injected. After the injection, the injection port was sealed with a room temperature curable epoxy resin. As a result, a liquid crystal cell was produced (see FIGS. 1, 2 and 3).
Thereafter, polarizing plates were bonded to both surfaces of the liquid crystal cell (see FIG. 4). Note that the bonded polarizing plates are orthogonal to each other.
Then, a polarizing plate was bonded, and a voltage (500 Hz, 10 v) was applied to the liquid crystal cell. The transmittance before and after this was measured with a spectrophotometer. The result is shown in FIG.
From FIG. 5, it can be seen that the light transmittance is lower after the voltage application than before the voltage application, and operates as a liquid crystal cell.
  [比較例1]
 実施例1において、単層カーボンナノチューブ分散液作製時に水酸基含有フラーレンを用いなかった以外は同様に行われた。
 本比較例の液晶セルが実施例1と同様にして調べられた。
 その結果、液晶セルとして動作することが判った。
 しかしながら、80℃で10日間保持した後の電極で作製した液晶セルは動作しなかった。このことは、本比較例の液晶セルは、導電層がフラーレンを有する本発明の液晶セルに比べて、耐久性・信頼性が劣っていることを示している。
[Comparative Example 1]
In Example 1, the same procedure was performed except that the hydroxyl group-containing fullerene was not used when preparing the single-walled carbon nanotube dispersion.
The liquid crystal cell of this comparative example was examined in the same manner as in Example 1.
As a result, it was found to operate as a liquid crystal cell.
However, the liquid crystal cell produced with the electrode after being held at 80 ° C. for 10 days did not operate. This indicates that the liquid crystal cell of this comparative example is inferior in durability and reliability as compared with the liquid crystal cell of the present invention in which the conductive layer has fullerene.
  [比較例2]
 実施例1において、単層カーボンナノチューブ分散液作製時に、バインダ樹脂としてポリビニルピロリドンを0.1mg用いた以外は同様に行われた。
 本比較例の液晶セルが実施例1と同様にして調べられた。
 その結果、液晶セルとして動作することが判った。
 しかしながら、動作には30Vの電圧が必要であった。
 このことは、本比較例の液晶セルは、導電層がバインダ樹脂を含まない本発明の液晶セルに比べて、劣っていることを示している。
[Comparative Example 2]
In Example 1, the same procedure was performed except that 0.1 mg of polyvinylpyrrolidone was used as the binder resin when the single-walled carbon nanotube dispersion was prepared.
The liquid crystal cell of this comparative example was examined in the same manner as in Example 1.
As a result, it was found to operate as a liquid crystal cell.
However, operation required a voltage of 30V.
This indicates that the liquid crystal cell of this comparative example is inferior to the liquid crystal cell of the present invention in which the conductive layer does not contain a binder resin.
  [太陽電池装置]
  [実施例11]
 [電極基板の作製]
 アーク放電法によって作製された単層カーボンナノチューブが酸処理(63%硝酸にて85℃で2日間処理(反応))された。そして、濾過が行なわれた。これにより、単層カーボンナノチューブが精製・回収された。
 この単層カーボンナノチューブ10mgと、水酸基含有フラーレン(商品名 ナノムスペクトラ D-100 フロンティアカーボン社製)10mgと、水酸化ナトリウム(和光純薬工業社製)1mgと、水5mlと、2-プロパノール5mlとが混合された。そして、1分間の超音波照射(装置名ULTRASONIC HOMOGENIZER MODEL UH-600SR、エスエムテー社製)が行なわれた。これにより、単層カーボンナノチューブ分散液が得られた。
 この単層カーボンナノチューブ分散液が、樹脂製基板上に、表面抵抗が30Ω/□(装置名 ロレスタ-FP、ダイアインスツルメンツ社製)になるようスプレーコートされた。そして、80℃で3分間の乾燥が行われ、透明導電層が形成された。尚、全光線透過率は63%であった(装置名 直読ヘーズコンピュータ、スガ試験機社製)。そして、塗工面がメタノールで洗浄され、電極基板が得られた。尚、80℃のオーブンで10日間放置した後の表面抵抗が測定された。その結果は31Ω/□であった。すなわち、抵抗値に変化が殆ど見られず、耐久性に優れていることが判る。
[Solar cell device]
[Example 11]
[Production of electrode substrate]
Single-walled carbon nanotubes produced by the arc discharge method were treated with acid (treated with 63% nitric acid at 85 ° C. for 2 days (reaction)). Filtration was then performed. As a result, single-walled carbon nanotubes were purified and recovered.
10 mg of this single-walled carbon nanotube, 10 mg of hydroxyl group-containing fullerene (trade name Nanomuspectra D-100 Frontier Carbon), 1 mg of sodium hydroxide (Wako Pure Chemical Industries), 5 ml of water, 5 ml of 2-propanol, Were mixed. Then, ultrasonic irradiation for 1 minute (device name: ULTRASONIC HOMOGENIZER MODEL UH-600SR, manufactured by SMT Corporation) was performed. As a result, a single-walled carbon nanotube dispersion was obtained.
This single-walled carbon nanotube dispersion was spray-coated on a resin substrate so that the surface resistance was 30Ω / □ (device name: Loresta-FP, manufactured by Dia Instruments). And it dried for 3 minutes at 80 degreeC, and the transparent conductive layer was formed. The total light transmittance was 63% (device name: direct reading haze computer, manufactured by Suga Test Instruments Co., Ltd.). And the coating surface was wash | cleaned with methanol, and the electrode substrate was obtained. The surface resistance after 10 days in an oven at 80 ° C. was measured. The result was 31Ω / □. That is, it can be seen that the resistance value hardly changes, and the durability is excellent.
 [太陽電池の作製]
 酸化チタンパウダー(旭産業株式会社製)3gと、硝酸水溶液(pH4)4mlと、エタノール13mlとが混合された。この混合液に1分間に亘る超音波照射が行われた。これにより、酸化チタン分散液が得られた。この酸化チタン分散液が上記電極基板上に膜厚50μmになるように塗工された。そして、室温で5分間の乾燥が行われた(図6参照)。
 この後、電気炉(ADVANTEC社製)にて窒素雰囲気下450℃で30分間の焼成が行われた。
 一方、マローブルー(旭産業株式会社製)が蒸留水に浸漬された。そして、マローブルー水溶液が作製された。そして、上記焼成された電極がマローブルー水溶液に浸漬された。これにより、マローブルーが酸化チタン層に吸着された。
 次に、上記酸化チタン層付電極と、未処理の電極とが、電極同士が向き合うように重ねられた。そして、対向する2辺が常温硬化型エポキシ樹脂(商品名 クイック5 コニシ株式会社製)で固定された。
 この後、ヨウ化物電解質溶液(0.5Mヨウ化カリウム溶液と0.05Mヨウ素溶液との混合物)が電極間に注入された。これにより、色素増感型太陽電池が作製された(図7,8参照)。
 上記のようにして得られた太陽電池にUV照射装置(商品名 トスキュア401 ハリソン東芝ライティング社製)でUVが照射された。その結果、電圧260mV、電流2.1μAの電力が得られた。
[Production of solar cells]
3 g of titanium oxide powder (manufactured by Asahi Sangyo Co., Ltd.), 4 ml of an aqueous nitric acid solution (pH 4), and 13 ml of ethanol were mixed. This mixture was subjected to ultrasonic irradiation for 1 minute. Thereby, a titanium oxide dispersion was obtained. This titanium oxide dispersion was applied on the electrode substrate so as to have a film thickness of 50 μm. And it dried for 5 minutes at room temperature (refer FIG. 6).
Thereafter, firing was performed in an electric furnace (manufactured by ADVANTEC) at 450 ° C. for 30 minutes in a nitrogen atmosphere.
On the other hand, mallow blue (Asahi Sangyo Co., Ltd.) was immersed in distilled water. And the mallow blue aqueous solution was produced. Then, the fired electrode was immersed in a mallow blue aqueous solution. As a result, mallow blue was adsorbed on the titanium oxide layer.
Next, the electrode with a titanium oxide layer and the untreated electrode were stacked so that the electrodes face each other. Then, the two opposite sides were fixed with a room temperature curable epoxy resin (trade name: Quick5 manufactured by Konishi Co., Ltd.).
Thereafter, an iodide electrolyte solution (a mixture of 0.5 M potassium iodide solution and 0.05 M iodine solution) was injected between the electrodes. As a result, a dye-sensitized solar cell was produced (see FIGS. 7 and 8).
The solar cell obtained as described above was irradiated with UV by a UV irradiation device (trade name Toscure 401, manufactured by Harrison Toshiba Lighting). As a result, power with a voltage of 260 mV and a current of 2.1 μA was obtained.
  [比較例11]
 実施例11において、単層カーボンナノチューブ分散液作製時に、バインダ樹脂としてポリビニルピロリドンを0.1mg用いた以外は同様に行なわれた。
 このようにして得られた太陽電池の電極基板の耐久性が調べられた。その結果、80℃のオーブンで10日間放置前の抵抗(30Ω/□)が80℃のオーブンで10日間放置後には32Ω/□であった。又、実施例11と同様にして調べられた電力特性は、電圧200mV、電流1.8μAであった。これより、本比較例の太陽電池は実施例11の太陽電池より劣っていることが判る。
[Comparative Example 11]
In Example 11, the same procedure was performed except that 0.1 mg of polyvinyl pyrrolidone was used as the binder resin when preparing the single-walled carbon nanotube dispersion.
The durability of the electrode substrate of the solar cell thus obtained was examined. As a result, the resistance (30Ω / □) before being left in an 80 ° C. oven for 10 days was 32Ω / □ after being left in an 80 ° C. oven for 10 days. The power characteristics examined in the same manner as in Example 11 were a voltage of 200 mV and a current of 1.8 μA. This shows that the solar cell of this comparative example is inferior to the solar cell of Example 11.
  [比較例12]
 実施例11において、水酸基含有フラーレンが用いられなかった以外は同様に行なわれた。
 このようにして得られた太陽電池の電極基板の耐久性が調べられた。その結果、80℃のオーブンで10日間放置前の抵抗(30Ω/□)が80℃のオーブンで10日間放置後には300Ω/□と上昇しており、耐久性に劣るものであった。又、実施例11と同様にして調べられた電力特性は、電圧40mV、電流0.3μAであった。これより、本比較例の太陽電池は実施例11の太陽電池より劣っていることが判る。
[Comparative Example 12]
In Example 11, the same procedure was performed except that the hydroxyl group-containing fullerene was not used.
The durability of the electrode substrate of the solar cell thus obtained was examined. As a result, the resistance (30Ω / □) before being left in an oven at 80 ° C. for 10 days increased to 300Ω / □ after being left in an oven at 80 ° C. for 10 days, which was inferior in durability. The power characteristics examined in the same manner as in Example 11 were a voltage of 40 mV and a current of 0.3 μA. This shows that the solar cell of this comparative example is inferior to the solar cell of Example 11.
 この出願は、2008年4月8日に出願された日本出願特願2008-100372及び日本出願特願2008-100373を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 
 
This application claims priority based on Japanese Patent Application No. 2008-100372 and Japanese Patent Application No. 2008-100373 filed on Apr. 8, 2008, the entire disclosure of which is incorporated herein.

Claims (10)

  1.  導電層を有するデバイスであって、
     前記導電層は、
      絡み合った単層カーボンナノチューブと、フラーレンとを有し、
      バインダ樹脂を有さない
    ことを特徴とするデバイス。
    A device having a conductive layer comprising:
    The conductive layer is
    Having entangled single-walled carbon nanotubes and fullerenes,
    A device characterized by having no binder resin.
  2.  前記単層カーボンナノチューブがアーク放電法によって得られた単層カーボンナノチューブである
    ことを特徴とする請求項1のデバイス。
    The device according to claim 1, wherein the single-walled carbon nanotube is a single-walled carbon nanotube obtained by an arc discharge method.
  3.  前記単層カーボンナノチューブは酸処理された単層カーボンナノチューブである
    ことを特徴とする請求項1又は請求項2のデバイス。
    The device according to claim 1, wherein the single-walled carbon nanotube is an acid-treated single-walled carbon nanotube.
  4.  前記フラーレンが水酸化フラーレンである
    ことを特徴とする請求項1のデバイス。
    The device of claim 1, wherein the fullerene is a fullerene hydroxide.
  5.  前記フラーレン量は、前記単層カーボンナノチューブ100質量部に対して10~1000質量部である
    ことを特徴とする請求項1又は請求項4のデバイス。
    The device according to claim 1 or 4, wherein the fullerene amount is 10 to 1000 parts by mass with respect to 100 parts by mass of the single-walled carbon nanotube.
  6.  前記導電層上に保護層が設けられてなる
    ことを特徴とする請求項1~請求項5いずれかのデバイス。
    The device according to any one of claims 1 to 5, wherein a protective layer is provided on the conductive layer.
  7.  前記導電層は樹脂製の基板上に設けられてなる
    ことを特徴とする請求項1~請求項6いずれかのデバイス。
    The device according to any one of claims 1 to 6, wherein the conductive layer is provided on a resin substrate.
  8.  導電層と導電層との間に液晶層が設けられた液晶ディスプレイ用のデバイスであって、
     前記導電層の中の少なくとも一方の導電層が、前記請求項1~請求項7いずれかのデバイスの導電層である
    ことを特徴とするデバイス。
    A device for a liquid crystal display in which a liquid crystal layer is provided between a conductive layer and a conductive layer,
    8. The device according to claim 1, wherein at least one of the conductive layers is a conductive layer of the device according to any one of claims 1 to 7.
  9.  導電層を有する電極基板を具備した太陽電池のデバイスであって、
     前記導電層が、前記請求項1~請求項7いずれかのデバイスの導電層である
    ことを特徴とするデバイス。
    A solar cell device comprising an electrode substrate having a conductive layer,
    8. The device according to claim 1, wherein the conductive layer is a conductive layer of the device according to any one of claims 1 to 7.
  10.  太陽電池が色素の酸化還元反応を利用した太陽電池である
    ことを特徴とする請求項9のデバイス。
     
    The device according to claim 9, wherein the solar cell is a solar cell utilizing a redox reaction of a dye.
PCT/JP2009/057092 2008-04-08 2009-04-07 Device WO2009125754A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008100372A JP5388021B2 (en) 2008-04-08 2008-04-08 Liquid crystal cell and liquid crystal display device
JP2008-100373 2008-04-08
JP2008-100372 2008-04-08
JP2008100373A JP5319951B2 (en) 2008-04-08 2008-04-08 Solar cell

Publications (1)

Publication Number Publication Date
WO2009125754A1 true WO2009125754A1 (en) 2009-10-15

Family

ID=41161886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057092 WO2009125754A1 (en) 2008-04-08 2009-04-07 Device

Country Status (1)

Country Link
WO (1) WO2009125754A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111216A (en) * 2002-09-18 2004-04-08 Inst Of Research & Innovation Dye-sensitized solar cell and nano-carbon electrode
JP2004230274A (en) * 2003-01-30 2004-08-19 Sony Corp Method for producing hydrogen occluding material, and hydrogen occluding material
JP2005142088A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell
WO2005110594A1 (en) * 2004-05-13 2005-11-24 Hokkaido Technology Licensing Office Co., Ltd. Fine carbon dispersion
JP2006281189A (en) * 2005-04-04 2006-10-19 Mikuni Denshi Kk Ink jet coating solution and drying method
JP2007529884A (en) * 2004-03-12 2007-10-25 エイコス・インコーポレーテッド Carbon nanotube stripping solution and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111216A (en) * 2002-09-18 2004-04-08 Inst Of Research & Innovation Dye-sensitized solar cell and nano-carbon electrode
JP2004230274A (en) * 2003-01-30 2004-08-19 Sony Corp Method for producing hydrogen occluding material, and hydrogen occluding material
JP2005142088A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell
JP2007529884A (en) * 2004-03-12 2007-10-25 エイコス・インコーポレーテッド Carbon nanotube stripping solution and method
WO2005110594A1 (en) * 2004-05-13 2005-11-24 Hokkaido Technology Licensing Office Co., Ltd. Fine carbon dispersion
JP2006281189A (en) * 2005-04-04 2006-10-19 Mikuni Denshi Kk Ink jet coating solution and drying method

Similar Documents

Publication Publication Date Title
JP6074962B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
EP2253001B1 (en) Carbon nanotube-transparent conductive inorganic nanoparticles hybrid thin films for transparent conductive applications
Saran et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates
JP4361510B2 (en) Dye-sensitive solar cell module
US9315679B2 (en) Transparent conductive film and method for producing transparent conductive film
AU2005320306B2 (en) Counter electrode for photoelectric converter and photoelectric converter
EP3392915A1 (en) Monolithic-type module of perovskite solar cell, and manufacturing method therefor
JP6069989B2 (en) Method for producing photoelectric conversion element using perovskite compound
JP5293398B2 (en) Carbon nanotube-containing composition and coating film
EP3169464B1 (en) Method for the preparation of a transparent and conductive auto-supported silver nanowire film and applications thereof
US20100313938A1 (en) Counter electrode and photoelectric conversion element including the counter electrode
JP4273726B2 (en) Carbon nanotube-containing paste, carbon nanotube dispersed composite, and method for producing carbon nanotube dispersed composite
JP2012524966A (en) Carbon nanotube conductive film and manufacturing method thereof
EP2648909A2 (en) Hybrid conductive composite
JP2014056940A (en) Photoelectric conversion element using perovskite compound and method of manufacturing the same
KR102452651B1 (en) Electrical conductors, production methods thereof, and electronic devices including the same
JP6069987B2 (en) Method for producing photoelectric conversion element using perovskite compound
Shen et al. Nanopaper Electronics
Kumar et al. Application dependent stability of Ti3C2Tx MXene in PDLC-based smart-windows
JP5519497B2 (en) Touch panel
KR20120040322A (en) Dye-sensitized solar cell with light scattering layer, and manufacturing method thereof
WO2009125754A1 (en) Device
KR20170016145A (en) Methods of preparing conductors, conductors prepared therefrom, and electronic devices including the same
JP5319951B2 (en) Solar cell
JP5388021B2 (en) Liquid crystal cell and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731166

Country of ref document: EP

Kind code of ref document: A1