US20120109034A1 - Interactive, wireless reduced-pressure dressings, methods, and systems - Google Patents

Interactive, wireless reduced-pressure dressings, methods, and systems Download PDF

Info

Publication number
US20120109034A1
US20120109034A1 US13/182,934 US201113182934A US2012109034A1 US 20120109034 A1 US20120109034 A1 US 20120109034A1 US 201113182934 A US201113182934 A US 201113182934A US 2012109034 A1 US2012109034 A1 US 2012109034A1
Authority
US
United States
Prior art keywords
pressure
reduced
sensor
wireless
dressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/182,934
Inventor
Christopher Brian Locke
Richard Daniel John Coulthard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCI Licensing Inc
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCI Licensing Inc filed Critical KCI Licensing Inc
Priority to US13/182,934 priority Critical patent/US20120109034A1/en
Assigned to KCI LICENSING, INC. reassignment KCI LICENSING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COULTHARD, RICHARD DANIEL JOHN, LOCKE, CHRISTOPHER BRIAN
Publication of US20120109034A1 publication Critical patent/US20120109034A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/80Suction pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00055Saturation indicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/05
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/73Suction drainage systems comprising sensors or indicators for physical values
    • A61M1/732Visual indicating means for vacuum pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/95Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with sensors for exudate composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/962Suction control thereof having pumping means on the suction site, e.g. miniature pump on dressing or dressing capable of exerting suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/966Suction control thereof having a pressure sensor on or near the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00089Wound bandages
    • A61F2013/0017Wound bandages possibility of applying fluid
    • A61F2013/00174Wound bandages possibility of applying fluid possibility of applying pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00365Plasters use
    • A61F2013/00536Plasters use for draining or irrigating wounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/0094Plasters containing means for sensing physical parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/74Suction control
    • A61M1/75Intermittent or pulsating suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/92Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing with liquid supply means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/964Suction control thereof having venting means on or near the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/60General characteristics of the apparatus with identification means
    • A61M2205/6054Magnetic identification systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Definitions

  • 61/445,383 entitled “Interactive, Wireless Reduced-Pressure Dressings, Methods, and Systems,” filed 22 Feb. 2011, which is incorporated herein by reference for all purposes [VAC.0999PRO]; and U.S. Provisional Patent Application Ser. No. 61/445,338, entitled “Reduced-Pressure Systems, Dressings, and Methods Employing a Wireless Pump,” filed 22 Feb. 2011, which is incorporated herein by reference for all purposes [VAC.1000PRO].
  • the present disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to interactive, wireless dressings, methods, and systems for use with reduced pressure.
  • a system for treating at least one tissue site with reduced pressure includes a first, wireless, reduced-pressure dressing for disposing proximate to the tissue site.
  • the first, wireless, reduced-pressure dressing includes a distribution manifold, a drape covering at least a portion of the distribution manifold, a Radio Frequency Identification (RFID) antenna, a first processor coupled to the RFID antenna, and a first sensor coupled to the first processor.
  • RFID Radio Frequency Identification
  • the system also includes a remote base unit and a reduced-pressure source.
  • the reduced-pressure source is fluidly coupled to the distribution manifold.
  • the remote base unit includes a RFID antenna and a second processor.
  • a wireless, reduced-pressure dressing for treating a tissue site with reduced pressure includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor.
  • the first sensor may be a pressure sensor.
  • a method for treating at least one tissue site with reduced pressure includes the steps of disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site.
  • the first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor.
  • the first sensor is a pressure sensor.
  • the method further includes providing a remote base unit that has a RFID reader, providing reduced pressure to the distribution manifold, transmitting a pressure inquiry signal from the RFID reader to the first, wireless, reduced-pressure dressing, and receiving a pressure message signal from the first, wireless, reduced-pressure dressing.
  • a method for treating at least one tissue site with reduced pressure includes the steps of disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site.
  • the first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor.
  • the first sensor may be a pressure sensor.
  • the method further includes providing a remote base unit having a RFID reader.
  • the remote base unit also includes a second processor coupled to the RFID reader.
  • the method further includes providing a reduced-pressure source; transmitting an ID inquiry signal from the remote base unit to the first, wireless, reduced-pressure dressing; receiving the ID inquiry signal at the first, wireless, reduced-pressure dressing and producing an ID message signal; transmitting the ID message signal from the first, wireless, reduced-pressure dressing to the remote base unit; receiving the ID message signal at the remote base unit; determining if the ID message signal is on an approved list; and activating the reduced-pressure source to provide reduced pressure to the distribution manifold if the ID message signal represents a dressing that is on the approved list or indicating an error if the ID message signal represents a dressing that is not on the approved list.
  • a system for treating at least one tissue site with reduced pressure includes a first, wireless, reduced-pressure dressing for disposing proximate to the tissue site.
  • the first, wireless, reduced-pressure dressing includes a distribution manifold, a drape covering at least a portion of the distribution manifold, a reduced-pressure interface for providing reduced pressure to the distribution manifold, a first RFID antenna, a first processor coupled to the first RFID antenna, a first sensor coupled to the first processor, and a membrane.
  • the membrane covers at least a portion of the reduced-pressure interface and is initially in an occlusive state that prevents or hinders fluid flow through the reduced-pressure interface.
  • the first, wireless, reduced-pressure dressing further includes a dissolution element proximate to the membrane that is adapted to change the membrane from the occlusive state to a non-occlusive state. When changed to the non-occlusive state, the membrane allows flow through reduced-pressure interface.
  • the system further includes a remote base unit having a RFID reader and a second processor.
  • the system also includes a reduced-pressure source fluidly coupled to the distribution manifold.
  • the second processor is configured to transmit an activation signal with the RFID reader to the first, wireless, reduced-pressure dressing and wherein in response to the activation signal, the first processor is configured to deliver power to the dissolution element to change the membrane from the occlusive state to the non-occlusive state.
  • the second processor is configured to transmit an ID inquiry signal with the RFID reader to the first, wireless, reduced-pressure dressing, and wherein, in response to the ID inquiry signal, the first processor is configured to transmit an ID message signal with the first RFID antenna.
  • the second processor is adapted to receive the ID message signal via the RFID reader and to determine if the ID message signal represents an acceptable dressing.
  • a system for treating a tissue site with reduced pressure includes a wireless, reduced-pressure dressing that includes a distribution manifold, a drape covering the distribution manifold, and a reduced-pressure interface.
  • the system also includes a WISP device associated with the wireless, reduced-pressure dressing, a remote base unit comprising a RFID reader, and a reduced-pressure source fluidly coupled to the wireless, reduced-pressure dressing.
  • a method for treating at least one tissue site with reduced pressure includes disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site.
  • the first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a reduced-pressure interface, and a membrane.
  • the membrane is initially occlusive and covers at least a portion of the reduced-pressure interface.
  • the membrane is adapted to prevent fluid flow through the reduced-pressure interface when in the occlusive state.
  • the first, wireless, reduced-pressure dressing also includes a first processor, a RFID antenna coupled to the first processor, a first sensor coupled to the first processor, and a dissolution element proximate to the membrane that is operable, when activated, to change the membrane from an occlusive state to a non-occlusive state.
  • the first sensor is a pressure sensor.
  • the dissolution element is coupled to the first processor.
  • the method further includes providing a remote base unit having a RFID reader.
  • the remote base unit includes a second processor.
  • the method also involves providing a reduced-pressure source fluidly coupled to the reduced-pressure interface, transmitting an activation signal from the remote base unit to the first, wireless, reduced-pressure dressing, whereupon the first processor activates the dissolution element to change the membrane to the non-occlusive state, and providing reduced pressure from the reduced-pressure source to the reduced-pressure interface.
  • FIG. 1 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure;
  • FIG. 2 is a schematic top view of a first, wireless, reduced-pressure dressing of the system of FIG. 1 ;
  • FIG. 3 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure;
  • FIG. 4 is a schematic top view of an illustrative embodiment of a first, wireless, reduced-pressure dressing
  • FIG. 5 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure
  • FIGS. 6A and 6B are an illustrative embodiment of a process flow chart for a system for treating at least one tissue site with reduced pressure.
  • the reduced pressure In treating a tissue site or sites on a patient with reduced pressure, it is typically desirable to maintain the reduced pressure in a therapeutic range. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between ⁇ 5 mm Hg and ⁇ 500 mm Hg and more typically ⁇ 75 mm Hg and ⁇ 300 mm Hg, and more typically still, ⁇ 100 to ⁇ 200 mm Hg. In some instances, failure to provide reduced pressure to a tissue site can lead to serious consequences. Accordingly, it may be desirable to monitor the pressure at each tissue site undergoing treatment.
  • multiple conduits may be used to deliver reduced pressure.
  • a single reduced-pressure source may be used with the multiple conduits branched off of one conduit.
  • pressure monitoring is typically located in existing reduced-pressure sources and only one conduit communicates pressure to the reduced-pressure source. If only one conduit, which is associated with one tissue site, is monitored, as is the case when monitoring is done at the reduced-pressure source alone, pressures at other tissue sites are unmonitored.
  • each tissue site of the plurality of tissue sites is monitored so that issues with reduced pressure delivery may be identified and addressed.
  • other parameters may be monitored to track progress or identify issues with healing of the tissue sites.
  • Reduced pressure may be used to treat open wounds to promote the granulation tissue. Reduced pressure may also be applied to a tissue site internal to a patient to remove fluids. For example, reduced pressure may be used to remove ascites from a patient's abdomen. In such situations it may be desirable to know the pressure at the internal location as well as other parameters. Reduced pressure may be used for other applications to promote healing.
  • the illustrative embodiments herein may be operable to perform these tasks.
  • RFID Radio Frequency Identification
  • RFID tags can be passive tags, active RFID tags, and battery-assisted passive tags. Generally, passive tags use no battery and do not transmit information unless they are energized by a RFID reader. Active tags have an on-board battery and can transmit autonomously (i.e., without being energized by a RFID reader). Battery-assisted passive tags typically have a small battery on-board that is activated in the presence of a RFID reader.
  • the enhanced RFID technology is a Wireless Identification and Sensing Platform (WISP) device.
  • WISPs involve powering and reading a WISP device, analogous to a RFID tag (or label), with a RFID reader.
  • the WISP device harvests the power from the RFID reader's emitted radio signals and performs sensing functions (and optionally performs computational functions).
  • the WISP device transmits a radio signal with information to the RFID reader.
  • the WISP device receives power from the RFID reader.
  • the WISP device has a tag or antenna that harvests energy and a microcontroller (or processor) that can perform a variety of tasks, such as sampling sensors.
  • the WISP device reports data to the RFID reader.
  • the WISP device includes an integrated circuit with power harvesting circuitry, demodulator, modulator, microcontroller, sensors, and may include one or more capacitors for storing energy.
  • a form of WISP technology has been developed by Intel Research Seattle (www.seattle.intel-research.net/wisp/).
  • tissue site 102 e.g., a wound site 104
  • the illustrative wound site 104 is shown through epidermis 108 and into the subcutaneous tissue 110 of a patient 106 .
  • the tissue site 102 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue.
  • Treatment of tissue site 102 may include removal of fluids, e.g., exudate or ascites. Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity.
  • Treatment of a tissue site 102 may include removal of fluids, e.g., exudate or ascites.
  • the system 100 may be used to treat the tissue site 102 with reduced pressure to help form granulation tissue (reduced pressure therapy), to remove fluids with out promoting tissue growth, or any other purpose for which reduced pressure is helpful.
  • the system 100 includes a first, wireless, reduced-pressure dressing 112 for disposing proximate to the tissue site 102 , a remote base unit 114 , and a reduced-pressure source 116 .
  • the first, wireless, reduced-pressure dressing 112 may include a distribution manifold 118 , a sealing member 120 (or drape) covering at least a portion of the distribution manifold 118 , a first RFID antenna 122 , a first processor 124 coupled to the first RFID antenna 122 , and a first sensor 126 coupled to the first processor 124 .
  • the first processor 124 and first sensor 126 may be associated with a board 127 or housing.
  • the sealing member 120 creates a fluid seal over the distribution manifold 118 on a portion of a patient's epidermis 108 or may help provide a fluid seal at other locations.
  • Fluid seal or “seal,” means a seal adequate to maintain reduced pressure at a desired tissue site given the particular reduced-pressure source or subsystem involved.
  • the sealing member 120 may include an attachment device 128 .
  • the sealing member 120 creates a sealed space 130 in which the distribution manifold 118 may be positioned.
  • a reduced-pressure interface 132 may be placed through an aperture in the sealing member 120 to provide reduced pressure into the sealed space 130 and in particular to the distribution manifold 118 .
  • Other wireless reduced-pressure dressings may be used as part of the system 100 to accommodate multiple tissue sites, and the additional wireless reduced-pressure dressings may be analogous to the first, wireless, reduced-pressure dressing 112 .
  • the term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site, e.g., tissue site 102 .
  • the distribution manifold 118 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the tissue site 102 around the distribution manifold 118 .
  • the flow channels or pathways are interconnected to improve distribution of fluids provided or removed from the tissue site 102 .
  • the distribution manifold 118 may also be a biocompatible material that is capable of being placed in contact with the tissue site 102 and distributing reduced pressure to the tissue site 102 .
  • manifolds 118 may include, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels.
  • flow channels such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels.
  • the examples are not mutually exclusive.
  • the distribution manifold 118 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application.
  • the distribution manifold 118 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels.
  • the porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments may include “closed cells.”
  • the distribution manifold 118 may also be used to distribute fluids such as medications, antibacterials, growth factors, and various solutions to the tissue site 102 .
  • Other layers may be included in or on the distribution manifold 118 such as absorptive materials, wicking materials, hydrophobic materials, and hydrophilic materials.
  • the distribution manifold 118 may be constructed from bioresorbable materials that may remain in a patient's body following use of the wireless, reduced-pressure dressing 112 .
  • Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA).
  • the polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones.
  • the distribution manifold 118 may further serve as a scaffold for new cell growth, or a scaffold material may be used in conjunction with the distribution manifold 118 to promote cell growth.
  • a scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth.
  • Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
  • the sealing member 120 may be any material that provides a fluid seal.
  • the sealing member 120 may, for example, be an impermeable or semi-permeable, elastomeric material.
  • “Elastomeric” means having the properties of an elastomer. It generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have ultimate elongations greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation.
  • elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane (PU), EVA film, co-polyester, and silicones.
  • sealing member materials include a silicone drape, 3M Tegaderm® drape, polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, Calif.
  • the attachment device 128 may be used to maintain the sealing member 120 against the patient's epidermis 108 or another layer, such as a gasket or additional sealing member, or another location.
  • the attachment device 128 may take numerous forms.
  • the attachment device 128 may be a medically acceptable, pressure-sensitive adhesive that extends about a periphery, a portion, or the entire sealing member 120 .
  • the first, wireless, reduced-pressure dressing 112 provides reduced pressure to one or more tissue sites 102 .
  • reduced pressure generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Reduced pressure may initially generate fluid flow in the distribution manifold 118 and proximate the tissue site 102 . As the hydrostatic pressure around the tissue site 102 approaches the desired reduced pressure, the flow may subside, and the reduced pressure may be maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Absolute pressure is referenced at times.
  • the reduced pressure delivered may be constant or varied (patterned or random) and may be delivered continuously or intermittently.
  • vacuum and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.
  • the reduced-pressure interface 132 may be a structure or means for fluidly coupling a reduced-pressure delivery conduit 134 to the distribution manifold 118 .
  • the reduced-pressure interface 132 may be a molded structure, a medical conduit (e.g., a portion of reduced-pressure delivery conduit 134 ) applied to the distribution manifold 118 , or other device for coupling.
  • a membrane when in an occlusive state, may prevent or hinder flow of fluid through the reduced-pressure interface 132 .
  • the reduced-pressure source 116 provides reduced pressure.
  • the reduced-pressure source 116 may be any device or source for supplying a reduced pressure, such as a vacuum pump 136 , wall suction, micro-pump, or other source.
  • a canister 138 may be included to receive and retain fluids 139 .
  • the remote base unit 114 may be electrically coupled by coupling 140 , e.g., wire or wireless signal, to the reduced-pressure source 116 to provide a pressure control signal to control the delivery of reduced pressure to the first, wireless, reduced-pressure dressing 112 as will be discussed further below.
  • the reduced-pressure source 116 and the remote base unit 114 may be an integrated unit in some embodiments.
  • Remote as used in the context of “remote base unit” typically means displaced from a wireless, reduced-pressure dressing by a distance greater than several millimeters and may include a base unit immediately adjacent to a wireless, reduced-pressure dressing but not electrically coupled.
  • the first sensor 126 may be a pressure sensor and may be coupled to the first processor 124 .
  • the first processor 124 is coupled to, or in communication with, the first RFID antenna 122 .
  • the first sensor 126 may thus develop a signal indicative of pressure experienced at a desired site in or on the first, wireless, reduced-pressure dressing 112 and that signal may be referred to as a pressure message signal.
  • the first sensor 126 may be another type of sensor.
  • the first sensor may be one of the following: a pressure sensor, temperature sensor, pH sensor, humidity sensor, Volatile Organic Compounds (VOC) sensor, blood sensor, or growth factors sensor.
  • the reduced-pressure interface 132 may include one or more pressure conduits or channels 144 to provide reduced pressure for sampling purposes to the first sensor 126 .
  • a second sensor 142 may also be included and coupled to the first processor 124 .
  • the second sensor 142 may be any type of sensor such as those previously mentioned for the first sensor 126 .
  • the first RFID antenna 122 , first processor 124 , and first sensor 126 may comprise a Wireless Identification and Sensing Platform (WISP) device.
  • WISP Wireless Identification and Sensing Platform
  • the first sensor 126 , second sensor 142 , or any other sensors may be located at any location in the first, wireless, reduced-pressure dressing 112 .
  • the first sensor 126 may be adjacent to the distribution manifold 118 .
  • the first sensor 126 may be at a remote portion of the sealing member 120 .
  • the sensors e.g., the first sensor 126
  • the sensors may be laminated to the sealing member 120 or otherwise attached to a portion of the sealing member 120 and may sample pressure in the sealed space 130 . While two sensors 126 , 142 have been mentioned, it should be understood that additional sensors could be provided if desired.
  • a battery is not associated, with the first, wireless, reduced-pressure dressing 112 .
  • the first, wireless, reduced-pressure dressing 112 is passive.
  • all the necessary energy for the first processor 124 and first sensor 126 (and any additional, optional sensors, e.g., second sensor 142 ) is harvested from signals received by the first RFID antenna 122 from the remote base unit 114 .
  • a battery may be included to provide the necessary power. With the power from the battery, the first, wireless, reduced-pressure dressing 112 may transmit signals independent of any signal from the remote base unit 114 .
  • a battery may be included to provide a portion of the necessary power.
  • the remote base unit 114 may include a board or other structure 115 that includes RFID reader 146 and a second processor 148 .
  • the remote base unit 114 may also include a first display 152 , e.g., a pressure indicator 154 .
  • the first display 152 or indicator is for displaying a quantity measured by the first sensor 126 or an indication of adequate pressure.
  • additional displays or indicators may be included, e.g., a temperature display 156 .
  • One display may be used for displaying multiple items, e.g., the data from multiple sensors.
  • a control panel 158 such as a push-button panel or graphical user interface, may be included to receive input from a user.
  • the second processor 148 may be coupled by coupling 140 to the reduced-pressure source 116 to provide a control signal. The control signal allows for automated adjustments to the pressure at the tissue site 102 by controlling the pressure supplied by the reduced-pressure source 116 .
  • the RFID reader 146 may be a transceiver for transmitting to and receiving signals from the first RFID antenna 122 . If not already converted, the RFID reader 146 may convert received signals to digital format and provide the signals to the second processor 148 .
  • the remote base unit 114 may read signals as close as several millimeters away or as far as 30 feet or more away or any distance between, e.g., 5, 10, or 20 feet.
  • the remote base unit 114 may poll as often as desired, e.g., every 1 ⁇ 2 second, every second, every hour, or any other time interval.
  • the second processor 148 includes memory and instructions necessary to perform various desired steps. For example, a pairing protocol may be executed. In the pairing protocol, the second processor 148 with the RFID reader 146 transmits an ID inquiry signal to the first, wireless, reduced-pressure dressing 112 to inquire about the identification of the first, wireless, reduced-pressure dressing 112 . In response, the first processor 124 transmits an ID message signal. If the first, wireless, reduced-pressure dressing 112 is not suitable for use with the remote base unit 114 as determined by comparing the ID message with an approved list or by information contained in the ID message signal itself, the remote base unit 114 will not proceed with executing instructions as part of therapy. This protocol should safeguard against using a dressing that is not approved and which may underperform with the remote base unit 114 .
  • the second processor 148 , RFID reader 146 , first RFID antenna 122 , and first processor 124 may be configured to perform the following steps: transmitting an ID inquiry signal from the remote base unit 114 to the first, wireless, reduced-pressure dressing 112 ; receiving the ID inquiry signal at the first, wireless, reduced-pressure dressing 112 and producing an ID message signal; transmitting the ID message signal from the first, wireless, reduced-pressure dressing 112 to the remote base unit 114 ; receiving the ID message signal at the remote base unit 114 ; determining if the ID message signal represents a dressing on an approved list; and activating the reduced-pressure source 116 to provide reduced pressure to the distribution manifold 118 if the ID message signal represents a dressing that is on the approved list (or otherwise acceptable) or indicating an error if the ID message signal represents a dressing that is not on the approved list.
  • FIG. 4 another illustrative embodiment of a first, wireless, reduced-pressure dressing 112 is presented.
  • the first, wireless, reduced-pressure dressing 112 is analogous to the first, wireless, reduced-pressure dressing 112 of FIGS. 1-3 in most respects.
  • a sealing member 120 or film, covers the first RFID antenna 122 , first processor 124 , and first sensor 126 .
  • a reduced-pressure interface (not shown but analogous to reduced-pressure interface 132 of FIG. 1 ) may be coupled over an aperture 121 in the sealing member 120 to allow fluid communication, but initially a membrane 160 prevents or hinders flow through the aperture 121 .
  • the membrane 160 may have an occlusive state and a non-occlusive state.
  • the membrane 160 may be in the occlusive state when the membrane 160 is an integral layer and may be non-occlusive when one or more apertures are created in the membrane 160 that allow fluid flow through the membrane.
  • an activating event e.g., the application heat, light, ultrasound, a chemical, or other activating agent.
  • a dissolution element 162 is disposed proximate to the membrane 160 and is adapted to (or operable to) change the membrane 160 from an occlusive state to a non-occlusive state.
  • the dissolution element 162 may be activated by the first processor 124 to produce the activating event. In other embodiments, the dissolution element 162 may be activated by the second processor 148 or an external stimulus.
  • the dissolution element 162 may be, for example and not by way of limitation, an electrically resistive heating element. Power may be supplied from the first processor 124 to the dissolution element 162 to sufficiently activate the electrically resistive heating element to melt, dissolve or otherwise create an aperture in the membrane 160 .
  • the dissolution element 162 is an ultrasonic device that creates an aperture in membrane 160 when activated.
  • the dissolution element 162 is a chemical distribution device that upon receiving a signal from the first processor 124 releases an agent that causes the membrane 160 to dissolve, at least in part, to create an aperture 121 .
  • the dissolution element 162 is a light with a first wavelength and the membrane 160 reacts to the light with the first wavelength and dissolves at least a portion to create an aperture.
  • the membrane 160 may be made from numerous materials depending on the activation device used as the dissolution element 162 .
  • the membrane 160 may comprise a semi-crystalline thermoplastic film, such as LDPE, HDPE, PP, PA, having a thickness in the range 15-100 ⁇ m.
  • the exact thickness of the membrane 160 depends on the material selected and the level of reduced pressure that the membrane 160 will be required to resist.
  • the temperature required to rupture the membrane 160 should be approaching or at the melting point of the polymer chosen. If heated whilst the membrane 160 is under strain from applied negative pressure, the temperature required to breakdown or dissolve the membrane 160 may be reduced.
  • the dissolution element 162 may be a component laminated to the membrane 160 during the manufacture of the membrane 160 or attached later in production.
  • the dissolution element 162 may be a conductive component that is molded into the membrane 160 or added to the membrane 160 so that the membrane 160 itself is conductive.
  • the conductive material may be metallic or one of the other materials that are commonly used to provide conductivity to polymers. Although the temperature required to melt some of the membrane or film materials mentioned may be greater than 100° C., the dissolution element 162 is separated from the patient sufficiently to avoid injury or other potential complications.
  • the membrane 160 may be extremely thin such that very little energy is required to form an aperture through the membrane 160 .
  • an initial activation may be carried out by the remote base unit 114 and first processor 124 .
  • the remote base unit 114 may transmit an activation signal from the remote base unit 114 to the first, wireless, reduced-pressure dressing 112 .
  • the first processor 124 activates the dissolution element 162 to change the membrane 160 to the non-occlusive state such as by creating an aperture over the aperture 121 .
  • Reduced pressure from the reduced-pressure source 116 may then be delivered through the reduced-pressure interface 132 and the aperture 121 to the distribution manifold 118 .
  • the remote base unit will not respond to the activation signal and will not change the membrane 160 from the occlusive state to the non-occlusive state. Accordingly, the first, wireless, reduced-pressure dressing 112 would be unable to establish fluid flow through the membrane 160 to the distribution manifold 118 .
  • the first, wireless, reduced-pressure dressing 112 is disposed proximate to the tissue site 102 .
  • the distribution manifold 118 is placed adjacent to the tissue site 102 .
  • the sealing member 120 is releaseably attached to the epidermis 108 with the attachment device 128 .
  • the reduced-pressure delivery conduit 134 is fluidly coupled between the reduced-pressure interface 132 and the reduced-pressure source 116 .
  • the remote base unit 114 may be activated by the user with the control panel 158 .
  • the remote base unit 114 may initially transmit an activation signal to the first, wireless, reduced-pressure dressing 112 to cause the membrane 160 to change from an occlusive state to a non-occlusive state as previously described.
  • the remote base unit 114 may then transmit an ID inquiry signal to identify the dressing type.
  • the first, wireless, reduced-pressure dressing 112 receives the ID inquiry signal and, in response, transmits an ID message signal indicative of the dressing type.
  • the second processor 148 may receive the ID message signal and look up the ID message signal or otherwise determine if the dressing represented by the ID message signal is acceptable.
  • the second processor 148 may cause a control signal to be sent, e.g., by coupling 140 , to the reduced-pressure source 116 to activate the reduced-pressure source 116 and begin treatment with reduced pressure.
  • the dressing type may be validated before an activation signal is sent.
  • the remote base unit 114 may be configured to transmit a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112 .
  • the first, wireless, reduced-pressure dressing 112 ascertains the pressure with the first sensor 126 and transmits a pressure message signal to the remote base unit 114 .
  • the remote base unit 114 determines if the pressure is greater than a first target pressure (on an absolute scale), and if so, continues operation of the reduced-pressure source 116 . But if the pressure message signal indicates that the pressure is less than the first target pressure (on absolute scale), the second processor 148 may send a control signal stopping the reduced pressure source 116 from delivering reduced pressure.
  • Operation of the reduced-pressure source 116 may be by manipulation of a valve or power to a vacuum pump or other like techniques.
  • the remote base unit 114 may interrogate the first, wireless, reduced-pressure dressing 112 from time to time to monitor the pressure. If the pressure becomes greater than the first target pressure (on an absolute scale), the reduced-pressure source 116 will again be activated by a control signal. Thus, a feedback loop may be utilized.
  • a plurality of wireless, reduced-pressure dressings may be used.
  • the first, wireless, reduced-pressure dressing 112 may be placed at the first tissue site 102 and a second, wireless, reduced-pressure dressing (not shown, but analogous to the reduced-pressure dressing 112 ) may be placed at a second tissue site.
  • the remote base unit 114 may communicate with both the first, wireless, reduced-pressure dressing 112 and the second, wireless, reduced-pressure dressing. This arrangement allows monitoring and control of reduced pressure at each of the plurality of tissue sites. Multiple remote base units 114 may also be used.
  • each first processor 124 may include dynamic RAM that includes a register that is configured when paired to a particular remote base unit 114 .
  • the first, wireless, reduced-pressure dressing 112 is able to distinguish which remote base unit 114 has been assigned.
  • the first, wireless, reduced-pressure dressing 112 may include a reset button that transmits a reset signal to the first processor 124 to allow the dressing and base association to be changed.
  • the system 100 includes a first, wireless, reduced-pressure dressing 112 .
  • the system 100 is analogous in most respects to the system 100 of FIG. 1 , except that a reduced-pressure source 116 is a micro-pump 117 , e.g., a piezoelectric pump, and is adjacent to the distribution manifold 118 .
  • a reduced-pressure source 116 is a micro-pump 117 , e.g., a piezoelectric pump, and is adjacent to the distribution manifold 118 .
  • an absorbent layer 119 is also explicitly included.
  • “adjacent” means next to, in the vicinity of, and also includes in.
  • a dedicated battery 166 may be coupled to the micro-pump 117 to provide power to the micro-pump 117 .
  • a vent line 168 may be used to allow the micro-pump 117 to vent or exhaust outside of the first, wireless, reduced-pressure dressing 112 .
  • a first processor (analogous to first processor 124 of FIG. 3 ) that is associated with a WISP or RFID device 170 , may be instructed by the remote base unit 114 to deliver a control signal to the micro-pump 117 when necessary.
  • the first processor may receive a pressure message signal indicative of the pressure at the distribution manifold 118 , compare the pressure to a target pressure, and in response deliver a control signal to the micro pump 117 to control the micro-pump 117 as needed.
  • the device 170 may harvest power to not only energize the first processor and first sensor, but also the micro-pump 117 . It should be noted that a capacitor (not explicitly shown) may be included to help build and retain a charge for powering devices in the first, wireless, reduced-pressure dressing 112 .
  • the remote base unit 114 transmits an activation signal to the first, wireless, reduced pressure dressing 112 .
  • the first RFID antenna 122 receives the activation signal.
  • the activation signal energizes the first processor 124 .
  • the first processor 124 activates the dissolution element 162 .
  • the dissolution element 162 changes the membrane 160 from an occlusive state to a non-occlusive state that allows flow. It should be appreciated that the need to change the membrane 160 to a non-occlusive state helps make sure that only appropriate (approved) remote base units 114 are used with the first, wireless, reduced-pressure dressing 112 .
  • the remote base unit 114 transmits an ID inquiry signal to the first, wireless, reduced-pressure dressing 112 .
  • the first RFID antenna 122 receives the ID inquiry signal.
  • the ID inquiry signal energizes the first processor 124 and provides an identification request to the first processor 124 .
  • the first processor 124 transmits an ID message signal from the first RFID antenna 122 to the RFID reader 146 on the remote base unit 114 .
  • the remote base unit 114 waits for the ID message signal at interrogatory 206 .
  • the second processor 148 waits a predetermined time for the ID message signal. If the ID message signal is not received during the predetermined time, the process proceeds to step 208 where an error flag is posted and the process ends at 210 .
  • the error flag may include posting a message for display at control panel 158 or sounding an alarm or providing other notification. If the ID message signal is received, the process proceeds to interrogatory 212 .
  • step 212 inquiry is made as to whether the ID message signal represents a dressing that is acceptable or approved.
  • the second processor 148 compares the dressing represented by the ID message signal with a list of acceptable or approved dressings. If the dressing represented by the ID message signal is on the list of acceptable or approved dressings, the process continues to step 214 and if not the process proceeds to step 208 and an error flag is posted and the process ends at 210 .
  • a first chronograph, T 1 is initiated to keep a running cycle time. The process then proceeds to step 216 .
  • the second processor 148 provides a control signal via coupling 140 to the reduced-pressure source 116 to activate the reduced-pressure source 116 . Once the reduced-pressure source 116 is activated, reduced pressure flows to the first, wireless, reduced-pressure dressing 112 .
  • the remote base unit 114 transmits a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112 .
  • the first RFID antenna 122 receives the pressure inquiry signal.
  • the pressure inquiry signal energizes the first processor 124 and first sensor 126 .
  • the first processor 124 transmits a pressure message signal to the remote base unit 114 .
  • the RFID reader 146 receives and delivers the pressure message signal to the second processor 148 .
  • the second processor 148 then compares the pressure message signal, which indicates the pressure substantially at the distribution manifold 118 or other desired location, with a target pressure. If the pressure message signal indicates a pressure that is greater than the target pressure on an absolute scale, then more reduced pressure is needed and the delivery of reduced pressure continues. The process proceeds to interrogatory 222 . On the other hand, if the pressure message signal indicates a pressure that is less than the target pressure on an absolute scale, then the process proceeds to step 224 .
  • the second processor 148 compares the elapsed time of the first chronograph, T 1 , with a maximum time, T 1 max. If the maximum time has been exceeded, the process continues to step 226 . At step 226 , the second processor 148 posts an error flag and the process ends at 228 . The error flag may include sounding an alarm or displaying a message on the control panel 158 or otherwise notifying the user of a problem. If the maximum time has not been exceeded, the process returns to step 218 . The loop ( 218 , 220 , 222 , 218 , . . . ) continues until the maximum time is exceeded or a suitable reduced pressure is reached.
  • step 224 the second processor 148 initiates a therapy chronograph that keeps an elapsed time, T 2 , for therapy.
  • step 230 the second processor 148 initiates a cycle chronograph, T 3 .
  • the process then proceeds to interrogatory 232 , wherein the elapsed therapy time, T 2 , is compared to a maximum allowed value. If the elapsed therapy time, T 2 , is greater than the maximum allowed value, then a flag indicating that therapy is complete is given at step 234 and the process ends 250 . Otherwise, the process continues to step 236 .
  • the remote base unit 114 transmits a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112 .
  • the first RFID antenna 122 receives the pressure inquiry signal.
  • the pressure inquiry signal is then delivered to the first processor 124 .
  • the pressure inquiry signal energizes the first processor 124 and the first sensor 126 .
  • the first processor 124 develops a pressure message signal.
  • the first processor 124 and first RFID antenna 122 transmit the pressure message signal to the remote base unit 114 .
  • the pressure message signal is received and delivered to the second processor 148 .
  • the pressure at the distribution manifold 118 (or other desired location) as represented by the pressure message signal is compared to a target value on an absolute scale.
  • the second processor 148 transmits (or continues) a control signal to the reduced-pressure source 116 at step 240 . If the pressure is less than the target value, the process pauses at step 242 and continues to monitor pressure by returning to step 230 .
  • the elapsed cycle time, T 3 is compared to a maximum value, T 3 max. If the elapsed cycle time T 3 is greater than the maximum value T 3 max, the system 100 is apparently unable to adequately lower the pressure. Such a condition may occur because of a leak. Accordingly, an error flag or alarm is initiated at step 246 and the process ends 248 . If the elapsed cycle time, T 3 , is less than the maximum value, T 3 max, the cycle continues with the process going to interrogatory 232 .
  • FIGS. 6A-6B The process presented in FIGS. 6A-6B is one illustrative embodiment. Many embodiments are possible. Other process flows may include analogous instructions for receiving temperature message signals from the second sensor 142 or other data depending on the sensor type. In another illustrative embodiment, the activation step may follow the steps required to confirm an approved dressing.
  • the reduced-pressure delivery conduit 134 may be relatively smaller as a pressure sensing lumen is not required as part of the reduced-pressure delivery conduit 134 .
  • pressure is measured and the pressure signal is transmitted to the remote base unit 114 without transmission through a wire and without requiring sampling pressure to be communicated through the reduced-pressure delivery conduit 134 .
  • the first, wireless, reduced-pressure dressing may be a distribution manifold enclosed by a drape that has been fenestrated or otherwise allows flow.
  • This illustrative embodiment is suitable for use in a body cavity that is closed, such as placing one in an abdominal cavity and monitoring pressure therein.
  • the pressure sensor or other sensors may be located anywhere in or on the dressing and are operable to communicate with a remote base outside of the body cavity.
  • the pressure sensor may be located at peripheral edge of the dressing that is used in an abdominal cavity. The peripheral edge is disposed near the patient's paracolic gutter to monitor pressure and fluid removal.
  • the RFID antenna and first processor may be adapted to provide an identification message signal for other purposes than those previously presented.
  • the identification message signal may be used for inventory purposes.
  • a scanner with a RFID reader may be used to scan a wireless, reduced-pressure dressing and receive the identification message signal.
  • a release pouch that contains a fluid.
  • the release pouch may be formed as part of a wireless, reduced-pressure dressing.
  • the release pouch may be formed, for example, by an additional membrane attached on a patient-facing side of the sealing member.
  • a dissolution element analogous to dissolution element 162 may be associated with the release pouch.
  • the dissolution element allows the first processor 124 to selectively dissolve or open a portion of the release pouch to release any contents of the pouch.
  • the release pouch may be used to retain medicines or other substances and a wireless signal may be sent to the wireless, reduced-pressure dressing causing release of the medicine. For example, if a sensor detects bacterial colonization, a signal may be sent, opening the pouch and releasing an anti-biotic, or if high blood content is detected, a signal may be sent releasing a coagulent.
  • the RFID antenna may be remote from the first processor, but electrically coupled to the first processor.
  • a larger RFID antenna may be used on the patient near the tissue site to be treated, and a coupling wire may extend from the RFID antenna to the first processor or first sensor adjacent to or on the distribution manifold.

Abstract

Systems, methods, and dressings are presented that involve using a RFID device in a dressing to provide pressure data or other data to a remote base unit. The dressing is an interactive dressing. The reduced pressure in the dressing may be monitored and used to control delivery of reduced pressure. In one instance, the pressure data at each dressing allows a plurality of tissue sites to be monitored and used with as single remote base unit. In another instance, devices and methods for assuring a proper pairing of reduced-pressure dressings and remote base units are also presented. Other systems, methods, and dressings are presented.

Description

    RELATED APPLICATION
  • The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/407,194, entitled “System and Methods For Electrically Detecting The Presence of Exudate In Reduced-Pressure Dressings,” filed 27 Oct. 2010, which is incorporated herein by reference for all purposes [VAC.0975PRO1]; U.S. Provisional Patent Application Ser. No. 61/418,730, entitled “Systems and Methods for Electrically Detecting the Presence of Exudate in Dressings,” filed 1 Dec. 2010, which is incorporated herein by reference for all purposes [VAC.0975PRO2]; U.S. Provisional Patent Application Ser. No. 61/445,383, entitled “Interactive, Wireless Reduced-Pressure Dressings, Methods, and Systems,” filed 22 Feb. 2011, which is incorporated herein by reference for all purposes [VAC.0999PRO]; and U.S. Provisional Patent Application Ser. No. 61/445,338, entitled “Reduced-Pressure Systems, Dressings, and Methods Employing a Wireless Pump,” filed 22 Feb. 2011, which is incorporated herein by reference for all purposes [VAC.1000PRO].
  • FIELD
  • The present disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to interactive, wireless dressings, methods, and systems for use with reduced pressure.
  • BACKGROUND
  • Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Typically, when applied to open wounds, reduced pressure is applied to tissue through a porous pad or other manifold device. The porous pad distributes reduced pressure to the tissue and channels fluids that are drawn from the tissue. At times, a patient may have a large wound requiring treatment at numerous sites or has a plurality of tissue sites requiring treatment. At times, reduced pressure may also be used within a body cavity to remove fluids among other things.
  • SUMMARY
  • According to an illustrative embodiment, a system for treating at least one tissue site with reduced pressure includes a first, wireless, reduced-pressure dressing for disposing proximate to the tissue site. The first, wireless, reduced-pressure dressing includes a distribution manifold, a drape covering at least a portion of the distribution manifold, a Radio Frequency Identification (RFID) antenna, a first processor coupled to the RFID antenna, and a first sensor coupled to the first processor. The system also includes a remote base unit and a reduced-pressure source. The reduced-pressure source is fluidly coupled to the distribution manifold. The remote base unit includes a RFID antenna and a second processor.
  • According to another illustrative embodiment, a wireless, reduced-pressure dressing for treating a tissue site with reduced pressure includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor. The first sensor may be a pressure sensor.
  • According to another illustrative embodiment, a method for treating at least one tissue site with reduced pressure includes the steps of disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site. The first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor. The first sensor is a pressure sensor. The method further includes providing a remote base unit that has a RFID reader, providing reduced pressure to the distribution manifold, transmitting a pressure inquiry signal from the RFID reader to the first, wireless, reduced-pressure dressing, and receiving a pressure message signal from the first, wireless, reduced-pressure dressing.
  • According to another illustrative embodiment, a method for treating at least one tissue site with reduced pressure includes the steps of disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site. The first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a first processor, a RFID antenna coupled to the first processor, and a first sensor coupled to the first processor. The first sensor may be a pressure sensor. The method further includes providing a remote base unit having a RFID reader. The remote base unit also includes a second processor coupled to the RFID reader. The method further includes providing a reduced-pressure source; transmitting an ID inquiry signal from the remote base unit to the first, wireless, reduced-pressure dressing; receiving the ID inquiry signal at the first, wireless, reduced-pressure dressing and producing an ID message signal; transmitting the ID message signal from the first, wireless, reduced-pressure dressing to the remote base unit; receiving the ID message signal at the remote base unit; determining if the ID message signal is on an approved list; and activating the reduced-pressure source to provide reduced pressure to the distribution manifold if the ID message signal represents a dressing that is on the approved list or indicating an error if the ID message signal represents a dressing that is not on the approved list.
  • According to another illustrative embodiment, a system for treating at least one tissue site with reduced pressure includes a first, wireless, reduced-pressure dressing for disposing proximate to the tissue site. The first, wireless, reduced-pressure dressing includes a distribution manifold, a drape covering at least a portion of the distribution manifold, a reduced-pressure interface for providing reduced pressure to the distribution manifold, a first RFID antenna, a first processor coupled to the first RFID antenna, a first sensor coupled to the first processor, and a membrane. The membrane covers at least a portion of the reduced-pressure interface and is initially in an occlusive state that prevents or hinders fluid flow through the reduced-pressure interface. The first, wireless, reduced-pressure dressing further includes a dissolution element proximate to the membrane that is adapted to change the membrane from the occlusive state to a non-occlusive state. When changed to the non-occlusive state, the membrane allows flow through reduced-pressure interface. The system further includes a remote base unit having a RFID reader and a second processor. The system also includes a reduced-pressure source fluidly coupled to the distribution manifold. The second processor is configured to transmit an activation signal with the RFID reader to the first, wireless, reduced-pressure dressing and wherein in response to the activation signal, the first processor is configured to deliver power to the dissolution element to change the membrane from the occlusive state to the non-occlusive state. The second processor is configured to transmit an ID inquiry signal with the RFID reader to the first, wireless, reduced-pressure dressing, and wherein, in response to the ID inquiry signal, the first processor is configured to transmit an ID message signal with the first RFID antenna. The second processor is adapted to receive the ID message signal via the RFID reader and to determine if the ID message signal represents an acceptable dressing.
  • According to another illustrative embodiment, a system for treating a tissue site with reduced pressure includes a wireless, reduced-pressure dressing that includes a distribution manifold, a drape covering the distribution manifold, and a reduced-pressure interface. The system also includes a WISP device associated with the wireless, reduced-pressure dressing, a remote base unit comprising a RFID reader, and a reduced-pressure source fluidly coupled to the wireless, reduced-pressure dressing.
  • According to another illustrative embodiment, a method for treating at least one tissue site with reduced pressure includes disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site. The first, wireless, reduced-pressure dressing includes a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site, a drape covering at least a portion of the distribution manifold, a reduced-pressure interface, and a membrane. The membrane is initially occlusive and covers at least a portion of the reduced-pressure interface. The membrane is adapted to prevent fluid flow through the reduced-pressure interface when in the occlusive state. The first, wireless, reduced-pressure dressing also includes a first processor, a RFID antenna coupled to the first processor, a first sensor coupled to the first processor, and a dissolution element proximate to the membrane that is operable, when activated, to change the membrane from an occlusive state to a non-occlusive state. The first sensor is a pressure sensor. The dissolution element is coupled to the first processor. The method further includes providing a remote base unit having a RFID reader. The remote base unit includes a second processor. The method also involves providing a reduced-pressure source fluidly coupled to the reduced-pressure interface, transmitting an activation signal from the remote base unit to the first, wireless, reduced-pressure dressing, whereupon the first processor activates the dissolution element to change the membrane to the non-occlusive state, and providing reduced pressure from the reduced-pressure source to the reduced-pressure interface.
  • Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure;
  • FIG. 2 is a schematic top view of a first, wireless, reduced-pressure dressing of the system of FIG. 1;
  • FIG. 3 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure;
  • FIG. 4 is a schematic top view of an illustrative embodiment of a first, wireless, reduced-pressure dressing;
  • FIG. 5 is a schematic diagram, with a portion shown in cross section, of an illustrative embodiment of a system for treating at least one tissue site with reduced pressure; and
  • FIGS. 6A and 6B are an illustrative embodiment of a process flow chart for a system for treating at least one tissue site with reduced pressure.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These illustrative embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
  • In treating a tissue site or sites on a patient with reduced pressure, it is typically desirable to maintain the reduced pressure in a therapeutic range. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg and more typically −75 mm Hg and −300 mm Hg, and more typically still, −100 to −200 mm Hg. In some instances, failure to provide reduced pressure to a tissue site can lead to serious consequences. Accordingly, it may be desirable to monitor the pressure at each tissue site undergoing treatment.
  • To accommodate multiple tissue sites, e.g., multiple wounds, multiple conduits may be used to deliver reduced pressure. For example, a single reduced-pressure source may be used with the multiple conduits branched off of one conduit. Currently, pressure monitoring is typically located in existing reduced-pressure sources and only one conduit communicates pressure to the reduced-pressure source. If only one conduit, which is associated with one tissue site, is monitored, as is the case when monitoring is done at the reduced-pressure source alone, pressures at other tissue sites are unmonitored. With at least some of the illustrative embodiments herein, each tissue site of the plurality of tissue sites is monitored so that issues with reduced pressure delivery may be identified and addressed. Moreover, other parameters may be monitored to track progress or identify issues with healing of the tissue sites.
  • Reduced pressure may be used to treat open wounds to promote the granulation tissue. Reduced pressure may also be applied to a tissue site internal to a patient to remove fluids. For example, reduced pressure may be used to remove ascites from a patient's abdomen. In such situations it may be desirable to know the pressure at the internal location as well as other parameters. Reduced pressure may be used for other applications to promote healing. The illustrative embodiments herein may be operable to perform these tasks.
  • The illustrative embodiments herein involve using Radio Frequency Identification (RFID) technology, including enhanced RFID technology, to wirelessly transmit and receive sensing information from a reduced-pressure dressing. RFID uses a RFID tag or label that is on a target and a RFID reader that energizes and reads a signal from the RFID tag. Most RFID tags include an integrated circuit for storing and processing information, a modulator, and demodulator. To enhance the RFID tag, a microcontroller (or processor) and sensor are incorporated that allow sensing and optional computational functions to occur. RFID tags can be passive tags, active RFID tags, and battery-assisted passive tags. Generally, passive tags use no battery and do not transmit information unless they are energized by a RFID reader. Active tags have an on-board battery and can transmit autonomously (i.e., without being energized by a RFID reader). Battery-assisted passive tags typically have a small battery on-board that is activated in the presence of a RFID reader.
  • In one illustrative embodiment, the enhanced RFID technology is a Wireless Identification and Sensing Platform (WISP) device. WISPs involve powering and reading a WISP device, analogous to a RFID tag (or label), with a RFID reader. The WISP device harvests the power from the RFID reader's emitted radio signals and performs sensing functions (and optionally performs computational functions). The WISP device transmits a radio signal with information to the RFID reader. The WISP device receives power from the RFID reader. The WISP device has a tag or antenna that harvests energy and a microcontroller (or processor) that can perform a variety of tasks, such as sampling sensors. The WISP device reports data to the RFID reader. In one illustrative embodiment, the WISP device includes an integrated circuit with power harvesting circuitry, demodulator, modulator, microcontroller, sensors, and may include one or more capacitors for storing energy. A form of WISP technology has been developed by Intel Research Seattle (www.seattle.intel-research.net/wisp/).
  • Referring now to the drawings and initially to FIGS. 1-3, a system 100 for treating at least one tissue site 102, e.g., a wound site 104, with reduced pressure is presented. The illustrative wound site 104 is shown through epidermis 108 and into the subcutaneous tissue 110 of a patient 106. The tissue site 102 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. Treatment of tissue site 102 may include removal of fluids, e.g., exudate or ascites. Unless otherwise indicated, as used throughout this document, “or” does not require mutual exclusivity. Treatment of a tissue site 102 may include removal of fluids, e.g., exudate or ascites.
  • The system 100 may be used to treat the tissue site 102 with reduced pressure to help form granulation tissue (reduced pressure therapy), to remove fluids with out promoting tissue growth, or any other purpose for which reduced pressure is helpful. The system 100 includes a first, wireless, reduced-pressure dressing 112 for disposing proximate to the tissue site 102, a remote base unit 114, and a reduced-pressure source 116.
  • The first, wireless, reduced-pressure dressing 112 may include a distribution manifold 118, a sealing member 120 (or drape) covering at least a portion of the distribution manifold 118, a first RFID antenna 122, a first processor 124 coupled to the first RFID antenna 122, and a first sensor 126 coupled to the first processor 124. The first processor 124 and first sensor 126 may be associated with a board 127 or housing.
  • The sealing member 120 creates a fluid seal over the distribution manifold 118 on a portion of a patient's epidermis 108 or may help provide a fluid seal at other locations. “Fluid seal,” or “seal,” means a seal adequate to maintain reduced pressure at a desired tissue site given the particular reduced-pressure source or subsystem involved. The sealing member 120, may include an attachment device 128. The sealing member 120 creates a sealed space 130 in which the distribution manifold 118 may be positioned. A reduced-pressure interface 132 may be placed through an aperture in the sealing member 120 to provide reduced pressure into the sealed space 130 and in particular to the distribution manifold 118. Other wireless reduced-pressure dressings may be used as part of the system 100 to accommodate multiple tissue sites, and the additional wireless reduced-pressure dressings may be analogous to the first, wireless, reduced-pressure dressing 112.
  • With respect to the distribution manifold 118, the term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site, e.g., tissue site 102. The distribution manifold 118 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the tissue site 102 around the distribution manifold 118. In one illustrative embodiment, the flow channels or pathways are interconnected to improve distribution of fluids provided or removed from the tissue site 102. The distribution manifold 118 may also be a biocompatible material that is capable of being placed in contact with the tissue site 102 and distributing reduced pressure to the tissue site 102. Examples of manifolds 118 may include, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. The examples are not mutually exclusive.
  • The distribution manifold 118 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. In one embodiment, the distribution manifold 118 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments may include “closed cells.” In some situations, the distribution manifold 118 may also be used to distribute fluids such as medications, antibacterials, growth factors, and various solutions to the tissue site 102. Other layers may be included in or on the distribution manifold 118 such as absorptive materials, wicking materials, hydrophobic materials, and hydrophilic materials.
  • In one illustrative embodiment, the distribution manifold 118, or portions of the distribution manifold 118, may be constructed from bioresorbable materials that may remain in a patient's body following use of the wireless, reduced-pressure dressing 112. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones. The distribution manifold 118 may further serve as a scaffold for new cell growth, or a scaffold material may be used in conjunction with the distribution manifold 118 to promote cell growth. A scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.
  • The sealing member 120 may be any material that provides a fluid seal. The sealing member 120 may, for example, be an impermeable or semi-permeable, elastomeric material. “Elastomeric” means having the properties of an elastomer. It generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have ultimate elongations greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane (PU), EVA film, co-polyester, and silicones. Additional, specific examples of sealing member materials include a silicone drape, 3M Tegaderm® drape, polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, Calif.
  • The attachment device 128 may be used to maintain the sealing member 120 against the patient's epidermis 108 or another layer, such as a gasket or additional sealing member, or another location. The attachment device 128 may take numerous forms. For example, the attachment device 128 may be a medically acceptable, pressure-sensitive adhesive that extends about a periphery, a portion, or the entire sealing member 120.
  • The first, wireless, reduced-pressure dressing 112 provides reduced pressure to one or more tissue sites 102. As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Reduced pressure may initially generate fluid flow in the distribution manifold 118 and proximate the tissue site 102. As the hydrostatic pressure around the tissue site 102 approaches the desired reduced pressure, the flow may subside, and the reduced pressure may be maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Absolute pressure is referenced at times. The reduced pressure delivered may be constant or varied (patterned or random) and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.
  • The reduced-pressure interface 132 may be a structure or means for fluidly coupling a reduced-pressure delivery conduit 134 to the distribution manifold 118. The reduced-pressure interface 132 may be a molded structure, a medical conduit (e.g., a portion of reduced-pressure delivery conduit 134) applied to the distribution manifold 118, or other device for coupling. As discussed in connection with FIG. 4, a membrane, when in an occlusive state, may prevent or hinder flow of fluid through the reduced-pressure interface 132.
  • The reduced-pressure source 116 provides reduced pressure. The reduced-pressure source 116 may be any device or source for supplying a reduced pressure, such as a vacuum pump 136, wall suction, micro-pump, or other source. As an aspect of the reduced-pressure source 116 or as a separate member, a canister 138 may be included to receive and retain fluids 139. The remote base unit 114 may be electrically coupled by coupling 140, e.g., wire or wireless signal, to the reduced-pressure source 116 to provide a pressure control signal to control the delivery of reduced pressure to the first, wireless, reduced-pressure dressing 112 as will be discussed further below. The reduced-pressure source 116 and the remote base unit 114 may be an integrated unit in some embodiments. “Remote” as used in the context of “remote base unit” typically means displaced from a wireless, reduced-pressure dressing by a distance greater than several millimeters and may include a base unit immediately adjacent to a wireless, reduced-pressure dressing but not electrically coupled.
  • The first sensor 126 may be a pressure sensor and may be coupled to the first processor 124. The first processor 124 is coupled to, or in communication with, the first RFID antenna 122. The first sensor 126 may thus develop a signal indicative of pressure experienced at a desired site in or on the first, wireless, reduced-pressure dressing 112 and that signal may be referred to as a pressure message signal. In other embodiments, the first sensor 126 may be another type of sensor. For example, the first sensor may be one of the following: a pressure sensor, temperature sensor, pH sensor, humidity sensor, Volatile Organic Compounds (VOC) sensor, blood sensor, or growth factors sensor. The reduced-pressure interface 132 may include one or more pressure conduits or channels 144 to provide reduced pressure for sampling purposes to the first sensor 126.
  • A second sensor 142 may also be included and coupled to the first processor 124. The second sensor 142 may be any type of sensor such as those previously mentioned for the first sensor 126. It will be appreciated that the first RFID antenna 122, first processor 124, and first sensor 126 may comprise a Wireless Identification and Sensing Platform (WISP) device. The first sensor 126, second sensor 142, or any other sensors may be located at any location in the first, wireless, reduced-pressure dressing 112. In one illustrative embodiment, the first sensor 126 may be adjacent to the distribution manifold 118. In another illustrative embodiment, the first sensor 126 may be at a remote portion of the sealing member 120. In one illustrative embodiment, the sensors, e.g., the first sensor 126, may be laminated to the sealing member 120 or otherwise attached to a portion of the sealing member 120 and may sample pressure in the sealed space 130. While two sensors 126, 142 have been mentioned, it should be understood that additional sensors could be provided if desired.
  • In one illustrative embodiment, a battery is not associated, with the first, wireless, reduced-pressure dressing 112. In other words, the first, wireless, reduced-pressure dressing 112 is passive. In such an embodiment, all the necessary energy for the first processor 124 and first sensor 126 (and any additional, optional sensors, e.g., second sensor 142) is harvested from signals received by the first RFID antenna 122 from the remote base unit 114. In other embodiments, a battery may be included to provide the necessary power. With the power from the battery, the first, wireless, reduced-pressure dressing 112 may transmit signals independent of any signal from the remote base unit 114. In another illustrative embodiment, a battery may be included to provide a portion of the necessary power.
  • The remote base unit 114 may include a board or other structure 115 that includes RFID reader 146 and a second processor 148. The remote base unit 114 may also include a first display 152, e.g., a pressure indicator 154. The first display 152 or indicator is for displaying a quantity measured by the first sensor 126 or an indication of adequate pressure. Similarly, additional displays or indicators may be included, e.g., a temperature display 156. One display may be used for displaying multiple items, e.g., the data from multiple sensors. A control panel 158, such as a push-button panel or graphical user interface, may be included to receive input from a user. The second processor 148 may be coupled by coupling 140 to the reduced-pressure source 116 to provide a control signal. The control signal allows for automated adjustments to the pressure at the tissue site 102 by controlling the pressure supplied by the reduced-pressure source 116.
  • The RFID reader 146 may be a transceiver for transmitting to and receiving signals from the first RFID antenna 122. If not already converted, the RFID reader 146 may convert received signals to digital format and provide the signals to the second processor 148. The remote base unit 114 may read signals as close as several millimeters away or as far as 30 feet or more away or any distance between, e.g., 5, 10, or 20 feet. The remote base unit 114 may poll as often as desired, e.g., every ½ second, every second, every hour, or any other time interval.
  • The second processor 148 includes memory and instructions necessary to perform various desired steps. For example, a pairing protocol may be executed. In the pairing protocol, the second processor 148 with the RFID reader 146 transmits an ID inquiry signal to the first, wireless, reduced-pressure dressing 112 to inquire about the identification of the first, wireless, reduced-pressure dressing 112. In response, the first processor 124 transmits an ID message signal. If the first, wireless, reduced-pressure dressing 112 is not suitable for use with the remote base unit 114 as determined by comparing the ID message with an approved list or by information contained in the ID message signal itself, the remote base unit 114 will not proceed with executing instructions as part of therapy. This protocol should safeguard against using a dressing that is not approved and which may underperform with the remote base unit 114.
  • As an illustrative example, the second processor 148, RFID reader 146, first RFID antenna 122, and first processor 124 may be configured to perform the following steps: transmitting an ID inquiry signal from the remote base unit 114 to the first, wireless, reduced-pressure dressing 112; receiving the ID inquiry signal at the first, wireless, reduced-pressure dressing 112 and producing an ID message signal; transmitting the ID message signal from the first, wireless, reduced-pressure dressing 112 to the remote base unit 114; receiving the ID message signal at the remote base unit 114; determining if the ID message signal represents a dressing on an approved list; and activating the reduced-pressure source 116 to provide reduced pressure to the distribution manifold 118 if the ID message signal represents a dressing that is on the approved list (or otherwise acceptable) or indicating an error if the ID message signal represents a dressing that is not on the approved list.
  • Referring now primarily to FIG. 4, another illustrative embodiment of a first, wireless, reduced-pressure dressing 112 is presented. The first, wireless, reduced-pressure dressing 112 is analogous to the first, wireless, reduced-pressure dressing 112 of FIGS. 1-3 in most respects. A sealing member 120, or film, covers the first RFID antenna 122, first processor 124, and first sensor 126. In this embodiment, a reduced-pressure interface (not shown but analogous to reduced-pressure interface 132 of FIG. 1) may be coupled over an aperture 121 in the sealing member 120 to allow fluid communication, but initially a membrane 160 prevents or hinders flow through the aperture 121.
  • The membrane 160 may have an occlusive state and a non-occlusive state. The membrane 160 may be in the occlusive state when the membrane 160 is an integral layer and may be non-occlusive when one or more apertures are created in the membrane 160 that allow fluid flow through the membrane. When initially over aperture 121 in the occlusive state, flow through the aperture 121 is prevented (or substantially hindered), but when the membrane 160 is changed to the non-occlusive state, flow through the membrane 160 and, thus, through the aperture 121 may occur. The membrane 160 may move from the occlusive state to the non-occlusive state in response to an activating event, e.g., the application heat, light, ultrasound, a chemical, or other activating agent. For example, in one illustrative embodiment, a dissolution element 162 is disposed proximate to the membrane 160 and is adapted to (or operable to) change the membrane 160 from an occlusive state to a non-occlusive state. The dissolution element 162 may be activated by the first processor 124 to produce the activating event. In other embodiments, the dissolution element 162 may be activated by the second processor 148 or an external stimulus.
  • The dissolution element 162 may be, for example and not by way of limitation, an electrically resistive heating element. Power may be supplied from the first processor 124 to the dissolution element 162 to sufficiently activate the electrically resistive heating element to melt, dissolve or otherwise create an aperture in the membrane 160. In another illustrative embodiment, the dissolution element 162 is an ultrasonic device that creates an aperture in membrane 160 when activated. In another illustrative embodiment, the dissolution element 162 is a chemical distribution device that upon receiving a signal from the first processor 124 releases an agent that causes the membrane 160 to dissolve, at least in part, to create an aperture 121. In still another illustrative embodiment, the dissolution element 162 is a light with a first wavelength and the membrane 160 reacts to the light with the first wavelength and dissolves at least a portion to create an aperture.
  • The membrane 160 may be made from numerous materials depending on the activation device used as the dissolution element 162. For example, the membrane 160 may comprise a semi-crystalline thermoplastic film, such as LDPE, HDPE, PP, PA, having a thickness in the range 15-100 μm. The exact thickness of the membrane 160 depends on the material selected and the level of reduced pressure that the membrane 160 will be required to resist. The temperature required to rupture the membrane 160 should be approaching or at the melting point of the polymer chosen. If heated whilst the membrane 160 is under strain from applied negative pressure, the temperature required to breakdown or dissolve the membrane 160 may be reduced.
  • The dissolution element 162 may be a component laminated to the membrane 160 during the manufacture of the membrane 160 or attached later in production. The dissolution element 162 may be a conductive component that is molded into the membrane 160 or added to the membrane 160 so that the membrane 160 itself is conductive. The conductive material may be metallic or one of the other materials that are commonly used to provide conductivity to polymers. Although the temperature required to melt some of the membrane or film materials mentioned may be greater than 100° C., the dissolution element 162 is separated from the patient sufficiently to avoid injury or other potential complications. Moreover, the membrane 160 may be extremely thin such that very little energy is required to form an aperture through the membrane 160.
  • Referring now primarily to FIGS. 1-4, if the first, wireless, reduced-pressure dressing 112 includes the membrane 160 and dissolution element 162, an initial activation may be carried out by the remote base unit 114 and first processor 124. As an illustrative example, the remote base unit 114 may transmit an activation signal from the remote base unit 114 to the first, wireless, reduced-pressure dressing 112. Upon receiving the activation signal, the first processor 124 activates the dissolution element 162 to change the membrane 160 to the non-occlusive state such as by creating an aperture over the aperture 121. Reduced pressure from the reduced-pressure source 116 may then be delivered through the reduced-pressure interface 132 and the aperture 121 to the distribution manifold 118. If a user is attempting to use a remote base unit that is not designed for use with the first, wireless, reduced-pressure dressing 112, the remote base unit will not respond to the activation signal and will not change the membrane 160 from the occlusive state to the non-occlusive state. Accordingly, the first, wireless, reduced-pressure dressing 112 would be unable to establish fluid flow through the membrane 160 to the distribution manifold 118.
  • According to one illustrative embodiment, in operation, the first, wireless, reduced-pressure dressing 112 is disposed proximate to the tissue site 102. The distribution manifold 118 is placed adjacent to the tissue site 102. The sealing member 120 is releaseably attached to the epidermis 108 with the attachment device 128. The reduced-pressure delivery conduit 134 is fluidly coupled between the reduced-pressure interface 132 and the reduced-pressure source 116. The remote base unit 114 may be activated by the user with the control panel 158.
  • The remote base unit 114 may initially transmit an activation signal to the first, wireless, reduced-pressure dressing 112 to cause the membrane 160 to change from an occlusive state to a non-occlusive state as previously described. The remote base unit 114 may then transmit an ID inquiry signal to identify the dressing type. The first, wireless, reduced-pressure dressing 112 receives the ID inquiry signal and, in response, transmits an ID message signal indicative of the dressing type. The second processor 148 may receive the ID message signal and look up the ID message signal or otherwise determine if the dressing represented by the ID message signal is acceptable. If the dressing is acceptable, the second processor 148 may cause a control signal to be sent, e.g., by coupling 140, to the reduced-pressure source 116 to activate the reduced-pressure source 116 and begin treatment with reduced pressure. In another embodiment, the dressing type may be validated before an activation signal is sent.
  • The remote base unit 114 may be configured to transmit a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112. In response, the first, wireless, reduced-pressure dressing 112 ascertains the pressure with the first sensor 126 and transmits a pressure message signal to the remote base unit 114. Based on the pressure message signal, the remote base unit 114 determines if the pressure is greater than a first target pressure (on an absolute scale), and if so, continues operation of the reduced-pressure source 116. But if the pressure message signal indicates that the pressure is less than the first target pressure (on absolute scale), the second processor 148 may send a control signal stopping the reduced pressure source 116 from delivering reduced pressure. Operation of the reduced-pressure source 116 may be by manipulation of a valve or power to a vacuum pump or other like techniques. The remote base unit 114 may interrogate the first, wireless, reduced-pressure dressing 112 from time to time to monitor the pressure. If the pressure becomes greater than the first target pressure (on an absolute scale), the reduced-pressure source 116 will again be activated by a control signal. Thus, a feedback loop may be utilized.
  • If a patient has a plurality of tissue sites 102 requiring treatment, a plurality of wireless, reduced-pressure dressings may be used. For example, the first, wireless, reduced-pressure dressing 112 may be placed at the first tissue site 102 and a second, wireless, reduced-pressure dressing (not shown, but analogous to the reduced-pressure dressing 112) may be placed at a second tissue site. Because the signals include unique identification information, the remote base unit 114 may communicate with both the first, wireless, reduced-pressure dressing 112 and the second, wireless, reduced-pressure dressing. This arrangement allows monitoring and control of reduced pressure at each of the plurality of tissue sites. Multiple remote base units 114 may also be used. For example, each first processor 124 may include dynamic RAM that includes a register that is configured when paired to a particular remote base unit 114. Thus, the first, wireless, reduced-pressure dressing 112 is able to distinguish which remote base unit 114 has been assigned. The first, wireless, reduced-pressure dressing 112 may include a reset button that transmits a reset signal to the first processor 124 to allow the dressing and base association to be changed.
  • Referring now primarily to FIG. 5, another illustrative embodiment of a system 100 for treating at least one tissue site 102 with reduced pressure is presented. The system 100 includes a first, wireless, reduced-pressure dressing 112. The system 100 is analogous in most respects to the system 100 of FIG. 1, except that a reduced-pressure source 116 is a micro-pump 117, e.g., a piezoelectric pump, and is adjacent to the distribution manifold 118. In addition, an absorbent layer 119 is also explicitly included. As used throughout this document in connection with the micro-pump 117, “adjacent” means next to, in the vicinity of, and also includes in.
  • A dedicated battery 166 may be coupled to the micro-pump 117 to provide power to the micro-pump 117. A vent line 168 may be used to allow the micro-pump 117 to vent or exhaust outside of the first, wireless, reduced-pressure dressing 112. In this embodiment, a first processor (analogous to first processor 124 of FIG. 3) that is associated with a WISP or RFID device 170, may be instructed by the remote base unit 114 to deliver a control signal to the micro-pump 117 when necessary. In another illustrative embodiment, the first processor may receive a pressure message signal indicative of the pressure at the distribution manifold 118, compare the pressure to a target pressure, and in response deliver a control signal to the micro pump 117 to control the micro-pump 117 as needed. In another illustrative embodiment, the device 170 may harvest power to not only energize the first processor and first sensor, but also the micro-pump 117. It should be noted that a capacitor (not explicitly shown) may be included to help build and retain a charge for powering devices in the first, wireless, reduced-pressure dressing 112.
  • Referring now to FIGS. 3, 4, and 6, and primarily to FIG. 6, a treatment process that may be executed with the system 100 is presented. The process begins at 200. At step 202, the remote base unit 114 transmits an activation signal to the first, wireless, reduced pressure dressing 112. The first RFID antenna 122 receives the activation signal. The activation signal energizes the first processor 124. The first processor 124 activates the dissolution element 162. The dissolution element 162 changes the membrane 160 from an occlusive state to a non-occlusive state that allows flow. It should be appreciated that the need to change the membrane 160 to a non-occlusive state helps make sure that only appropriate (approved) remote base units 114 are used with the first, wireless, reduced-pressure dressing 112.
  • At step 204, the remote base unit 114 transmits an ID inquiry signal to the first, wireless, reduced-pressure dressing 112. The first RFID antenna 122 receives the ID inquiry signal. The ID inquiry signal energizes the first processor 124 and provides an identification request to the first processor 124. In response, the first processor 124 transmits an ID message signal from the first RFID antenna 122 to the RFID reader 146 on the remote base unit 114. The remote base unit 114 waits for the ID message signal at interrogatory 206.
  • At interrogatory 206, the second processor 148 waits a predetermined time for the ID message signal. If the ID message signal is not received during the predetermined time, the process proceeds to step 208 where an error flag is posted and the process ends at 210. The error flag may include posting a message for display at control panel 158 or sounding an alarm or providing other notification. If the ID message signal is received, the process proceeds to interrogatory 212.
  • At interrogatory 212, inquiry is made as to whether the ID message signal represents a dressing that is acceptable or approved. To answer the inquiry, the second processor 148 compares the dressing represented by the ID message signal with a list of acceptable or approved dressings. If the dressing represented by the ID message signal is on the list of acceptable or approved dressings, the process continues to step 214 and if not the process proceeds to step 208 and an error flag is posted and the process ends at 210.
  • At step 214, a first chronograph, T1, is initiated to keep a running cycle time. The process then proceeds to step 216. At step 216, the second processor 148 provides a control signal via coupling 140 to the reduced-pressure source 116 to activate the reduced-pressure source 116. Once the reduced-pressure source 116 is activated, reduced pressure flows to the first, wireless, reduced-pressure dressing 112.
  • At step 218, the remote base unit 114 transmits a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112. The first RFID antenna 122 receives the pressure inquiry signal. The pressure inquiry signal energizes the first processor 124 and first sensor 126. In response, the first processor 124 transmits a pressure message signal to the remote base unit 114. The RFID reader 146 receives and delivers the pressure message signal to the second processor 148. At interrogatory 220, the second processor 148 then compares the pressure message signal, which indicates the pressure substantially at the distribution manifold 118 or other desired location, with a target pressure. If the pressure message signal indicates a pressure that is greater than the target pressure on an absolute scale, then more reduced pressure is needed and the delivery of reduced pressure continues. The process proceeds to interrogatory 222. On the other hand, if the pressure message signal indicates a pressure that is less than the target pressure on an absolute scale, then the process proceeds to step 224.
  • At decision step 222, the second processor 148 compares the elapsed time of the first chronograph, T1, with a maximum time, T1max. If the maximum time has been exceeded, the process continues to step 226. At step 226, the second processor 148 posts an error flag and the process ends at 228. The error flag may include sounding an alarm or displaying a message on the control panel 158 or otherwise notifying the user of a problem. If the maximum time has not been exceeded, the process returns to step 218. The loop (218, 220, 222, 218, . . . ) continues until the maximum time is exceeded or a suitable reduced pressure is reached.
  • Once the pressure is suitable, the process proceeds to step 224 where the second processor 148 initiates a therapy chronograph that keeps an elapsed time, T2, for therapy. Next, at step 230, the second processor 148 initiates a cycle chronograph, T3. The process then proceeds to interrogatory 232, wherein the elapsed therapy time, T2, is compared to a maximum allowed value. If the elapsed therapy time, T2, is greater than the maximum allowed value, then a flag indicating that therapy is complete is given at step 234 and the process ends 250. Otherwise, the process continues to step 236.
  • At step 236, the remote base unit 114 transmits a pressure inquiry signal to the first, wireless, reduced-pressure dressing 112. The first RFID antenna 122 receives the pressure inquiry signal. The pressure inquiry signal is then delivered to the first processor 124. The pressure inquiry signal energizes the first processor 124 and the first sensor 126. In response, the first processor 124 develops a pressure message signal. The first processor 124 and first RFID antenna 122 transmit the pressure message signal to the remote base unit 114. The pressure message signal is received and delivered to the second processor 148. At interrogatory 238, the pressure at the distribution manifold 118 (or other desired location) as represented by the pressure message signal is compared to a target value on an absolute scale. If the pressure is greater than the target value, reduced pressure needs to be applied (or continued), and the second processor 148 transmits (or continues) a control signal to the reduced-pressure source 116 at step 240. If the pressure is less than the target value, the process pauses at step 242 and continues to monitor pressure by returning to step 230.
  • At interrogatory 244, the elapsed cycle time, T3, is compared to a maximum value, T3max. If the elapsed cycle time T3 is greater than the maximum value T3max, the system 100 is apparently unable to adequately lower the pressure. Such a condition may occur because of a leak. Accordingly, an error flag or alarm is initiated at step 246 and the process ends 248. If the elapsed cycle time, T3, is less than the maximum value, T3max, the cycle continues with the process going to interrogatory 232.
  • The process presented in FIGS. 6A-6B is one illustrative embodiment. Many embodiments are possible. Other process flows may include analogous instructions for receiving temperature message signals from the second sensor 142 or other data depending on the sensor type. In another illustrative embodiment, the activation step may follow the steps required to confirm an approved dressing.
  • Since the pressure measurements are taken at the first, wireless, reduced-pressure dressing 112 and wirelessly transmitted to the remote base unit 114, the reduced-pressure delivery conduit 134 may be relatively smaller as a pressure sensing lumen is not required as part of the reduced-pressure delivery conduit 134. In other words, pressure is measured and the pressure signal is transmitted to the remote base unit 114 without transmission through a wire and without requiring sampling pressure to be communicated through the reduced-pressure delivery conduit 134.
  • In another illustrative embodiment, the first, wireless, reduced-pressure dressing may be a distribution manifold enclosed by a drape that has been fenestrated or otherwise allows flow. This illustrative embodiment is suitable for use in a body cavity that is closed, such as placing one in an abdominal cavity and monitoring pressure therein. In such an embodiment, the pressure sensor or other sensors may be located anywhere in or on the dressing and are operable to communicate with a remote base outside of the body cavity. In one embodiment, the pressure sensor may be located at peripheral edge of the dressing that is used in an abdominal cavity. The peripheral edge is disposed near the patient's paracolic gutter to monitor pressure and fluid removal.
  • The RFID antenna and first processor may be adapted to provide an identification message signal for other purposes than those previously presented. For example, in addition to utilization of the identification message signal to confirm proper pairing of a dressing and base, the identification message signal may be used for inventory purposes. A scanner with a RFID reader may be used to scan a wireless, reduced-pressure dressing and receive the identification message signal.
  • In another illustrative embodiment, a release pouch is provided that contains a fluid. The release pouch may be formed as part of a wireless, reduced-pressure dressing. The release pouch may be formed, for example, by an additional membrane attached on a patient-facing side of the sealing member. A dissolution element analogous to dissolution element 162 may be associated with the release pouch. The dissolution element allows the first processor 124 to selectively dissolve or open a portion of the release pouch to release any contents of the pouch. Thus, the release pouch may be used to retain medicines or other substances and a wireless signal may be sent to the wireless, reduced-pressure dressing causing release of the medicine. For example, if a sensor detects bacterial colonization, a signal may be sent, opening the pouch and releasing an anti-biotic, or if high blood content is detected, a signal may be sent releasing a coagulent.
  • In some embodiments of the wireless, reduced-pressure dressing, the RFID antenna may be remote from the first processor, but electrically coupled to the first processor. For example, a larger RFID antenna may be used on the patient near the tissue site to be treated, and a coupling wire may extend from the RFID antenna to the first processor or first sensor adjacent to or on the distribution manifold.
  • Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment.
  • It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. It will further be understood that reference to “an” item refers to one or more of those items.
  • The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate.
  • Where appropriate, aspects of any of the embodiments described above may be combined with aspects of any of the other embodiments described to form further examples having comparable or different properties and addressing the same or different problems.
  • It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of the claims.

Claims (33)

1. A method for treating at least one tissue site with reduced pressure, the method comprising:
disposing a first, wireless, reduced-pressure dressing proximate to a first tissue site, wherein the first, wireless, reduced-pressure dressing comprises:
a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site,
a sealing member covering at least a portion of the distribution manifold,
a first processor,
a RFID antenna coupled to the first processor, and
a first sensor coupled to the first processor, wherein the first sensor comprises a pressure sensor;
providing a remote base unit comprising a RFID reader;
providing reduced pressure to the distribution manifold;
transmitting a first pressure inquiry signal from the RFID reader to the first, wireless, reduced-pressure dressing;
receiving a first pressure message signal from the first, wireless, reduced-pressure dressing in response to the first pressure inquiry signal; and
wherein the first pressure message signal is wirelessly transmitted by the RFID antenna to the remote base unit without requiring any pressure sensing lumens in the reduced-pressure delivery conduit.
2. The method of claim 1, further comprising determining if the first pressure message signal is greater (on an absolute pressure scale) than a target pressure, and if greater than the target pressure, then activating the reduced-pressure source, and if less (on an absolute pressure scale) than the target pressure, then deactivating the reduced-pressure source.
3. The method of claim 1, wherein the method further comprises:
disposing a second, wireless, reduced-pressure dressing adjacent to a second tissue site;
transmitting a second pressure inquiry signal from the RFID reader to the second, wireless, reduced-pressure dressing; and
receiving a second pressure message signal from the second, wireless, reduced-pressure dressing in response to the second pressure inquiry signal.
4. The method of claim 1, further comprising a second sensor coupled to the first processor, wherein the second sensor comprises a temperature sensor.
5. A system for treating at least one tissue site with reduced pressure, the system comprising:
a first, wireless, reduced-pressure dressing for disposing proximate to the tissue site, wherein the first, wireless, reduced-pressure dressing comprises:
a distribution manifold,
a sealing member covering at least a portion of the distribution manifold,
a RFID antenna,
a first processor coupled to the RFID antenna, and
a first sensor coupled to the first processor,
a remote base unit comprising a RFID reader and a second processor coupled to the RFID reader; and
a reduced-pressure source fluidly coupled to the distribution manifold.
6. The system of claim 5, wherein the first sensor is a pressure sensor.
7. The system of claim 6, wherein the first, wireless, reduced-pressure dressing further comprises a second sensor selected from the group: temperature sensor, pH sensor, a humidity sensor, a volatile organic compound sensor, a blood sensor, and a growth factor sensor.
8. The system of claim 5, wherein the reduced-pressure source is coupled to the remote base unit and wherein the remote base unit is adapted to supply a pressure control signal to the reduced-pressure source.
9. The system of claim 5, wherein the reduced-pressure source and the remote base unit comprise an integrated treatment unit.
10. The system of claim 5, wherein the second processor is adapted to receive an ID signal and to determine if the ID signal represents an approved dressing.
11. The system of claim 5, wherein the reduced-pressure source comprises a micropump adjacent to the distribution manifold.
12. The system of claim 5, wherein the first, wireless, reduced-pressure dressing does not include a battery.
13. The system of claim 5, wherein the first, wireless, reduced-pressure dressing is adjacent to a first tissue site, and further comprising a second, wireless, reduced-pressure dressing adjacent to a second tissue site.
14. A wireless, reduced-pressure dressing for treating a tissue site with reduced pressure, the wireless, reduced-pressure dressing comprising:
a distribution manifold for placing adjacent to the tissue site and for providing reduced pressure to the tissue site;
a sealing member covering at least a portion of the distribution manifold;
a first processor;
a RFID antenna coupled to the first processor; and
a first sensor coupled to the first processor, wherein the first sensor comprises a pressure sensor.
15. The wireless, reduced-pressure dressing of claim 14, further comprising a second sensor coupled to the first processor, wherein the second sensor is selected from the group: temperature sensor, pH sensor, a humidity sensor, a volatile organic compound sensor, a blood sensor, and a growth factor sensor.
16. (canceled)
17. (canceled)
18. (canceled)
19. (canceled)
20. (canceled)
21. (canceled)
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. A wireless, reduced-pressure dressing for use on a tissue site, the wireless, reduced-pressure dressing comprising:
a sealing member for covering at least a portion of the tissue site;
a first processor;
a RFID antenna coupled to the first processor; and
a first sensor coupled to the first processor.
30. The wireless, reduced-pressure dressing of claim 29, wherein the first sensor comprises a pressure sensor.
31. The wireless, reduced-pressure dressing of claim 29, further comprising a second sensor coupled to the first processor, wherein the second sensor is selected from the group: temperature sensor, pH sensor, a humidity sensor, a volatile organic compound sensor, a blood sensor, and a growth factor sensor.
32. The wireless, reduced-pressure dressing of claim 29, further comprising a distribution manifold.
33. The wireless, reduced-pressure dressing of claim 32, further comprising a reduced-pressure source fluidly coupled to the reduced-pressure dressing.
US13/182,934 2010-10-27 2011-07-14 Interactive, wireless reduced-pressure dressings, methods, and systems Abandoned US20120109034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/182,934 US20120109034A1 (en) 2010-10-27 2011-07-14 Interactive, wireless reduced-pressure dressings, methods, and systems

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US40719410P 2010-10-27 2010-10-27
US41873010P 2010-12-01 2010-12-01
US201161445338P 2011-02-22 2011-02-22
US201161445383P 2011-02-22 2011-02-22
US13/182,934 US20120109034A1 (en) 2010-10-27 2011-07-14 Interactive, wireless reduced-pressure dressings, methods, and systems

Publications (1)

Publication Number Publication Date
US20120109034A1 true US20120109034A1 (en) 2012-05-03

Family

ID=45994285

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/183,136 Active 2031-10-20 US8579872B2 (en) 2010-10-27 2011-07-14 Reduced-pressure systems, dressings, and methods employing a wireless pump
US13/182,934 Abandoned US20120109034A1 (en) 2010-10-27 2011-07-14 Interactive, wireless reduced-pressure dressings, methods, and systems
US14/047,394 Active 2031-11-17 US9265867B2 (en) 2010-10-27 2013-10-07 Reduced-pressure systems, dressings, and methods employing a wireless pump

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/183,136 Active 2031-10-20 US8579872B2 (en) 2010-10-27 2011-07-14 Reduced-pressure systems, dressings, and methods employing a wireless pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/047,394 Active 2031-11-17 US9265867B2 (en) 2010-10-27 2013-10-07 Reduced-pressure systems, dressings, and methods employing a wireless pump

Country Status (8)

Country Link
US (3) US8579872B2 (en)
EP (2) EP2632406B1 (en)
JP (2) JP2014500739A (en)
CN (2) CN103179929A (en)
AU (2) AU2011320911B2 (en)
CA (2) CA2814740C (en)
TW (2) TW201217021A (en)
WO (2) WO2012057881A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120016322A1 (en) * 2010-07-19 2012-01-19 Kci Licensing, Inc. Systems and methods for electrically detecting the presence of exudate in dressings
US20130209277A1 (en) * 2012-02-10 2013-08-15 Christopher Brian Locke Systems and methods for monitoring a disc pump system using rfid
US20130274563A1 (en) * 2012-04-12 2013-10-17 Elwha Llc Appurtenances to cavity wound dressings
US20130274630A1 (en) * 2012-04-12 2013-10-17 Elwha LLC, a limited liability company of the State of Delaware Dormant to active appurtenances for reporting information regarding wound dressings
US20130271278A1 (en) * 2012-04-12 2013-10-17 Elwha LLC a limited liability company of the State of Delaware Computational methods and systems for reporting information regarding appurtenances to wound dressings
US20140298927A1 (en) * 2012-04-12 2014-10-09 Elwha LLC, a limited liability company of the State of Delaware Appurtenances including sensors for reporting information regarding wound dressings
US20140298928A1 (en) * 2012-04-12 2014-10-09 Elwha Llc Wound dressing monitoring systems including appurtenances for wound dressings
US20150245950A1 (en) * 2014-03-03 2015-09-03 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US9844475B2 (en) 2007-11-21 2017-12-19 Smith & Nephew Plc Wound dressing
US10046096B2 (en) 2012-03-12 2018-08-14 Smith & Nephew Plc Reduced pressure apparatus and methods
WO2018165049A1 (en) * 2017-03-07 2018-09-13 Smith & Nephew, Inc. Reduced pressure therapy systems and methods including an antenna
US10158928B2 (en) 2012-04-12 2018-12-18 Elwha Llc Appurtenances for reporting information regarding wound dressings
WO2019063462A1 (en) * 2017-09-27 2019-04-04 T.J.Smith And Nephew,Limited Device operation monitoring and control in wound therapy systems
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
US10842707B2 (en) 2012-11-16 2020-11-24 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US10849792B2 (en) 2013-10-30 2020-12-01 Kci Licensing, Inc. Absorbent conduit and system
US10898388B2 (en) 2015-04-27 2021-01-26 Smith & Nephew Plc Reduced pressure apparatuses and methods
US10940046B2 (en) 2013-10-30 2021-03-09 Kci Licensing, Inc. Dressing with sealing and retention interface
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
US10945889B2 (en) 2011-12-16 2021-03-16 Kci Licensing, Inc. Releasable medical drapes
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
US10967109B2 (en) 2013-10-30 2021-04-06 Kci Licensing, Inc. Dressing with differentially sized perforations
US10973694B2 (en) 2015-09-17 2021-04-13 Kci Licensing, Inc. Hybrid silicone and acrylic adhesive cover for use with wound treatment
US11020516B2 (en) 2008-03-05 2021-06-01 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US11096831B2 (en) 2016-05-03 2021-08-24 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11096832B2 (en) * 2016-09-27 2021-08-24 Smith & Nephew Plc Wound closure devices with dissolvable portions
US11096830B2 (en) 2015-09-01 2021-08-24 Kci Licensing, Inc. Dressing with increased apposition force
WO2021165696A1 (en) * 2020-02-20 2021-08-26 Convatec Limited A wound dressing and a wound therapy apparatus
US11116669B2 (en) 2016-08-25 2021-09-14 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11123471B2 (en) 2017-03-08 2021-09-21 Smith & Nephew Plc Negative pressure wound therapy device control in presence of fault condition
US11154650B2 (en) 2013-10-30 2021-10-26 Kci Licensing, Inc. Condensate absorbing and dissipating system
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
US11173240B2 (en) 2016-05-03 2021-11-16 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
US11246975B2 (en) 2015-05-08 2022-02-15 Kci Licensing, Inc. Low acuity dressing with integral pump
US11285047B2 (en) 2016-04-26 2022-03-29 Smith & Nephew Plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
WO2022073762A1 (en) * 2020-10-05 2022-04-14 T.J.Smith And Nephew,Limited Temperature monitoring and control for negative pressure wound therapy systems
US11305047B2 (en) 2016-05-03 2022-04-19 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
US20220160549A1 (en) * 2019-03-25 2022-05-26 Kci Licensing, Inc. Systems and methods for sensing ph of fluids on wound tissue interface
US11369730B2 (en) 2016-09-29 2022-06-28 Smith & Nephew, Inc. Construction and protection of components in negative pressure wound therapy systems
US11400204B2 (en) 2010-03-16 2022-08-02 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US11484640B2 (en) 2019-07-03 2022-11-01 T.J.Smith And Nephew, Limited Negative pressure wound therapy dressing recognition, wound status detection, and therapy adjustment
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11554203B2 (en) 2017-11-01 2023-01-17 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11564845B2 (en) 2017-09-13 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11701265B2 (en) 2017-09-13 2023-07-18 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11707564B2 (en) 2017-11-01 2023-07-25 Smith & Nephew Plc Safe operation of integrated negative pressure wound treatment apparatuses
US11723809B2 (en) 2016-03-07 2023-08-15 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
US11878104B2 (en) * 2020-02-20 2024-01-23 Convatec Limited Wound dressing and a wound therapy apparatus
US11957546B2 (en) 2014-06-05 2024-04-16 3M Innovative Properties Company Dressing with fluid acquisition and distribution characteristics
US11969318B2 (en) 2020-08-24 2024-04-30 Solventum Intellectual Properties Company Releasable medical drapes

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2872297C (en) 2006-09-28 2016-10-11 Smith & Nephew, Inc. Portable wound therapy system
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
EP2441409A1 (en) 2010-10-12 2012-04-18 Smith&Nephew, Inc. Medical device
US9084845B2 (en) 2011-11-02 2015-07-21 Smith & Nephew Plc Reduced pressure therapy apparatuses and methods of using same
CN104168865B (en) * 2012-03-28 2016-10-26 凯希特许有限公司 Assist the depressurized system separated with clinical parts of electronics, apply part and method
EP2836269B1 (en) * 2012-04-12 2019-08-14 Elwha LLC Method and system for monitoring a wound dressings
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
AU2013280335B2 (en) * 2012-06-28 2017-06-29 Kci Licensing, Inc. Wound connection pad with RFID and integrated strain gauge pressure sensor
CN104853785B (en) * 2012-10-25 2017-03-22 凯希特许有限公司 Wound connection pad with pneumatic connection confirmation ability
AU2013371545B2 (en) * 2013-01-03 2018-05-17 3M Innovative Properties Company Moisture absorbing seal
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
CN105228688B (en) 2013-03-15 2019-02-19 伊瑟拉医疗公司 Vascular treatment device and method
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
BR112016007139A2 (en) * 2013-10-02 2020-06-16 Kci Licensing, Inc. reduced pressure system, method for regulating a therapeutic pressure in a reduced pressure therapy system, and feedback system for monitoring the application of reduced pressure therapy by a reduced pressure therapy system
US10031582B2 (en) 2014-06-05 2018-07-24 Immersion Corporation Systems and methods for induced electrostatic haptic effects
JP6659540B2 (en) * 2014-07-07 2020-03-04 株式会社村田製作所 Negative pressure closure therapy device
WO2016008154A1 (en) * 2014-07-18 2016-01-21 科际精密股份有限公司 Negative pressure wound therapy apparatus
EP3174570B1 (en) * 2014-07-31 2021-03-17 Smith & Nephew, Inc Inventory management and location tracking of medical devices
US9770369B2 (en) 2014-08-08 2017-09-26 Neogenix, Llc Wound care devices, apparatus, and treatment methods
WO2016103032A1 (en) 2014-12-22 2016-06-30 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
US10828403B2 (en) 2014-12-29 2020-11-10 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods for operating the apparatus
EP3117807A1 (en) * 2015-07-16 2017-01-18 Carag AG Multifunctional wound treatment dressing
US20170028111A1 (en) 2015-07-29 2017-02-02 Innovative Therapies, Inc. Wound therapy device pressure monitoring and control system
US9922525B2 (en) * 2015-08-14 2018-03-20 Gregory J. Hummer Monitoring system for use with mobile communication device
AU2015411394B2 (en) 2015-10-07 2021-07-08 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10751768B2 (en) * 2015-12-14 2020-08-25 Buffalo Filter Llc Method and apparatus for attachment and evacuation
US9928696B2 (en) 2015-12-30 2018-03-27 Immersion Corporation Externally-activated haptic devices and systems
EP3416568A4 (en) * 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US11311231B2 (en) * 2016-03-29 2022-04-26 Walgreen Health Solutions, Llc Dressing assembly
GB201608099D0 (en) 2016-05-09 2016-06-22 Convatec Technologies Inc Negative pressure wound dressing
JP2019527566A (en) 2016-05-13 2019-10-03 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound monitoring and treatment device using sensor
CA3023932A1 (en) 2016-05-13 2017-11-16 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
CA3030151A1 (en) 2016-07-08 2018-01-11 Convatec Technologies Inc. Fluid collection apparatus
JP7071957B2 (en) 2016-07-08 2022-05-19 コンバテック・テクノロジーズ・インコーポレイテッド Flexible negative pressure system
CA3030153C (en) 2016-07-08 2023-10-24 Convatec Technologies Inc. Fluid flow sensing
US11806217B2 (en) 2016-12-12 2023-11-07 Smith & Nephew Plc Wound dressing
JP2020511180A (en) * 2016-12-12 2020-04-16 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Pressure wound therapy status display via external device
TWI629072B (en) * 2017-01-13 2018-07-11 廈門聖慈醫療器材有限公司 Suction disc
CN110709113A (en) 2017-02-15 2020-01-17 新加坡施乐辉有限公司 Negative pressure wound therapy device and method of use thereof
EP3585453B1 (en) * 2017-02-22 2023-05-17 Cornell University Mechanical vacuum dressing for mechanically managing, protecting and suctioning small incisional wounds
EP3592230A1 (en) 2017-03-09 2020-01-15 Smith & Nephew PLC Apparatus and method for imaging blood in a target region of tissue
EP3592212A1 (en) 2017-03-09 2020-01-15 Smith & Nephew PLC Wound dressing, patch member and method of sensing one or more wound parameters
EP3609449A1 (en) 2017-04-11 2020-02-19 Smith & Nephew PLC Component positioning and stress relief for sensor enabled wound dressings
JP7272962B2 (en) 2017-05-15 2023-05-12 スミス アンド ネフュー ピーエルシー wound analyzer
CA3065380A1 (en) * 2017-06-14 2018-12-20 T.J.Smith & Nephew, Limited Negative pressure wound therapy apparatus
DE202018006806U1 (en) 2017-06-15 2023-01-30 Chiaro Technology Limited breast pump system
US11633153B2 (en) 2017-06-23 2023-04-25 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US11712508B2 (en) 2017-07-10 2023-08-01 Smith & Nephew, Inc. Systems and methods for directly interacting with communications module of wound therapy apparatus
GB201809007D0 (en) 2018-06-01 2018-07-18 Smith & Nephew Restriction of sensor-monitored region for sensor-enabled wound dressings
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
WO2019030384A2 (en) 2017-08-10 2019-02-14 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
EP3681376A1 (en) 2017-09-10 2020-07-22 Smith & Nephew PLC Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
GB201804971D0 (en) 2018-03-28 2018-05-09 Smith & Nephew Electrostatic discharge protection for sensors in wound therapy
GB201718870D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Inc Sensor enabled wound therapy dressings and systems
GB201718859D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Sensor positioning for sensor enabled wound therapy dressings and systems
WO2019063481A1 (en) 2017-09-27 2019-04-04 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
US11839464B2 (en) 2017-09-28 2023-12-12 Smith & Nephew, Plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
AU2018355151A1 (en) * 2017-10-23 2020-05-07 Solventum Intellectual Properties Company Area management of tissue sites on articulating joints
CN111343950A (en) 2017-11-15 2020-06-26 史密夫及内修公开有限公司 Integrated wound monitoring and/or therapy dressing and system implementing sensors
EP3720518A4 (en) 2017-12-06 2021-09-15 Cornell University Manually-operated negative pressure wound therapy (npwt) bandage with improved pump efficiency, automatic pressure indicator and automatic pressure limiter
GB201813282D0 (en) * 2018-08-15 2018-09-26 Smith & Nephew System for medical device activation and opertion
US11754063B2 (en) * 2018-01-02 2023-09-12 Kci Licensing, Inc. Negative pressure wound therapy device with silent piezoelectric pump
USD847864S1 (en) 2018-01-22 2019-05-07 Insera Therapeutics, Inc. Pump
US11554206B2 (en) 2018-02-01 2023-01-17 Kci Licensing, Inc. Negative pressure wound therapy device using a vacuum generating pump providing audible therapy feedback
US10624794B2 (en) 2018-02-12 2020-04-21 Healyx Labs, Inc. Negative pressure wound therapy systems, devices, and methods
GB201804347D0 (en) 2018-03-19 2018-05-02 Smith & Nephew Inc Securing control of settings of negative pressure wound therapy apparatuses and methods for using the same
GB201805584D0 (en) * 2018-04-05 2018-05-23 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201806988D0 (en) 2018-04-30 2018-06-13 Quintanar Felix Clarence Power source charging for negative pressure wound therapy apparatus
US11559619B2 (en) 2018-04-30 2023-01-24 Smith & Nephew Asia Pacific Pte. Limited Systems and methods for controlling dual mode negative pressure wound therapy apparatus
GB201808438D0 (en) 2018-05-23 2018-07-11 Smith & Nephew Systems and methods for determining blockages in a negative pressure wound therapy system
WO2020005577A1 (en) * 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
US11944418B2 (en) 2018-09-12 2024-04-02 Smith & Nephew Plc Device, apparatus and method of determining skin perfusion pressure
GB201820668D0 (en) 2018-12-19 2019-01-30 Smith & Nephew Inc Systems and methods for delivering prescribed wound therapy
EP3902574B1 (en) * 2018-12-26 2023-05-24 KCI Licensing, Inc. Piezoelectric pump adapter for negative-pressure therapy
WO2020159823A1 (en) * 2019-01-29 2020-08-06 Kci Licensing, Inc. Removable and replaceable dressing interface for a negative-pressure therapy system
GB201903778D0 (en) * 2019-03-20 2019-05-01 Smith & Nephew Exhaust blockage detection for negative pressure wound treatment apparatuses
GB201903774D0 (en) * 2019-03-20 2019-05-01 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
KR102238777B1 (en) * 2019-04-02 2021-04-09 한국광기술원 Wearable wound treatment device
GB202004395D0 (en) 2020-03-26 2020-05-13 Chiaro Technology Ltd Lima
WO2023227975A1 (en) * 2022-05-24 2023-11-30 3M Innovative Properties Company Modular negative pressure wound therapy systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163287A1 (en) * 2000-12-15 2003-08-28 Vock Curtis A. Movement and event systems and associated methods related applications
US20080041401A1 (en) * 2006-08-15 2008-02-21 Casola Robert P Computer adjusted pressure wound care devices, systems & methods

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
NL189176B (en) 1956-07-13 1900-01-01 Hisamitsu Pharmaceutical Co PLASTER BASED ON A SYNTHETIC RUBBER.
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
BE789293Q (en) 1970-12-07 1973-01-15 Parke Davis & Co MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
DE2527706A1 (en) 1975-06-21 1976-12-30 Hanfried Dr Med Weigand DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
NL7710909A (en) 1976-10-08 1978-04-11 Smith & Nephew COMPOSITE STRAPS.
GB1562244A (en) 1976-11-11 1980-03-05 Lock P M Wound dressing materials
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4256109A (en) 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
SE414994B (en) 1978-11-28 1980-09-01 Landstingens Inkopscentral VENKATETERFORBAND
BR7908937A (en) 1978-12-06 1981-06-30 Svedman Paul DEVICE FOR TREATING FABRICS, FOR EXAMPLE, SKIN
US4266545A (en) 1979-04-06 1981-05-12 Moss James P Portable suction device for collecting fluids from a closed wound
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
ATE14835T1 (en) 1980-03-11 1985-08-15 Schmid Eduard SKIN GRAFT PRESSURE BANDAGE.
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
SE429197B (en) 1981-10-14 1983-08-22 Frese Nielsen SAR TREATMENT DEVICE
DE3146266A1 (en) 1981-11-21 1983-06-01 B. Braun Melsungen Ag, 3508 Melsungen COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
EP0100148B1 (en) 1982-07-06 1986-01-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
GB2157958A (en) 1984-05-03 1985-11-06 Ernest Edward Austen Bedding Ball game net support
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
GB8419745D0 (en) 1984-08-02 1984-09-05 Smith & Nephew Ass Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) 1986-01-17 1988-03-29 Seton Company Foam bandage
EP0256060A1 (en) 1986-01-31 1988-02-24 OSMOND, Roger L. W. Suction system for wound and gastro-intestinal drainage
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
JPS62281965A (en) 1986-05-29 1987-12-07 テルモ株式会社 Catheter and catheter fixing member
GB8621884D0 (en) 1986-09-11 1986-10-15 Bard Ltd Catheter applicator
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
DE3634569A1 (en) 1986-10-10 1988-04-21 Sachse Hans E CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS
JPS63135179A (en) 1986-11-26 1988-06-07 立花 俊郎 Subcataneous drug administration set
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
GB8706116D0 (en) 1987-03-14 1987-04-15 Smith & Nephew Ass Adhesive dressings
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
DE69017479T2 (en) 1989-01-16 1995-07-13 Roussel Uclaf Azabicyclohepten derivatives and their salts, processes for their preparation, their use as medicaments and preparations containing them.
GB8906100D0 (en) 1989-03-16 1989-04-26 Smith & Nephew Laminates
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
JP2719671B2 (en) 1989-07-11 1998-02-25 日本ゼオン株式会社 Wound dressing
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5636643A (en) 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
FR2690617B1 (en) 1992-04-29 1994-06-24 Cbh Textile TRANSPARENT ADHESIVE DRESSING.
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
AU698477B2 (en) 1994-08-22 1998-10-29 Kci Licensing, Inc. Wound drainage equipment
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
GB9523253D0 (en) 1995-11-14 1996-01-17 Mediscus Prod Ltd Portable wound treatment apparatus
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
GB9719520D0 (en) 1997-09-12 1997-11-19 Kci Medical Ltd Surgical drape and suction heads for wound treatment
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
ATE266443T1 (en) 2000-02-24 2004-05-15 Venetec Int Inc UNIVERSAL CATHETER FASTENING SYSTEM
US6540705B2 (en) 2001-02-22 2003-04-01 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
EP1343112A1 (en) * 2002-03-08 2003-09-10 EndoArt S.A. Implantable device
KR20020032508A (en) 2002-04-16 2002-05-03 주식회사 코스모지놈 An adhesive infusion pump contoled by wireless remote control
CA2485990C (en) * 2002-05-16 2008-07-15 Scott Laboratories, Inc. Kits of medical supplies for sedation and analgesia
AU2003238836A1 (en) * 2002-05-31 2003-12-19 Hill-Rom Services, Inc. Wound treatment apparatus
DE20213196U1 (en) * 2002-08-28 2004-01-15 Campus Micro Technologies Gmbh Device for measuring and monitoring local pressure loads acting on the human body
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
GB0408492D0 (en) * 2004-04-16 2004-05-19 Univ Strathclyde Performance measurement of wound dressings
US7191013B1 (en) 2004-11-08 2007-03-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hand held device for wireless powering and interrogation of biomems sensors and actuators
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
GB0508194D0 (en) 2005-04-22 2005-06-01 The Technology Partnership Plc Pump
WO2007002154A2 (en) * 2005-06-21 2007-01-04 Medrad, Inc. Medical fluid injection and inflation system
CN101257875A (en) * 2005-09-06 2008-09-03 泰科保健集团有限合伙公司 Self contained wound dressing with micropump
JP5225088B2 (en) * 2005-09-07 2013-07-03 ハイドラノーティックス Reverse osmosis filtration device with flow meter and conductivity meter powered by RFID tag
AU2006287461A1 (en) * 2005-09-07 2007-03-15 Tyco Healthcare Group L.P. Self contained wound dressing apparatus
US8083710B2 (en) * 2006-03-09 2011-12-27 The Invention Science Fund I, Llc Acoustically controlled substance delivery device
JP5076167B2 (en) * 2005-11-09 2012-11-21 ザ インベンション サイエンス ファンド アイ,エルエルシー Osmotic pump with remotely controlled osmotic pressure generation
US7779625B2 (en) * 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
CA2872297C (en) * 2006-09-28 2016-10-11 Smith & Nephew, Inc. Portable wound therapy system
DK2242522T3 (en) * 2008-01-08 2012-06-18 Bluesky Medical Group Inc Wound treatment with uninterrupted variable pressure and methods for controlling it
WO2009093116A1 (en) 2008-01-25 2009-07-30 The University Of Cape Town Wound dressing system and method
KR100916616B1 (en) * 2008-02-27 2009-09-14 인하대학교 산학협력단 Medical treatment bandage made with cellulose-chitosan composit film, RFID sensor and biosensor, and Method thereof
US8449508B2 (en) * 2008-03-05 2013-05-28 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US8372049B2 (en) 2008-03-05 2013-02-12 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US8945030B2 (en) * 2008-03-12 2015-02-03 Bluesky Medical Group, Inc. Negative pressure dressing and method of using same
US20090240218A1 (en) * 2008-03-20 2009-09-24 Tyco Healthcare Group Lp Wound Therapy System
BRPI0906527A2 (en) * 2008-04-04 2016-09-06 3Mm Innovative Properties Company apparatus for applying bandages to wounds and medical bandages
US20100022990A1 (en) * 2008-07-25 2010-01-28 Boehringer Technologies, L.P. Pump system for negative pressure wound therapy and improvements thereon
US8486032B2 (en) * 2008-12-24 2013-07-16 Kci Licensing, Inc. Reduced-pressure treatment systems and methods employing debridement mechanisms
US8377018B2 (en) * 2009-12-23 2013-02-19 Kci Licensing, Inc. Reduced-pressure, multi-orientation, liquid-collection canister

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163287A1 (en) * 2000-12-15 2003-08-28 Vock Curtis A. Movement and event systems and associated methods related applications
US20080041401A1 (en) * 2006-08-15 2008-02-21 Casola Robert P Computer adjusted pressure wound care devices, systems & methods

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9844475B2 (en) 2007-11-21 2017-12-19 Smith & Nephew Plc Wound dressing
US11110010B2 (en) 2007-11-21 2021-09-07 Smith & Nephew Plc Wound dressing
US10123909B2 (en) 2007-11-21 2018-11-13 Smith & Nephew Plc Wound dressing
US11020516B2 (en) 2008-03-05 2021-06-01 Kci Licensing, Inc. Dressing and method for applying reduced pressure to and collecting and storing fluid from a tissue site
US11400204B2 (en) 2010-03-16 2022-08-02 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US20120016322A1 (en) * 2010-07-19 2012-01-19 Kci Licensing, Inc. Systems and methods for electrically detecting the presence of exudate in dressings
US8795257B2 (en) * 2010-07-19 2014-08-05 Kci Licensing, Inc. Systems and methods for electrically detecting the presence of exudate in dressings
US11944520B2 (en) 2011-12-16 2024-04-02 3M Innovative Properties Company Sealing systems and methods employing a hybrid switchable drape
US10945889B2 (en) 2011-12-16 2021-03-16 Kci Licensing, Inc. Releasable medical drapes
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
US9422934B2 (en) * 2012-02-10 2016-08-23 Kci Licensing, Inc. Systems and methods for monitoring a disc pump system using RFID
US20130209277A1 (en) * 2012-02-10 2013-08-15 Christopher Brian Locke Systems and methods for monitoring a disc pump system using rfid
US11903798B2 (en) 2012-03-12 2024-02-20 Smith & Nephew Plc Reduced pressure apparatus and methods
US11129931B2 (en) 2012-03-12 2021-09-28 Smith & Nephew Plc Reduced pressure apparatus and methods
US10660994B2 (en) 2012-03-12 2020-05-26 Smith & Nephew Plc Reduced pressure apparatus and methods
US10046096B2 (en) 2012-03-12 2018-08-14 Smith & Nephew Plc Reduced pressure apparatus and methods
US9451340B2 (en) * 2012-04-12 2016-09-20 Elwha Llc Computational methods and systems for reporting information regarding appurtenances to wound dressings
US9084530B2 (en) * 2012-04-12 2015-07-21 Elwha Llc Computational methods and systems for reporting information regarding appurtenances to wound dressings
US10130518B2 (en) * 2012-04-12 2018-11-20 Elwha Llc Appurtenances including sensors for reporting information regarding wound dressings
US10158928B2 (en) 2012-04-12 2018-12-18 Elwha Llc Appurtenances for reporting information regarding wound dressings
US10226212B2 (en) * 2012-04-12 2019-03-12 Elwha Llc Appurtenances to cavity wound dressings
US20130274563A1 (en) * 2012-04-12 2013-10-17 Elwha Llc Appurtenances to cavity wound dressings
US10265219B2 (en) * 2012-04-12 2019-04-23 Elwha Llc Wound dressing monitoring systems including appurtenances for wound dressings
US9510781B2 (en) 2012-04-12 2016-12-06 Elwha Llc Dormant to active appurtenances for reporting information regarding wound dressings
US20130274630A1 (en) * 2012-04-12 2013-10-17 Elwha LLC, a limited liability company of the State of Delaware Dormant to active appurtenances for reporting information regarding wound dressings
US20130271278A1 (en) * 2012-04-12 2013-10-17 Elwha LLC a limited liability company of the State of Delaware Computational methods and systems for reporting information regarding appurtenances to wound dressings
US20140298927A1 (en) * 2012-04-12 2014-10-09 Elwha LLC, a limited liability company of the State of Delaware Appurtenances including sensors for reporting information regarding wound dressings
US20140298928A1 (en) * 2012-04-12 2014-10-09 Elwha Llc Wound dressing monitoring systems including appurtenances for wound dressings
US9024751B2 (en) * 2012-04-12 2015-05-05 Elwha Llc Dormant to active appurtenances for reporting information regarding wound dressings
US10842707B2 (en) 2012-11-16 2020-11-24 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US11395785B2 (en) 2012-11-16 2022-07-26 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US11839529B2 (en) 2012-11-16 2023-12-12 Kci Licensing, Inc. Medical drape with pattern adhesive layers and method of manufacturing same
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
US11154650B2 (en) 2013-10-30 2021-10-26 Kci Licensing, Inc. Condensate absorbing and dissipating system
US11793923B2 (en) 2013-10-30 2023-10-24 Kci Licensing, Inc. Dressing with differentially sized perforations
US11744740B2 (en) 2013-10-30 2023-09-05 Kci Licensing, Inc. Dressing with sealing and retention interface
US10940046B2 (en) 2013-10-30 2021-03-09 Kci Licensing, Inc. Dressing with sealing and retention interface
US11964095B2 (en) 2013-10-30 2024-04-23 Solventum Intellectual Properties Company Condensate absorbing and dissipating system
US10849792B2 (en) 2013-10-30 2020-12-01 Kci Licensing, Inc. Absorbent conduit and system
US10967109B2 (en) 2013-10-30 2021-04-06 Kci Licensing, Inc. Dressing with differentially sized perforations
US11026844B2 (en) * 2014-03-03 2021-06-08 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US20150245950A1 (en) * 2014-03-03 2015-09-03 Kci Licensing, Inc. Low profile flexible pressure transmission conduit
US11957546B2 (en) 2014-06-05 2024-04-16 3M Innovative Properties Company Dressing with fluid acquisition and distribution characteristics
US10898388B2 (en) 2015-04-27 2021-01-26 Smith & Nephew Plc Reduced pressure apparatuses and methods
US11246975B2 (en) 2015-05-08 2022-02-15 Kci Licensing, Inc. Low acuity dressing with integral pump
US11096830B2 (en) 2015-09-01 2021-08-24 Kci Licensing, Inc. Dressing with increased apposition force
US11950984B2 (en) 2015-09-01 2024-04-09 Solventum Intellectual Properties Company Dressing with increased apposition force
US10973694B2 (en) 2015-09-17 2021-04-13 Kci Licensing, Inc. Hybrid silicone and acrylic adhesive cover for use with wound treatment
US11723809B2 (en) 2016-03-07 2023-08-15 Smith & Nephew Plc Wound treatment apparatuses and methods with negative pressure source integrated into wound dressing
US11285047B2 (en) 2016-04-26 2022-03-29 Smith & Nephew Plc Wound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
US11096831B2 (en) 2016-05-03 2021-08-24 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11305047B2 (en) 2016-05-03 2022-04-19 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
US11173240B2 (en) 2016-05-03 2021-11-16 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
US11896465B2 (en) 2016-05-03 2024-02-13 Smith & Nephew Plc Negative pressure wound therapy device activation and control
US11648152B2 (en) 2016-08-25 2023-05-16 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11116669B2 (en) 2016-08-25 2021-09-14 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11096832B2 (en) * 2016-09-27 2021-08-24 Smith & Nephew Plc Wound closure devices with dissolvable portions
US11369730B2 (en) 2016-09-29 2022-06-28 Smith & Nephew, Inc. Construction and protection of components in negative pressure wound therapy systems
US11564847B2 (en) 2016-09-30 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2018165049A1 (en) * 2017-03-07 2018-09-13 Smith & Nephew, Inc. Reduced pressure therapy systems and methods including an antenna
EP3592313B1 (en) 2017-03-07 2021-07-07 Smith & Nephew, Inc Reduced pressure therapy systems and methods including an antenna
US11123471B2 (en) 2017-03-08 2021-09-21 Smith & Nephew Plc Negative pressure wound therapy device control in presence of fault condition
US11160915B2 (en) 2017-05-09 2021-11-02 Smith & Nephew Plc Redundant controls for negative pressure wound therapy systems
US11564845B2 (en) 2017-09-13 2023-01-31 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11701265B2 (en) 2017-09-13 2023-07-18 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2019063462A1 (en) * 2017-09-27 2019-04-04 T.J.Smith And Nephew,Limited Device operation monitoring and control in wound therapy systems
US11707564B2 (en) 2017-11-01 2023-07-25 Smith & Nephew Plc Safe operation of integrated negative pressure wound treatment apparatuses
US11554203B2 (en) 2017-11-01 2023-01-17 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
US11497653B2 (en) 2017-11-01 2022-11-15 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
USD999914S1 (en) 2018-09-13 2023-09-26 Smith & Nephew Plc Medical dressing
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
US20220160549A1 (en) * 2019-03-25 2022-05-26 Kci Licensing, Inc. Systems and methods for sensing ph of fluids on wound tissue interface
US11484640B2 (en) 2019-07-03 2022-11-01 T.J.Smith And Nephew, Limited Negative pressure wound therapy dressing recognition, wound status detection, and therapy adjustment
WO2021165696A1 (en) * 2020-02-20 2021-08-26 Convatec Limited A wound dressing and a wound therapy apparatus
US11878104B2 (en) * 2020-02-20 2024-01-23 Convatec Limited Wound dressing and a wound therapy apparatus
US11969318B2 (en) 2020-08-24 2024-04-30 Solventum Intellectual Properties Company Releasable medical drapes
GB2615253A (en) * 2020-10-05 2023-08-02 Smith & Nephew Temperature monitoring and control for negative pressure wound therapy systems
WO2022073762A1 (en) * 2020-10-05 2022-04-14 T.J.Smith And Nephew,Limited Temperature monitoring and control for negative pressure wound therapy systems

Also Published As

Publication number Publication date
US20140039426A1 (en) 2014-02-06
CA2814742A1 (en) 2012-05-03
AU2011320912B2 (en) 2016-11-10
CN103179930A (en) 2013-06-26
JP2013545519A (en) 2013-12-26
US8579872B2 (en) 2013-11-12
EP2632406B1 (en) 2016-11-23
CA2814740C (en) 2018-02-20
US20120109083A1 (en) 2012-05-03
WO2012057882A1 (en) 2012-05-03
CN103179929A (en) 2013-06-26
WO2012057881A1 (en) 2012-05-03
CN103179930B (en) 2014-12-24
EP2632407B1 (en) 2017-08-23
EP2632406A1 (en) 2013-09-04
EP2632407A1 (en) 2013-09-04
AU2011320912A1 (en) 2013-04-18
TW201217020A (en) 2012-05-01
AU2011320911B2 (en) 2016-05-26
US9265867B2 (en) 2016-02-23
CA2814740A1 (en) 2012-05-03
AU2011320911A1 (en) 2013-04-18
JP5843296B2 (en) 2016-01-13
JP2014500739A (en) 2014-01-16
TW201217021A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
AU2011320912B2 (en) Interactive, wireless reduced-pressure dressings, methods, and systems
US10086117B2 (en) Wound connection pad with RFID and integrated strain gauge pressure sensor
US20210030598A1 (en) Drape having microstrain inducing projections for treating a wound site
US20210187172A1 (en) Systems and methods for managing reduced pressure at a plurality of wound sites
CN102715984B (en) Self contained wound dressing with micropump
US10398603B2 (en) Reduced-pressure, wound-treatment dressings and systems
JP6306031B2 (en) Wound connection pad with pneumatic connection confirmation capability
US8663132B2 (en) Reduced-pressure treatment systems and methods employing a variable cover
EP2801380B1 (en) Reduced-pressure dressings having desolidifying barrier layers
US20220087871A1 (en) Abdominal Negative Pressure Therapy Dressing With Remote Wound Sensing Capability
US20110224633A1 (en) Reduced-pressure dressing connection pads, systems, and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: KCI LICENSING, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOCKE, CHRISTOPHER BRIAN;COULTHARD, RICHARD DANIEL JOHN;REEL/FRAME:026591/0985

Effective date: 20110713

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION