WO2008018619A1 - Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material - Google Patents

Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material Download PDF

Info

Publication number
WO2008018619A1
WO2008018619A1 PCT/JP2007/065885 JP2007065885W WO2008018619A1 WO 2008018619 A1 WO2008018619 A1 WO 2008018619A1 JP 2007065885 W JP2007065885 W JP 2007065885W WO 2008018619 A1 WO2008018619 A1 WO 2008018619A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
vacuum vessel
supported
rotating
fine particles
Prior art date
Application number
PCT/JP2007/065885
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Abe
Yuuji Honda
Hironari Yamamoto
Original Assignee
Youtec Co., Ltd.
Nippon Pillar Packing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd., Nippon Pillar Packing Co., Ltd. filed Critical Youtec Co., Ltd.
Publication of WO2008018619A1 publication Critical patent/WO2008018619A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polygonal barrel sputtering apparatus capable of supporting many fine particles or thin films on the outer surface of a carbon support, a surface-modified carbon material, and a method for producing the same.
  • a fuel cell is a new power generation system that converts the energy produced by the electrochemical reaction of fuel gas and oxidant gas directly into electrical energy.
  • Molten carbonate electrolyte fuel cell operating at (500 to 700 ° C), Phosphate electrolyte fuel cell operating near 200 ° C, Alkaline electrolyte fuel cell and polymer operating at room temperature or below about 100 ° C It is classified as an electrolyte fuel cell.
  • the activity of the catalyst improves as the electrochemically active surface area of the catalyst increases.
  • the amount of the supported catalyst can be simply increased.
  • the amount of the carbon support used increases, so the thickness of the electrode also increases. For this reason, problems such as an increase in the internal resistance of the electrode and difficulty in forming the electrode occur. Therefore, it is required to increase the concentration of the supported catalyst while keeping the amount of the carrier used constant.
  • the process includes impregnating a carbon nanotube, which is a carbon support, with a solvent and platinum precursor, which is finally supported as a catalyst metal, at least twice, and the catalyst metal precursor is impregnated between the impregnation stages. Drying the carbon support and reducing it.
  • the method for producing a surface-modified carbon material includes: (a) impregnating a carbon support with a metal precursor solution in which a part of a precursor of platinum, which is a catalyst metal that is finally supported, is mixed. (B) a first drying step for drying the carbon support impregnated with the catalyst metal precursor; and (c) a first reduction for reducing the carbon support impregnated with the catalyst metal precursor. A reduction step, and (d) a second impregnation step in which the carbon support preliminarily impregnated with catalyst metal particles is impregnated again with a metal precursor solution in which the solvent and the remainder of the catalyst metal precursor to be finally supported are mixed.
  • an impregnation method is used as a method for supporting platinum as a catalyst metal on carbon nanotubes.
  • carbon nanotubes are impregnated with a metal precursor solution as described above. Therefore, the metal precursor solution is carbon nanotube
  • the present invention has been made in consideration of the above-described circumstances, and its purpose is to provide a polygonal barrel sputtering apparatus, a surface-modified carbon material and a method for producing the same that can carry a large number of fine particles or thin films on the outer surface of a carbon support. It is to provide.
  • the sputtering method which is one of the physical vapor deposition methods that does not cause the effect of the chirality.
  • This method is considered to be very versatile for reasons such as selecting a carrier, modifying the surface of the carrier from metal to inorganic, and reducing the environmental burden.
  • the polygonal parallel sputtering method is a method in which a large number of fine particles or thin films are supported on the outer surface of the carbon support by rotating or rotating the polygonal pellet in which the carbon support is contained.
  • the polygonal barrel sputtering apparatus is a vacuum container that contains a carbon carrier, and a vacuum container having a polygonal cross-sectional shape substantially parallel to the direction of gravity, and is placed in the vacuum container, A dispersion member that disperses secondary particles formed by agglomeration of primary particles of carbon support into secondary particles that are smaller than the primary particles or the original secondary particles;
  • a rotation mechanism that rotates the vacuum vessel about a direction substantially perpendicular to the cross section
  • Rotating operation for rotating the vacuum vessel in one direction using the rotating mechanism or Rotating in one direction and then rotating in the opposite direction
  • fine particles or thin films are formed on the surface of the carbon support. It is characterized by being supported.
  • the pendulum operation is an operation that rotates in one direction at a rotation angle of 180 ° or less or more than 180 °, and in the opposite direction to rotate at a rotation angle of 180 ° or less or more than 180 °. It is an operation to repeat.
  • fine particles or thin films are supported on the surface of the carbon support by sputtering. Since sputtering has directivity and does not have a chiral effect, many fine particles or thin films can be carried on the outer surface of the carbon support.
  • the carbon carrier itself and the dispersion member are both rotated by rotating or pendulum-moving the vacuum vessel itself with a substantially vertical direction (that is, substantially horizontal direction) as a rotation axis with respect to a cross section substantially parallel to the direction of gravity.
  • the carbon carrier and the dispersion member can be dropped periodically by gravity, and the carbon carrier can collide with the inner wall of the vacuum vessel. .
  • the stirring efficiency can be drastically improved, aggregation of the carbon support can be prevented, and in addition, the aggregated carbon support can be stirred while being dispersed by the dispersing member. That is, the stirring by the rotation operation or the pendulum operation and the dispersion of the aggregated carbon support can be performed simultaneously and effectively. Therefore, fine particles having a relatively small particle size can be supported on the carbon support.
  • the dispersion member preferably includes at least one of a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions.
  • the polygonal barrel sputtering apparatus according to the present invention may further include a vibrator that applies vibration to the vacuum vessel. This makes it possible to prevent aggregation more effectively. Also, in the polygonal barrel sputtering apparatus according to the present invention
  • a heater for heating the carbon support it is also possible to further include a heater for heating the carbon support.
  • a heater for heating the carbon support when the inside of the vacuum vessel is evacuated, by heating the vacuum vessel with a heater, moisture adsorbed in the vacuum vessel and on the surface of the carbon support can be vaporized and exhausted. Therefore, since water can be removed from the inside of the vacuum container, aggregation of the carbon support can be prevented more effectively.
  • the carbon carrier and the primary particles of the carbon carrier are aggregated in a vacuum vessel having a polygonal internal shape in a cross section substantially parallel to the direction of gravity. Containing a dispersing member that disperses the resulting secondary particles into primary particles or secondary particles smaller than the original secondary particles;
  • the vacuum vessel Sputtering is performed while dispersing the secondary particles of the carbon support by the dispersion member while stirring or rotating the carbon support inside, thereby supporting fine particles or a thin film on the surface of the carbon support.
  • the carbon support may be a single-wall carbon nanotubes (SWNT) ⁇ double-wall carbon nanotubes (DWNT) multi-layer carbon nanotube.
  • SWNT single-wall carbon nanotubes
  • DWNT double-wall carbon nanotubes
  • the surface-modified carbon material according to the present invention rotates a vacuum vessel having a polygonal cross-sectional shape in one direction with a substantially vertical direction as a rotation axis with respect to the cross-section, or rotates in one direction. After repeating the operation of rotating in the opposite direction, the carbon carrier in the vacuum vessel is agitated or rotated by performing a pendulum operation. By performing sputtering while rolling, the charcoal
  • the carbon support is a carbon nanotube, and more fine particles or thin films are supported on the outer surface of the carbon nanotube than in the tube.
  • FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus according to the first embodiment.
  • FIG. 2 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope.
  • FIG. 3 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope.
  • FIG. 4 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG.
  • Fig. 5 (A) shows the results of EDX analysis of the carbon nanotubes before supporting Pt.
  • Fig. 5 (B) shows the carbon-supported catalyst according to Embodiment 1 as EDX. Therefore, it is a figure which shows the result analyzed.
  • FIG. 6 is a diagram showing the results of analyzing the carbon-supported catalyst according to Embodiment 1 by XRD.
  • FIG. 7 is a diagram showing the result of XRF analysis of the carbon-supported catalyst according to the first embodiment.
  • Figure 8 shows the carbon supported catalyst according to the second embodiment.
  • FIG. 9 is a TEM photograph of the carbon-supported catalyst according to Embodiment 2 observed with an electron microscope.
  • FIG. 10 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG.
  • FIG. 11 is a diagram showing a result of analyzing a carbon-supported catalyst according to Embodiment 2 by XRD.
  • FIG. 12 is a diagram showing the results of analyzing the carbon-supported catalyst according to Embodiment 2 by XRF.
  • FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus according to Embodiment 1 of the present invention.
  • catalyst fine particles having a relatively small particle diameter are applied to the surface of a carbon support 3 made of carbon nanotubes. It is a device for carrying. Also, with this device, the particle size of the supported platinum fine particles can be reduced to 1 to 100 nm by controlling sputtering conditions such as argon flow rate (total pressure), high frequency output, sputtering time, and temperature. It can be easily controlled within a range.
  • the catalyst fine particles are supported on the surface of the carbon support 3 made of carbon nanotubes, but the present invention is not limited to this, and the catalyst fine particles are supported on the surface of the carbon support other than the carbon nanotubes. It is also possible to make it.
  • Specific examples of carbon carriers include single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanohorns, carbon nanocoils, cup-stacked carbon nanotubes, bamboo-shaped carbon nanotubes, vapor-grown carbon fibers, carbon Nanofibers, graphite nanofibers, fullerenes, carbon black and carbon single crystals.
  • the polygonal barrel sputtering apparatus has a vacuum container 1 for supporting catalyst fine particles on a carbon support 3, and this vacuum container 1 has a cylindrical portion 1a having a diameter of 20 O mm and a cross section installed in the inside thereof.
  • Hexagonal barrel (hexagonal barrel) 1 b Hexagonal barrel (hexagonal barrel) 1 b.
  • the cross section shown here is a cross section substantially parallel to the direction of gravity.
  • the hexagonal barrel 1b is used.
  • the present invention is not limited to this, and a polygonal barrel other than the hexagon can also be used.
  • secondary particles (size: for example, 100 nm to l 0 O mm) formed by agglomeration of primary particles of the carbon support 3 by moisture, electrostatic force, intermolecular force, etc. Disperse again into primary particles or secondary particles smaller than the original secondary particles A dispersion member (not shown) is inserted. This minute
  • the carbon support 3 aggregated and collected is dispersed, and examples thereof include powdery substances, rod-like substances, small pieces, spherical substances, and substances having a plurality of protrusions.
  • the size of the powdery substance is, for example, about 0 ⁇ l to 5 mm, and specific examples include sand and alumina powder.
  • the rod-like substance is a rod-like substance having a size of, for example, a length of 1 to 5 Omm and a thickness of about 0.1 mm to 1 Omm.
  • Specific examples include a nail, a wire, a square bar, and a port. Can be mentioned.
  • the small piece has a size of, for example, about 1 to 10 Omm, and specific examples of the material include metals and resins.
  • the spherical substance has a diameter of, for example, about 1 to 5 Omm.
  • Specific examples include iron balls, plastic balls, BB bullets, beads, and the like.
  • the substance having a plurality of protrusions has a size of about 10 to 5 Omm and a large number of protrusions, and specific examples thereof include demon nuts.
  • the vacuum vessel 1 is provided with a rotation mechanism (not shown).
  • this rotation mechanism By this rotation mechanism, the hexagonal barrel 1 b is rotated in one direction (in the direction of the arrow), or after being rotated in one direction.
  • the carbon support 3 in the hexagonal barrel 1b is stirred or rotated while the carbon support 2
  • the supporting treatment is performed while the next particles are dispersed.
  • the size of the original secondary particle is, for example, 1 00 ⁇ ! ⁇ 10 Omm.
  • the pendulum operation includes, of course, an operation that repeats the operation of rotating at a rotation angle of 1 80 ° or less in one direction and rotating at a rotation angle of 1 80 ° or less in the opposite direction. This includes the operation of rotating at a rotation angle of more than 80 ° (eg, a rotation angle of 720 °) and rotating in the opposite direction at a rotation angle of more than 1 80 ° (eg, a rotation angle of 720 °).
  • Hexagonal parel is rotated by the rotating mechanism I
  • a sputtering target 2 made of Pt is disposed on the central axis of the cylinder in the vacuum vessel 1, and the target 2 is configured so that the angle can be freely changed.
  • the target 2 when carrying the supporting process while rotating the hexagonal barrel 1b, the target 2 can be directed in the direction in which the carbon carrier 3 is located, thereby increasing the sputtering efficiency.
  • a Pt target is used.
  • a material other than Pt for example, Pd, Ni, etc.
  • a target made of material will be used.
  • One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4.
  • One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10.
  • the exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second pulp 13.
  • the other side of the second pulp 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (R P) 11.
  • the pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third pulp 14.
  • the other side of the third pulp 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.
  • This apparatus is provided with a heater 17 for heating the carbon carrier 3 in the vacuum vessel 1.
  • the apparatus also includes a vibrator 18 for applying vibration to the carbon carrier 3 in the vacuum vessel 1.
  • the apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1.
  • the apparatus also includes a nitrogen gas introduction mechanism 15 for introducing nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 for introducing argon gas into the vacuum vessel 1.
  • this apparatus includes a high-frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1 b.
  • carbon support 3 is introduced into the hexagonal barrel 1b.
  • the carbon support 3 CNI (registered trademark) Buckytubes single-walled carbon nanotubes (SWNT) were used. In addition, nails were used as dispersion members. Pt was used for target 2.
  • the carbon nano tube is used.
  • the present invention is not limited to this, and it is also possible to use a carbon support made of other materials. If this polygonal barrel sputtering method is used, fine particles can be supported on a wide range of carbon carriers.
  • a high vacuum state was created in the hexagonal barrel 1 b using a turbo molecular pump 10, and the inside of the hexagonal barrel was depressurized to 8 ⁇ 10 — 4 Pa.
  • an inert gas such as argon or nitrogen is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16 or the nitrogen gas supply mechanism 15.
  • the pressure in the hexagonal barrel is about 0.8 Pa.
  • a mixed gas of oxygen and hydrogen may be introduced into the hexagonal parallel 1b ⁇ .
  • about 90 ccm of argon gas is introduced into the hexagonal barrel 1 b, and the argon pressure is about 30 Pa.
  • the nail that is a member to be agitated with the carbon nanotubes 3 in the hexagonal barrel 1b is agitated.
  • a high frequency output of 50 W for example, is applied between the target 2 and the hexagonal barrel 1 b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the carbon nanotube 3 at room temperature.
  • the target is directed in the direction in which the carbon nanotube is located. In this way, Pt fine particles can be supported on the surface of the carbon nanotube 3.
  • the force with which the pendulum movement is performed at an angle of 75 ° on the hexagonal barrel 1 b is not limited to this, and it is possible to change the angle of the pendulum movement to another angle. It is also possible to perform rotation instead of pendulum movement It is.
  • the rotation speed of the pendulum movement is 3
  • the rotation speed of the pendulum operation it is also possible to increase the rotation speed of the pendulum operation to about 20 rpm.
  • the high-frequency output is 5 OW, but the high-frequency output can be increased to about 50 OW.
  • the temperature at which the Pt fine particles are supported is room temperature, but the temperature can be increased to about 600 ° C.
  • the carbon nanotube itself can be rotated and stirred together with the nail by causing the hexagonal barrel itself to perform a pendulum operation or a rotation operation. Can be dropped regularly. For this reason, the stirring efficiency can be drastically improved, and aggregation due to moisture, electrostatic force, and intermolecular force can be prevented.
  • the carbon nanotubes are stirred together with the nail, the aggregated carbon nanotubes are removed by the nail. It can be stirred while being dispersed. That is, stirring by rotation and dispersion of the aggregated carbon nanotubes can be performed simultaneously and effectively. Therefore, Pt fine particles having a relatively small particle size can be supported on the carbon nanotube 3.
  • Pt is supported on the surface of the carbon nanotube by sputtering. Since sputtering has directivity and does not have a chiral effect, a large amount of Pt is not supported in the carbon nanotube tube as in the prior art. In other words, in the present embodiment, a large amount of Pt can be supported outside the inside of the carbon nanotube, or approximately 100% of the Pt fine particles supported on the carbon nanotube are supported on the outer surface of the tube. be able to. Therefore, when the supported Pt is used as a catalyst, wasteful Pt of the supported Pt is reduced, and the catalyst efficiency can be dramatically increased.
  • the heater 17 is attached to the outside of the vacuum vessel 1, and the hexagonal barrel 1 b can be heated up to 600 ° C. by the heater 17. For this reason, when the inside of the vacuum vessel 1 is evacuated, the hexagonal parel is heated by the heater 17 to vaporize and exhaust the water in the hexagonal barrel. be able to. Therefore, water in the hexagonal barrel
  • a piper 18 is attached to the outside of the vacuum vessel 1, and the vibrator 18 can apply vibration to the powder 3 in the hexagonal barrel. This makes it possible to more effectively prevent the carbon carrier from aggregating.
  • the catalyst fine particles are supported on the surface of the carbon support 3 by the polygonal barrel sputtering method, it is not necessary to treat the waste liquid as in the conventional impregnation method, and the load on the environment can be reduced. There is an advantage.
  • catalyst fine particles are supported on a carbon support, but fine particles or thin films other than catalyst fine particles may be supported on a carbon support.
  • the carbon-supported catalyst manufactured by the manufacturing method according to the present embodiment supports Pt fine particles, it can be used as an electrode catalyst for fuel cells (anode, force sword) and an industrial catalyst. If a material other than Pt is supported, it can be used for various surface-modified carbon materials other than fuel cell electrode catalysts and industrial catalysts.
  • industrial catalysts aromatic hydrogenation, selective hydrogenation of unsaturated aldehydes, selective CO oxidation, selective hydrogenation of cation aldehydes, NO decomposition, ammonia synthesis, hydrogenation of citral, hydrogenation of crotonaldehyde, etc.
  • It can be used for sensors, Li battery materials, photocatalysts, STM and SFM probes, field emitters, rubber and resin fillers, conductive resin fillers, and the like.
  • vibration is applied to the carbon carrier 3 in the hexagonal barrel by the vibrator 18, but in the hexagonal barrel instead of the vibrator 18 or in addition to the vibrator 18.
  • FIGS. 2 and 3 are photographs obtained by observing, with an electron microscope, a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of the carbon nanotube by the manufacturing method according to the present embodiment.
  • FIG. 4 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure shows the distribution of diameters from the measured results of the diameters of 100 randomly selected Pt particles in the photograph of Fig. 2. As shown in FIG. 4, the average diameter of 100 Pt microparticles is 1.95 nm, and 90% of all particles are between 1.4 and 2.2 nm in size. Existing. Therefore, it was confirmed that Pt fine particles having a uniform particle size were supported.
  • FIG. 5 (A) is a diagram showing the result of analyzing the carbon nanotube before supporting Pt by ED X (energy dispersive X-ray analysis).
  • FIG. 5 (B) is a diagram showing the result of EDX analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by the manufacturing method according to the present embodiment.
  • FIG. 6 shows the outer surface of the carbon nanotube by the manufacturing method according to the present embodiment.
  • FIG. 7 is a diagram showing a result of analyzing a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by XRF (fluorescence X-ray analysis) by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus.
  • XRF fluorescence X-ray analysis
  • argon gas is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16. At this time, the argon gas flow rate is about 20 ccm, and the argon gas pressure is about 0.8 Pa.
  • the VGCF in the hexagonal barrel 1b and the nail that is a member to be agitated are agitated and rotated.
  • a high frequency output of 50 W for example, is applied between the target 2 and the hexagonal parallel 1 b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the VGCF at room temperature.
  • the target is VGC 00 Ran 885
  • a child can be carried.
  • FIGS. 8 and 9 are TEM photographs of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment, which is observed with an electron microscope.
  • FIG. 10 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure shows the diameter distribution of 100 randomly selected Pt particles in the photograph in Fig. 8 and shows the diameter distribution. As shown in FIG. 10, the average diameter of 100 Pt microparticles is 2. l nm, and 90% of all particles are present between 1.2 and 3.0 nm in size. Therefore, it was confirmed that Pt fine particles having a uniform particle size were supported.
  • FIG. 11 is a diagram showing the results of analysis by XRD (X-ray diffraction method) of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGC F by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that PGC fine particles were supported on VGC F by a polygonal parel sputtering device. Note that the graphite peak in Fig. 11 is attributed to VGCF, and is also observed in VGCF before supporting Pt. 67. At the Pt (220) peak at 4 °, the particle size of Pt determined by the Sierra equation is 2.3 nm, which is almost equal to the average particle size shown in Fig. 10 obtained from the TEM photograph. Match.
  • XRD X-ray diffraction method
  • Figure 12 shows the result of XRF (fluorescence X-ray analysis) analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment. It is a figure which shows a fruit. As shown in this figure, VGC
  • Pt is used as the material for the catalyst fine particles.
  • the present invention is not limited to this, and other fine particles such as metals (A1, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, etc.) or non-metal (Si, As, C, etc.) It is also possible to use an alloy of each of the metals or nonmetals, or an oxide, nitride, boride, or carbide of each of the metals or nonmetals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

This invention provides a polygonal barrel sputtering apparatus which can support a number of catalyst fine particles onto the outer surface of a carbon carrier, and a carbon supported catalyst and a method for manufacturing the carbon supported catalyst. The polygonal barrel sputtering apparatus comprises a vacuum vessel(1) of which the internal shape of the cross section substantially parallel to the gravitational direction is polygonal, a dispersing member, which is placed within the vacuum vessel (1), for dispersing secondary particles produced by the aggregation of primary particles of the carbon carrier (3) into primary particles or secondary particles which are smaller than the original secondary particles, a rotating mechanism for rotating the vacuum vessel around a rotation axis substantially vertical to the above cross section, and a sputtering target (2) disposed within the vacuum vessel (1). The polygonal barrel sputtering apparatus is characterized in that sputtering is carried out while carrying out rotation or pendulum operation of the vacuum vessel (1) with the rotating mechanism to agitate or rotate the carbon carrier (3) within the vacuum vessel to disperse the secondary particles of the carbon carrier (3) with the aid of the dispersing member, whereby fine particles or a thin film is supported on the surface of the carbon carrier (3).

Description

明 細 書 多角バレルスパッタ装置、 表面修飾炭素材料及びその製造方法 1. 技術分野  Description Polygonal Barrel Sputtering Equipment, Surface-Modified Carbon Material and Manufacturing Method 1. Technical Field
本発明は、 炭素担体の外表面に多くの微粒子又は薄膜を担持できる多角バ レルスパッタ装置、 表面修飾炭素材料及びその製造方法に関する。  The present invention relates to a polygonal barrel sputtering apparatus capable of supporting many fine particles or thin films on the outer surface of a carbon support, a surface-modified carbon material, and a method for producing the same.
2. 背景技術 2. Background technology
燃料電池は燃料ガスと酸化剤ガスとを電気化学的に反応させて生じるエネ ルギーを直接電気エネルギーに変換させる新しい発電システムであり、 高温 A fuel cell is a new power generation system that converts the energy produced by the electrochemical reaction of fuel gas and oxidant gas directly into electrical energy.
( 500ないし 700°C)で作動する溶融炭酸塩電解質型燃料電池、 200°C 近辺で作動するリン酸電解質型燃料電池、 常温ないし約 100°C以下で作動 するアルカリ電解質型燃料電池及び高分子電解質型燃料電池などに分類され る。 Molten carbonate electrolyte fuel cell operating at (500 to 700 ° C), Phosphate electrolyte fuel cell operating near 200 ° C, Alkaline electrolyte fuel cell and polymer operating at room temperature or below about 100 ° C It is classified as an electrolyte fuel cell.
前記高分子電解質型燃料電池としては、 水素ガスを燃料に使用する水素ィ オン交換膜燃料電池(P r o t o n Ex c h a n g e Memb r a n e F u e 1 C e l l : PEMFC) と液状のメタノールを直接燃料としてァノー ドに供給して使用する直接メタノール燃料電池(D i r e c t Me t h a n o 1 Fu e l C e l l : DMF C) などがある。  As the polymer electrolyte fuel cell, hydrogen exchange membrane fuel cell using hydrogen gas as fuel (Proton Ex change Membrane Fuel 1 Cell: PEMFC) and liquid methanol as direct fuel to the anode. There are direct methanol fuel cells (D irect Me thano 1 Fuel Cell: DMF C) that are supplied and used.
燃料電池のエネルギー密度を上げて出力密度と出力電圧とを向上させるた めに、 電極、 燃料、 電解質膜について研究が活発に進められているが、 特に 電極に使われる触媒の活性を向上させようという試みが盛んにされている。 P EMF Cや DMF Cに使われる触媒は、 一般に、 P tや、 P tおよび P t 合金が多用されているが、 価格競争力を確保するためには触媒の使用量を減 らすことが好ましい。 燃料電池の性能を保持または増加させつつ触媒量を減 らす方法として、 比表面積の広い導電性炭素材料を担体として使用し、 これ に P tなどを微細な粒子状態で分散させて触媒金属粒子の電気化学的活性表 5 In order to increase the energy density of fuel cells and improve output density and output voltage, research is actively conducted on electrodes, fuels, and electrolyte membranes. In particular, we will improve the activity of catalysts used in electrodes. There are many attempts to do this. In general, Pt, Pt, and Pt alloys are widely used as catalysts for PEMFC and DMFC. To ensure price competitiveness, however, the amount of catalyst used may be reduced. preferable. As a method of reducing the amount of catalyst while maintaining or increasing the performance of the fuel cell, a conductive carbon material having a large specific surface area is used as a support, and Pt and the like are dispersed in a fine particle state to form catalytic metal particles. Electrochemical activity table Five
2 面積を大きくする方法が使われている。  2 The method of increasing the area is used.
触媒の電気化学的活性表面積が大きくなるほど触媒の活性が向上する。 活 性表面積を増大させるには、 担持される触媒の使用量を単純に增やせばよい 力 その場合には使われる炭素担体の量が共に増加するため、 電極の厚さも 大きくなる。 このため、 電極の内部抵抗が高まり、 電極を形成し難くなるな どの問題が発生する。 従って、 使われる担体の量は一定としつつ、 担持され る触媒の濃度を高めることが求められる。  The activity of the catalyst improves as the electrochemically active surface area of the catalyst increases. In order to increase the active surface area, the amount of the supported catalyst can be simply increased. In this case, the amount of the carbon support used increases, so the thickness of the electrode also increases. For this reason, problems such as an increase in the internal resistance of the electrode and difficulty in forming the electrode occur. Therefore, it is required to increase the concentration of the supported catalyst while keeping the amount of the carrier used constant.
以下、 従来の表面修飾炭素材料の製造方法について説明する。  Hereinafter, a conventional method for producing a surface-modified carbon material will be described.
溶媒及び最終的に担持される触媒金属である白金の前駆体を炭素担体であ るカーボンナノチューブに含浸させる段階を 2回以上含み、 前記含浸させる 段階の間に、 前記触媒金属の前駆体が含浸した炭素担体を乾燥させる段階と これを還元させる段階とを含む。  The process includes impregnating a carbon nanotube, which is a carbon support, with a solvent and platinum precursor, which is finally supported as a catalyst metal, at least twice, and the catalyst metal precursor is impregnated between the impregnation stages. Drying the carbon support and reducing it.
より具体的には、表面修飾炭素材料の製造方法は、 (a )溶媒及び最終的に 担持される触媒金属である白金の前駆体の一部を混合した金属前駆体溶液を、 炭素担体に含浸させる第 1含浸段階と、 (b )前記触媒金属の前駆体が含浸し た炭素担体を乾燥させる第 1乾燥段階と、 (c )前記触媒金属の前駆体が含浸 した炭素担体を還元させる第 1還元段階と、 (d )溶媒及び最終的に担持され る触媒金属の前駆体の残部を混合した金属前駆体溶液を、 触媒金属粒子が予 備含浸した前記炭素担体に再び含浸させる第 2含浸段階と、 ( e )前記触媒金 属の前駆体及び前記触媒金属粒子が含浸した前記炭素担体を乾燥させる第 2乾燥段階と、 ( f )前記触媒金属の前駆体及び前記触媒金属粒子が含浸した 前記炭素担体を還元させる第 2還元段階とを含むものである (例えば特開 2 0 0 5— 1 0 8 8 3 8号公報の第 2 7、 第 2 9、 第 3 0段落参照)。 3 . 発明の開示  More specifically, the method for producing a surface-modified carbon material includes: (a) impregnating a carbon support with a metal precursor solution in which a part of a precursor of platinum, which is a catalyst metal that is finally supported, is mixed. (B) a first drying step for drying the carbon support impregnated with the catalyst metal precursor; and (c) a first reduction for reducing the carbon support impregnated with the catalyst metal precursor. A reduction step, and (d) a second impregnation step in which the carbon support preliminarily impregnated with catalyst metal particles is impregnated again with a metal precursor solution in which the solvent and the remainder of the catalyst metal precursor to be finally supported are mixed. (E) a second drying step of drying the carbon support impregnated with the catalyst metal precursor and the catalyst metal particles, and (f) the catalyst metal precursor and the catalyst metal particles impregnated Including a second reduction stage for reducing the carbon support There (for example, Japanese 2 0 0 5 1 0 8 8 3 8 No. 2 7 of the publication, the second 9, Section 3 0 paragraph). 3. Disclosure of the Invention
上記従来の表面修飾炭素材料の製造方法では、 カーボンナノチューブに触 媒金属としての白金を担持させる方法として含浸法を用いている。 この含浸 法では、 上述したように金属前駆体溶液をカーボンナノチューブに含浸させ るため、 金属前駆体溶液がカーボンナノチューブ In the conventional method for producing a surface-modified carbon material, an impregnation method is used as a method for supporting platinum as a catalyst metal on carbon nanotubes. In this impregnation method, carbon nanotubes are impregnated with a metal precursor solution as described above. Therefore, the metal precursor solution is carbon nanotube
効果によって吸い込まれ、 最終的に多くの白金がカーボンナノチューブの外 側ではなくチューブ内に担持されてしまう。 このようにカーボンナノチュー プの外側より内側に多くの白金が担持されると、 チューブ内の白金の多くが 電極触媒として使われないため、 チューブ内の白金の多くが無駄になる。 そ こで、 カーボンナノチューブのような炭素担体の外表面に多くの触媒微粒子 を担持する方法の開発が求められている。 It is sucked in by the effect, and finally a lot of platinum is carried in the tube, not on the outside of the carbon nanotube. When a large amount of platinum is supported on the inside of the carbon nano tube from the outside, much of the platinum in the tube is not used as an electrocatalyst, so much of the platinum in the tube is wasted. Therefore, development of a method for supporting a large number of catalyst fine particles on the outer surface of a carbon support such as a carbon nanotube is required.
本発明は上記のような事情を考慮してなされたものであり、 その目的は、 炭素担体の外表面に多くの微粒子又は薄膜を担持できる多角バレルスパッタ 装置、 表面修飾炭素材料及びその製造方法を提供することにある。  The present invention has been made in consideration of the above-described circumstances, and its purpose is to provide a polygonal barrel sputtering apparatus, a surface-modified carbon material and a method for producing the same that can carry a large number of fine particles or thin films on the outer surface of a carbon support. It is to provide.
上記課題を解決するため、 キヤビラリ効果の生じない方法であって物理蒸 着法の一つであるスパッタリ ング法に注目した。 この方法は、 担体を選ばな レ、、 金属から無機物までを担体表面に修飾できる、 環境負荷が小さい、 等々 の理由から非常に汎用性が高いと考えられる。 そこで、 今回我々は多角パレ ルスパッタリング法を発明した。 この方法は炭素担体の入っている多角パレ ルを回転させることで炭素担体を攪拌あるいは回転させ、 炭素担体の外表面 に多くの微粒子又は薄膜を担持させる方法である。  In order to solve the above problems, we focused on the sputtering method, which is one of the physical vapor deposition methods that does not cause the effect of the chirality. This method is considered to be very versatile for reasons such as selecting a carrier, modifying the surface of the carrier from metal to inorganic, and reducing the environmental burden. This time, we invented the polygonal parallel sputtering method. This method is a method in which a large number of fine particles or thin films are supported on the outer surface of the carbon support by rotating or rotating the polygonal pellet in which the carbon support is contained.
以下、 具体的に説明する。  This will be specifically described below.
本発明に係る多角バレルスパッタ装置は、 炭素担体を収容する真空容器で あって重力方向に対して略平行な断面の内部形状が多角形である真空容器と、 前記真空容器内に入れられ、 前記炭素担体の一次粒子が凝集してできた二 次粒子を一次粒子又は元の二次粒子より小さレ、二次粒子に分散させる分散部 材と、  The polygonal barrel sputtering apparatus according to the present invention is a vacuum container that contains a carbon carrier, and a vacuum container having a polygonal cross-sectional shape substantially parallel to the direction of gravity, and is placed in the vacuum container, A dispersion member that disperses secondary particles formed by agglomeration of primary particles of carbon support into secondary particles that are smaller than the primary particles or the original secondary particles;
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させる回 転機構と、  A rotation mechanism that rotates the vacuum vessel about a direction substantially perpendicular to the cross section;
前記真空容器内に配置されたスパッタリングターゲットと、  A sputtering target disposed in the vacuum vessel;
を具備し、 Comprising
前記回転機構を用いて前記真空容器を一方向に回転させる回転動作、 又は 一方向に回転させた後に反対方向に回転させる動 Rotating operation for rotating the vacuum vessel in one direction using the rotating mechanism, or Rotating in one direction and then rotating in the opposite direction
行うことにより、 前記真空容器内の炭素担体を攪拌あるいは回転させながら 前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリン グを行うことで、 該炭素担体の表面に微粒子又は薄膜を担持することを特徴 とする。 By performing sputtering while dispersing or dispersing secondary particles of the carbon support by the dispersing member while stirring or rotating the carbon support in the vacuum vessel, fine particles or thin films are formed on the surface of the carbon support. It is characterized by being supported.
尚、 振り子動作とは、 一方向に 1 8 0 ° 以下又は 1 8 0 ° 超の回転角で回 転させ、 反対方向に 1 8 0 ° 以下又は 1 8 0 ° 超の回転角で回転させる動作 を繰り返す動作である。  The pendulum operation is an operation that rotates in one direction at a rotation angle of 180 ° or less or more than 180 °, and in the opposite direction to rotate at a rotation angle of 180 ° or less or more than 180 °. It is an operation to repeat.
上記多角パレルスパッタ装置によれば、 炭素担体の表面にスパッタリング により微粒子又は薄膜を担持させている。スパッタリングには指向性があり、 キヤビラリ効果が無いため、 炭素担体の外表面に多くの微粒子又は薄膜を担 持することができる。  According to the above-mentioned polygonal parel sputtering apparatus, fine particles or thin films are supported on the surface of the carbon support by sputtering. Since sputtering has directivity and does not have a chiral effect, many fine particles or thin films can be carried on the outer surface of the carbon support.
また、 重力方向に対して略平行な断面に対して略垂直方向 (即ち、 ほぼ水 平方向) を回転軸として真空容器自体を回転動作又は振り子動作させること で炭素担体自体及び分散部材をともに回転させ攪拌でき、 更に真空容器の内 部の断面形状を多角形とすることにより、 炭素担体及び分散部材を重力によ り定期的に落下させ、真空容器の内壁に炭素担体を衝突させることができる。 このため、 攪拌効率を飛躍的に向上させることができ、 炭素担体の凝集を防 ぐことができ、 その上、 凝集した炭素担体を分散部材によって分散させつつ 攪拌することができる。 つまり、 回転動作又は振り子動作による攪拌と、 凝 集した炭素担体の分散を同時かつ効果的に行うことができる。 したがって、 炭素担体に比較的粒径が小さい微粒子を担持することが可能となる。  In addition, the carbon carrier itself and the dispersion member are both rotated by rotating or pendulum-moving the vacuum vessel itself with a substantially vertical direction (that is, substantially horizontal direction) as a rotation axis with respect to a cross section substantially parallel to the direction of gravity. Furthermore, by making the cross-sectional shape of the inner part of the vacuum vessel polygonal, the carbon carrier and the dispersion member can be dropped periodically by gravity, and the carbon carrier can collide with the inner wall of the vacuum vessel. . For this reason, the stirring efficiency can be drastically improved, aggregation of the carbon support can be prevented, and in addition, the aggregated carbon support can be stirred while being dispersed by the dispersing member. That is, the stirring by the rotation operation or the pendulum operation and the dispersion of the aggregated carbon support can be performed simultaneously and effectively. Therefore, fine particles having a relatively small particle size can be supported on the carbon support.
また、 本発明に係る多角バレルスパッタ装置において、 前記分散部材は、 粉状物質、 棒状物質、 小片、 球状物質、 複数の突起を有する物質の少なくと も一つを有することが好ましい。  In the polygonal barrel sputtering apparatus according to the present invention, the dispersion member preferably includes at least one of a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions.
また、 本発明に係る多角バレルスパッタ装置においては、 前記真空容器に 振動を加えるバイブレータをさらに具備することも可能である。これにより、 凝集をより効果的に防ぐことが可能となる。 また、 本発明に係る多角バレルスパッタ装置に The polygonal barrel sputtering apparatus according to the present invention may further include a vibrator that applies vibration to the vacuum vessel. This makes it possible to prevent aggregation more effectively. Also, in the polygonal barrel sputtering apparatus according to the present invention
の炭素担体を加熱するためのヒータをさらに具備することも可館である。 例 えば、 真空容器の内部を真空にする際、 ヒータで真空容器を加熱することに より、 該真空容器内及び炭素担体表面に吸着した水分を気化させ排気するこ とができる。 したがって、 水を真空容器内から除去することができるため、 炭素担体の凝集をより効果的に防ぐことができる。 It is also possible to further include a heater for heating the carbon support. For example, when the inside of the vacuum vessel is evacuated, by heating the vacuum vessel with a heater, moisture adsorbed in the vacuum vessel and on the surface of the carbon support can be vaporized and exhausted. Therefore, since water can be removed from the inside of the vacuum container, aggregation of the carbon support can be prevented more effectively.
本発明に係る表面修飾炭素材料の製造方法は、 重力方向に対して略平行な 断面の内部形状が多角形である真空容器内に、 炭素担体及ぴ該炭素担体の一 次粒子が凝集してできた二次粒子を一次粒子又は元の二次粒子より小さい二 次粒子に分散させる分散部材を収容し、  In the method for producing a surface-modified carbon material according to the present invention, the carbon carrier and the primary particles of the carbon carrier are aggregated in a vacuum vessel having a polygonal internal shape in a cross section substantially parallel to the direction of gravity. Containing a dispersing member that disperses the resulting secondary particles into primary particles or secondary particles smaller than the original secondary particles;
前記断面に対して略垂直方向を回転軸として前記真空容器を一方向に回転 させる回転動作、 又は一方向に回転させた後に反対方向に回転させる動作を 繰り返す振り子動作を行うことにより、 前記真空容器内の炭素担体を攪拌あ るいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散 させつつスパッタリングを行うことで、 該炭素担体の表面に微粒子又は薄膜 を担持することを特徴とする。  By performing a pendulum operation that repeats a rotation operation in which the vacuum vessel is rotated in one direction about a direction substantially perpendicular to the cross-section, or a rotation in the opposite direction after rotating in one direction, the vacuum vessel Sputtering is performed while dispersing the secondary particles of the carbon support by the dispersion member while stirring or rotating the carbon support inside, thereby supporting fine particles or a thin film on the surface of the carbon support. .
また、 本発明に係る表面修飾炭素材料の製造方法において、 前記炭素担体 は、 単層カーボンナノチューブ (single-wall carbon nanotubes : SWNT) Λ 二 層カーボンナノチューブ (double-wall carbon nanotubes : DWNT) 多層カー ボンナノチューブ (multi-wall carbon nanotubes : MWNT)、 カーボンナノホ ーン、 カーボンナノコイル、 カップ積層型カーボンナノチューブ、 竹状カー ボンナノチューブ、 気相成長炭素繊維 (vapor-grown carbon fibers: VGCF) N カーボンナノフアイパー、 グラフアイ トナノファイバー、 フラーレン、 カー ポンプラック及びカーボン単結晶の少なくとも一つであることが好ましい。 本発明に係る表面修飾炭素材料は、 内部の断面形状が多角形を有する真空 容器を、 前記断面に対して略垂直方向を回転軸として一方向に回転させる回 転動作、 又は一方向に回転させた後に反対方向に回転させる動作を繰り返す 振り子動作を行うことにより、 前記真空容器内の炭素担体を攪拌あるいは回 転させながらスパッタリングを行うことで、 該炭 In the method for producing a surface-modified carbon material according to the present invention, the carbon support may be a single-wall carbon nanotubes (SWNT) Λ double-wall carbon nanotubes (DWNT) multi-layer carbon nanotube. Multi-wall carbon nanotubes (MWNT), carbon nanophones, carbon nanocoils, cup-stacked carbon nanotubes, bamboo-shaped carbon nanotubes, vapor-grown carbon fibers (VGCF) N- carbon nanofibers It is preferably at least one of graphite nanofibers, fullerenes, car pump racks, and carbon single crystals. The surface-modified carbon material according to the present invention rotates a vacuum vessel having a polygonal cross-sectional shape in one direction with a substantially vertical direction as a rotation axis with respect to the cross-section, or rotates in one direction. After repeating the operation of rotating in the opposite direction, the carbon carrier in the vacuum vessel is agitated or rotated by performing a pendulum operation. By performing sputtering while rolling, the charcoal
は薄膜が担持されたことを特徴とする。 Is characterized in that a thin film is supported.
また、 本発明に係る表面修飾炭素材料においては、 前記炭素担体がカーボ ンナノチューブであり、 該カーボンナノチューブのチューブ内よりチューブ 外表面に多くの前記微粒子又は薄膜が担持されていることが好ましい。 また、 本発明に係る表面修飾炭素材料においては、 前記カーボンナノチュ 一ブに担持された前記微粒子又は薄膜のほぼ 1 0 0 %がチューブ外表面に担 持されていることが好ましい。  In the surface-modified carbon material according to the present invention, it is preferable that the carbon support is a carbon nanotube, and more fine particles or thin films are supported on the outer surface of the carbon nanotube than in the tube. In the surface-modified carbon material according to the present invention, it is preferable that approximately 100% of the fine particles or thin film supported on the carbon nanotube is supported on the outer surface of the tube.
以上説明したように本発明によれば、 炭素担体の外表面に多くの触媒微粒 子を担持できる多角バレルスパッタ装置、 炭素担持触媒及びその製造方法を 提供することができる。  As described above, according to the present invention, it is possible to provide a multi-barrel sputtering apparatus, a carbon-supported catalyst, and a method for producing the same that can support a large number of catalyst fine particles on the outer surface of a carbon support.
4 . 図面の簡単な説明 4. Brief description of the drawings
図 1は、 実施の形態 1による多角バレルスパッタ装置の概略を示す構成図 である。  FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus according to the first embodiment.
図 2は、 実施の形態 1による炭素担持触媒を電子顕微鏡により観察した写 真である。  FIG. 2 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope.
図 3は、 実施の形態 1による炭素担持触媒を電子顕微鏡により観察した写 真である。  FIG. 3 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope.
図 4は、 図 2に示す炭素担持触媒に担持された P t微粒子の粒度分布を示 す図である。  FIG. 4 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG.
図 5 (A) は、 P tを担持する前のカーボンナノチューブを E D Xによつ て分析した結果を示す図であり、 図 5 ( B ) は、 実施の形態 1による炭素担 持触媒を E D Xによつて分析した結果を示す図である。  Fig. 5 (A) shows the results of EDX analysis of the carbon nanotubes before supporting Pt. Fig. 5 (B) shows the carbon-supported catalyst according to Embodiment 1 as EDX. Therefore, it is a figure which shows the result analyzed.
図 6は、 実施の形態 1による炭素担持触媒を X R Dによって分析した結果 を示す図である。  FIG. 6 is a diagram showing the results of analyzing the carbon-supported catalyst according to Embodiment 1 by XRD.
図 7は、 実施の形態 1による炭素担持触媒を X R Fによって分析した結果 を示す図である。 図 8は、 実施の形態 2による炭素担持触媒を電. FIG. 7 is a diagram showing the result of XRF analysis of the carbon-supported catalyst according to the first embodiment. Figure 8 shows the carbon supported catalyst according to the second embodiment.
EM写真である。 It is an EM photograph.
図 9は、 実施の形態 2による炭素担持触媒を電子顕微鏡により観察した T EM写真である。 ,  FIG. 9 is a TEM photograph of the carbon-supported catalyst according to Embodiment 2 observed with an electron microscope. ,
図 10は、 図 8に示す炭素担持触媒に担持された P t微粒子の粒度分布を 示す図である。  FIG. 10 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG.
図 1 1は、 実施の形態 2による炭素担持触媒を XRDによって分析した結 果を示す図である。  FIG. 11 is a diagram showing a result of analyzing a carbon-supported catalyst according to Embodiment 2 by XRD.
図 1 2は、 実施の形態 2による炭素担持触媒を XRFによって分析した結 果を示す図である。  FIG. 12 is a diagram showing the results of analyzing the carbon-supported catalyst according to Embodiment 2 by XRF.
(符号の説明) (Explanation of symbols)
1 …真空容器  1 ... Vacuum container
1 a…円筒部  1 a… Cylindrical part
1 b…六角型パレノレ  1 b ... Hexagonal type
2 …ターゲット  2… Target
3 …炭素担体  3… Carbon support
4 〜9…配管  4 to 9 ... Piping
1 0…ターボ分子ポンプ (TMP)  1 0… Turbo molecular pump (TMP)
1 1…ポンプ (RP)  1 1 ... Pump (RP)
1 2〜14…第 1〜第 3バルブ  1 2-14 ... 1st-3rd valve
1 5…窒素ガス導入機構  1 5… Nitrogen gas introduction mechanism
1 6…アルゴンガス導入機構  1 6… Argon gas introduction mechanism
1 7…ヒータ  1 7… Heater
1 8…パイプレータ  1 8 ... Piplator
1 9…圧力計  1 9… Pressure gauge
5. 発明を実施するための最良の形態 以下、 図面を参照して本発明の実施の形態につ 5. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
図 1は、 本発明に係る実施の形態 1による多角バレルスパッタ装置の概略 を示す構成図である。 この多角バレルスパッタ装置は、 カーボンナノチュー プからなる炭素担体 3の表面に比較的粒径の小さい触媒微粒子 (粒径の一 例; l〜1 0 0 n m、 より好ましくは 1〜 3 n m) を担持させるための装置 である。 また、 この装置を用いれば、 アルゴン流量 (全圧)、 高周波出力、 ス パッタリング時間、 温度などのスパッタリング条件を制御することにより、 例えば担持される白金微粒子の粒径を 1〜1 0 0 n m程度の範囲に容易に制 御することができる。  FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus according to Embodiment 1 of the present invention. In this multi-barrel sputtering apparatus, catalyst fine particles having a relatively small particle diameter (an example of particle diameter; 1 to 100 nm, more preferably 1 to 3 nm) are applied to the surface of a carbon support 3 made of carbon nanotubes. It is a device for carrying. Also, with this device, the particle size of the supported platinum fine particles can be reduced to 1 to 100 nm by controlling sputtering conditions such as argon flow rate (total pressure), high frequency output, sputtering time, and temperature. It can be easily controlled within a range.
尚、 本実施の形態では、 カーボンナノチューブからなる炭素担体 3の表面 に触媒微粒子を担持させているが、 これに限定されるものではなく、 カーボ ンナノチューブ以外の炭素担体の表面に触媒微粒子を担持させることも可能 である。 炭素担体の具体例としては、 単層カーボンナノチューブ、 二層カー ボンナノチューブ、 多層カーボンナノチューブ、 カーボンナノホーン、 カー ボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチュ ーブ、 気相成長炭素繊維、 カーボンナノファイバー、 グラフアイ トナノファ ィバー、 フラーレン、 カーボンブラック及ぴカーボン単結晶などが挙げられ る。  In this embodiment, the catalyst fine particles are supported on the surface of the carbon support 3 made of carbon nanotubes, but the present invention is not limited to this, and the catalyst fine particles are supported on the surface of the carbon support other than the carbon nanotubes. It is also possible to make it. Specific examples of carbon carriers include single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanohorns, carbon nanocoils, cup-stacked carbon nanotubes, bamboo-shaped carbon nanotubes, vapor-grown carbon fibers, carbon Nanofibers, graphite nanofibers, fullerenes, carbon black and carbon single crystals.
多角バレルスパッタ装置は、 炭素担体 3に触媒微粒子を担持させる真空容 器 1を有しており、 この真空容器 1は直径 2 0 O mmの円筒部 1 aとその内 部に設置された断面が六角形のバレル(六角型バレル) 1 bとを備えている。 ここで示す断面は、 重力方向に対して略平行な断面である。 なお、 本実施の 形態では、 六角形のバレル 1 bを用いているが、 これに限定されるものでは なく、 六角形以外の多角形のバレルを用いることも可能である。  The polygonal barrel sputtering apparatus has a vacuum container 1 for supporting catalyst fine particles on a carbon support 3, and this vacuum container 1 has a cylindrical portion 1a having a diameter of 20 O mm and a cross section installed in the inside thereof. Hexagonal barrel (hexagonal barrel) 1 b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In this embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon can also be used.
六角型バレル l b内には、 炭素担体 3の一次粒子が水分、 静電気力、 分子 間力等で凝集してできた二次粒子(大きさ:例えば 1 0 0 n m〜l 0 O mm) を、 再び一次粒子、 若しくは元の二次粒子より小さい二次粒子に分散させる 分散部材 (図示せず) が入れられている。 この分 In the hexagonal barrel lb, secondary particles (size: for example, 100 nm to l 0 O mm) formed by agglomeration of primary particles of the carbon support 3 by moisture, electrostatic force, intermolecular force, etc. Disperse again into primary particles or secondary particles smaller than the original secondary particles A dispersion member (not shown) is inserted. This minute
凝集して集まっている炭素担体 3を分散させるものであって、 例えば、 粉状 物質、 棒状物質、 小片、 球状物質、 複数の突起を有する物質などが挙げられ る。 The carbon support 3 aggregated and collected is dispersed, and examples thereof include powdery substances, rod-like substances, small pieces, spherical substances, and substances having a plurality of protrusions.
前記粉状物質は、 その大きさが例えば 0· l〜5mm程度であり、 具体例 としては、 砂、 アルミナ粉末等が挙げられる。  The size of the powdery substance is, for example, about 0 · l to 5 mm, and specific examples include sand and alumina powder.
また、 前記棒状物質は、 その大きさが例えば長さ 1〜5 Omm、 太さ 0. 丄〜 1 Omm程度の棒状の物質であり、 具体例としては、 釘、 針金、 角棒、 ポルト等が挙げられる。  In addition, the rod-like substance is a rod-like substance having a size of, for example, a length of 1 to 5 Omm and a thickness of about 0.1 mm to 1 Omm. Specific examples include a nail, a wire, a square bar, and a port. Can be mentioned.
また、前記小片は、その大きさが例えば 1〜 1 0 Omm程度のものであり、 その材質の具体例としては金属、 樹脂等が挙げられる。  The small piece has a size of, for example, about 1 to 10 Omm, and specific examples of the material include metals and resins.
また、 球状物質は、 その直径が例えば 1〜 5 Omm程度のものであり、 具 体例としては、 鉄球、 プラスチック球、 BB弾、 ビーズ等が挙げられる。 また、 前記複数の突起を有する物質は、 その大きさが 1 0〜 5 Omm程度 で突起が多数ついているものであり、 具体例としては鬼目ナット等が挙げら れる。  In addition, the spherical substance has a diameter of, for example, about 1 to 5 Omm. Specific examples include iron balls, plastic balls, BB bullets, beads, and the like. The substance having a plurality of protrusions has a size of about 10 to 5 Omm and a large number of protrusions, and specific examples thereof include demon nuts.
真空容器 1には回転機構 (図示せず) が設けられており、 この回転機構に より六角型バレル 1 bを一方向 (矢印の方向) に回転させる回転動作、 又は 一方向に回転させた後に反対方向 (矢印とは逆方向) に回転させる動作を繰 り返す振り子動作を行うことにより、 該六角型バレル 1 b内の炭素担体 3を 攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子 を分散させつつ担持処理を行うものである。  The vacuum vessel 1 is provided with a rotation mechanism (not shown). By this rotation mechanism, the hexagonal barrel 1 b is rotated in one direction (in the direction of the arrow), or after being rotated in one direction. By performing a pendulum operation that repeats the operation of rotating in the opposite direction (the direction opposite to the arrow), the carbon support 3 in the hexagonal barrel 1b is stirred or rotated while the carbon support 2 The supporting treatment is performed while the next particles are dispersed.
尚、 前記元の二次粒子の大きさは例えば 1 00 ηπ!〜 1 0 Ommである。 また、 振り子動作とは、 一方向に 1 80° 以下の回転角で回転させ、 反対 方向に 1 80° 以下の回転角で回転させる動作を繰り返す動作を含むことは 勿論であるが、 一方向に 1 80° 超の回転角 (例えば 720° の回転角) で 回転させ、 反対方向に 1 80° 超の回転角 (例えば 720° の回転角) で回 転させる動作を繰り返す動作も含むものである。 前記回転機構により六角型パレルを回転させる I The size of the original secondary particle is, for example, 1 00 ηπ! ~ 10 Omm. In addition, the pendulum operation includes, of course, an operation that repeats the operation of rotating at a rotation angle of 1 80 ° or less in one direction and rotating at a rotation angle of 1 80 ° or less in the opposite direction. This includes the operation of rotating at a rotation angle of more than 80 ° (eg, a rotation angle of 720 °) and rotating in the opposite direction at a rotation angle of more than 1 80 ° (eg, a rotation angle of 720 °). Hexagonal parel is rotated by the rotating mechanism I
向 (重力方向に対して垂直方向) に平行な軸である。 また、 真空容器 1内に は円筒の中心軸上に P tからなるスパッタリングターゲット 2が配置されて おり、 このターゲット 2は角度を自由に変えられるように構成されている。 これにより、六角型バレル 1 bを回転させながら担持処理を行う時、ターゲッ ト 2を炭素担体 3の位置する方向に向けることができ、 それによつてスパッ タ効率を上げることが可能となる。 なお、 本実施の形態では、 P tターゲッ トを用いているが、 P t以外の材料 (例えば P d、 N i等) を炭素担体に担 持することも可能であり、 その場合は担持する材料からなるターゲットを用 いることとなる。 An axis parallel to the direction (perpendicular to the direction of gravity). Further, a sputtering target 2 made of Pt is disposed on the central axis of the cylinder in the vacuum vessel 1, and the target 2 is configured so that the angle can be freely changed. As a result, when carrying the supporting process while rotating the hexagonal barrel 1b, the target 2 can be directed in the direction in which the carbon carrier 3 is located, thereby increasing the sputtering efficiency. In this embodiment, a Pt target is used. However, a material other than Pt (for example, Pd, Ni, etc.) can also be supported on the carbon support, in which case it is supported. A target made of material will be used.
真空容器 1には配管 4の一端が接続されており、 この配管 4の他端には第 1バルブ 1 2の一方側が接続されている。 第 1バルブ 1 2の他方側は配管 5の一端が接続されており、 配管 5の他端はターボ分子ポンプ (T M P ) 1 0の吸気側に接続されている。 ターボ分子ポンプ 1 0の排気側は配管 6の 一端に接続されており、 配管 6の他端は第 2パルプ 1 3の一方側に接続され ている。第 2パルプ 1 3の他方側は配管 7の一端に接続されており、配管 7の 他端はポンプ (R P ) 1 1に接続されている。 また、 配管 4は配管 8の一端 に接続されており、 配管 8の他端は第 3パルプ 1 4の一方側に接続されてい る。 第 3パルプ 1 4の他方側は配管 9の一端に接続されており、 配管 9の他 端は配管 7に接続されている。  One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second pulp 13. The other side of the second pulp 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (R P) 11. The pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third pulp 14. The other side of the third pulp 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.
本装置は、 真空容器 1内の炭素担体 3を加熱するためのヒータ 1 7を備え ている。 また、 本装置は、 真空容器 1内の炭素担体 3に振動を加えるための バイブレータ 1 8を備えている。 また、 本装置は、 真空容器 1の内部圧力を 測定する圧力計 1 9を備えている。 また、 本装置は、 真空容器 1内に窒素ガ スを導入する窒素ガス導入機構 1 5を備えていると共に真空容器 1内にアル ゴンガスを導入するアルゴンガス導入機構 1 6を備えている。 また、 本装置 は、 ターゲット 2と六角型バレル 1 bとの間に高周波を印加する高周波印加 機構 (図示せず) を備えている。 次に、 上記多角バレルスパッタ装置を用いて炭 This apparatus is provided with a heater 17 for heating the carbon carrier 3 in the vacuum vessel 1. The apparatus also includes a vibrator 18 for applying vibration to the carbon carrier 3 in the vacuum vessel 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. The apparatus also includes a nitrogen gas introduction mechanism 15 for introducing nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 for introducing argon gas into the vacuum vessel 1. In addition, this apparatus includes a high-frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1 b. Next, charcoal using the above polygonal barrel sputtering apparatus
持する多角バレルスパッタ方法及び炭素担持触媒の製造方法について説明す る。 A method for manufacturing a polygonal barrel sputtering method and a carbon-supported catalyst will be described.
まず、 六角型バレル 1 b内に約 0 . 0 3グラムの炭素担体 3を導入する。 この炭素担体 3 としては C N I (登録商標) Buckytubesの単層カーボンナノ チューブ (SWNT) を用いた。 また、 分散部材としては釘を用いた。 また、 タ 一ゲット 2には P tを用いた。 なお、 本実施の形態では、 カーボンナノチュ ープを用いているが、 これに限定されるものではなく、 他の材料からなる炭 素担体を用いることも可能である。 本多角バレルスパッタ方法を用いれば、 幅広い炭素担体に微粒子を担持することが可能である。  First, about 0.03 gram of carbon support 3 is introduced into the hexagonal barrel 1b. As the carbon support 3, CNI (registered trademark) Buckytubes single-walled carbon nanotubes (SWNT) were used. In addition, nails were used as dispersion members. Pt was used for target 2. In this embodiment, the carbon nano tube is used. However, the present invention is not limited to this, and it is also possible to use a carbon support made of other materials. If this polygonal barrel sputtering method is used, fine particles can be supported on a wide range of carbon carriers.
次いで、 ターボ分子ポンプ 1 0を用いて六角型バレル 1 b内に高真空状態 を作り、 六角型バレル内を 8 X 1 0 _ 4 P aに減圧した。 その後、 アルゴンガ ス供給機構 1 6又は窒素ガス供給機構 1 5によりアルゴン又は窒素などの不 活性ガスを六角型バレル 1 b内に導入する。 この際の六角型バレル内の圧力 は 0 . 8 P a程度である。 場合によっては酸素と水素の混合ガスを六角型パ レル 1 b內に導入しても良い。 尚、 ここでは六角型バレル 1 b内にアルゴン ガスを 9 0 c c m程度導入し、アルゴン圧力を 3 0 P a程度とする。そして、 回転機構により六角型バレル 1 bを 3 0分間、 角度 7 5 ° 、 3 . 5 r p mで 振り子動作させることで、 六角型バレル 1 b内のカーボンナノチューブ 3と 撹拌させる部材である釘を撹拌、 回転させ、 凝集したカーボンナノチューブ 3を分散させる。 このとき同時に、 高周波印加機構によりターゲット 2と六 角型バレル 1 bとの間に例えば 5 0 Wの高周波出力を印加することで、 カー ボンナノチューブ 3の表面に P tを室温でスパッタリング堆積する。その際、 ターゲットはカーボンナノチューブの位置する方向に向けられる。 このよう にしてカーボンナノチューブ 3の表面に P t微粒子を担持することができる。 尚、 ここでは、 六角型バレル 1 bに角度 7 5 ° の振り子動作を行っている 力 これに限定されるものではなく、 振り子動作の角度を他の角度に変更す ることも可能であるし、 また振り子動作ではなく回転動作を行うことも可能 である。また、ここでは振り子動作の回転速度を 3 Next, a high vacuum state was created in the hexagonal barrel 1 b using a turbo molecular pump 10, and the inside of the hexagonal barrel was depressurized to 8 × 10 — 4 Pa. Thereafter, an inert gas such as argon or nitrogen is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16 or the nitrogen gas supply mechanism 15. At this time, the pressure in the hexagonal barrel is about 0.8 Pa. In some cases, a mixed gas of oxygen and hydrogen may be introduced into the hexagonal parallel 1b 內. Here, about 90 ccm of argon gas is introduced into the hexagonal barrel 1 b, and the argon pressure is about 30 Pa. Then, by rotating the hexagonal barrel 1b for 30 minutes at an angle of 75 ° and 3.5 rpm by a rotating mechanism, the nail that is a member to be agitated with the carbon nanotubes 3 in the hexagonal barrel 1b is agitated. Rotate to disperse the aggregated carbon nanotubes 3. At the same time, a high frequency output of 50 W, for example, is applied between the target 2 and the hexagonal barrel 1 b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the carbon nanotube 3 at room temperature. At that time, the target is directed in the direction in which the carbon nanotube is located. In this way, Pt fine particles can be supported on the surface of the carbon nanotube 3. It should be noted that here, the force with which the pendulum movement is performed at an angle of 75 ° on the hexagonal barrel 1 b is not limited to this, and it is possible to change the angle of the pendulum movement to another angle. It is also possible to perform rotation instead of pendulum movement It is. Here, the rotation speed of the pendulum movement is 3
振り子動作の回転速度を約 2 0 r p m程度まで速くすることも可能である。 また、 ここでは高周波出力を 5 O Wとしているが、 高周波出力を 5 0 O W程 度まで高くすることも可能である。 また、 ここでは P t微粒子を担持する際 の温度を室温としていが、温度を 6 0 0 °C程度まで上げることも可能である。 上記実施の形態 1によれば、 六角型バレル自体を振り子動作又は回転動作 させることでカーボンナノチューブ自体を釘と共に回転させ攪拌でき、 更に バレルを六角型とすることにより、 カーボンナノチューブ 3及び釘を重力に より定期的に落下させることができる。 このため、 攪拌効率を飛躍的に向上 させることができ、水分、静電気力、分子間力による凝集を防ぐことができ、 その上、 カーボンナノチューブを釘と共に攪拌するため、 凝集したカーボン ナノチューブを釘により分散させつつ撹拌することができる。 つまり、 回転 による攪拌と、 凝集したカーボンナノチューブの分散を同時かつ効果的に行 うことができる。 したがって、 カーボンナノチューブ 3に比較的粒径が小さ い P t微粒子を担持することが可能となる。 It is also possible to increase the rotation speed of the pendulum operation to about 20 rpm. Here, the high-frequency output is 5 OW, but the high-frequency output can be increased to about 50 OW. Here, the temperature at which the Pt fine particles are supported is room temperature, but the temperature can be increased to about 600 ° C. According to the first embodiment, the carbon nanotube itself can be rotated and stirred together with the nail by causing the hexagonal barrel itself to perform a pendulum operation or a rotation operation. Can be dropped regularly. For this reason, the stirring efficiency can be drastically improved, and aggregation due to moisture, electrostatic force, and intermolecular force can be prevented. In addition, since the carbon nanotubes are stirred together with the nail, the aggregated carbon nanotubes are removed by the nail. It can be stirred while being dispersed. That is, stirring by rotation and dispersion of the aggregated carbon nanotubes can be performed simultaneously and effectively. Therefore, Pt fine particles having a relatively small particle size can be supported on the carbon nanotube 3.
また、 本実施の形態では、 カーボンナノチューブの表面にスパッタリング により P tを担持させている。 スパッタリングには指向性があり、 キヤビラ リ効果が無いため、 従来技術のようにカーボンナノチューブのチューブ内に 多くの P tが担持されることがない。 つまり、 本実施の形態では、 カーボン ナノチューブの内側より外側に多くの P tを担持することができるカ 又は、 カーボンナノチューブに担持された P t微粒子のほぼ 1 0 0 %をチューブ外 表面に担持することができる。 従って、 担持した P tを触媒として使用する 場合、 担持した P tのうち無駄になる P tが少なくなり、 触媒効率を飛躍的 に高めることができる。  In this embodiment, Pt is supported on the surface of the carbon nanotube by sputtering. Since sputtering has directivity and does not have a chiral effect, a large amount of Pt is not supported in the carbon nanotube tube as in the prior art. In other words, in the present embodiment, a large amount of Pt can be supported outside the inside of the carbon nanotube, or approximately 100% of the Pt fine particles supported on the carbon nanotube are supported on the outer surface of the tube. be able to. Therefore, when the supported Pt is used as a catalyst, wasteful Pt of the supported Pt is reduced, and the catalyst efficiency can be dramatically increased.
また、 本実施の形態では、 真空容器 1の外側にヒータ 1 7を取り付けてお り、 このヒータ 1 7により六角型バレル 1 bを 6 0 0 °Cまで加熱することが できる。 このため、 真空容器 1の内部を真空にする際、 ヒータ 1 7で六角型 パレルを加熱することにより、 該六角型バレル内の水分を気化させ排気する ことができる。 したがって、 水を六角型バレル内 In the present embodiment, the heater 17 is attached to the outside of the vacuum vessel 1, and the hexagonal barrel 1 b can be heated up to 600 ° C. by the heater 17. For this reason, when the inside of the vacuum vessel 1 is evacuated, the hexagonal parel is heated by the heater 17 to vaporize and exhaust the water in the hexagonal barrel. be able to. Therefore, water in the hexagonal barrel
ため、 炭素担体の凝集をより効果的に防ぐことができる。 Therefore, aggregation of the carbon support can be prevented more effectively.
また、 本実施の形態では、 真空容器 1の外側にパイプレータ 1 8を取り付 けており、 このバイブレータ 1 8により六角型バレル内の粉体 3に振動を加 えることができる。 これにより、 炭素担体の凝集をより効果的に防ぐことが 可能となる。  In the present embodiment, a piper 18 is attached to the outside of the vacuum vessel 1, and the vibrator 18 can apply vibration to the powder 3 in the hexagonal barrel. This makes it possible to more effectively prevent the carbon carrier from aggregating.
また、 本実施の形態では、 多角バレルスパッタ方法により炭素担体 3の表 面に触媒微粒子を担持しているため、 従来技術の含浸法のように廃液の処理 が必要なく、 環境に対する負荷も小さくできるという利点がある。  In the present embodiment, since the catalyst fine particles are supported on the surface of the carbon support 3 by the polygonal barrel sputtering method, it is not necessary to treat the waste liquid as in the conventional impregnation method, and the load on the environment can be reduced. There is an advantage.
尚、 本実施の形態では、 炭素担体に触媒微粒子を担持させているが、 炭素 担体に触媒微粒子以外の微粒子又は薄膜を担持させることも可能である。 また、 本実施の形態による製造方法によって製造された炭素担持触媒は、 P t微粒子を担持しているため、燃料電池用電極触媒 (アノード、 力ソード) 及び工業用触媒に用いることができるが、 P t以外のものを担持すれば、 燃 料電池用電極触媒及び工業用触媒以外の種々の表面修飾炭素材料にも用いる ことが可能である。 例えば、 工業用触媒 (芳香族の水素化、 不飽和アルデヒ ドの選択水素化、 C O選択酸化、ケィヒアルデヒ ドの選択水素化、 N O分解、 アンモニア合成、 シトラールの水素化、 クロトンアルデヒドの水素化等)、セ ンサ一、 L i電池材料、 光触媒、 S TMや S F Mのプロープ、 フィールドェ ミッタ、ゴムや樹脂の充填剤、導電性樹脂用充填材等に用いることができる。 また、 上記実施の形態 1では、 バイブレータ 1 8により六角型バレル内の 炭素担体 3に振動を加えているが、 バイブレータ 1 8の代わりに、 又は、 パ イブレータ 1 8に加えて、 六角型バレル内に棒状部材を収容した状態で該六 角型バレルを回転させることにより、 炭素担体 3に振動を加えることも可能 である。これにより、炭素担体の凝集をより効果的に防ぐことが可能となる。 次に、 上記炭素担持触媒の製造方法によりカーボンナノチューブの外表面 に P t微粒子を担持した試料(炭素担持触媒)の電子顕微鏡観察、 E D X (ェ ネルギー分散型 X線分析)、 X R D ( X線回折法)及び X R F (蛍光 X線分析) の結果について説明する。 In this embodiment, catalyst fine particles are supported on a carbon support, but fine particles or thin films other than catalyst fine particles may be supported on a carbon support. In addition, since the carbon-supported catalyst manufactured by the manufacturing method according to the present embodiment supports Pt fine particles, it can be used as an electrode catalyst for fuel cells (anode, force sword) and an industrial catalyst. If a material other than Pt is supported, it can be used for various surface-modified carbon materials other than fuel cell electrode catalysts and industrial catalysts. For example, industrial catalysts (aromatic hydrogenation, selective hydrogenation of unsaturated aldehydes, selective CO oxidation, selective hydrogenation of cation aldehydes, NO decomposition, ammonia synthesis, hydrogenation of citral, hydrogenation of crotonaldehyde, etc.) It can be used for sensors, Li battery materials, photocatalysts, STM and SFM probes, field emitters, rubber and resin fillers, conductive resin fillers, and the like. In the first embodiment, vibration is applied to the carbon carrier 3 in the hexagonal barrel by the vibrator 18, but in the hexagonal barrel instead of the vibrator 18 or in addition to the vibrator 18. It is also possible to apply vibration to the carbon support 3 by rotating the hexagonal barrel while the rod-shaped member is accommodated in the cylinder. Thereby, it becomes possible to prevent aggregation of the carbon support more effectively. Next, electron microscope observation, EDX (energy dispersive X-ray analysis), XRD (X-ray diffraction) of a sample (carbon supported catalyst) in which Pt fine particles are supported on the outer surface of the carbon nanotube by the above-described carbon supported catalyst production method Method) and XRF (fluorescence X-ray analysis) The results will be described.
図 2及び図 3は、 本実施の形態による製造方法によりカーボンナノチュー ブの外表面に P t微粒子を担持した炭素担持触媒を電子顕微鏡により観察し た写真である。  2 and 3 are photographs obtained by observing, with an electron microscope, a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of the carbon nanotube by the manufacturing method according to the present embodiment.
図 2及び図 3に示すように、 カーボンナノチューブの外表面には P t微粒 子が担持されていることが確認された。 詳細には、 カーボンナノチューブの 外側の表面にほとんどの P t微粒子が担持され、 カーボンナノチューブの チューブ内部には p t微粒子がほとんど担持されていないことが確認された。 尚、 図 2に示すカーボンナノチューブに付着している F e微粒子は、 本実 施の形態による多角バレルスパッタ装置によって付着したものではなく、 こ の多角パレルスパッタ装置で P t微粒子を担持する前のカーボンナノチュー ブに付着していたものである。 カーボンナノチューブの製造段階では F e微 粒子を種結晶として用い、 この種結晶を除去していないカーボンナノチュー プを本実施の形態で使用したためである。  As shown in Figs. 2 and 3, it was confirmed that Pt fine particles were supported on the outer surface of the carbon nanotube. Specifically, it was confirmed that most of the Pt fine particles were supported on the outer surface of the carbon nanotube, and almost no pt fine particles were supported inside the carbon nanotube tube. Note that the Fe fine particles attached to the carbon nanotubes shown in FIG. 2 are not attached by the polygonal barrel sputtering apparatus according to the present embodiment, but before the Pt fine particles are supported by the polygonal parallel sputtering apparatus. It was attached to the carbon nanotube. This is because in the carbon nanotube manufacturing stage, Fe fine particles were used as seed crystals, and carbon nanotubes from which these seed crystals were not removed were used in this embodiment.
図 4は、 図 2に示す炭素担持触媒に担持された P t微粒子の粒度分布を示 す図である。 この図は、 図 2の写真において、 無作為に選択した 1 0 0個の P t微粒子の直径を計測し、 その計測結果から直径の分布を示している。 図 4に示すように、 1 0 0個の P t微粒子の直径の平均値は 1 . 9 5 n mであ り、全粒子の 9 0 %が粒径 1 . 4〜2 . 2 n mの間に存在している。従って、 粒径のそろった P t微粒子が担持されていることが確認された。  FIG. 4 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure shows the distribution of diameters from the measured results of the diameters of 100 randomly selected Pt particles in the photograph of Fig. 2. As shown in FIG. 4, the average diameter of 100 Pt microparticles is 1.95 nm, and 90% of all particles are between 1.4 and 2.2 nm in size. Existing. Therefore, it was confirmed that Pt fine particles having a uniform particle size were supported.
図 5 (A) は、 P tを担持する前のカーボンナノチューブを E D X (エネ ルギー分散型 X線分析) によって分析した結果を示す図である。 図 5 ( B ) は、 本実施の形態による製造方法によりカーボンナノチューブの外表面に P t微粒子を担持した炭素担持触媒を E D Xによって分析した結果を示す図で ある。  FIG. 5 (A) is a diagram showing the result of analyzing the carbon nanotube before supporting Pt by ED X (energy dispersive X-ray analysis). FIG. 5 (B) is a diagram showing the result of EDX analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by the manufacturing method according to the present embodiment.
図 5 (A) , ( B ) に示すように、 カーボンナノチューブには多角バレルス パッタ装置によって P t微粒子が担持されたことが確認された。  As shown in FIGS. 5 (A) and 5 (B), it was confirmed that Pt fine particles were supported on the carbon nanotubes by the polygonal barrel sputtering device.
図 6は、 本実施の形態による製造方法によりカーボンナノチューブの外表 面に P t微粒子を担持した炭素担持触媒を XRD FIG. 6 shows the outer surface of the carbon nanotube by the manufacturing method according to the present embodiment. XRD of carbon supported catalyst with Pt fine particles supported on the surface
析した結果を示す図である。 この図に示すように、 カーボンナノチューブに は多角バレルスパッタ装置によって P t微粒子が担持されたことが確認され た。 67. 4° の P t (220) のピークにおいて、 シエラーの式で求めた 1;の粒径は1. 85 nmであり、 これは T EM写真から求めた図 4に示す 平均粒径とほぼ一致する。 It is a figure which shows the result analyzed. As shown in this figure, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus. 67. At the 4 ° P t (220) peak, the particle size of 1; determined by the Sierra equation is 1.85 nm, which is almost equal to the average particle size shown in Fig. 4 obtained from the TEM photograph. Match.
図 7は、 本実施の形態による製造方法によりカーボンナノチューブの外表 面に P t微粒子を担持した炭素担持触媒を XRF (蛍光 X線分析) によって 分析した結果を示す図である。 この図に示すように、 カーボンナノチューブ には多角バレルスパッタ装置によって P t微粒子が担持されたことが確認さ れた。  FIG. 7 is a diagram showing a result of analyzing a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by XRF (fluorescence X-ray analysis) by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus.
(実施の形態 2)  (Embodiment 2)
図 1に示す多角パレルスパッタ装置を用いて炭素担体 3に触媒微粒子を担 持する実施の形態 2による多角バレルスパッタ方法及び炭素担持触媒の製造 方法について説明する。  A polygonal barrel sputtering method and a carbon-supported catalyst manufacturing method according to Embodiment 2 in which catalyst fine particles are supported on a carbon support 3 using the polygonal parel sputtering apparatus shown in FIG. 1 will be described.
まず、 六角型バレル 1 b内に約 0. 5グラムの炭素担体 3を導入する。 こ の炭素担体 3としては昭和電工製の気相成長炭素繊維(VGCF)を用いた。 また、分散部材としては釘を用いた。また、ターゲット 2には P tを用いた。 次いで、 ターボ分子ポンプ 10を用いて六角型バレル 1 b内に高真空状態 を作り、 六角型バレル内を 8 X 10— 4 P aに減圧した。 その後、 アルゴンガ ス供給機構 1 6によりアルゴンガスを六角型バレル 1 b内に導入する。 この 際のアルゴンガス流量が 20 c c m程度であり、 アルゴンガス圧が 0. 8 P a程度である。 そして、 回転機構により六角型バレル 1 bを 30分間、 角度 75° 、 3. 5 r pmで振り子動作させることで、 六角型バレル 1 b内の V GCFと撹拌させる部材である釘を撹拌、 回転させ、 凝集した VGCFを分 散させる。 このとき同時に、 高周波印加機構によりターゲット 2と六角型パ レル 1 bとの間に例えば 50Wの高周波出力を印加することで、 VGCFの 表面に P tを室温でスパッタリング堆積する。 その際、 ターゲットは VGC 00蘭 885 First, about 0.5 gram of carbon support 3 is introduced into the hexagonal barrel 1b. As this carbon support 3, vapor grown carbon fiber (VGCF) manufactured by Showa Denko was used. A nail was used as the dispersing member. In addition, Pt was used for target 2. Then, make a high vacuum in the hexagonal barrel 1 in b with a turbo molecular pump 10 and vacuum the hexagonal barrel to 8 X 10- 4 P a. Thereafter, argon gas is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16. At this time, the argon gas flow rate is about 20 ccm, and the argon gas pressure is about 0.8 Pa. Then, by rotating the hexagonal barrel 1b for 30 minutes at an angle of 75 ° and 3.5 rpm by the rotation mechanism, the VGCF in the hexagonal barrel 1b and the nail that is a member to be agitated are agitated and rotated. To disperse the agglomerated VGCF. At the same time, a high frequency output of 50 W, for example, is applied between the target 2 and the hexagonal parallel 1 b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the VGCF at room temperature. At that time, the target is VGC 00 Ran 885
16  16
Fの位置する方向に向けられる。 このようにして、 Directed in the direction of F. In this way
子を担持することができる。 A child can be carried.
上記実施の形態 2においても実施の形態 1と同様の効果を得ることができ る。  In the second embodiment, the same effect as in the first embodiment can be obtained.
次に、 上記炭素担持触媒の製造方法により VGCFの外表面に P t微粒子 を担持した試料 (炭素担持触媒) の電子顕微鏡観察、 XRD (X線回折法) 及び XRF (蛍光 X線分析) の結果について説明する。  Next, the result of electron microscope observation, XRD (X-ray diffraction method) and XRF (fluorescence X-ray analysis) of the sample (carbon supported catalyst) in which Pt fine particles are supported on the outer surface of VGCF by the above-mentioned method for producing carbon supported catalyst Will be described.
図 8及ぴ図 9は、 本実施の形態による製造方法により VGCFの外表面に P t微粒子を担持した炭素担持触媒を電子顕微鏡により観察した TEM写真 である。  8 and 9 are TEM photographs of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment, which is observed with an electron microscope.
図 8及び図 9に示すように、 VGCFの外表面には比較的粒径のそろった P t微粒子が均一に担持されていることが確認された。  As shown in FIGS. 8 and 9, it was confirmed that Pt fine particles having a relatively uniform particle size were uniformly supported on the outer surface of VGCF.
図 10は、 図 8に示す炭素担持触媒に担持された P t微粒子の粒度分布を 示す図である。 この図は、 図 8の写真において、 無作為に選択した 100個 の P t微粒子の直径を計測し、 その計測結果から直径の分布を示している。 図 10に示すように、 100個の P t微粒子の直径の平均値は 2. l nmで あり、 全粒子の 90%が粒径 1. 2〜3. 0 nmの間に存在している。 従つ て、 粒径のそろった P t微粒子が担持されていることが確認された。  FIG. 10 is a graph showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure shows the diameter distribution of 100 randomly selected Pt particles in the photograph in Fig. 8 and shows the diameter distribution. As shown in FIG. 10, the average diameter of 100 Pt microparticles is 2. l nm, and 90% of all particles are present between 1.2 and 3.0 nm in size. Therefore, it was confirmed that Pt fine particles having a uniform particle size were supported.
図 1 1は、 本実施の形態による製造方法により VGC Fの外表面に P t微 粒子を担持した炭素担持触媒を XRD (X線回折法) によって分析した結果 を示す図である。 この図に示すように、 VGC Fには多角パレルスパッタ装 置によって P t微粒子が担持されたことが確認された。 尚、 図 1 1中のグラ フアイトのピークは VGCFに帰属されるものであり、 P tを担持する前の VGCFでも認められる。 67. 4° の P t (220) のピークにおいて、 シエラーの式で求めた P tの粒径は 2. 3 nmであり、 これは TEM写真か ら求めた図 10に示す平均粒径とほぼ一致する。  FIG. 11 is a diagram showing the results of analysis by XRD (X-ray diffraction method) of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGC F by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that PGC fine particles were supported on VGC F by a polygonal parel sputtering device. Note that the graphite peak in Fig. 11 is attributed to VGCF, and is also observed in VGCF before supporting Pt. 67. At the Pt (220) peak at 4 °, the particle size of Pt determined by the Sierra equation is 2.3 nm, which is almost equal to the average particle size shown in Fig. 10 obtained from the TEM photograph. Match.
図 12は、 本実施の形態による製造方法により VGCFの外表面に P t微 粒子を担持した炭素担持触媒を XRF (蛍光 X線分析) によって分析した結 果を示す図である。 この図に示すように、 VGC Figure 12 shows the result of XRF (fluorescence X-ray analysis) analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment. It is a figure which shows a fruit. As shown in this figure, VGC
装置によって P t微粒子が担持されたことが確認された。 It was confirmed that Pt fine particles were supported by the device.
尚、 本発明は上記実施の形態に限定されず、 本発明の主旨を逸脱しない範 囲内で種々変更して実施することが可能である。 例えば、 炭素担体に触媒微 粒子を担持する担持条件を適宜変更することも可能である。  Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, it is possible to appropriately change the supporting conditions for supporting the catalyst fine particles on the carbon support.
また、 本実施の形態では、 触媒微粒子の材料として P tを用いているが、 これに限定されるものではなく、他の微粒子、例えば金属 (A 1、 T i、 V、 C r、 Mn、 F e、 C o、 N i、 Cu、 Z n、 G a、 G e、 S r、 Y、 Z r、 Nb、 Mo、 Ru、 Rh、 P d、 Ag、 C d、 I n、 S n、 S b、 L a、 H f 、 T a、 W、 R e、 O s、 I r、 P t、 Au、 T l、 P bなど) または非 金属 (S i、 A s、 Cなど) の単体、前記金属または非金属それぞれの合金、 若しくは前記金属または非金属それぞれの酸化物、 窒化物、 硼化物、 炭化物 を用いることも可能である。  In this embodiment, Pt is used as the material for the catalyst fine particles. However, the present invention is not limited to this, and other fine particles such as metals (A1, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, etc.) or non-metal (Si, As, C, etc.) It is also possible to use an alloy of each of the metals or nonmetals, or an oxide, nitride, boride, or carbide of each of the metals or nonmetals.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素担体を収容する真空容器であって重力方向に対して略平行な断面の 内部形状が多角形である真空容器と、 1. a vacuum vessel containing a carbon support, the inner shape of the cross section being substantially parallel to the direction of gravity, and a polygonal shape;
前記真空容器内に入れられ、 前記炭素担体の一次粒子が凝集してできた二 次粒子を一次粒子又は元の二次粒子より小さい二次粒子に分散させる分散部 材と、  A dispersion member that is placed in the vacuum vessel and disperses secondary particles formed by agglomerating primary particles of the carbon support into primary particles or secondary particles smaller than the original secondary particles;
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させる回 転機構と、  A rotation mechanism that rotates the vacuum vessel about a direction substantially perpendicular to the cross section;
前記真空容器内に配置されたスパッタリングターゲットと、  A sputtering target disposed in the vacuum vessel;
を具備し、 Comprising
前記回転機構を用いて前記真空容器を一方向に回転させる回転動作、 又は 一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を 行うことにより、 前記真空容器内の炭素担体を攪拌あるいは回転させながら 前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリン グを行うことで、 該炭素担体の表面に微粒子又は薄膜を担持することを特徴 とする多角パレルスパッタ装置。  The carbon carrier in the vacuum vessel is agitated by performing a rotation operation that rotates the vacuum vessel in one direction using the rotation mechanism, or a pendulum operation that repeats the rotation operation in the opposite direction after rotating in one direction. Alternatively, the polygonal parel sputtering apparatus is characterized in that fine particles or thin films are supported on the surface of the carbon carrier by performing sputtering while dispersing the secondary particles of the carbon carrier by the dispersing member while rotating.
2 . 請求項 1において、 前記分散部材は、 粉状物質、 棒状物質、 小片、 球状 物質、 複数の突起を有する物質の少なくとも一つを有することを特徴とする 多角バレルスパッタ装置。 2. The polygonal barrel sputtering apparatus according to claim 1, wherein the dispersion member includes at least one of a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions.
3 . 請求項 1又は 2において、 前記真空容器に振動を加えるバイブレータを さらに具備することを特徴とする多角パレルスパッタ装置。 3. The polygonal parel sputtering apparatus according to claim 1, further comprising a vibrator for applying vibration to the vacuum vessel.
4 . 請求項 1乃至 3のいずれか一項において、 前記真空容器内の炭素担体を 加熱するためのヒータをさらに具備することを特徴とする多角バレルスパッ タ装置。 4. The polygonal barrel sputtering apparatus according to any one of claims 1 to 3, further comprising a heater for heating the carbon carrier in the vacuum vessel.
5 .重力方向に対して略平行な断面の内部形状が多角形である真空容器内に、 炭素担体及ぴ該炭素担体の一次粒子が凝集してできた二次粒子を一次粒子又 は元の二次粒子より小さい二次粒子に分散させる分散部材を収容し、 5.In a vacuum vessel having a polygonal internal shape in a cross section substantially parallel to the direction of gravity, the secondary particles formed by agglomeration of the carbon support and the primary particles of the carbon support are combined with the primary particles or the original particles. Contains a dispersion member to be dispersed into secondary particles smaller than the secondary particles;
前記断面に対して略垂直方向を回転軸として前記真空容器を一方向に回転 させる回転動作、 又は一方向に回転させた後に反対方向に回転させる動作を 繰り返す振り子動作を行うことにより、 前記真空容器内の炭素担体を攪拌あ るいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散 させつつスパッタリングを行うことで、 該炭素担体の表面に微粒子又は薄膜 を担持することを特徴とする表面修飾炭素材料の製造方法。  By performing a pendulum operation that repeats a rotation operation in which the vacuum vessel is rotated in one direction about a direction substantially perpendicular to the cross-section, or a rotation in the opposite direction after rotating in one direction, the vacuum vessel Sputtering is performed while dispersing the secondary particles of the carbon support by the dispersion member while stirring or rotating the carbon support inside, thereby supporting fine particles or a thin film on the surface of the carbon support. A method for producing a surface-modified carbon material.
6 . 請求項 5において、 前記炭素担体は、 単層カーボンナノチューブ、 二層 カーボンナノチューブ、 多層カーボンナノチューブ、 カーボンナノホーン、 カーボンナノコイル、 カップ積層型カーボンナノチューブ、 竹状カーボンナ ノチューブ、 気相成長炭素繊維、 カーボンナノファイバー、 グラフアイ トナ ノファイバー、 フラーレン、 カーボンプラック及ぴカーボン単結晶の少なく とも一つであることを特徴とする表面修飾炭素材料の製造方法。 6. The carbon support according to claim 5, wherein the carbon support is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanohorn, a carbon nanocoil, a cup-stacked carbon nanotube, a bamboo-shaped carbon nanotube, or a vapor-grown carbon fiber. A method for producing a surface-modified carbon material, characterized in that it is at least one of carbon nanofiber, graphite nanofiber, fullerene, carbon plaque and carbon single crystal.
7 . 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直 方向を回転軸として一方向に回転させる回転動作、 又は一方向に回転させた 後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、 前 記真空容器内の炭素担体を攪拌あるいは回転させながらスパッタリングを行 うことで、 該炭素担体の外表面に微粒子又は薄膜が担持されたことを特徴と する表面修飾炭素材料。 7. Rotating operation of rotating a vacuum vessel having an internal cross-sectional shape of a polygon in one direction about a direction substantially perpendicular to the cross-section, or rotating in one direction after rotating in one direction. Surface modification characterized by carrying out repetitive pendulum action and performing sputtering while stirring or rotating the carbon carrier in the vacuum vessel, whereby fine particles or thin films are supported on the outer surface of the carbon carrier. Carbon material.
8 . 請求項 7において、 前記炭素担体がカーボンナノチューブであり、 該カ 一ボンナノチューブのチューブ内よりチューブ外表面に多くの前記微粒子又 は薄膜が担持されていることを特徴とする表面修飾炭素材料。 8. The surface-modified carbon material according to claim 7, wherein the carbon support is a carbon nanotube, and a larger amount of the fine particles or thin film is supported on the outer surface of the carbon nanotube than in the tube of the carbon nanotube. .
9. 請求項 8において、 前記カーボンナノチューブに担持された前記微粒子 又は薄膜のほぼ 1 00%がチューブ外表面に担持されていることを特徴とす る表面修飾炭素材料。 9. The surface-modified carbon material according to claim 8, wherein approximately 100% of the fine particles or thin film supported on the carbon nanotubes are supported on an outer surface of the tube.
PCT/JP2007/065885 2006-08-08 2007-08-08 Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material WO2008018619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006216182A JP2008038218A (en) 2006-08-08 2006-08-08 Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor
JP2006-216182 2006-08-08

Publications (1)

Publication Number Publication Date
WO2008018619A1 true WO2008018619A1 (en) 2008-02-14

Family

ID=39033139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065885 WO2008018619A1 (en) 2006-08-08 2007-08-08 Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material

Country Status (2)

Country Link
JP (1) JP2008038218A (en)
WO (1) WO2008018619A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034496A1 (en) * 2012-08-29 2014-03-06 日立化成株式会社 Method for manufacturing catalyst for carbon nanotube synthesis
JP2014154459A (en) * 2013-02-13 2014-08-25 Nippon Zeon Co Ltd Conductive film, gas diffusion layer for fuel cell, catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell, fuel cell, and method for manufacturing membrane electrode assembly for fuel cell
CN104711531A (en) * 2013-12-13 2015-06-17 北京中科三环高技术股份有限公司 Rotating cylinder for surface treatment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552451B2 (en) * 2011-03-02 2014-07-16 トヨタ自動車株式会社 Electrocatalyst production method
JP2014159623A (en) * 2013-02-20 2014-09-04 Kyoritz Inc Coating device and method
KR101791983B1 (en) * 2016-02-04 2017-11-01 한국화학연구원 Transparent hard coating film with high hardness properties and Method of Manufacturing The Same
JP7119940B2 (en) * 2018-11-21 2022-08-17 トヨタ自動車株式会社 Negative electrode active material composite for all-solid-state battery
JP6787621B1 (en) 2019-05-24 2020-11-18 株式会社クリエイティブコーティングス Powder deposition method, powder deposition container and ALD device
WO2020240893A1 (en) 2019-05-24 2020-12-03 株式会社クリエイティブコーティングス Method for forming coating film on powder, container for use in formation of coating film on powder, and ald device
JP7013062B1 (en) 2021-10-14 2022-01-31 株式会社クリエイティブコーティングス Powder film formation method and equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
JP2005125187A (en) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
JP2005125187A (en) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIRAKAWA K. ET AL.: "Barrel-sputtering-ho ni yoru Carbon Nanofiber Oyobi Tube Hyomen eno Pt Shushoku", 2007 NEN (HEISEI 19 NEN) SHUNKI DAI 54 KAI EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, SEPARATE, vol. 1, 27 March 2007 (2007-03-27), pages 550, XP003020966 *
INOUE M. ET AL.: "Barrel-sputtering-ho o Mochiita PERF-yo Anode Shokubai no Chosei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 71 KAI TAIKAI KOEN YOSHISHU, 2004, pages 373, XP003020965 *
LEE K. ET AL.: "Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis", JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 36, no. 5, May 2006 (2006-05-01), pages 507 - 522, XP001504306 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034496A1 (en) * 2012-08-29 2014-03-06 日立化成株式会社 Method for manufacturing catalyst for carbon nanotube synthesis
JP2014046231A (en) * 2012-08-29 2014-03-17 Hitachi Chemical Co Ltd Method for manufacturing catalyst for carbon nanotube synthesis
US10077495B2 (en) 2012-08-29 2018-09-18 Hitachi Chemical Company, Ltd. Method for manufacturing catalyst for carbon nanotube synthesis
JP2014154459A (en) * 2013-02-13 2014-08-25 Nippon Zeon Co Ltd Conductive film, gas diffusion layer for fuel cell, catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell, fuel cell, and method for manufacturing membrane electrode assembly for fuel cell
CN104711531A (en) * 2013-12-13 2015-06-17 北京中科三环高技术股份有限公司 Rotating cylinder for surface treatment

Also Published As

Publication number Publication date
JP2008038218A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
WO2008018619A1 (en) Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material
Lai et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells
Liu et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells
Che et al. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production
Douglas et al. Toward small-diameter carbon nanotubes synthesized from captured carbon dioxide: critical role of catalyst coarsening
Shalagina et al. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture
Tian et al. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications
Wen et al. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel‐cell catalysts
Saha et al. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode
Ahmadi et al. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation
TWI448423B (en) Methods of preparing carbinized nanotube composite and metal-nanotube composite catalyst
WO2002075831A1 (en) Fuel cell electrode, and fuel cell comprising the electrode
Huang et al. PtCo alloy nanoparticles supported on graphene nanosheets with high performance for methanol oxidation
JP2006131494A (en) Carbon spherical nano-particle having one or more opening and manufacturing method for the same, and supported catalyst of carbon spherical nano-particle using the same carbon spherical nano-particle having one or more opening and fuel cell employing the same supported catalyst of carbon spherical nano-particle
Zhu et al. Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction
Mukherjee et al. A review of the application of CNTs in PEM fuel cells
Mooste et al. Transition metal phthalocyanine-modified shungite-based cathode catalysts for alkaline membrane fuel cell
Huang et al. Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol
Saha et al. Nanomaterials‐supported Pt catalysts for proton exchange membrane fuel cells
Chang et al. Well dispersed Pt nanoparticles on commercial carbon black oxidized by ozone possess significantly high electro-catalytic activity for methanol oxidation
Zhao et al. Highly dispersed Pd nanoparticles on 2-aminophenoxazin-3-one functionalized MWCNTs surface for methanol electro-oxidation in alkaline media
US8029757B2 (en) Method of cutting carbon nanotubes
Kolla et al. CVD grown CNTs within iron modified and graphitized carbon aerogel as durable oxygen reduction catalysts in acidic medium
Liu et al. Fe-NC oxygen reduction catalysts supported on vertically aligned carbon nanotubes
Prehn et al. Catalytically active CNT–polymer-membrane assemblies: From synthesis to application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792525

Country of ref document: EP

Kind code of ref document: A1