JP2008038218A - Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor - Google Patents

Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor Download PDF

Info

Publication number
JP2008038218A
JP2008038218A JP2006216182A JP2006216182A JP2008038218A JP 2008038218 A JP2008038218 A JP 2008038218A JP 2006216182 A JP2006216182 A JP 2006216182A JP 2006216182 A JP2006216182 A JP 2006216182A JP 2008038218 A JP2008038218 A JP 2008038218A
Authority
JP
Japan
Prior art keywords
carbon
vacuum vessel
rotating
fine particles
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006216182A
Other languages
Japanese (ja)
Inventor
Takayuki Abe
孝之 阿部
Yuji Honda
祐二 本多
Hiroya Yamamoto
浩也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Universal Technics Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Universal Technics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Universal Technics Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2006216182A priority Critical patent/JP2008038218A/en
Priority to PCT/JP2007/065885 priority patent/WO2008018619A1/en
Publication of JP2008038218A publication Critical patent/JP2008038218A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sputtering apparatus with a multiangular barrel, which can make the outer surface of a carbon carrier carry many catalytic fine particles thereon; a carbon-supported catalyst; and a production method therefor. <P>SOLUTION: The sputtering apparatus with the multiangular barrel comprises: a vacuum vessel 1 of which the inner part has a polygonal shape in a cross section cut along an approximately parallel direction to gravity; a dispersing member which is accommodated in the vacuum vessel and disperses secondary particles formed by the agglomeration of primary particles of a carbon carrier 3 into the primary particles or secondary particles smaller than the original secondary particles; a rotating mechanism for rotating the vacuum vessel around a rotation axis which is approximately vertical to the cross section; and a sputtering target 2 arranged in the vacuum vessel. The production method includes carrying out a sputtering operation to make the carbon carrier 3 carry fine particles or a thin film on the surface, while dispersing the secondary particles of the carbon carrier 3 by the dispersing member while stirring or rotating the carbon carrier 3 in the vacuum vessel 1 by rotating or swinging the vacuum vessel with the use of the rotating mechanism. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭素担体の外表面に多くの微粒子又は薄膜を担持できる多角バレルスパッタ装置、表面修飾炭素材料及びその製造方法に関する。   The present invention relates to a polygonal barrel sputtering apparatus capable of supporting many fine particles or thin films on the outer surface of a carbon support, a surface-modified carbon material, and a method for producing the same.

燃料電池は燃料ガスと酸化剤ガスとを電気化学的に反応させて生じるエネルギーを直接電気エネルギーに変換させる新しい発電システムであり、高温(500ないし700℃)で作動する溶融炭酸塩電解質型燃料電池、200℃近辺で作動するリン酸電解質型燃料電池、常温ないし約100℃以下で作動するアルカリ電解質型燃料電池及び高分子電解質型燃料電池などに分類される。   A fuel cell is a new power generation system that directly converts energy generated by electrochemical reaction of a fuel gas and an oxidant gas into electric energy, and is a molten carbonate electrolyte fuel cell that operates at a high temperature (500 to 700 ° C.). , A phosphoric acid electrolyte fuel cell operating at around 200 ° C., an alkaline electrolyte fuel cell operating at room temperature to about 100 ° C. or less, and a polymer electrolyte fuel cell.

前記高分子電解質型燃料電池としては、水素ガスを燃料に使用する水素イオン交換膜燃料電池(Proton Exchange Membrane Fuel Cell:PEMFC)と液状のメタノールを直接燃料としてアノードに供給して使用する直接メタノール燃料電池(Direct Methanol Fuel Cell:DMFC)などがある。   Examples of the polymer electrolyte fuel cell include a hydrogen ion exchange membrane fuel cell (Proton Exchange Membrane Fuel Cell: PEMFC) that uses hydrogen gas as a fuel and a direct methanol fuel that is used by supplying liquid methanol directly to the anode as a fuel. There is a battery (Direct Methanol Fuel Cell: DMFC).

燃料電池のエネルギー密度を上げて出力密度と出力電圧とを向上させるために、電極、燃料、電解質膜について研究が活発に進められているが、特に電極に使われる触媒の活性を向上させようという試みが盛んにされている。PEMFCやDMFCに使われる触媒は、一般に、Ptや、PtおよびPt合金が多用されているが、価格競争力を確保するためには触媒の使用量を減らすことが好ましい。燃料電池の性能を保持または増加させつつ触媒量を減らす方法として、比表面積の広い導電性炭素材料を担体として使用し、これにPtなどを微細な粒子状態で分散させて触媒金属粒子の電気化学的活性表面積を大きくする方法が使われている。   In order to increase the energy density of fuel cells and improve the output density and output voltage, research is actively conducted on electrodes, fuel, and electrolyte membranes. In particular, the activity of the catalyst used in the electrodes is to be improved. There are many attempts. In general, Pt, Pt, and Pt alloys are frequently used as catalysts used in PEMFC and DMFC, but it is preferable to reduce the amount of catalyst used in order to ensure price competitiveness. As a method of reducing the amount of catalyst while maintaining or increasing the performance of the fuel cell, a conductive carbon material having a large specific surface area is used as a support, and Pt is dispersed in a fine particle state in this to form an electrochemical catalyst metal particle. A method of increasing the active surface area is used.

触媒の電気化学的活性表面積が大きくなるほど触媒の活性が向上する。活性表面積を増大させるには、担持される触媒の使用量を単純に増やせばよいが、その場合には使われる炭素担体の量が共に増加するため、電極の厚さも大きくなる。このため、電極の内部抵抗が高まり、電極を形成し難くなるなどの問題が発生する。従って、使われる担体の量は一定としつつ、担持される触媒の濃度を高めることが求められる。   The activity of the catalyst improves as the electrochemically active surface area of the catalyst increases. In order to increase the active surface area, the amount of the supported catalyst may be simply increased, but in this case, the amount of the carbon support to be used increases together, so that the thickness of the electrode also increases. For this reason, problems such as an increase in internal resistance of the electrode and difficulty in forming the electrode occur. Therefore, it is required to increase the concentration of the supported catalyst while keeping the amount of the carrier used constant.

以下、従来の表面修飾炭素材料の製造方法について説明する。
溶媒及び最終的に担持される触媒金属である白金の前駆体を炭素担体であるカーボンナノチューブに含浸させる段階を2回以上含み、前記含浸させる段階の間に、前記触媒金属の前駆体が含浸した炭素担体を乾燥させる段階とこれを還元させる段階とを含む。
Hereinafter, a conventional method for producing a surface-modified carbon material will be described.
The step of impregnating carbon nanotubes, which are carbon supports, with a solvent and a precursor of platinum, which is the finally supported catalyst metal, is impregnated twice or more, and the catalyst metal precursor is impregnated during the impregnation step. The method includes a step of drying the carbon support and a step of reducing the carbon support.

より具体的には、表面修飾炭素材料の製造方法は、(a)溶媒及び最終的に担持される触媒金属である白金の前駆体の一部を混合した金属前駆体溶液を、炭素担体に含浸させる第1含浸段階と、(b)前記触媒金属の前駆体が含浸した炭素担体を乾燥させる第1乾燥段階と、(c)前記触媒金属の前駆体が含浸した炭素担体を還元させる第1還元段階と、(d)溶媒及び最終的に担持される触媒金属の前駆体の残部を混合した金属前駆体溶液を、触媒金属粒子が予備含浸した前記炭素担体に再び含浸させる第2含浸段階と、(e)前記触媒金属の前駆体及び前記触媒金属粒子が含浸した前記炭素担体を乾燥させる第2乾燥段階と、(f)前記触媒金属の前駆体及び前記触媒金属粒子が含浸した前記炭素担体を還元させる第2還元段階とを含むものである(例えば特許文献1参照)。   More specifically, the method for producing the surface-modified carbon material includes: (a) impregnating a carbon support with a metal precursor solution in which a part of a precursor of platinum, which is a catalyst metal that is finally supported, is mixed. A first impregnation step, (b) a first drying step for drying the carbon support impregnated with the catalyst metal precursor, and (c) a first reduction for reducing the carbon support impregnated with the catalyst metal precursor. And (d) a second impregnation step in which the carbon support pre-impregnated with the catalyst metal particles is impregnated again with a metal precursor solution in which the solvent and the remainder of the catalyst metal precursor to be finally supported are mixed. (E) a second drying step of drying the catalyst metal precursor and the carbon support impregnated with the catalyst metal particles; and (f) the catalyst metal precursor and the carbon support impregnated with the catalyst metal particles. A second reduction stage to reduce Than (for example, see Patent Document 1).

特開2005−108838号公報(0027、0029〜0030段落)Japanese Patent Laying-Open No. 2005-108838 (paragraphs 0027 and 0029 to 0030)

上記従来の表面修飾炭素材料の製造方法では、カーボンナノチューブに触媒金属としての白金を担持させる方法として含浸法を用いている。この含浸法では、上述したように金属前駆体溶液をカーボンナノチューブに含浸させるため、金属前駆体溶液がカーボンナノチューブのチューブ内にキャピラリ効果によって吸い込まれ、最終的に多くの白金がカーボンナノチューブの外側ではなくチューブ内に担持されてしまう。このようにカーボンナノチューブの外側より内側に多くの白金が担持されると、チューブ内の白金の多くが電極触媒として使われないため、チューブ内の白金の多くが無駄になる。そこで、カーボンナノチューブのような炭素担体の外表面に多くの触媒微粒子を担持する方法の開発が求められている。   In the conventional method for producing a surface-modified carbon material, an impregnation method is used as a method for supporting platinum as a catalyst metal on a carbon nanotube. In this impregnation method, as described above, the carbon nanotube is impregnated with the metal precursor solution, so that the metal precursor solution is sucked into the carbon nanotube tube by the capillary effect, and finally, a large amount of platinum is outside the carbon nanotube. Without being carried in the tube. Thus, when a large amount of platinum is supported inside the outside of the carbon nanotube, much of the platinum in the tube is wasted because most of the platinum in the tube is not used as an electrode catalyst. Therefore, development of a method for supporting a large number of catalyst fine particles on the outer surface of a carbon support such as a carbon nanotube is required.

本発明は上記のような事情を考慮してなされたものであり、その目的は、炭素担体の外表面に多くの微粒子又は薄膜を担持できる多角バレルスパッタ装置、表面修飾炭素材料及びその製造方法を提供することにある。   The present invention has been made in consideration of the above-described circumstances, and its purpose is to provide a polygonal barrel sputtering apparatus capable of supporting many fine particles or thin films on the outer surface of a carbon support, a surface-modified carbon material, and a method for producing the same. It is to provide.

上記課題を解決するため、キャピラリ効果の生じない方法であって物理蒸着法の一つであるスパッタリング法に注目した。この方法は、担体を選ばない、金属から無機物までを担体表面に修飾できる、環境負荷が小さい、等々の理由から非常に汎用性が高いと考えられる。そこで、今回我々は多角バレルスパッタリング法を発明した。この方法は炭素担体の入っている多角バレルを回転させることで炭素担体を攪拌あるいは回転させ、炭素担体の外表面に多くの微粒子又は薄膜を担持させる方法である。   In order to solve the above-mentioned problems, attention was paid to a sputtering method which is one of physical vapor deposition methods which does not cause a capillary effect. This method is considered to be very versatile for reasons such as selecting a carrier, being able to modify the surface of the carrier from metal to inorganic, and having a low environmental load. This time, we invented the polygonal barrel sputtering method. In this method, the carbon support is agitated or rotated by rotating a polygonal barrel containing the carbon support, and a large number of fine particles or thin films are supported on the outer surface of the carbon support.

以下、具体的に説明する。
本発明に係る多角バレルスパッタ装置は、炭素担体を収容する真空容器であって重力方向に対して略平行な断面の内部形状が多角形である真空容器と、
前記真空容器内に入れられ、前記炭素担体の一次粒子が凝集してできた二次粒子を一次粒子又は元の二次粒子より小さい二次粒子に分散させる分散部材と、
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させる回転機構と、
前記真空容器内に配置されたスパッタリングターゲットと、
を具備し、
前記回転機構を用いて前記真空容器を一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリングを行うことで、該炭素担体の表面に微粒子又は薄膜を担持することを特徴とする。
尚、振り子動作とは、一方向に180°以下又は180°超の回転角で回転させ、反対方向に180°以下又は180°超の回転角で回転させる動作を繰り返す動作である。
This will be specifically described below.
The polygonal barrel sputtering apparatus according to the present invention is a vacuum container that contains a carbon carrier, and the internal shape of a cross section substantially parallel to the direction of gravity is a polygon,
A dispersion member that is placed in the vacuum vessel and disperses secondary particles formed by agglomerating primary particles of the carbon carrier into primary particles or secondary particles smaller than the original secondary particles;
A rotation mechanism that rotates the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis;
A sputtering target disposed in the vacuum vessel;
Comprising
The carbon carrier in the vacuum vessel is agitated by performing a rotation operation that rotates the vacuum vessel in one direction using the rotation mechanism, or a pendulum operation that repeats the rotation operation in the opposite direction after rotating in one direction. Alternatively, sputtering is performed while dispersing the secondary particles of the carbon support by the dispersion member while rotating, thereby supporting fine particles or a thin film on the surface of the carbon support.
The pendulum operation is an operation that repeats an operation of rotating at a rotation angle of 180 ° or less or more than 180 ° in one direction and rotating at a rotation angle of 180 ° or less or more than 180 ° in the opposite direction.

上記多角バレルスパッタ装置によれば、炭素担体の表面にスパッタリングにより微粒子又は薄膜を担持させている。スパッタリングには指向性があり、キャピラリ効果が無いため、炭素担体の外表面に多くの微粒子又は薄膜を担持することができる。
また、重力方向に対して略平行な断面に対して略垂直方向(即ち、ほぼ水平方向)を回転軸として真空容器自体を回転動作又は振り子動作させることで炭素担体自体及び分散部材をともに回転させ攪拌でき、更に真空容器の内部の断面形状を多角形とすることにより、炭素担体及び分散部材を重力により定期的に落下させ、真空容器の内壁に炭素担体を衝突させることができる。このため、攪拌効率を飛躍的に向上させることができ、炭素担体の凝集を防ぐことができ、その上、凝集した炭素担体を分散部材によって分散させつつ攪拌することができる。つまり、回転動作又は振り子動作による攪拌と、凝集した炭素担体の分散を同時かつ効果的に行うことができる。したがって、炭素担体に比較的粒径が小さい微粒子を担持することが可能となる。
According to the polygon barrel sputtering apparatus, fine particles or a thin film is supported on the surface of the carbon support by sputtering. Since sputtering has directivity and no capillary effect, many fine particles or thin films can be supported on the outer surface of the carbon support.
In addition, the carbon carrier itself and the dispersion member are both rotated by rotating or pendulating the vacuum vessel itself with a substantially vertical direction (that is, substantially horizontal direction) as a rotation axis with respect to a cross section substantially parallel to the direction of gravity. Stirring can be performed, and the cross-sectional shape inside the vacuum vessel is made polygonal, so that the carbon carrier and the dispersion member can be periodically dropped by gravity, and the carbon carrier can collide with the inner wall of the vacuum vessel. For this reason, stirring efficiency can be improved dramatically, aggregation of the carbon support can be prevented, and in addition, the aggregated carbon support can be stirred while being dispersed by the dispersing member. That is, the stirring by the rotation operation or the pendulum operation and the dispersion of the aggregated carbon support can be performed simultaneously and effectively. Therefore, fine particles having a relatively small particle size can be carried on the carbon support.

また、本発明に係る多角バレルスパッタ装置において、前記分散部材は、粉状物質、棒状物質、小片、球状物質、複数の突起を有する物質の少なくとも一つを有することが好ましい。   In the polygon barrel sputtering apparatus according to the present invention, it is preferable that the dispersion member includes at least one of a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions.

また、本発明に係る多角バレルスパッタ装置においては、前記真空容器に振動を加えるバイブレータをさらに具備することも可能である。これにより、凝集をより効果的に防ぐことが可能となる。   The polygonal barrel sputtering apparatus according to the present invention may further include a vibrator that applies vibration to the vacuum vessel. Thereby, it becomes possible to prevent aggregation more effectively.

また、本発明に係る多角バレルスパッタ装置においては、前記真空容器内の炭素担体を加熱するためのヒータをさらに具備することも可能である。例えば、真空容器の内部を真空にする際、ヒータで真空容器を加熱することにより、該真空容器内及び炭素担体表面に吸着した水分を気化させ排気することができる。したがって、水を真空容器内から除去することができるため、炭素担体の凝集をより効果的に防ぐことができる。   The polygonal barrel sputtering apparatus according to the present invention may further include a heater for heating the carbon carrier in the vacuum vessel. For example, when the inside of the vacuum vessel is evacuated, by heating the vacuum vessel with a heater, moisture adsorbed in the vacuum vessel and on the surface of the carbon support can be vaporized and exhausted. Therefore, since water can be removed from the inside of the vacuum container, aggregation of the carbon support can be prevented more effectively.

本発明に係る表面修飾炭素材料の製造方法は、重力方向に対して略平行な断面の内部形状が多角形である真空容器内に、炭素担体及び該炭素担体の一次粒子が凝集してできた二次粒子を一次粒子又は元の二次粒子より小さい二次粒子に分散させる分散部材を収容し、
前記断面に対して略垂直方向を回転軸として前記真空容器を一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリングを行うことで、該炭素担体の表面に微粒子又は薄膜を担持することを特徴とする。
The method for producing a surface-modified carbon material according to the present invention is formed by agglomerating the carbon support and the primary particles of the carbon support in a vacuum vessel having a polygonal internal shape in a cross section substantially parallel to the direction of gravity. Containing a dispersing member for dispersing secondary particles into primary particles or secondary particles smaller than the original secondary particles;
By performing a pendulum operation that repeats a rotation operation in which the vacuum vessel is rotated in one direction with a substantially vertical direction as a rotation axis with respect to the cross section, or an operation in which the vacuum vessel is rotated in the opposite direction after being rotated in one direction. Sputtering is performed while dispersing the secondary particles of the carbon support by the dispersing member while stirring or rotating the carbon support inside, thereby supporting fine particles or a thin film on the surface of the carbon support.

また、本発明に係る表面修飾炭素材料の製造方法において、前記炭素担体は、単層カーボンナノチューブ(single-wall carbon nanotubes: SWNT)、二層カーボンナノチューブ(double-wall carbon nanotubes: DWNT)、多層カーボンナノチューブ(multi-wall carbon nanotubes: MWNT)、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、気相成長炭素繊維(vapor-grown carbon fibers: VGCF)、カーボンナノファイバー、グラファイトナノファイバー、フラーレン、カーボンブラック及びカーボン単結晶の少なくとも一つであることが好ましい。   In the method for producing a surface-modified carbon material according to the present invention, the carbon support includes single-wall carbon nanotubes (SWNT), double-wall carbon nanotubes (DWNT), and multi-wall carbon. Multi-wall carbon nanotubes (MWNT), carbon nanohorns, carbon nanocoils, cup-stacked carbon nanotubes, bamboo-like carbon nanotubes, vapor-grown carbon fibers (VGCF), carbon nanofibers, graphite nano It is preferably at least one of fiber, fullerene, carbon black and carbon single crystal.

本発明に係る表面修飾炭素材料は、内部の断面形状が多角形を有する真空容器を、前記断面に対して略垂直方向を回転軸として一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながらスパッタリングを行うことで、該炭素担体の外表面に微粒子又は薄膜が担持されたことを特徴とする。   In the surface-modified carbon material according to the present invention, a vacuum container having a polygonal cross-sectional shape is rotated in one direction about a direction substantially perpendicular to the cross-section as a rotation axis, or rotated in one direction. By performing a pendulum operation that repeats the operation of rotating in the opposite direction later, by performing sputtering while stirring or rotating the carbon carrier in the vacuum vessel, fine particles or thin films were supported on the outer surface of the carbon carrier. It is characterized by.

また、本発明に係る表面修飾炭素材料においては、前記炭素担体がカーボンナノチューブであり、該カーボンナノチューブのチューブ内よりチューブ外表面に多くの前記微粒子又は薄膜が担持されていることが好ましい。   In the surface-modified carbon material according to the present invention, it is preferable that the carbon support is a carbon nanotube, and more fine particles or thin films are supported on the outer surface of the tube than in the tube of the carbon nanotube.

また、本発明に係る表面修飾炭素材料においては、前記カーボンナノチューブに担持された前記微粒子又は薄膜のほぼ100%がチューブ外表面に担持されていることが好ましい。   In the surface-modified carbon material according to the present invention, it is preferable that almost 100% of the fine particles or thin film supported on the carbon nanotubes are supported on the outer surface of the tube.

以上説明したように本発明によれば、炭素担体の外表面に多くの触媒微粒子を担持できる多角バレルスパッタ装置、炭素担持触媒及びその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a polygonal barrel sputtering apparatus, a carbon-supported catalyst, and a method for producing the same that can support a large number of catalyst fine particles on the outer surface of a carbon support.

以下、図面を参照して本発明の実施の形態について説明する。
(実施の形態1)
図1は、本発明に係る実施の形態1による多角バレルスパッタ装置の概略を示す構成図である。この多角バレルスパッタ装置は、カーボンナノチューブからなる炭素担体3の表面に比較的粒径の小さい触媒微粒子(粒径の一例;1〜100nm、より好ましくは1〜3nm)を担持させるための装置である。また、この装置を用いれば、アルゴン流量(全圧)、高周波出力、スパッタリング時間、温度などのスパッタリング条件を制御することにより、例えば担持される白金微粒子の粒径を1〜100nm程度の範囲に容易に制御することができる。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus according to Embodiment 1 of the present invention. This polygonal barrel sputtering apparatus is an apparatus for supporting catalyst fine particles having a relatively small particle diameter (an example of particle diameter; 1 to 100 nm, more preferably 1 to 3 nm) on the surface of a carbon support 3 made of carbon nanotubes. . Moreover, if this apparatus is used, by controlling the sputtering conditions such as argon flow rate (total pressure), high frequency output, sputtering time, temperature, etc., the particle diameter of the supported platinum fine particles can be easily in the range of about 1 to 100 nm, for example. Can be controlled.

尚、本実施の形態では、カーボンナノチューブからなる炭素担体3の表面に触媒微粒子を担持させているが、これに限定されるものではなく、カーボンナノチューブ以外の炭素担体の表面に触媒微粒子を担持させることも可能である。炭素担体の具体例としては、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、気相成長炭素繊維、カーボンナノファイバー、グラファイトナノファイバー、フラーレン、カーボンブラック及びカーボン単結晶などが挙げられる。   In the present embodiment, the catalyst fine particles are supported on the surface of the carbon support 3 made of carbon nanotubes. However, the present invention is not limited to this, and the catalyst fine particles are supported on the surface of the carbon support other than the carbon nanotubes. It is also possible. Specific examples of the carbon support include single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanohorns, carbon nanocoils, cup-stacked carbon nanotubes, bamboo-shaped carbon nanotubes, vapor-grown carbon fibers, carbon nanofibers, Examples include graphite nanofiber, fullerene, carbon black, and carbon single crystal.

多角バレルスパッタ装置は、炭素担体3に触媒微粒子を担持させる真空容器1を有しており、この真空容器1は直径200mmの円筒部1aとその内部に設置された断面が六角形のバレル(六角型バレル)1bとを備えている。ここで示す断面は、重力方向に対して略平行な断面である。なお、本実施の形態では、六角形のバレル1bを用いているが、これに限定されるものではなく、六角形以外の多角形のバレルを用いることも可能である。   The polygonal barrel sputtering apparatus has a vacuum vessel 1 for supporting catalyst fine particles on a carbon carrier 3, and this vacuum vessel 1 has a cylindrical portion 1a having a diameter of 200 mm and a hexagonal barrel (hexagonal cross section installed therein). Mold barrel) 1b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon can also be used.

六角型バレル1b内には、炭素担体3の一次粒子が水分、静電気力、分子間力等で凝集してできた二次粒子(大きさ:例えば100nm〜100mm)を、再び一次粒子、若しくは元の二次粒子より小さい二次粒子に分散させる分散部材(図示せず)が入れられている。この分散部材は、真空容器1内で凝集して集まっている炭素担体3を分散させるものであって、例えば、粉状物質、棒状物質、小片、球状物質、複数の突起を有する物質などが挙げられる。
前記粉状物質は、その大きさが例えば0.1〜5mm程度であり、具体例としては、砂、アルミナ粉末等が挙げられる。
また、前記棒状物質は、その大きさが例えば長さ1〜50mm、太さ0.1〜10mm程度の棒状の物質であり、具体例としては、釘、針金、角棒、ボルト等が挙げられる。
また、前記小片は、その大きさが例えば1〜100mm程度のものであり、その材質の具体例としては金属、樹脂等が挙げられる。
また、球状物質は、その直径が例えば1〜50mm程度のものであり、具体例としては、鉄球、プラスチック球、BB弾、ビーズ等が挙げられる。
また、前記複数の突起を有する物質は、その大きさが10〜50mm程度で突起が多数ついているものであり、具体例としては鬼目ナット等が挙げられる。
In the hexagonal barrel 1b, secondary particles (size: for example, 100 nm to 100 mm) formed by agglomeration of primary particles of the carbon support 3 by moisture, electrostatic force, intermolecular force, etc. are regenerated as primary particles or original particles. A dispersion member (not shown) for dispersing the secondary particles smaller than the secondary particles is placed. This dispersion member disperses the carbon carrier 3 aggregated and collected in the vacuum vessel 1, and includes, for example, a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions. It is done.
The powdery substance has a size of about 0.1 to 5 mm, for example, and specific examples include sand and alumina powder.
The rod-like substance is a rod-like substance having a size of, for example, a length of about 1 to 50 mm and a thickness of about 0.1 to 10 mm. Specific examples include nails, wires, square bars, bolts, and the like. .
The small piece has a size of, for example, about 1 to 100 mm, and specific examples of the material include metals and resins.
The spherical material has a diameter of, for example, about 1 to 50 mm, and specific examples include iron balls, plastic balls, BB bullets, beads, and the like.
The substance having a plurality of protrusions has a size of about 10 to 50 mm and a large number of protrusions, and specific examples thereof include demon nuts.

真空容器1には回転機構(図示せず)が設けられており、この回転機構により六角型バレル1bを一方向(矢印の方向)に回転させる回転動作、又は一方向に回転させた後に反対方向(矢印とは逆方向)に回転させる動作を繰り返す振り子動作を行うことにより、該六角型バレル1b内の炭素担体3を攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散させつつ担持処理を行うものである。
尚、前記元の二次粒子の大きさは例えば100nm〜100mmである。
また、振り子動作とは、一方向に180°以下の回転角で回転させ、反対方向に180°以下の回転角で回転させる動作を繰り返す動作を含むことは勿論であるが、一方向に180°超の回転角(例えば720°の回転角)で回転させ、反対方向に180°超の回転角(例えば720°の回転角)で回転させる動作を繰り返す動作も含むものである。
The vacuum vessel 1 is provided with a rotating mechanism (not shown), and the rotating mechanism rotates the hexagonal barrel 1b in one direction (in the direction of the arrow), or the opposite direction after rotating in one direction. By performing a pendulum operation that repeats the operation of rotating in the direction opposite to the arrow, the carbon support 3 in the hexagonal barrel 1b is stirred or rotated to disperse the secondary particles of the carbon support by the dispersing member. The carrying process is carried out.
The original secondary particles have a size of 100 nm to 100 mm, for example.
In addition, the pendulum operation includes, of course, an operation of repeating an operation of rotating at a rotation angle of 180 ° or less in one direction and rotating at a rotation angle of 180 ° or less in the opposite direction, but 180 ° in one direction. It also includes an operation of repeating the operation of rotating at a super-rotation angle (for example, a rotation angle of 720 °) and rotating in the opposite direction at a rotation angle of over 180 ° (for example, a rotation angle of 720 °).

前記回転機構により六角型バレルを回転させる際の回転軸は、ほぼ水平方向(重力方向に対して垂直方向)に平行な軸である。また、真空容器1内には円筒の中心軸上にPtからなるスパッタリングターゲット2が配置されており、このターゲット2は角度を自由に変えられるように構成されている。これにより、六角型バレル1bを回転させながら担持処理を行う時、ターゲット2を炭素担体3の位置する方向に向けることができ、それによってスパッタ効率を上げることが可能となる。なお、本実施の形態では、Ptターゲットを用いているが、Pt以外の材料(例えばPd、Ni等)を炭素担体に担持することも可能であり、その場合は担持する材料からなるターゲットを用いることとなる。   A rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis substantially parallel to the horizontal direction (perpendicular to the gravity direction). Further, a sputtering target 2 made of Pt is disposed on the central axis of the cylinder in the vacuum vessel 1, and the target 2 is configured so that the angle can be freely changed. As a result, when carrying the supporting process while rotating the hexagonal barrel 1b, the target 2 can be directed in the direction in which the carbon carrier 3 is positioned, thereby increasing the sputtering efficiency. In this embodiment, a Pt target is used. However, a material other than Pt (for example, Pd, Ni, etc.) can be supported on a carbon support. In that case, a target made of the supported material is used. It will be.

真空容器1には配管4の一端が接続されており、この配管4の他端には第1バルブ12の一方側が接続されている。第1バルブ12の他方側は配管5の一端が接続されており、配管5の他端はターボ分子ポンプ(TMP)10の吸気側に接続されている。ターボ分子ポンプ10の排気側は配管6の一端に接続されており、配管6の他端は第2バルブ13の一方側に接続されている。第2バルブ13の他方側は配管7の一端に接続されており、配管7の他端はポンプ(RP)11に接続されている。また、配管4は配管8の一端に接続されており、配管8の他端は第3バルブ14の一方側に接続されている。第3バルブ14の他方側は配管9の一端に接続されており、配管9の他端は配管7に接続されている。   One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13. The other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11. The pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third valve 14. The other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.

本装置は、真空容器1内の炭素担体3を加熱するためのヒータ17を備えている。また、本装置は、真空容器1内の炭素担体3に振動を加えるためのバイブレータ18を備えている。また、本装置は、真空容器1の内部圧力を測定する圧力計19を備えている。また、本装置は、真空容器1内に窒素ガスを導入する窒素ガス導入機構15を備えていると共に真空容器1内にアルゴンガスを導入するアルゴンガス導入機構16を備えている。また、本装置は、ターゲット2と六角型バレル1bとの間に高周波を印加する高周波印加機構(図示せず)を備えている。   This apparatus includes a heater 17 for heating the carbon carrier 3 in the vacuum vessel 1. In addition, this apparatus includes a vibrator 18 for applying vibration to the carbon support 3 in the vacuum vessel 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. In addition, the apparatus includes a nitrogen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum vessel 1. In addition, this apparatus includes a high frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1b.

次に、上記多角バレルスパッタ装置を用いて炭素担体3に触媒微粒子を担持する多角バレルスパッタ方法及び炭素担持触媒の製造方法について説明する。   Next, a polygon barrel sputtering method for supporting catalyst fine particles on the carbon carrier 3 using the polygon barrel sputtering apparatus and a method for producing a carbon supported catalyst will be described.

まず、六角型バレル1b内に約0.03グラムの炭素担体3を導入する。この炭素担体3としてはCNI(登録商標)Buckytubesの単層カーボンナノチューブ(SWNT)を用いた。また、分散部材としては釘を用いた。また、ターゲット2にはPtを用いた。なお、本実施の形態では、カーボンナノチューブを用いているが、これに限定されるものではなく、他の材料からなる炭素担体を用いることも可能である。本多角バレルスパッタ方法を用いれば、幅広い炭素担体に微粒子を担持することが可能である。   First, about 0.03 gram of carbon support 3 is introduced into the hexagonal barrel 1b. As this carbon support 3, single-walled carbon nanotubes (SWNT) of CNI (registered trademark) Buckytubes were used. A nail was used as the dispersing member. Further, Pt was used for the target 2. In the present embodiment, carbon nanotubes are used. However, the present invention is not limited to this, and carbon carriers made of other materials can also be used. If this polygonal barrel sputtering method is used, fine particles can be supported on a wide range of carbon carriers.

次いで、ターボ分子ポンプ10を用いて六角型バレル1b内に高真空状態を作り、六角型バレル内を8×10−4Paに減圧した。その後、アルゴンガス供給機構16又は窒素ガス供給機構15によりアルゴン又は窒素などの不活性ガスを六角型バレル1b内に導入する。この際の六角型バレル内の圧力は0.8Pa程度である。場合によっては酸素と水素の混合ガスを六角型バレル1b内に導入しても良い。尚、ここでは六角型バレル1b内にアルゴンガスを90ccm程度導入し、アルゴン圧力を30Pa程度とする。そして、回転機構により六角型バレル1bを30分間、角度75°、3.5rpmで振り子動作させることで、六角型バレル1b内のカーボンナノチューブ3と撹拌させる部材である釘を撹拌、回転させ、凝集したカーボンナノチューブ3を分散させる。このとき同時に、高周波印加機構によりターゲット2と六角型バレル1bとの間に例えば50Wの高周波出力を印加することで、カーボンナノチューブ3の表面にPtを室温でスパッタリング堆積する。その際、ターゲットはカーボンナノチューブの位置する方向に向けられる。このようにしてカーボンナノチューブ3の表面にPt微粒子を担持することができる。 Next, a high vacuum state was created in the hexagonal barrel 1b using the turbo molecular pump 10, and the pressure in the hexagonal barrel was reduced to 8 × 10 −4 Pa. Thereafter, an inert gas such as argon or nitrogen is introduced into the hexagonal barrel 1b by the argon gas supply mechanism 16 or the nitrogen gas supply mechanism 15. The pressure in the hexagonal barrel at this time is about 0.8 Pa. In some cases, a mixed gas of oxygen and hydrogen may be introduced into the hexagonal barrel 1b. Here, about 90 ccm of argon gas is introduced into the hexagonal barrel 1b, and the argon pressure is about 30 Pa. Then, by rotating the hexagonal barrel 1b with a rotation mechanism for 30 minutes at an angle of 75 ° and 3.5 rpm, the carbon nanotubes 3 in the hexagonal barrel 1b are stirred and rotated to rotate the nail. The carbon nanotubes 3 are dispersed. At the same time, a high frequency output of, for example, 50 W is applied between the target 2 and the hexagonal barrel 1b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the carbon nanotube 3 at room temperature. At that time, the target is directed in the direction in which the carbon nanotube is located. In this way, Pt fine particles can be carried on the surface of the carbon nanotube 3.

尚、ここでは、六角型バレル1bに角度75°の振り子動作を行っているが、これに限定されるものではなく、振り子動作の角度を他の角度に変更することも可能であるし、また振り子動作ではなく回転動作を行うことも可能である。また、ここでは振り子動作の回転速度を3.5rpmにしているが、振り子動作の回転速度を約20rpm程度まで速くすることも可能である。また、ここでは高周波出力を50Wとしているが、高周波出力を500W程度まで高くすることも可能である。また、ここではPt微粒子を担持する際の温度を室温としていが、温度を600℃程度まで上げることも可能である。   In this example, the pendulum operation at an angle of 75 ° is performed on the hexagonal barrel 1b. However, the present invention is not limited to this, and the angle of the pendulum operation can be changed to another angle. It is also possible to perform a rotating operation instead of a pendulum operation. Although the rotation speed of the pendulum operation is 3.5 rpm here, the rotation speed of the pendulum operation can be increased to about 20 rpm. In addition, although the high frequency output is 50 W here, the high frequency output can be increased to about 500 W. Here, the temperature at which the Pt fine particles are supported is room temperature, but the temperature can be raised to about 600 ° C.

上記実施の形態1によれば、六角型バレル自体を振り子動作又は回転動作させることでカーボンナノチューブ自体を釘と共に回転させ攪拌でき、更にバレルを六角型とすることにより、カーボンナノチューブ3及び釘を重力により定期的に落下させることができる。このため、攪拌効率を飛躍的に向上させることができ、水分、静電気力、分子間力による凝集を防ぐことができ、その上、カーボンナノチューブを釘と共に攪拌するため、凝集したカーボンナノチューブを釘により分散させつつ撹拌することができる。つまり、回転による攪拌と、凝集したカーボンナノチューブの分散を同時かつ効果的に行うことができる。したがって、カーボンナノチューブ3に比較的粒径が小さいPt微粒子を担持することが可能となる。   According to the first embodiment, the carbon nanotube itself can be rotated and stirred together with the nail by causing the hexagonal barrel itself to perform a pendulum operation or a rotation operation. Can be dropped regularly. For this reason, it is possible to dramatically improve the stirring efficiency, to prevent aggregation due to moisture, electrostatic force, and intermolecular force, and to stir the carbon nanotubes together with the nail. It can be stirred while being dispersed. That is, stirring by rotation and dispersion of the aggregated carbon nanotubes can be performed simultaneously and effectively. Therefore, Pt fine particles having a relatively small particle diameter can be carried on the carbon nanotube 3.

また、本実施の形態では、カーボンナノチューブの表面にスパッタリングによりPtを担持させている。スパッタリングには指向性があり、キャピラリ効果が無いため、従来技術のようにカーボンナノチューブのチューブ内に多くのPtが担持されることがない。つまり、本実施の形態では、カーボンナノチューブの内側より外側に多くのPtを担持することができるか、又は、カーボンナノチューブに担持されたPt微粒子のほぼ100%をチューブ外表面に担持することができる。従って、担持したPtを触媒として使用する場合、担持したPtのうち無駄になるPtが少なくなり、触媒効率を飛躍的に高めることができる。   In the present embodiment, Pt is supported on the surface of the carbon nanotube by sputtering. Since sputtering has directivity and no capillary effect, a large amount of Pt is not carried in the carbon nanotube tube as in the prior art. In other words, in the present embodiment, a large amount of Pt can be supported outside the inside of the carbon nanotube, or almost 100% of the Pt fine particles supported on the carbon nanotube can be supported on the outer surface of the tube. . Therefore, when the supported Pt is used as a catalyst, wasteful Pt of the supported Pt is reduced, and the catalyst efficiency can be dramatically increased.

また、本実施の形態では、真空容器1の外側にヒータ17を取り付けており、このヒータ17により六角型バレル1bを600℃まで加熱することができる。このため、真空容器1の内部を真空にする際、ヒータ17で六角型バレルを加熱することにより、該六角型バレル内の水分を気化させ排気することができる。したがって、水を六角型バレル内から除去することができるため、炭素担体の凝集をより効果的に防ぐことができる。   In the present embodiment, a heater 17 is attached to the outside of the vacuum vessel 1, and the hexagonal barrel 1 b can be heated to 600 ° C. by the heater 17. For this reason, when the inside of the vacuum vessel 1 is evacuated, by heating the hexagonal barrel with the heater 17, moisture in the hexagonal barrel can be vaporized and exhausted. Therefore, since water can be removed from the hexagonal barrel, aggregation of the carbon support can be prevented more effectively.

また、本実施の形態では、真空容器1の外側にバイブレータ18を取り付けており、このバイブレータ18により六角型バレル内の粉体3に振動を加えることができる。これにより、炭素担体の凝集をより効果的に防ぐことが可能となる。   In the present embodiment, a vibrator 18 is attached to the outside of the vacuum vessel 1, and the vibrator 18 can apply vibration to the powder 3 in the hexagonal barrel. Thereby, it becomes possible to prevent aggregation of the carbon support more effectively.

また、本実施の形態では、多角バレルスパッタ方法により炭素担体3の表面に触媒微粒子を担持しているため、従来技術の含浸法のように廃液の処理が必要なく、環境に対する負荷も小さくできるという利点がある。   In the present embodiment, since catalyst fine particles are supported on the surface of the carbon support 3 by the polygonal barrel sputtering method, it is not necessary to treat the waste liquid as in the impregnation method of the prior art, and the load on the environment can be reduced. There are advantages.

尚、本実施の形態では、炭素担体に触媒微粒子を担持させているが、炭素担体に触媒微粒子以外の微粒子又は薄膜を担持させることも可能である。   In this embodiment, catalyst fine particles are supported on a carbon support, but fine particles or thin films other than catalyst fine particles can be supported on a carbon support.

また、本実施の形態による製造方法によって製造された炭素担持触媒は、Pt微粒子を担持しているため、燃料電池用電極触媒(アノード、カソード)及び工業用触媒に用いることができるが、Pt以外のものを担持すれば、燃料電池用電極触媒及び工業用触媒以外の種々の表面修飾炭素材料にも用いることが可能である。例えば、工業用触媒(芳香族の水素化、不飽和アルデヒドの選択水素化、CO選択酸化、ケイヒアルデヒドの選択水素化、NO分解、アンモニア合成、シトラールの水素化、クロトンアルデヒドの水素化等)、センサー、Li電池材料、光触媒、STMやSFMのプローブ、フィールドエミッタ、ゴムや樹脂の充填剤、導電性樹脂用充填材等に用いることができる。   Further, since the carbon-supported catalyst manufactured by the manufacturing method according to the present embodiment supports Pt fine particles, it can be used for fuel cell electrode catalysts (anodes, cathodes) and industrial catalysts. Can be used for various surface-modified carbon materials other than fuel cell electrode catalysts and industrial catalysts. For example, industrial catalysts (aromatic hydrogenation, selective hydrogenation of unsaturated aldehydes, selective CO oxidation, selective hydrogenation of silicic aldehyde, NO decomposition, ammonia synthesis, hydrogenation of citral, hydrogenation of crotonaldehyde, etc.) It can be used for sensors, Li battery materials, photocatalysts, STM and SFM probes, field emitters, rubber and resin fillers, conductive resin fillers, and the like.

また、上記実施の形態1では、バイブレータ18により六角型バレル内の炭素担体3に振動を加えているが、バイブレータ18の代わりに、又は、バイブレータ18に加えて、六角型バレル内に棒状部材を収容した状態で該六角型バレルを回転させることにより、炭素担体3に振動を加えることも可能である。これにより、炭素担体の凝集をより効果的に防ぐことが可能となる。   In the first embodiment, vibration is applied to the carbon carrier 3 in the hexagonal barrel by the vibrator 18. However, instead of the vibrator 18 or in addition to the vibrator 18, a rod-shaped member is provided in the hexagonal barrel. It is also possible to apply vibration to the carbon support 3 by rotating the hexagonal barrel in the accommodated state. Thereby, it becomes possible to prevent aggregation of the carbon support more effectively.

次に、上記炭素担持触媒の製造方法によりカーボンナノチューブの外表面にPt微粒子を担持した試料(炭素担持触媒)の電子顕微鏡観察、EDX(エネルギー分散型X線分析)、XRD(X線回折法)及びXRF(蛍光X線分析)の結果について説明する。   Next, electron microscope observation, EDX (energy dispersive X-ray analysis), XRD (X-ray diffraction method) of a sample (carbon-supported catalyst) in which Pt fine particles are supported on the outer surface of the carbon nanotube by the above-described carbon-supported catalyst production method The results of XRF (fluorescence X-ray analysis) will be described.

図2及び図3は、本実施の形態による製造方法によりカーボンナノチューブの外表面にPt微粒子を担持した炭素担持触媒を電子顕微鏡により観察した写真である。
図2及び図3に示すように、カーボンナノチューブの外表面にはPt微粒子が担持されていることが確認された。詳細には、カーボンナノチューブの外側の表面にほとんどのPt微粒子が担持され、カーボンナノチューブのチューブ内部にはPt微粒子がほとんど担持されていないことが確認された。
2 and 3 are photographs obtained by observing, with an electron microscope, a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by the manufacturing method according to the present embodiment.
As shown in FIGS. 2 and 3, it was confirmed that Pt fine particles were supported on the outer surface of the carbon nanotube. Specifically, it was confirmed that most of the Pt fine particles were supported on the outer surface of the carbon nanotube, and almost no Pt fine particles were supported inside the carbon nanotube tube.

尚、図2に示すカーボンナノチューブに付着しているFe微粒子は、本実施の形態による多角バレルスパッタ装置によって付着したものではなく、この多角バレルスパッタ装置でPt微粒子を担持する前のカーボンナノチューブに付着していたものである。カーボンナノチューブの製造段階ではFe微粒子を種結晶として用い、この種結晶を除去していないカーボンナノチューブを本実施の形態で使用したためである。   The Fe fine particles attached to the carbon nanotubes shown in FIG. 2 are not attached by the polygonal barrel sputtering apparatus according to the present embodiment, but are attached to the carbon nanotubes before carrying the Pt fine particles by the polygonal barrel sputtering apparatus. It was what was done. This is because, in the carbon nanotube production stage, Fe fine particles are used as seed crystals, and carbon nanotubes from which these seed crystals have not been removed are used in the present embodiment.

図4は、図2に示す炭素担持触媒に担持されたPt微粒子の粒度分布を示す図である。この図は、図2の写真において、無作為に選択した100個のPt微粒子の直径を計測し、その計測結果から直径の分布を示している。図4に示すように、100個のPt微粒子の直径の平均値は1.95nmであり、全粒子の90%が粒径1.4〜2.2nmの間に存在している。従って、粒径のそろったPt微粒子が担持されていることが確認された。   FIG. 4 is a diagram showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure measures the diameter of 100 randomly selected Pt particles in the photograph of FIG. 2, and shows the distribution of diameters from the measurement results. As shown in FIG. 4, the average value of the diameters of 100 Pt fine particles is 1.95 nm, and 90% of all particles are present between the particle diameters of 1.4 to 2.2 nm. Accordingly, it was confirmed that Pt fine particles having a uniform particle size were supported.

図5(A)は、Ptを担持する前のカーボンナノチューブをEDX(エネルギー分散型X線分析)によって分析した結果を示す図である。図5(B)は、本実施の形態による製造方法によりカーボンナノチューブの外表面にPt微粒子を担持した炭素担持触媒をEDXによって分析した結果を示す図である。   FIG. 5 (A) is a diagram showing the result of analyzing the carbon nanotube before supporting Pt by EDX (energy dispersive X-ray analysis). FIG. 5B is a diagram showing a result of analyzing the carbon-supported catalyst in which the Pt fine particles are supported on the outer surface of the carbon nanotube by the manufacturing method according to the present embodiment by EDX.

図5(A),(B)に示すように、カーボンナノチューブには多角バレルスパッタ装置によってPt微粒子が担持されたことが確認された。   As shown in FIGS. 5A and 5B, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus.

図6は、本実施の形態による製造方法によりカーボンナノチューブの外表面にPt微粒子を担持した炭素担持触媒をXRD(X線回折法)によって分析した結果を示す図である。この図に示すように、カーボンナノチューブには多角バレルスパッタ装置によってPt微粒子が担持されたことが確認された。67.4°のPt(220)のピークにおいて、シェラーの式で求めたPtの粒径は1.85nmであり、これはTEM写真から求めた図4に示す平均粒径とほぼ一致する。   FIG. 6 is a diagram showing the results of analysis by XRD (X-ray diffraction method) of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus. At the Pt (220) peak at 67.4 °, the particle size of Pt determined by Scherrer's equation is 1.85 nm, which almost coincides with the average particle size shown in FIG. 4 determined from the TEM photograph.

図7は、本実施の形態による製造方法によりカーボンナノチューブの外表面にPt微粒子を担持した炭素担持触媒をXRF(蛍光X線分析)によって分析した結果を示す図である。この図に示すように、カーボンナノチューブには多角バレルスパッタ装置によってPt微粒子が担持されたことが確認された。   FIG. 7 is a diagram showing a result of analyzing a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of a carbon nanotube by XRF (fluorescence X-ray analysis) by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the carbon nanotubes by a polygonal barrel sputtering apparatus.

(実施の形態2)
図1に示す多角バレルスパッタ装置を用いて炭素担体3に触媒微粒子を担持する実施の形態2による多角バレルスパッタ方法及び炭素担持触媒の製造方法について説明する。
(Embodiment 2)
A polygonal barrel sputtering method and a carbon-supported catalyst manufacturing method according to Embodiment 2 in which catalyst fine particles are supported on a carbon support 3 using the polygonal barrel sputtering apparatus shown in FIG. 1 will be described.

まず、六角型バレル1b内に約0.5グラムの炭素担体3を導入する。この炭素担体3としては昭和電工製の気相成長炭素繊維(VGCF)を用いた。また、分散部材としては釘を用いた。また、ターゲット2にはPtを用いた。   First, about 0.5 gram of carbon support 3 is introduced into the hexagonal barrel 1b. As the carbon carrier 3, vapor grown carbon fiber (VGCF) manufactured by Showa Denko was used. A nail was used as the dispersing member. Further, Pt was used for the target 2.

次いで、ターボ分子ポンプ10を用いて六角型バレル1b内に高真空状態を作り、六角型バレル内を8×10−4Paに減圧した。その後、アルゴンガス供給機構16によりアルゴンガスを六角型バレル1b内に導入する。この際のアルゴンガス流量が20ccm程度であり、アルゴンガス圧が0.8Pa程度である。そして、回転機構により六角型バレル1bを30分間、角度75°、3.5rpmで振り子動作させることで、六角型バレル1b内のVGCFと撹拌させる部材である釘を撹拌、回転させ、凝集したVGCFを分散させる。このとき同時に、高周波印加機構によりターゲット2と六角型バレル1bとの間に例えば50Wの高周波出力を印加することで、VGCFの表面にPtを室温でスパッタリング堆積する。その際、ターゲットはVGCFの位置する方向に向けられる。このようにしてVGCFの表面にPt微粒子を担持することができる。 Next, a high vacuum state was created in the hexagonal barrel 1b using the turbo molecular pump 10, and the pressure in the hexagonal barrel was reduced to 8 × 10 −4 Pa. Thereafter, argon gas is introduced into the hexagonal barrel 1b by the argon gas supply mechanism 16. The argon gas flow rate at this time is about 20 ccm, and the argon gas pressure is about 0.8 Pa. Then, the rotating mechanism causes the hexagonal barrel 1b to perform a pendulum operation for 30 minutes at an angle of 75 ° and 3.5 rpm, thereby stirring and rotating the VGCF in the hexagonal barrel 1b and rotating the nail, which is agglomerated VGCF To disperse. At the same time, a high frequency output of, for example, 50 W is applied between the target 2 and the hexagonal barrel 1b by the high frequency application mechanism, so that Pt is sputter deposited on the surface of the VGCF at room temperature. At that time, the target is directed in the direction in which the VGCF is located. In this way, Pt fine particles can be supported on the surface of the VGCF.

上記実施の形態2においても実施の形態1と同様の効果を得ることができる。   In the second embodiment, the same effect as in the first embodiment can be obtained.

次に、上記炭素担持触媒の製造方法によりVGCFの外表面にPt微粒子を担持した試料(炭素担持触媒)の電子顕微鏡観察、XRD(X線回折法)及びXRF(蛍光X線分析)の結果について説明する。   Next, the results of electron microscope observation, XRD (X-ray diffraction method) and XRF (fluorescence X-ray analysis) of a sample (carbon-supported catalyst) in which Pt fine particles are supported on the outer surface of VGCF by the above-described carbon-supported catalyst production method explain.

図8及び図9は、本実施の形態による製造方法によりVGCFの外表面にPt微粒子を担持した炭素担持触媒を電子顕微鏡により観察したTEM写真である。
図8及び図9に示すように、VGCFの外表面には比較的粒径のそろったPt微粒子が均一に担持されていることが確認された。
8 and 9 are TEM photographs of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of the VGCF by the manufacturing method according to the present embodiment, which is observed with an electron microscope.
As shown in FIGS. 8 and 9, it was confirmed that Pt fine particles having a relatively uniform particle size were uniformly supported on the outer surface of the VGCF.

図10は、図8に示す炭素担持触媒に担持されたPt微粒子の粒度分布を示す図である。この図は、図8の写真において、無作為に選択した100個のPt微粒子の直径を計測し、その計測結果から直径の分布を示している。図10に示すように、100個のPt微粒子の直径の平均値は2.1nmであり、全粒子の90%が粒径1.2〜3.0nmの間に存在している。従って、粒径のそろったPt微粒子が担持されていることが確認された。   FIG. 10 is a diagram showing the particle size distribution of Pt fine particles supported on the carbon supported catalyst shown in FIG. This figure measures the diameter of 100 randomly selected Pt fine particles in the photograph of FIG. 8, and shows the distribution of diameters from the measurement result. As shown in FIG. 10, the average value of the diameters of 100 Pt fine particles is 2.1 nm, and 90% of all particles are present between 1.2 and 3.0 nm in particle size. Accordingly, it was confirmed that Pt fine particles having a uniform particle size were supported.

図11は、本実施の形態による製造方法によりVGCFの外表面にPt微粒子を担持した炭素担持触媒をXRD(X線回折法)によって分析した結果を示す図である。この図に示すように、VGCFには多角バレルスパッタ装置によってPt微粒子が担持されたことが確認された。尚、図11中のグラファイトのピークはVGCFに帰属されるものであり、Ptを担持する前のVGCFでも認められる。67.4°のPt(220)のピークにおいて、シェラーの式で求めたPtの粒径は2.3nmであり、これはTEM写真から求めた図10に示す平均粒径とほぼ一致する。   FIG. 11 is a diagram showing the results of XRD (X-ray diffraction) analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the VGCF by a polygonal barrel sputtering apparatus. Note that the graphite peak in FIG. 11 is attributed to VGCF, and is also observed in VGCF before supporting Pt. At the Pt (220) peak at 67.4 °, the particle size of Pt determined by Scherrer's equation is 2.3 nm, which almost coincides with the average particle size shown in FIG. 10 determined from the TEM photograph.

図12は、本実施の形態による製造方法によりVGCFの外表面にPt微粒子を担持した炭素担持触媒をXRF(蛍光X線分析)によって分析した結果を示す図である。この図に示すように、VGCFには多角バレルスパッタ装置によってPt微粒子が担持されたことが確認された。   FIG. 12 is a diagram showing the results of XRF (fluorescence X-ray analysis) analysis of a carbon-supported catalyst in which Pt fine particles are supported on the outer surface of VGCF by the manufacturing method according to the present embodiment. As shown in this figure, it was confirmed that Pt fine particles were supported on the VGCF by a polygonal barrel sputtering apparatus.

尚、本発明は上記実施の形態に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、炭素担体に触媒微粒子を担持する担持条件を適宜変更することも可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, it is possible to appropriately change the supporting conditions for supporting the catalyst fine particles on the carbon support.

また、本実施の形態では、触媒微粒子の材料としてPtを用いているが、これに限定されるものではなく、他の微粒子、例えば金属(Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、La、Hf、Ta、W、Re、Os、Ir、Pt、Au、Tl、Pbなど)または非金属(Si、As、Cなど)の単体、前記金属または非金属それぞれの合金、若しくは前記金属または非金属それぞれの酸化物、窒化物、硼化物、炭化物を用いることも可能である。   In this embodiment, Pt is used as the material for the catalyst fine particles. However, the present invention is not limited to this, and other fine particles such as metals (Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, etc.) or non-metal (Si, As, C, etc.), the metal or non-metal alloy, or the metal or non-metal oxide, nitride, boride, carbide It is also possible to use.

実施の形態1による多角バレルスパッタ装置の概略を示す構成図である。It is a block diagram which shows the outline of the polygon barrel sputtering apparatus by Embodiment 1. FIG. 実施の形態1による炭素担持触媒を電子顕微鏡により観察した写真である。2 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope. 実施の形態1による炭素担持触媒を電子顕微鏡により観察した写真である。2 is a photograph of the carbon-supported catalyst according to Embodiment 1 observed with an electron microscope. 図2に示す炭素担持触媒に担持されたPt微粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of the Pt fine particle carry | supported by the carbon carrying catalyst shown in FIG. (A)は、Ptを担持する前のカーボンナノチューブをEDXによって分析した結果を示す図であり、(B)は、実施の形態1による炭素担持触媒をEDXによって分析した結果を示す図である。(A) is a figure which shows the result of having analyzed the carbon nanotube before carrying | supporting Pt by EDX, (B) is a figure which shows the result of having analyzed the carbon carrying catalyst by Embodiment 1 by EDX. 実施の形態1による炭素担持触媒をXRDによって分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon carrying catalyst by Embodiment 1 by XRD. 実施の形態1による炭素担持触媒をXRFによって分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon carrying catalyst by Embodiment 1 by XRF. 実施の形態2による炭素担持触媒を電子顕微鏡により観察したTEM写真である。4 is a TEM photograph of the carbon-supported catalyst according to Embodiment 2 observed with an electron microscope. 実施の形態2による炭素担持触媒を電子顕微鏡により観察したTEM写真である。4 is a TEM photograph of the carbon-supported catalyst according to Embodiment 2 observed with an electron microscope. 図8に示す炭素担持触媒に担持されたPt微粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of the Pt fine particle carry | supported by the carbon carrying catalyst shown in FIG. 実施の形態2による炭素担持触媒をXRDによって分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon carrying catalyst by Embodiment 2 by XRD. 実施の形態2による炭素担持触媒をXRFによって分析した結果を示す図である。It is a figure which shows the result of having analyzed the carbon carrying catalyst by Embodiment 2 by XRF.

符号の説明Explanation of symbols

1…真空容器
1a…円筒部
1b…六角型バレル
2…ターゲット
3…炭素担体
4〜9…配管
10…ターボ分子ポンプ(TMP)
11…ポンプ(RP)
12〜14…第1〜第3バルブ
15…窒素ガス導入機構
16…アルゴンガス導入機構
17…ヒータ
18…バイブレータ
19…圧力計
DESCRIPTION OF SYMBOLS 1 ... Vacuum vessel 1a ... Cylindrical part 1b ... Hexagonal barrel 2 ... Target 3 ... Carbon support 4-9 ... Piping 10 ... Turbo molecular pump (TMP)
11 ... Pump (RP)
12-14 ... First to third valves 15 ... Nitrogen gas introduction mechanism 16 ... Argon gas introduction mechanism 17 ... Heater 18 ... Vibrator 19 ... Pressure gauge

Claims (9)

炭素担体を収容する真空容器であって重力方向に対して略平行な断面の内部形状が多角形である真空容器と、
前記真空容器内に入れられ、前記炭素担体の一次粒子が凝集してできた二次粒子を一次粒子又は元の二次粒子より小さい二次粒子に分散させる分散部材と、
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させる回転機構と、
前記真空容器内に配置されたスパッタリングターゲットと、
を具備し、
前記回転機構を用いて前記真空容器を一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリングを行うことで、該炭素担体の表面に微粒子又は薄膜を担持することを特徴とする多角バレルスパッタ装置。
A vacuum vessel containing a carbon carrier and having a polygonal internal shape in a cross section substantially parallel to the direction of gravity; and
A dispersion member that is placed in the vacuum vessel and disperses secondary particles formed by agglomerating primary particles of the carbon carrier into primary particles or secondary particles smaller than the original secondary particles;
A rotation mechanism that rotates the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis;
A sputtering target disposed in the vacuum vessel;
Comprising
The carbon carrier in the vacuum vessel is agitated by performing a rotation operation that rotates the vacuum vessel in one direction using the rotation mechanism, or a pendulum operation that repeats the rotation operation in the opposite direction after rotating in one direction. Alternatively, the multi-barrel sputtering apparatus is configured to carry fine particles or a thin film on the surface of the carbon support by performing sputtering while rotating the secondary particles of the carbon support with the dispersing member while rotating.
請求項1において、前記分散部材は、粉状物質、棒状物質、小片、球状物質、複数の突起を有する物質の少なくとも一つを有することを特徴とする多角バレルスパッタ装置。   2. The polygonal barrel sputtering apparatus according to claim 1, wherein the dispersion member includes at least one of a powdery substance, a rod-like substance, a small piece, a spherical substance, and a substance having a plurality of protrusions. 請求項1又は2において、前記真空容器に振動を加えるバイブレータをさらに具備することを特徴とする多角バレルスパッタ装置。   3. The polygonal barrel sputtering apparatus according to claim 1, further comprising a vibrator that applies vibration to the vacuum vessel. 請求項1乃至3のいずれか一項において、前記真空容器内の炭素担体を加熱するためのヒータをさらに具備することを特徴とする多角バレルスパッタ装置。   4. The polygonal barrel sputtering apparatus according to claim 1, further comprising a heater for heating the carbon carrier in the vacuum vessel. 5. 重力方向に対して略平行な断面の内部形状が多角形である真空容器内に、炭素担体及び該炭素担体の一次粒子が凝集してできた二次粒子を一次粒子又は元の二次粒子より小さい二次粒子に分散させる分散部材を収容し、
前記断面に対して略垂直方向を回転軸として前記真空容器を一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながら前記分散部材によって前記炭素担体の二次粒子を分散させつつスパッタリングを行うことで、該炭素担体の表面に微粒子又は薄膜を担持することを特徴とする表面修飾炭素材料の製造方法。
In the vacuum vessel whose internal shape of the cross section substantially parallel to the direction of gravity is a polygon, the secondary particles formed by aggregating the carbon carrier and the primary particles of the carbon carrier from the primary particles or the original secondary particles. Contains a dispersion member to be dispersed in small secondary particles,
By performing a pendulum operation that repeats a rotation operation in which the vacuum vessel is rotated in one direction with a substantially vertical direction as a rotation axis with respect to the cross section, or an operation in which the vacuum vessel is rotated in the opposite direction after being rotated in one direction. A surface modification characterized by carrying fine particles or a thin film on the surface of the carbon support by carrying out sputtering while dispersing the secondary particles of the carbon support by the dispersing member while stirring or rotating the carbon support inside A method for producing a carbon material.
請求項5において、前記炭素担体は、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カップ積層型カーボンナノチューブ、竹状カーボンナノチューブ、気相成長炭素繊維、カーボンナノファイバー、グラファイトナノファイバー、フラーレン、カーボンブラック及びカーボン単結晶の少なくとも一つであることを特徴とする表面修飾炭素材料の製造方法。   6. The carbon support according to claim 5, wherein the carbon support is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, a carbon nanohorn, a carbon nanocoil, a cup-stacked carbon nanotube, a bamboo-shaped carbon nanotube, a vapor grown carbon fiber, or a carbon nano A method for producing a surface-modified carbon material, which is at least one of fiber, graphite nanofiber, fullerene, carbon black, and carbon single crystal. 内部の断面形状が多角形を有する真空容器を、前記断面に対して略垂直方向を回転軸として一方向に回転させる回転動作、又は一方向に回転させた後に反対方向に回転させる動作を繰り返す振り子動作を行うことにより、前記真空容器内の炭素担体を攪拌あるいは回転させながらスパッタリングを行うことで、該炭素担体の外表面に微粒子又は薄膜が担持されたことを特徴とする表面修飾炭素材料。   A pendulum that repeats a rotating operation of rotating a vacuum vessel having an internal cross-sectional shape of a polygon in one direction with a substantially vertical direction as a rotation axis with respect to the cross-section, or a rotating operation in the opposite direction after rotating in one direction A surface-modified carbon material wherein fine particles or thin films are supported on the outer surface of the carbon support by performing sputtering while performing stirring while rotating or rotating the carbon support in the vacuum vessel. 請求項7において、前記炭素担体がカーボンナノチューブであり、該カーボンナノチューブのチューブ内よりチューブ外表面に多くの前記微粒子又は薄膜が担持されていることを特徴とする表面修飾炭素材料。   8. The surface-modified carbon material according to claim 7, wherein the carbon carrier is a carbon nanotube, and a larger amount of the fine particles or thin film is supported on the outer surface of the tube than in the tube of the carbon nanotube. 請求項8において、前記カーボンナノチューブに担持された前記微粒子又は薄膜のほぼ100%がチューブ外表面に担持されていることを特徴とする表面修飾炭素材料。
9. The surface-modified carbon material according to claim 8, wherein almost 100% of the fine particles or thin film supported on the carbon nanotubes are supported on the outer surface of the tube.
JP2006216182A 2006-08-08 2006-08-08 Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor Pending JP2008038218A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006216182A JP2008038218A (en) 2006-08-08 2006-08-08 Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor
PCT/JP2007/065885 WO2008018619A1 (en) 2006-08-08 2007-08-08 Polygonal barrel sputtering apparatus, surface modified carbon material and method for manufacturing the surface modified carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216182A JP2008038218A (en) 2006-08-08 2006-08-08 Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor

Publications (1)

Publication Number Publication Date
JP2008038218A true JP2008038218A (en) 2008-02-21

Family

ID=39033139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216182A Pending JP2008038218A (en) 2006-08-08 2006-08-08 Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor

Country Status (2)

Country Link
JP (1) JP2008038218A (en)
WO (1) WO2008018619A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182066A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Method of manufacturing electrode catalyst
JP2014159623A (en) * 2013-02-20 2014-09-04 Kyoritz Inc Coating device and method
KR101791983B1 (en) * 2016-02-04 2017-11-01 한국화학연구원 Transparent hard coating film with high hardness properties and Method of Manufacturing The Same
JP2020087627A (en) * 2018-11-21 2020-06-04 トヨタ自動車株式会社 Negative electrode active material composite for all solid state battery
KR20210018426A (en) 2019-05-24 2021-02-17 가부시키가이샤 크리에이티브 코팅즈 Powder film formation method, powder film formation container and ALD device
US11345994B2 (en) 2019-05-24 2022-05-31 Creative Coatings Co., Ltd. Method for forming coating film on powder, container for use in formation of coating film on powder, and ALP apparatus
EP4166689A1 (en) 2021-10-14 2023-04-19 Creative Coatings Co., Ltd. Method and apparatus for forming films on particles of powder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014046231A (en) * 2012-08-29 2014-03-17 Hitachi Chemical Co Ltd Method for manufacturing catalyst for carbon nanotube synthesis
JP2014154459A (en) * 2013-02-13 2014-08-25 Nippon Zeon Co Ltd Conductive film, gas diffusion layer for fuel cell, catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell, fuel cell, and method for manufacturing membrane electrode assembly for fuel cell
CN104711531A (en) * 2013-12-13 2015-06-17 北京中科三环高技术股份有限公司 Rotating cylinder for surface treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
JP2005125187A (en) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
JP2005125187A (en) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182066A (en) * 2011-03-02 2012-09-20 Toyota Motor Corp Method of manufacturing electrode catalyst
JP2014159623A (en) * 2013-02-20 2014-09-04 Kyoritz Inc Coating device and method
KR101791983B1 (en) * 2016-02-04 2017-11-01 한국화학연구원 Transparent hard coating film with high hardness properties and Method of Manufacturing The Same
JP2020087627A (en) * 2018-11-21 2020-06-04 トヨタ自動車株式会社 Negative electrode active material composite for all solid state battery
JP7119940B2 (en) 2018-11-21 2022-08-17 トヨタ自動車株式会社 Negative electrode active material composite for all-solid-state battery
KR20210018426A (en) 2019-05-24 2021-02-17 가부시키가이샤 크리에이티브 코팅즈 Powder film formation method, powder film formation container and ALD device
US11345994B2 (en) 2019-05-24 2022-05-31 Creative Coatings Co., Ltd. Method for forming coating film on powder, container for use in formation of coating film on powder, and ALP apparatus
EP4166689A1 (en) 2021-10-14 2023-04-19 Creative Coatings Co., Ltd. Method and apparatus for forming films on particles of powder
KR20230053508A (en) 2021-10-14 2023-04-21 가부시키가이샤 크리에이티브 코팅즈 Method and apparatus for forming film on powder

Also Published As

Publication number Publication date
WO2008018619A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP2008038218A (en) Sputtering apparatus with multiangular barrel, surface-modified carbon material and production method therefor
Raj Kumar et al. Biomass‐derived 3D carbon aerogel with carbon shell‐confined binary metallic nanoparticles in CNTs as an efficient electrocatalyst for microfluidic direct ethylene glycol fuel cells
Hu et al. Bimetallic Pt–Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation
Che et al. Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production
Jha et al. Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell
Liu et al. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells
Mabena et al. Nitrogen-doped carbon nanotubes as a metal catalyst support
Basri et al. Nanocatalyst for direct methanol fuel cell (DMFC)
Saha et al. Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode
Lai et al. Lignin-derived electrospun carbon nanofiber mats with supercritically deposited Ag nanoparticles for oxygen reduction reaction in alkaline fuel cells
Li et al. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation
Rajesh et al. Carbon nanotubes generated from template carbonization of polyphenyl acetylene as the support for electrooxidation of methanol
Knupp et al. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques
Ahmadi et al. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbon nanotubes for methanol oxidation
Zhou et al. Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt–Ru nanoparticles for effective methanol oxidation
Huang et al. PtCo alloy nanoparticles supported on graphene nanosheets with high performance for methanol oxidation
Zhu et al. Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction
Mukherjee et al. A review of the application of CNTs in PEM fuel cells
JP2006131494A (en) Carbon spherical nano-particle having one or more opening and manufacturing method for the same, and supported catalyst of carbon spherical nano-particle using the same carbon spherical nano-particle having one or more opening and fuel cell employing the same supported catalyst of carbon spherical nano-particle
Zhang et al. High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation
Huang et al. Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol
Chang et al. Well dispersed Pt nanoparticles on commercial carbon black oxidized by ozone possess significantly high electro-catalytic activity for methanol oxidation
Stamatin et al. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells
Zhao et al. Highly dispersed Pd nanoparticles on 2-aminophenoxazin-3-one functionalized MWCNTs surface for methanol electro-oxidation in alkaline media
Zhong et al. Effect of carbon nanofiber surface groups on oxygen reduction reaction of supported Pt electrocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706