US20050073292A1 - System and method for current sensing using anti-differential, error correcting current sensing - Google Patents

System and method for current sensing using anti-differential, error correcting current sensing Download PDF

Info

Publication number
US20050073292A1
US20050073292A1 US10/711,745 US71174504A US2005073292A1 US 20050073292 A1 US20050073292 A1 US 20050073292A1 US 71174504 A US71174504 A US 71174504A US 2005073292 A1 US2005073292 A1 US 2005073292A1
Authority
US
United States
Prior art keywords
current
feedback
conductive path
sensor
hall effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/711,745
Inventor
Jerome Hastings
Mark Solveson
Dale Gass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Priority to US10/711,745 priority Critical patent/US20050073292A1/en
Assigned to EATON CORPORATION reassignment EATON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GASS, DALE L., HASTINGS, JEROME K., SOLVESON, MARK G.
Publication of US20050073292A1 publication Critical patent/US20050073292A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates generally to current measuring and monitoring, more particularly, to a system and method for measuring current by sensing magnetic flux associated with current flow through a conductor.
  • a dual Hall sensor configuration is utilized to sense magnetic flux and provide feedback to a processing component.
  • the processing component is arranged to generate an anti-differential output from the feedback received to remove feedback attributable to magnetic fields induced externally from the conductor.
  • Measuring and monitoring of current flow through a conductor is an important analysis that is performed in a wide variety of applications and circumstances.
  • Current sensing designs often fall into one of two categories: contact topologies and non-contact topologies.
  • contact-based sensor systems are typically large and may be difficult to employ, especially in areas where tight size constraints are necessary.
  • a contact-based sensor such as a resistive shunt
  • shunt based sensors require lugs to form an electrical connection and a mounting means to secure the device in position.
  • CT-based sensors necessarily require adequate accommodations for a transformer.
  • Non-contact current sensing designs are often preferred in many applications because they reduce common mode noise typically experienced with direct contact designs, such as shunts. Non-contact designs also reduce heat buildups often associated with resistive shunts and the need to use burdened current transformers. Additionally, non-contact designs provide scalable outputs that are desirable for use with digital controllers.
  • Non-contact sensing and monitoring of current flow includes indirectly determining current flow through a conductor by detecting a magnetic field or flux induced as a result of the current flow through the conductor.
  • metal core based systems are often used to measure the current flow through a conductor by detecting the magnetic flux induced by the current flow.
  • the metal core is utilized to magnify the magnetic flux concentration and, thereby, provide increased accuracy in detecting the magnetic flux and the extrapolated current readings.
  • Various topologies including “open-loop,” “closed-loop,” “flux gate,” and “dithering” designs may be utilized, although all include limitations.
  • Open-loop sensors use the magnetic properties of the metal core material to magnify the magnetic flux induced by the current flow through the conductor.
  • these sensors rely on the “near linear” operational range of the metal core.
  • a ferromagnetic core that enters a “saturation” operational range can distort the reported current compared to the actual current profile. Specifically, as saturation is reached, a current level that changes with time produces a time changing magnetizing force that produces a time changing magnetic flux density within the core. That is, as the core material approaches magnetic saturation, the “magnetic gain” declines and approaches the “magnetic gain” of air.
  • the magnetic field within the metal core is distorted in proportion to the difference in permeability at various points along a hysteresis loop of the metal core. Therefore, should the operating conditions lead to the saturation of the metal core, inaccurate current measurements may be gathered. Accordingly, sensing ranges of metal core sensors are typically hard-limited to the “near-linear” operational range.
  • sensors relying on metal cores can experience hysteresis in the metal core that may produce a zero current offset error.
  • the metal core may act as a weak permanent magnet and report a persistent flux though little or no current is actually present.
  • zero offsets are particularly troublesome when monitoring DC power systems.
  • metal core sensors are susceptible to erroneous current measurements at low or no current levels.
  • increased inductance can produce phase shifts between the actual current profile and the reported current profile.
  • metal core based sensors While electronic-based sensors are typically limited by the voltage rails used in the sensor output stages, current sensors employing metal cores have an additional limitation imposed by the saturation point of the material. For example, a sensor with a scale factor of 1 volt per amp with a 5 volt rail will be limited to 5 amps regardless of the range of the detector. In metal core based sensors it is well known that the dynamic range is typically limited to 10:1. Therefore, it is known that metal core current sensors include range, accuracy, and repeatability limits in proportion to the propensity for hysteresis, saturation, and non-linearity of the material used in the core.
  • “Closed-loop” sensors, flux gate approaches, and dithering approaches utilize a combination of electronic circuits and bucking coils to compensate for these material related errors and/or average-out errors.
  • these systems merely diminish the effects of the errors, and do not entirely eliminate the potential for errors and incorrect current readings.
  • air-core sensors may be used to measure and monitor current.
  • the air core does not have the magnetic flux magnifying or concentrating effect of metal cores. Therefore, air-core current sensors are readily susceptible to influence by external magnetic fields and may provide inaccurate current measurements. As such, air-core sensors are typically unsuitable for applications where multiple high external magnetic fields are present. As an overwhelming percentage of current sensors are required to be deployed in areas where numerous conductors and corresponding magnetic fields are in close proximity, air-core sensors are often undesirable.
  • the present invention is directed to a system and method that overcomes the aforementioned drawbacks.
  • an anti-differential, error correcting, sensor topology is utilized that eliminates the need for ferromagnetic concentrators.
  • the sensor eliminates the limitations associated with metal-core based current sensors and is capable of providing accurate current monitoring in the presence of external magnetic fields.
  • a current monitoring system in accordance with one aspect of the invention, includes a conductive path configured to receive a current therethrough, a first current sensor positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current, and a second current sensor positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field.
  • a processing component is configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.
  • a current sensor includes a first Hall effect sensor positioned proximate to a conductor and configured to provide a first feedback indicative of a current flow through the conductor and a second Hall effect sensor positioned proximate to the conductor and configured to provide a second feedback indicative of the current flow through the conductor.
  • a processing device is configured to generate a summed difference of the first feedback and the second feedback to reduce feedback corresponding to magnetic fields induced externally from the conductor.
  • the invention includes a method of determining current flow through an electrical path.
  • the method includes generating a first feedback represented by a first vector having a first direction and a first magnitude upon detecting a first direction of magnetic flux induced by a current flow through an electrical path and a second vector having the first direction and a second magnitude upon detecting a second direction of magnetic flux induced externally from the electrical path.
  • the method also includes generating a second feedback represented by a third vector having the first direction and the first magnitude upon detecting a third direction of magnetic flux induced by the current flow through the electrical path and a fourth vector having a second direction and the second magnitude upon detecting the second direction of magnetic flux induced externally from the electrical path.
  • the method then includes summing the first feedback and the second feedback to create an anti-differential sum thereby substantially canceling the effects of the first feedback and the second feedback represented by the second vector and the fourth vector.
  • an anti-differential current sensing system includes an electrically conductive path.
  • a first Hall effect sensor is disposed proximate to a first side of the electrically conductive path and configured to generate a first measure of a current flow through the electrically conductive path by monitoring magnetic fields and a second Hall effect sensor is disposed proximate to a second side of the electrically conductive path, substantially opposite the first side of the electrically conductive path, and configured to generate a second measure of the current flow through the electrically conductive path by monitoring magnetic fields.
  • a processing device is configured to receive the first measure of the current flow and the second measure of the current flow and generate an output from the first measure of the current flow and the second measure of the current flow substantially free of errors due to magnetic fields generated externally from the conductive path.
  • a current sensor system includes means for carrying current and means for generating a first feedback upon detecting magnetic flux in a first direction induced from the means for carrying current.
  • the current sensor system also includes means for generating a second feedback upon detecting magnetic flux in a second direction induced from the means for carrying current, wherein the first direction is substantially opposite the direction and means for generating an anti-differential sum from the first feedback and the second feedback to reduce feedback generated upon detecting stray magnetic flux.
  • FIG. 1 is a perspective diagram of an anti-differential current sensor configuration in accordance with the present invention.
  • FIG. 2 is a schematic of one embodiment of the anti-differential current sensor configuration of FIG. 1 in accordance with the present invention.
  • FIG. 3 is a schematic of another embodiment of the anti-differential current sensor configuration of FIG. 1 in accordance with the present invention.
  • FIG. 4 is a graph illustrating the relationship between the influence of external magnetic fields and conductor position in accordance with the present invention.
  • FIG. 5 is an illustration of the influence of magnetic field strength upon parallel conductors at a first distance.
  • FIG. 6 is an illustration of the influence of magnetic field strength upon parallel conductors at a second distance.
  • the present invention is related to a system and method for non-contact based, anti-differential, error-correcting current sensing.
  • a plurality of magnetic flux sensors is arranged about a conductor and provides feedback to a processing component or device configured to generate an output with reduced feedback induced by magnetic fields external to the conductor.
  • the plurality of magnetic flux sensors may be disposed in geometrically designed recesses configured to amplify the magnetic flux received by the plurality of magnetic flux sensors.
  • the system may be disposed in a variety of configurations designed for optimal disposition of the plurality of magnetic flux sensors about a given conductor type.
  • Some examples of possible configurations include etched spiral path topologies for low current and printed circuit board current sensing, dual-spiral and spiral-helix topologies for contact based current sensing, and wire and bus bar mount topologies for wire and bus bar conductors.
  • the system may be integrated with additional systems that utilize current sensing as well as communication interfaces.
  • FIG. 1 a perspective view is shown of an anti-differential current sensor configuration 10 arranged about a conductor 12 in accordance with the present invention.
  • the conductor 12 is illustrated as a round wire for exemplary purposes only but, as will be described, may include any form of current conductor including bus bars, integrated circuits, printed circuit boards, circuit breakers, and the like.
  • the conductor includes a current flow therethrough, as illustrated by an arrow 14 and labeled “I.”
  • the current flow 14 through the conductor 12 induces a magnetic field, as illustrated by arrows 16 , labeled “B 1 .”
  • Two magnetic flux sensors H 1 , H 2 preferably Hall effect sensors, are disposed on substantially opposite sides of the conductor 12 .
  • the positioning of the Hall effect sensors H 1 , H 2 on substantially opposite sides of the conductor 12 aids in reducing the effects of externally induced magnetic fields, labeled “B 2 ” and illustrated by arrows 17 , that can otherwise cause inaccurate readings of the current 14 through the conductor 12 .
  • the two current sensors H 1 , H 2 are used in a configuration that reports the current inside the conductor 12 to a processing component 18 that is configured to calculate a sum or summed difference of the feedback from the two current sensors H 1 , H 2 to generate an anti-differential output having reduced influences from externally induced magnetic fields B 2 17 .
  • the anti-differential current sensor configuration 10 provides an anti-differential output 19 that is a highly accurate indication of the current flow 14 through the conductor 12 and is substantially free of influence from externally induced magnetic fields B 2 17 .
  • the anti-differential current sensor configuration 10 may include various architectures or configurations of the current sensors H 1 , H 2 and processing component 18 .
  • FIG. 2 a first configuration of the anti-differential current sensor configuration 10 a is shown.
  • the conductor 12 is again shown with opposing Hall effect sensors H 1 , H 2 disposed about a periphery of the conductor 12 .
  • FIG. 2 illustrates the conductor 12 in the form of a wire. However, it is contemplated that the conductor may be of various forms. Therefore, FIG. 2 shows the conductor 12 as a wire conductor while FIG. 3 shows a conductor 12 a in the form of a bus bar.
  • the Hall effect sensors H 1 , H 2 may not only be disposed about the periphery of the conductor 12 but may be disposed within flux concentrating recesses within the conductor 12 to improve the magnetic flux detected by the Hall effect sensors H 1 , H 2 .
  • the current flow 14 through the conductor 12 is again represented as “I” and the associated magnetic field, which circles the conductor, is represented as “B 1 ,” 1 6 .
  • the Hall effect sensors H 1 , H 2 are not only disposed on opposite sides of the conductor 12 but are also configured to provide feedback of positively designated current flow upon detecting oppositely directed magnetic flux. That is, Hall effect sensor H 1 provides feedback indicating that a positive current value of magnitude “I” has been determined upon detecting a directional magnetic flux in a first direction 20 . Therefore, the feedback generated by Hall effect sensor H 1 upon detecting directional magnetic flux B 1 16 in the first direction 20 is represented as “+I B1 ,” 21 .
  • Hall effect sensor H 2 is configured to provide feedback indicating that a positively designated current flow has been determined upon detecting a directional magnetic flux in a second direction 22 . Therefore, the feedback generated by Hall effect sensor H 2 upon detecting directional magnetic flux B 1 16 in the second direction 22 is also represented as “ + I B1 ,” 24 . Accordingly, even though the directions 20 , 22 of the magnetic flux B 1 16 are substantially opposite in direction when detected by Hall effect sensor H 1 as opposed to Hall effect sensor H 2 , both Hall effect sensors H 1 , H 2 provide positive feedback “ + I B1 ,” 21 , 24 .
  • the Hall effect sensors H 1 , H 2 provide substantially equal and opposite feedback.
  • the externally induced magnetic field B 2 17 is generally directionally uniform with respect to impinging upon the Hall effect sensors H 1 , H 2 .
  • Hall effect sensor H 1 will provide feedback indicating a positive current flow upon detecting the magnetic field B 2
  • Hall effect sensor H 2 will provide feedback indicating a negative current flow upon detecting the magnetic field B 2 17
  • Hall effect sensor H 1 will provide positive feedback “ + I B2 ,” 26
  • Hall effect sensor H 2 will provide negative feedback “ ⁇ I B2 ,” 28 .
  • the processing component 18 a is a summing amplifier, such as a summing operational amplifier (op amp), and is configured to provide an algebraically summed anti-differential output.
  • op amp summing operational amplifier
  • the processing component 18 a is illustrated as a summing op amp, it is contemplated that a wide variety of processing components may be utilized. Specifically, any processing component, whether analog or digital, that is capable of generating an anti-differential sum of feedback received may be utilized within the anti-differential current sensor configuration 10 a . Therefore, the term “processing component” as utilized herein is defined to include any analog, digital, or discrete components that may be configured to generate an algebraic sum of its inputs.
  • the processing component 18 a receives all feedback from the Hall sensors H 1 , H 2 and provides a sum of + I B1 + + I B1 + + I B2 + ⁇ I B2 .
  • the feedback generated in response to the externally induced magnetic flux B 2 17 ( + I B2 , ⁇ I B2 ) cancels and the anti-differential output 30 of the processing component 18 a is generally twice the current flow 14 through the conductor 12 , as determined from the magnetic field B 1 . Therefore, regardless of the strength, direction, or concentration of extraneous magnetic fields B 2 17 , the output 30 of the processing component 18 a is + 2 I B1 .
  • the first configuration of the anti-differential current sensor configuration 10 a thereby yields accurate current measurements by reducing, if not essentially removing, feedback associated with stray magnetic fields B 2 17 induced or generated externally to the conductor 12 from which current feedback is desired.
  • FIG. 3 a second configuration of the anti-differential current sensor 10 b is shown.
  • FIG. 3 illustrates a conductor 12 a , this time in the form of a bus bar.
  • the Hall effect sensors H 1 , H 2 may not only be disposed about the periphery of the conductor 12 a but may be disposed within flux concentrating recesses within the conductor 12 a to improve the magnetic flux detected by the Hall effect sensors H 1 , H 2 .
  • the second configuration of the anti-differential current sensor 10 b differs from the first configuration of the anti-differential current sensor 10 b shown in FIG. 2 by the architecture or configuration of the Hall effect sensors H 1 , H 2 and the configuration of the processing component 18 b .
  • the processing component 18 b is configured as a differential or “differencing” amplifier.
  • the differential amplifier is a differential op amp, configured to calculate an algebraically summed difference of the feedback received to generate an anti-differential output.
  • the processing component 18 b is illustrated as a differential op amp, it is equally contemplated that a wide variety of processing components may be utilized. Specifically, any processing component, whether analog or digital, that is capable of calculating a summed difference of feedback received to generate the desired anti-differential output may be utilized within the anti-differential current sensor configuration 10 b . Therefore, the term “processing component” as utilized herein is again defined to include any analog, digital, or discrete components that may be configured to generate an algebraic sum of feedback received.
  • the Hall effect sensors H 1 , H 2 are disposed on opposite sides of the conductor 12 a and are configured to provide equal and oppositely designated feedback of the current flow 14 through the conductor 12 a upon detecting oppositely directed magnetic flux 20 , 22 . That is, Hall effect sensor H 1 provides feedback indicating that a positive current value of magnitude “I” has been determined upon detecting a directional magnetic flux in a first direction 20 . Therefore, the feedback generated by Hall effect sensor H 1 upon detecting directional magnetic flux B 1 16 in the first direction 20 is represented as “ + I B1 ,” 21 .
  • Hall effect sensor H 2 is configured to provide feedback indicating that a negatively designated current flow has been determined upon detecting a directional magnetic flux in a second direction 22 . Therefore, the feedback generated by Hall effect sensor H 2 upon detecting directional magnetic flux B 1 16 in the second direction 22 is represented as “ ⁇ I B1 ,” 24 a . Accordingly, since the directions 20 , 22 of the magnetic flux B 1 16 are substantially opposite when detected by Hall effect sensor H 1 as opposed to Hall effect sensor H 2 , Hall effect sensors H 1 , H 2 provide substantially equal feedback that is directionally opposite, “ + I B1 ” 21 and “ ⁇ I B1 ” 24 a respectively. That is, the feedbacks 21 , 24 a are substantially equal in magnitude but each has opposite polarity.
  • Hall effect sensors H 1 , H 2 provide substantially equal feedback. Specifically, due to the directional configuration of the Hall effect sensors H 1 , H 2 , Hall effect sensors H 1 , H 2 will both provide positive feedback 26 , 28 a , represented as “ + I B2 ,” upon detecting the magnetic field B 2 . Even slight variations in the strength of the stray magnetic fields result in little error inducement because of the relative strength of the stray fields as compared to that of the sensed conductor.
  • the processing component 18 b is configured in a differential configuration to generate the desired anti-differential output eliminating feedback generated upon detecting the externally induced magnetic field B 2 . That is, the processing component receives the feedback + I B1 , ⁇ I B1 , + I B2 , and + I B2 and algebraically calculates a summed difference. Specifically, a summed difference is generated as ( + I B1 + + I B2 ) ⁇ ( ⁇ I B1 + + I B2 ) yielding + 2 I B1 , 30 .
  • both the first configuration of the anti-differential current sensor 10 a and the second configuration of the anti-differential current sensor 10 b yield the same anti-differential output 30 that effectively excludes influence from externally induced magnetic fields 17 .
  • both the first configuration of the anti-differential current sensor 10 a and the second configuration of the anti-differential current sensor 10 b provide highly accurate current measurements by reducing, if not essentially removing, feedback associated with stray magnetic fields induced or generated externally to the conductor 12 a from which current feedback is desired.
  • the system is substantially free of errors due to zero flux offsets and Hall effect gain differences. Furthermore, matching the Hall effect sensors substantially corrects zero flux offset drift associated with temperature fluctuations. However, for configuration utilizing a single Hall effect sensor, it is contemplated that active electronic correction may be utilized to offset zero flux offset drift associated with temperature fluctuations.
  • FIG. 4 shows that the strength of magnetic fields induced by current flow through a plurality of conductors and the strength of such at various distances are shown.
  • FIG. 4 shows that the magnetic field detected by current sensors associated with three different conductor sizes, at three current levels, exponentially decreases as the distance from the center of the conductor increases.
  • the external magnetic field 32 detected by a current sensor disposed 0.4 inches from a 1/0 wire carrying 45 amps is substantially proportionate to the magnetic field 34 detected at only 0.1 inches from a No. 6 AWG wire carrying 13.3 amps.
  • a current sensor configured to monitor the No. 6 AWG wire carrying 13.3 amps should have a common mode field correction capacity of at least 16% of the rating of the No. 6 AWG wire.
  • FIGS. 5 and 6 show the magnetic flux interactions due to adjacent parallel conductors 36 , 38 carrying approximately 100 amps of current in opposite directions.
  • FIG. 5 shows the interaction of magnetic fields induced by adjacent conductors 36 , 38 in close proximity.
  • Concentric circular shadings 40 represent the strength of the magnetic fields induced by the current flow through the conductors 36 , 38 .
  • the magnetic fields induced by each conductor 36 , 38 interact to form a combined oval magnetic field 40 rather than two independent magnetic fields.
  • a current sensor disposed to monitor one of the conductors 36 , 38 will detect a relatively large externally induced magnetic field.
  • the monitor must have a relatively high common mode field correction capacity forming a tolerance or “buffer” for the influence of magnetic fields induced externally from the conductor being monitored. While significantly high common mode field correction capacities are readily attainable, it is often desirable to limit the common mode field correction capacities so as to control costs.
  • the common mode field correction capacity of a sensor may be configured to be 25% of the conductor rating. In this case, a separation of adjacent conductors is desirable to assure that the common mode field correction capacity of the sensor is not exceeded.
  • the adjacent, parallel conductors 36 , 38 are separated so that the induced magnetic fields 42 , 44 are sufficiently isolated so as to remain below the common mode field correction capacity of a given sensor.
  • the conductor gage and corresponding amperage rating must be considered against the common mode field correction capacity of a sensor to determine the preferable separation of the conductors 36 , 38 .
  • a separation of approximately three times the radius of the conductor 36 , 38 would be a preferred minimum separation. Accordingly, a sufficient buffer is formed to tolerate the influence of magnetic fields induced externally from the conductor being monitored without affecting the summed difference calculated from the feedback generated by the sensor.
  • FIGS. 5 and 6 illustrate wire conductors 36 , 38 for exemplary purposes only.
  • Other conductor forms such as bus bars and the like may be preferable in some configuration and are also contemplated.
  • the separation requirements are compounded as additional conductors are added and/or wire gages increased.
  • the present invention yields error correcting for externally induced magnetic fields for current sensing and monitoring of both AC and DC power sources.
  • the anti-differential output generated is high fidelity due to the absence of magnetic core materials.
  • Low inductance, achieved as a function of an air core configuration allows the current sensor configuration to be highly responsive to change as well as provides in-phase, real-time, current feedback vectors.
  • the sensor configuration includes wide and dynamic range abilities due to the absence of permeable materials and the absence of a saturation point.
  • the absence of non-linear saturating or ferromagnetic core materials eliminates DC error offsets associated with hysteresis of ferromagnetic materials and allows the current sensor configuration to be utilized to monitor AC and DC circuits. Therefore, the system generates an anti-differential output that is substantially free of variations due to hysteresis, magnetic core saturation, and eddy currents because the system is substantially free of ferromagnetic field concentrating materials. Furthermore, the elimination of metallic core materials reduces the overall size of the current sensor configuration and lowers consumed power.
  • the sensor configuration is flexibly deployable to conductors including current flows from a few milli-amps to a few thousand amps.
  • the system is substantially free of errors due to zero flux offsets and Hall effect gain differences.
  • matching the Hall effect sensors substantially corrects any zero flux offset drift associated with temperature fluctuations.
  • a constant current power supply may be utilized having a bias current compensation circuit or a temperature dependent adjustable gain to compensate for Hall gain drift.
  • the processing component includes a temperature dependant op-amp gain loop configured to compensate for temperature dependent electronic drift. Also, Lorentz force drifts associated with temperature variations can be corrected using by the temperature dependent supply to power the anti-differential current sensor.
  • MRS magnetoresistive structures
  • GMRS giant magnetoresistive structures
  • the present invention includes a current monitoring system having a conductive path configured to receive a current therethrough, a first current sensor positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current, and a second current sensor positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field.
  • a processing component is configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.
  • a current sensor includes a first Hall effect sensor positioned proximate to a conductor and configured to provide a first feedback indicative of a current flow through the conductor and a second Hall effect sensor positioned proximate to the conductor and configured to provide a second feedback indicative of the current flow through the conductor.
  • a processing device is configured to generate a summed difference of the first feedback and the second feedback to reduce feedback corresponding to magnetic fields induced externally from the conductor.
  • Another embodiment of the present invention includes a method of determining current flow through an electrical path.
  • the method includes generating a first feedback represented by a first vector having a first direction and a first magnitude upon detecting a first direction of magnetic flux induced by a current flow through an electrical path and a second vector having the first direction and a second magnitude upon detecting a second direction of magnetic flux induced externally from the electrical path.
  • the method also includes generating a second feedback represented by a third vector having the first direction and the first magnitude upon detecting a third direction of magnetic flux induced by the current flow through the electrical path and a fourth vector having a second direction and the second magnitude upon detecting the second direction of magnetic flux induced externally from the electrical path.
  • the method then includes summing the first feedback and the second feedback to create an anti-differential sum thereby substantially canceling the effects of the first feedback and the second feedback represented by the second vector and the fourth vector.
  • a further embodiment of the present invention has an anti-differential current sensing system that includes an electrically conductive path.
  • a first Hall effect sensor is disposed proximate to a first side of the electrically conductive path and configured to generate a first measure of a current flow through the electrically conductive path by monitoring magnetic fields and a second Hall effect sensor is disposed proximate to a second side of the electrically conductive path, substantially opposite the first side of the electrically conductive path, and configured to generate a second measure of the current flow through the electrically conductive path by monitoring magnetic fields.
  • a processing device is configured to receive the first measure of the current flow and the second measure of the current flow and generate an output from the first measure of the current flow and the second measure of the current flow substantially free of errors due to magnetic fields generated externally from the conductive path.
  • a current sensor system includes means for carrying current and means for generating a first feedback upon detecting magnetic flux in a first direction induced from the means for carrying current.
  • the current sensor system also includes means for generating a second feedback upon detecting magnetic flux in a second direction induced from the means for carrying current, wherein the first direction is substantially opposite the direction and means for generating an anti-differential sum from the first feedback and the second feedback to reduce feedback generated upon detecting stray magnetic flux.

Abstract

The present invention is directed to system and method for current sensing using an anti-differential, error correcting, current sensing system. The invention includes a conductive path configured to receive a current therethrough. A first current sensor is positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current. A second current sensor is positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field. A processing component is configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of prior U.S. Provisional Application Ser. No. 60/507,896 filed Oct. 1, 2003 and entitled INTEGRATED, COMMUNICATING, NON-CONTACT CURRENT SENSOR AND ARC FAULT DETECTOR FOR BUS, CABLE AND FEED THROUGH INSTALLATIONS.
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to current measuring and monitoring, more particularly, to a system and method for measuring current by sensing magnetic flux associated with current flow through a conductor. A dual Hall sensor configuration is utilized to sense magnetic flux and provide feedback to a processing component. The processing component is arranged to generate an anti-differential output from the feedback received to remove feedback attributable to magnetic fields induced externally from the conductor.
  • Measuring and monitoring of current flow through a conductor is an important analysis that is performed in a wide variety of applications and circumstances. Current sensing designs often fall into one of two categories: contact topologies and non-contact topologies.
  • Contact sensors are common in many circumstances but include many inherent limitations. For example, while shunt-type sensors are readily applicable to direct current (DC) applications, shunt-type sensors are not suited to alternating current (AC) applications due to errors caused by induced loop voltages. On the other hand, while current transformers (CT) are suited for AC applications, such are inapplicable to DC applications due to the fundamental nature of transformers.
  • In any case, these contact-based sensor systems are typically large and may be difficult to employ, especially in areas where tight size constraints are necessary. Specifically, in order to deploy a contact-based sensor, such as a resistive shunt, it is necessary to remove the conductor from service. Additionally, shunt based sensors require lugs to form an electrical connection and a mounting means to secure the device in position. Similarly, CT-based sensors necessarily require adequate accommodations for a transformer.
  • Non-contact current sensing designs are often preferred in many applications because they reduce common mode noise typically experienced with direct contact designs, such as shunts. Non-contact designs also reduce heat buildups often associated with resistive shunts and the need to use burdened current transformers. Additionally, non-contact designs provide scalable outputs that are desirable for use with digital controllers.
  • A variety of designs and approaches have been developed for non-contact current monitoring systems. One common and desirable form of non-contact sensing and monitoring of current flow includes indirectly determining current flow through a conductor by detecting a magnetic field or flux induced as a result of the current flow through the conductor.
  • For example, metal core based systems are often used to measure the current flow through a conductor by detecting the magnetic flux induced by the current flow. The metal core is utilized to magnify the magnetic flux concentration and, thereby, provide increased accuracy in detecting the magnetic flux and the extrapolated current readings. Various topologies including “open-loop,” “closed-loop,” “flux gate,” and “dithering” designs may be utilized, although all include limitations.
  • Open-loop sensors use the magnetic properties of the metal core material to magnify the magnetic flux induced by the current flow through the conductor. However, to extrapolate the current measurements from the detected magnetic flux, these sensors rely on the “near linear” operational range of the metal core. A ferromagnetic core that enters a “saturation” operational range can distort the reported current compared to the actual current profile. Specifically, as saturation is reached, a current level that changes with time produces a time changing magnetizing force that produces a time changing magnetic flux density within the core. That is, as the core material approaches magnetic saturation, the “magnetic gain” declines and approaches the “magnetic gain” of air. As such, the magnetic field within the metal core is distorted in proportion to the difference in permeability at various points along a hysteresis loop of the metal core. Therefore, should the operating conditions lead to the saturation of the metal core, inaccurate current measurements may be gathered. Accordingly, sensing ranges of metal core sensors are typically hard-limited to the “near-linear” operational range.
  • Additionally, sensors relying on metal cores can experience hysteresis in the metal core that may produce a zero current offset error. Specifically, when at low or zero current levels, the metal core may act as a weak permanent magnet and report a persistent flux though little or no current is actually present. As such, zero offsets are particularly troublesome when monitoring DC power systems. As all permeable ferromagnetic materials exhibit some level of hysteresis, which produces an error at zero current, metal core sensors are susceptible to erroneous current measurements at low or no current levels. Furthermore, increased inductance can produce phase shifts between the actual current profile and the reported current profile.
  • Furthermore, while electronic-based sensors are typically limited by the voltage rails used in the sensor output stages, current sensors employing metal cores have an additional limitation imposed by the saturation point of the material. For example, a sensor with a scale factor of 1 volt per amp with a 5 volt rail will be limited to 5 amps regardless of the range of the detector. In metal core based sensors it is well known that the dynamic range is typically limited to 10:1. Therefore, it is known that metal core current sensors include range, accuracy, and repeatability limits in proportion to the propensity for hysteresis, saturation, and non-linearity of the material used in the core.
  • “Closed-loop” sensors, flux gate approaches, and dithering approaches utilize a combination of electronic circuits and bucking coils to compensate for these material related errors and/or average-out errors. However, these systems merely diminish the effects of the errors, and do not entirely eliminate the potential for errors and incorrect current readings.
  • Accordingly, in order to eliminate the potential for inaccurate current measurements due to metal core saturation, hysteresis, or eddy currents, air-core sensors may be used to measure and monitor current. However, while the removal of the metal core eliminates the potential for inaccurate current measurements due to metal core saturation, hysteresis, or eddy currents, the air core does not have the magnetic flux magnifying or concentrating effect of metal cores. Therefore, air-core current sensors are readily susceptible to influence by external magnetic fields and may provide inaccurate current measurements. As such, air-core sensors are typically unsuitable for applications where multiple high external magnetic fields are present. As an overwhelming percentage of current sensors are required to be deployed in areas where numerous conductors and corresponding magnetic fields are in close proximity, air-core sensors are often undesirable.
  • It would therefore be desirable to design a system and method for non-contact current sensing that does not rely on ferromagnetic materials and is not susceptible to magnetic fields induced externally from the monitored conductor. That is, it would be desirable to have a system and method for non-contact current sensing that does not include the inherent limitations of metal-core based current sensors while providing accurate current feedback in the presence of external magnetic fields. Furthermore, it would be desirable to have a system and method for concentrating magnetic flux associated with a particular conduction to increase monitoring accuracy.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present invention is directed to a system and method that overcomes the aforementioned drawbacks. Specifically, an anti-differential, error correcting, sensor topology is utilized that eliminates the need for ferromagnetic concentrators. As such, the sensor eliminates the limitations associated with metal-core based current sensors and is capable of providing accurate current monitoring in the presence of external magnetic fields.
  • In accordance with one aspect of the invention, a current monitoring system is disclosed that includes a conductive path configured to receive a current therethrough, a first current sensor positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current, and a second current sensor positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field. A processing component is configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.
  • According to another aspect of the invention, a current sensor is disclosed that includes a first Hall effect sensor positioned proximate to a conductor and configured to provide a first feedback indicative of a current flow through the conductor and a second Hall effect sensor positioned proximate to the conductor and configured to provide a second feedback indicative of the current flow through the conductor. A processing device is configured to generate a summed difference of the first feedback and the second feedback to reduce feedback corresponding to magnetic fields induced externally from the conductor.
  • In accordance with another aspect, the invention includes a method of determining current flow through an electrical path. The method includes generating a first feedback represented by a first vector having a first direction and a first magnitude upon detecting a first direction of magnetic flux induced by a current flow through an electrical path and a second vector having the first direction and a second magnitude upon detecting a second direction of magnetic flux induced externally from the electrical path. The method also includes generating a second feedback represented by a third vector having the first direction and the first magnitude upon detecting a third direction of magnetic flux induced by the current flow through the electrical path and a fourth vector having a second direction and the second magnitude upon detecting the second direction of magnetic flux induced externally from the electrical path. The method then includes summing the first feedback and the second feedback to create an anti-differential sum thereby substantially canceling the effects of the first feedback and the second feedback represented by the second vector and the fourth vector.
  • In accordance with yet another aspect of the invention, an anti-differential current sensing system is disclosed that includes an electrically conductive path. A first Hall effect sensor is disposed proximate to a first side of the electrically conductive path and configured to generate a first measure of a current flow through the electrically conductive path by monitoring magnetic fields and a second Hall effect sensor is disposed proximate to a second side of the electrically conductive path, substantially opposite the first side of the electrically conductive path, and configured to generate a second measure of the current flow through the electrically conductive path by monitoring magnetic fields. A processing device is configured to receive the first measure of the current flow and the second measure of the current flow and generate an output from the first measure of the current flow and the second measure of the current flow substantially free of errors due to magnetic fields generated externally from the conductive path.
  • According to another aspect of the invention, a current sensor system is disclosed that includes means for carrying current and means for generating a first feedback upon detecting magnetic flux in a first direction induced from the means for carrying current. The current sensor system also includes means for generating a second feedback upon detecting magnetic flux in a second direction induced from the means for carrying current, wherein the first direction is substantially opposite the direction and means for generating an anti-differential sum from the first feedback and the second feedback to reduce feedback generated upon detecting stray magnetic flux.
  • Various other features and advantages of the present invention will be made apparent from the following detailed description and the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings illustrate one preferred embodiment presently contemplated for carrying out the invention.
  • In the drawings:
  • FIG. 1 is a perspective diagram of an anti-differential current sensor configuration in accordance with the present invention.
  • FIG. 2 is a schematic of one embodiment of the anti-differential current sensor configuration of FIG. 1 in accordance with the present invention.
  • FIG. 3 is a schematic of another embodiment of the anti-differential current sensor configuration of FIG. 1 in accordance with the present invention.
  • FIG. 4 is a graph illustrating the relationship between the influence of external magnetic fields and conductor position in accordance with the present invention.
  • FIG. 5 is an illustration of the influence of magnetic field strength upon parallel conductors at a first distance.
  • FIG. 6 is an illustration of the influence of magnetic field strength upon parallel conductors at a second distance.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention is related to a system and method for non-contact based, anti-differential, error-correcting current sensing. A plurality of magnetic flux sensors is arranged about a conductor and provides feedback to a processing component or device configured to generate an output with reduced feedback induced by magnetic fields external to the conductor. The plurality of magnetic flux sensors may be disposed in geometrically designed recesses configured to amplify the magnetic flux received by the plurality of magnetic flux sensors. The system may be disposed in a variety of configurations designed for optimal disposition of the plurality of magnetic flux sensors about a given conductor type. Some examples of possible configurations include etched spiral path topologies for low current and printed circuit board current sensing, dual-spiral and spiral-helix topologies for contact based current sensing, and wire and bus bar mount topologies for wire and bus bar conductors. Furthermore, the system may be integrated with additional systems that utilize current sensing as well as communication interfaces.
  • Referring to FIG. 1, a perspective view is shown of an anti-differential current sensor configuration 10 arranged about a conductor 12 in accordance with the present invention. The conductor 12 is illustrated as a round wire for exemplary purposes only but, as will be described, may include any form of current conductor including bus bars, integrated circuits, printed circuit boards, circuit breakers, and the like. The conductor includes a current flow therethrough, as illustrated by an arrow 14 and labeled “I.” As is well known, the current flow 14 through the conductor 12 induces a magnetic field, as illustrated by arrows 16, labeled “B1.” Two magnetic flux sensors H1, H2, preferably Hall effect sensors, are disposed on substantially opposite sides of the conductor 12. The positioning of the Hall effect sensors H1, H2 on substantially opposite sides of the conductor 12 aids in reducing the effects of externally induced magnetic fields, labeled “B2” and illustrated by arrows 17, that can otherwise cause inaccurate readings of the current 14 through the conductor 12. That is, the two current sensors H1, H2 are used in a configuration that reports the current inside the conductor 12 to a processing component 18 that is configured to calculate a sum or summed difference of the feedback from the two current sensors H1, H2 to generate an anti-differential output having reduced influences from externally induced magnetic fields B 2 17. Specifically, the anti-differential current sensor configuration 10 provides an anti-differential output 19 that is a highly accurate indication of the current flow 14 through the conductor 12 and is substantially free of influence from externally induced magnetic fields B 2 17.
  • The anti-differential current sensor configuration 10 may include various architectures or configurations of the current sensors H1, H2 and processing component 18. Referring now to FIG. 2, a first configuration of the anti-differential current sensor configuration 10 a is shown. The conductor 12 is again shown with opposing Hall effect sensors H1, H2 disposed about a periphery of the conductor 12. FIG. 2 illustrates the conductor 12 in the form of a wire. However, it is contemplated that the conductor may be of various forms. Therefore, FIG. 2 shows the conductor 12 as a wire conductor while FIG. 3 shows a conductor 12 a in the form of a bus bar. Additionally, it is contemplated that the Hall effect sensors H1, H2 may not only be disposed about the periphery of the conductor 12 but may be disposed within flux concentrating recesses within the conductor 12 to improve the magnetic flux detected by the Hall effect sensors H1, H2.
  • The current flow 14 through the conductor 12 is again represented as “I” and the associated magnetic field, which circles the conductor, is represented as “B1,” 1 6. According to the first configuration of the anti-differential current sensor 10 a, the Hall effect sensors H1, H2 are not only disposed on opposite sides of the conductor 12 but are also configured to provide feedback of positively designated current flow upon detecting oppositely directed magnetic flux. That is, Hall effect sensor H1 provides feedback indicating that a positive current value of magnitude “I” has been determined upon detecting a directional magnetic flux in a first direction 20. Therefore, the feedback generated by Hall effect sensor H1 upon detecting directional magnetic flux B 1 16 in the first direction 20 is represented as “+IB1,” 21.
  • On the other hand, according to the first configuration of the anti-differential current sensor 10 a, Hall effect sensor H2 is configured to provide feedback indicating that a positively designated current flow has been determined upon detecting a directional magnetic flux in a second direction 22. Therefore, the feedback generated by Hall effect sensor H2 upon detecting directional magnetic flux B 1 16 in the second direction 22 is also represented as “+IB1,” 24. Accordingly, even though the directions 20, 22 of the magnetic flux B 1 16 are substantially opposite in direction when detected by Hall effect sensor H1 as opposed to Hall effect sensor H2, both Hall effect sensors H1, H2 provide positive feedback “+IB1,” 21, 24.
  • Following this convention, upon detecting a stray or foreign magnetic field B 2 17 that is induced or generated externally to the conductor 12 and generally impinges upon each Hall effect sensor H1, H2 substantially equally, the Hall effect sensors H1, H2 provide substantially equal and opposite feedback. Specifically, unlike the magnetic field B 1 16 induced by the current flow 14 through the conductor 12, which uniformly encircles the conductor 12, the externally induced magnetic field B 2 17 is generally directionally uniform with respect to impinging upon the Hall effect sensors H1, H2. Accordingly, due to the directional configuration of the Hall effect sensors H1, H2, Hall effect sensor H1 will provide feedback indicating a positive current flow upon detecting the magnetic field B2, while Hall effect sensor H2 will provide feedback indicating a negative current flow upon detecting the magnetic field B 2 17. That is, Hall effect sensor H1 will provide positive feedback “+IB2,” 26 while Hall effect sensor H2 will provide negative feedback “IB2,” 28.
  • All feedback, +IB1, +IB2, +IB1, and IB2, is then passed to a processing component 18 a. According to the first configuration of the anti-differential current sensor 10 a, the processing component 18 a is a summing amplifier, such as a summing operational amplifier (op amp), and is configured to provide an algebraically summed anti-differential output. However, while the processing component 18 a is illustrated as a summing op amp, it is contemplated that a wide variety of processing components may be utilized. Specifically, any processing component, whether analog or digital, that is capable of generating an anti-differential sum of feedback received may be utilized within the anti-differential current sensor configuration 10 a. Therefore, the term “processing component” as utilized herein is defined to include any analog, digital, or discrete components that may be configured to generate an algebraic sum of its inputs.
  • Therefore, the processing component 18 a receives all feedback from the Hall sensors H1, H2 and provides a sum of +IB1++IB1++IB2+IB2. As such, the feedback generated in response to the externally induced magnetic flux B2 17 (+IB2, IB2) cancels and the anti-differential output 30 of the processing component 18 a is generally twice the current flow 14 through the conductor 12, as determined from the magnetic field B1. Therefore, regardless of the strength, direction, or concentration of extraneous magnetic fields B 2 17, the output 30 of the processing component 18 a is + 2IB1. The first configuration of the anti-differential current sensor configuration 10 a thereby yields accurate current measurements by reducing, if not essentially removing, feedback associated with stray magnetic fields B 2 17 induced or generated externally to the conductor 12 from which current feedback is desired.
  • Referring now to FIG. 3, a second configuration of the anti-differential current sensor 10 b is shown. For exemplary purposes, FIG. 3 illustrates a conductor 12 a, this time in the form of a bus bar. Again, it is contemplated that the Hall effect sensors H1, H2 may not only be disposed about the periphery of the conductor 12 a but may be disposed within flux concentrating recesses within the conductor 12 a to improve the magnetic flux detected by the Hall effect sensors H1, H2.
  • As will be described in detail below, the second configuration of the anti-differential current sensor 10 b differs from the first configuration of the anti-differential current sensor 10 b shown in FIG. 2 by the architecture or configuration of the Hall effect sensors H1, H2 and the configuration of the processing component 18 b. Specifically, due to the configuration of the Hall effect sensors H1, H2 about the conductor 12 a, the processing component 18 b is configured as a differential or “differencing” amplifier.
  • In accordance with one embodiment, the differential amplifier is a differential op amp, configured to calculate an algebraically summed difference of the feedback received to generate an anti-differential output. However, while the processing component 18 b is illustrated as a differential op amp, it is equally contemplated that a wide variety of processing components may be utilized. Specifically, any processing component, whether analog or digital, that is capable of calculating a summed difference of feedback received to generate the desired anti-differential output may be utilized within the anti-differential current sensor configuration 10 b. Therefore, the term “processing component” as utilized herein is again defined to include any analog, digital, or discrete components that may be configured to generate an algebraic sum of feedback received.
  • According to the second configuration of the anti-differential current sensor 10 b, the Hall effect sensors H1, H2 are disposed on opposite sides of the conductor 12 a and are configured to provide equal and oppositely designated feedback of the current flow 14 through the conductor 12 a upon detecting oppositely directed magnetic flux 20, 22. That is, Hall effect sensor H1 provides feedback indicating that a positive current value of magnitude “I” has been determined upon detecting a directional magnetic flux in a first direction 20. Therefore, the feedback generated by Hall effect sensor H1 upon detecting directional magnetic flux B 1 16 in the first direction 20 is represented as “+IB1,” 21.
  • On the other hand, according to the second configuration of the anti-differential current sensor 10 b, Hall effect sensor H2 is configured to provide feedback indicating that a negatively designated current flow has been determined upon detecting a directional magnetic flux in a second direction 22. Therefore, the feedback generated by Hall effect sensor H2 upon detecting directional magnetic flux B 1 16 in the second direction 22 is represented as “IB1,” 24 a. Accordingly, since the directions 20, 22 of the magnetic flux B 1 16 are substantially opposite when detected by Hall effect sensor H1 as opposed to Hall effect sensor H2, Hall effect sensors H1, H2 provide substantially equal feedback that is directionally opposite, “+IB121 and “IB124 a respectively. That is, the feedbacks 21, 24 a are substantially equal in magnitude but each has opposite polarity.
  • Following this convention, upon detecting another magnetic field B 2 17 that is induced or generated externally to the conductor 12 a and generally impinges upon each Hall effect sensor H1, H2 substantially equally, the Hall effect sensors H1, H2 provide substantially equal feedback. Specifically, due to the directional configuration of the Hall effect sensors H1, H2, Hall effect sensors H1, H2 will both provide positive feedback 26, 28 a, represented as “+IB2,” upon detecting the magnetic field B2. Even slight variations in the strength of the stray magnetic fields result in little error inducement because of the relative strength of the stray fields as compared to that of the sensed conductor.
  • All feedback, +IB1, −I B1, +IB2, and +IB2 is then passed to the processing component 18 b. As previously described, according to the second configuration of the anti-differential current sensor 10 b, the processing component 18 b is configured in a differential configuration to generate the desired anti-differential output eliminating feedback generated upon detecting the externally induced magnetic field B2. That is, the processing component receives the feedback +IB1, IB1, +IB2, and +IB2 and algebraically calculates a summed difference. Specifically, a summed difference is generated as (+IB1++IB2)−(IB1++IB2) yielding + 2IB1, 30.
  • Therefore, through the second configuration of the anti-differential current sensor 10 b includes a different configuration of the Hall effect sensors H1, H2 and the differential amplifier 18 b rather than the summing amplifier 18 a of FIG. 2, both the first configuration of the anti-differential current sensor 10 a and the second configuration of the anti-differential current sensor 10 b yield the same anti-differential output 30 that effectively excludes influence from externally induced magnetic fields 17. As such, both the first configuration of the anti-differential current sensor 10 a and the second configuration of the anti-differential current sensor 10 b provide highly accurate current measurements by reducing, if not essentially removing, feedback associated with stray magnetic fields induced or generated externally to the conductor 12 a from which current feedback is desired.
  • These highly accurate non-contact based current measurements of the above-described current sensor configurations allow the current sensor configuration to operate in environments having various external magnetic fields without degrading current measurements from a specific conductor. However, the accuracy of the current sensor in detecting a particular magnetic field associated with a particular conductor can be improved if the current sensor is configured, for example, for the particular conductor configuration and current level being monitored. Additionally, by disposing the sensors in close proximity to the monitored conductor or within current concentrating recesses, accuracy can be improved.
  • By matching the Hall effect sensors, the system is substantially free of errors due to zero flux offsets and Hall effect gain differences. Furthermore, matching the Hall effect sensors substantially corrects zero flux offset drift associated with temperature fluctuations. However, for configuration utilizing a single Hall effect sensor, it is contemplated that active electronic correction may be utilized to offset zero flux offset drift associated with temperature fluctuations.
  • Referring to FIG. 4, the strength of magnetic fields induced by current flow through a plurality of conductors and the strength of such at various distances are shown. FIG. 4 shows that the magnetic field detected by current sensors associated with three different conductor sizes, at three current levels, exponentially decreases as the distance from the center of the conductor increases. For example, the external magnetic field 32 detected by a current sensor disposed 0.4 inches from a 1/0 wire carrying 45 amps is substantially proportionate to the magnetic field 34 detected at only 0.1 inches from a No. 6 AWG wire carrying 13.3 amps. Accordingly, to overcome interference from a magnetic field induced by an adjacent 1/0 wire carrying 45 amps, a current sensor configured to monitor the No. 6 AWG wire carrying 13.3 amps should have a common mode field correction capacity of at least 16% of the rating of the No. 6 AWG wire.
  • This point is illustrated in FIGS. 5 and 6, which show the magnetic flux interactions due to adjacent parallel conductors 36, 38 carrying approximately 100 amps of current in opposite directions. FIG. 5 shows the interaction of magnetic fields induced by adjacent conductors 36, 38 in close proximity. Concentric circular shadings 40 represent the strength of the magnetic fields induced by the current flow through the conductors 36, 38. The magnetic fields induced by each conductor 36, 38 interact to form a combined oval magnetic field 40 rather than two independent magnetic fields. In this case, a current sensor disposed to monitor one of the conductors 36, 38 will detect a relatively large externally induced magnetic field. As such, the monitor must have a relatively high common mode field correction capacity forming a tolerance or “buffer” for the influence of magnetic fields induced externally from the conductor being monitored. While significantly high common mode field correction capacities are readily attainable, it is often desirable to limit the common mode field correction capacities so as to control costs. For example, the common mode field correction capacity of a sensor may be configured to be 25% of the conductor rating. In this case, a separation of adjacent conductors is desirable to assure that the common mode field correction capacity of the sensor is not exceeded.
  • Referring to FIG. 6, the adjacent, parallel conductors 36, 38 are separated so that the induced magnetic fields 42, 44 are sufficiently isolated so as to remain below the common mode field correction capacity of a given sensor. Specifically, the conductor gage and corresponding amperage rating must be considered against the common mode field correction capacity of a sensor to determine the preferable separation of the conductors 36, 38. For example, should a sensor be configured to have a common mode field correction capacity of 25%, a separation of approximately three times the radius of the conductor 36, 38 would be a preferred minimum separation. Accordingly, a sufficient buffer is formed to tolerate the influence of magnetic fields induced externally from the conductor being monitored without affecting the summed difference calculated from the feedback generated by the sensor.
  • This principle can be extended to multiple adjacent conductors in various forms arranged in an array. That is, FIGS. 5 and 6 illustrate wire conductors 36, 38 for exemplary purposes only. Other conductor forms such as bus bars and the like may be preferable in some configuration and are also contemplated. Specifically, when using wires in an array formation the separation requirements are compounded as additional conductors are added and/or wire gages increased. As such, it is often desirable to utilize bus bar configurations whereby conductor “radius” is reduced, thereby reducing adjacent conductor separation requirements.
  • The present invention yields error correcting for externally induced magnetic fields for current sensing and monitoring of both AC and DC power sources. The anti-differential output generated is high fidelity due to the absence of magnetic core materials. Low inductance, achieved as a function of an air core configuration, allows the current sensor configuration to be highly responsive to change as well as provides in-phase, real-time, current feedback vectors. The sensor configuration includes wide and dynamic range abilities due to the absence of permeable materials and the absence of a saturation point.
  • Additionally, the absence of non-linear saturating or ferromagnetic core materials eliminates DC error offsets associated with hysteresis of ferromagnetic materials and allows the current sensor configuration to be utilized to monitor AC and DC circuits. Therefore, the system generates an anti-differential output that is substantially free of variations due to hysteresis, magnetic core saturation, and eddy currents because the system is substantially free of ferromagnetic field concentrating materials. Furthermore, the elimination of metallic core materials reduces the overall size of the current sensor configuration and lowers consumed power. The sensor configuration is flexibly deployable to conductors including current flows from a few milli-amps to a few thousand amps.
  • By matching the Hall effect sensors, the system is substantially free of errors due to zero flux offsets and Hall effect gain differences. Furthermore, matching the Hall effect sensors substantially corrects any zero flux offset drift associated with temperature fluctuations. Furthermore, a constant current power supply may be utilized having a bias current compensation circuit or a temperature dependent adjustable gain to compensate for Hall gain drift. Additionally or alternatively, the processing component includes a temperature dependant op-amp gain loop configured to compensate for temperature dependent electronic drift. Also, Lorentz force drifts associated with temperature variations can be corrected using by the temperature dependent supply to power the anti-differential current sensor.
  • Additionally, while the above-described system is described with respect to utilizing a pair of Hall effect sensors within the anti-differential topology, it is contemplated that alternative magnetic flux sensors may be equivalently utilized. Specifically, magnetoresistive structures (MRS), giant magnetoresistive structures (GMRS), and the like may be equivalently utilized within the anti-differential topology.
  • While the above-described technique has been described with respect to current monitoring systems, it is equivalently applicable for voltage and/or power monitoring systems. That is, it is contemplated that additional systems and subsystems may be utilized with the above described techniques and topologies to equivalently generate highly accurate voltage and/or power measurements.
  • Therefore, the present invention includes a current monitoring system having a conductive path configured to receive a current therethrough, a first current sensor positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current, and a second current sensor positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field. A processing component is configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.
  • According to another embodiment of the invention, a current sensor includes a first Hall effect sensor positioned proximate to a conductor and configured to provide a first feedback indicative of a current flow through the conductor and a second Hall effect sensor positioned proximate to the conductor and configured to provide a second feedback indicative of the current flow through the conductor. A processing device is configured to generate a summed difference of the first feedback and the second feedback to reduce feedback corresponding to magnetic fields induced externally from the conductor.
  • Another embodiment of the present invention includes a method of determining current flow through an electrical path. The method includes generating a first feedback represented by a first vector having a first direction and a first magnitude upon detecting a first direction of magnetic flux induced by a current flow through an electrical path and a second vector having the first direction and a second magnitude upon detecting a second direction of magnetic flux induced externally from the electrical path. The method also includes generating a second feedback represented by a third vector having the first direction and the first magnitude upon detecting a third direction of magnetic flux induced by the current flow through the electrical path and a fourth vector having a second direction and the second magnitude upon detecting the second direction of magnetic flux induced externally from the electrical path. The method then includes summing the first feedback and the second feedback to create an anti-differential sum thereby substantially canceling the effects of the first feedback and the second feedback represented by the second vector and the fourth vector.
  • A further embodiment of the present invention has an anti-differential current sensing system that includes an electrically conductive path. A first Hall effect sensor is disposed proximate to a first side of the electrically conductive path and configured to generate a first measure of a current flow through the electrically conductive path by monitoring magnetic fields and a second Hall effect sensor is disposed proximate to a second side of the electrically conductive path, substantially opposite the first side of the electrically conductive path, and configured to generate a second measure of the current flow through the electrically conductive path by monitoring magnetic fields. A processing device is configured to receive the first measure of the current flow and the second measure of the current flow and generate an output from the first measure of the current flow and the second measure of the current flow substantially free of errors due to magnetic fields generated externally from the conductive path.
  • According to another embodiment of the invention, a current sensor system includes means for carrying current and means for generating a first feedback upon detecting magnetic flux in a first direction induced from the means for carrying current. The current sensor system also includes means for generating a second feedback upon detecting magnetic flux in a second direction induced from the means for carrying current, wherein the first direction is substantially opposite the direction and means for generating an anti-differential sum from the first feedback and the second feedback to reduce feedback generated upon detecting stray magnetic flux.
  • The present invention has been described in terms of the preferred embodiment, and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

Claims (45)

1. A current monitoring system comprising:
a conductive path configured to receive a current therethrough;
a first current sensor positioned on a first side of the conductive path and configured to monitor a first directional magnetic field induced by the current;
a second current sensor positioned on a second side of the conductive path, substantially opposite the first current sensor, and configured to monitor a second directional magnetic field induced by the current that is substantially opposite in direction to the first directional magnetic field; and
a processing component configured to receive feedback from the first current sensor and the second current sensor and generate an anti-differential output from the feedback.
2. The system of claim 1 wherein the processing component includes at least one of a summing amplifier and a differential amplifier.
3. The system of claim 1 wherein the first current sensor includes a first Hall effect sensor and the second current sensor includes a second Hall effect sensor.
4. The system of claim 3 wherein the first Hall effect sensor is configured to generate a first feedback upon detecting the first directional magnetic field induced by the current through the conductive path and the second Hall effect sensor is configured to generate a second feedback upon detecting the second directional magnetic field induced by the current through the conductive path.
5. The system of claim 4 wherein the first feedback generated by the first Hall effect sensor includes an indication of another current upon detecting a directional magnetic field induced externally to the conductive path and the second feedback generated by the second Hall effect sensor includes an indication of another current upon detecting the directional magnetic field induced externally to the conductive path.
6. The system of claim 5 further comprising generating the anti-differential output from the first feedback and the second feedback to reduce the indication of the another current.
7. The system of claim 3 wherein the anti-differential output is substantially free of variations due to changes in operating temperatures of the first Hall effect detector and the second Hall effect detector and substantially free of variations due to hysteresis, magnetic core saturation, and eddy currents.
8. The system of claim 3 further comprising a constant current power supply having at least one of a bias current compensation circuit and a temperature dependent adjustable gain configured to compensate for Hall gain drift and wherein the processing component includes a temperature dependant op-amp gain loop configured to compensate for temperature dependent electronic drift.
9. The system of claim 1 wherein the first current sensor and the second current sensor are substantially free of ferromagnetic field concentrating materials.
10. The system of claim 1 further comprising an adjacent conductive path positioned proximate to the conductive path and having a current flow therethrough.
11. The system of claim 10 wherein the first current sensor, the second sensor, and the processing component are configured to perform common mode error correcting to substantially eliminate feedback attributable to the adjacent conductive path from the anti-differential output.
12. A current sensor comprising:
a first Hall effect sensor positioned proximate to a conductor and configured to provide a first feedback indicative of a current flow through the conductor;
a second Hall effect sensor positioned proximate to the conductor and configured to provide a second feedback indicative of the current flow through the conductor; and
a processing device configured to generate a summed difference of the first feedback and the second feedback to reduce feedback corresponding to magnetic fields induced externally from the conductor.
13. The current sensor of claim 12 wherein the first Hall effect sensor is positioned on a first side of the conductor and the second Hall effect sensor is positioned on a second side of the conductor, wherein the first side of the conductor is substantially opposite the second side of the conductor.
14. The current sensor of claim 12 wherein the first Hall effect sensor is configured to provide feedback having a first polarity upon detecting magnetic fields induced by current flow through the conductor and the second Hall effect sensor is configured to provide feedback having a second polarity upon detecting magnetic fields induced by current flow through the conductor.
15. The current sensor of claim 14 wherein the first Hall effect sensor and the second Hall effect sensor are configured to provide feedback having the first polarity upon detecting magnetic fields induced externally from the conductor.
16. The current sensor of claim 15 wherein the processing component includes a differential amplifier configured to sum the difference of the feedback having the first polarity and the feedback having the second polarity to substantially remove feedback generated upon detecting magnetic fields induced externally from the conductor.
17. The current sensor of claim 12 wherein the processing component includes an amplifier configured to calculate at least one of a sum and a difference of the first feedback and the second feedback to generate the summed difference.
18. The current sensor of claim 12 further comprising a constant current power supply having at least one of a bias current compensation circuit and a temperature dependent adjustable gain configured to compensate for Hall gain drift.
19. The current sensor of claim 12 wherein the summed difference is substantially free of variations due to changes in operating temperatures of the first Hall effect detector and the second Hall effect detector.
20. The current sensor of claim 12 wherein the current sensor is substantially free of ferromagnetic core materials.
21. The current sensor of claim 12 wherein the summed difference is substantially free of variations due to hysteresis, magnetic core saturation, and eddy currents.
22. The current sensor of claim 12 wherein the summed difference is zero when no current flow is present through the conductor.
23. A method of determining current flow through an electrical path comprising the steps of:
generating a first feedback represented by a first vector having a first direction and a first magnitude upon detecting a first direction of magnetic flux induced by a current flow through an electrical path and a second vector having the first direction and a second magnitude upon detecting a second direction of magnetic flux induced externally from the electrical path;
generating a second feedback represented by a third vector having the first direction and the first magnitude upon detecting a third direction of magnetic flux induced by the current flow through the electrical path and a fourth vector having a second direction and the second magnitude upon detecting the second direction of magnetic flux induced externally from the electrical path; and
summing the first feedback and the second feedback to create an anti-differential sum thereby substantially canceling the effects of the first feedback and the second feedback represented by the second vector and the fourth vector.
24. The method of claim 23 further comprising the step of correcting for Lorentz force drifts associated with temperature variations by providing a temperature dependent supply of power to a sensor system configured to generate the first feedback and the second feedback.
25. The method of claim 23 further comprising the step of correcting for electronic drift associated with temperature variations.
26. The method of claim 23 wherein the first direction of magnetic flux and the third direction of magnetic flux are substantially opposite.
27. The method of claim 23 wherein the steps of generating the first feedback and generating the second feedback include monitoring the electrical path includes monitoring at least one of a conductive wire, a bus bar, and an integrated circuit (IC) board etching to determine the first, second and third directions of magnetic flux.
28. The method of claim 23 wherein the steps of generating the first feedback and generating the second feedback further comprises receiving feedback from at least two Hall sensors configured to detect oppositely directed magnetic flux induced by current flow through the electrical path to generate the first feedback and the second feedback.
29. The method of claim 28 further comprising compensating for a Hall voltage zero flux offset by matching the at least two Hall sensors.
30. The method of claim 28 further comprising removing phase shifts such that the anti-differential sum is in phase with current flow through the electrical path.
31. An anti-differential current sensing system comprising:
an electrically conductive path;
a first Hall effect sensor disposed proximate to a first side of the electrically conductive path and configured to generate a first measure of a current flow through the electrically conductive path by monitoring magnetic fields;
a second Hall effect sensor disposed proximate to a second side of the electrically conductive path, substantially opposite the first side of the electrically conductive path, and configured to generate a second measure of the current flow through the electrically conductive path by monitoring magnetic fields; and
a processing device configured to receive the first measure of the current flow and the second measure of the current flow and generate an output from the first measure of the current flow and the second measure of the current flow substantially free of errors due to magnetic fields generated externally from the conductive path.
32. The system of claim 31 wherein the processing device includes at least one of a summing amplifier and a differential amplifier configured to reduce the first measure of the current and the second measure of the current by an amount attributable to magnetic fields induced externally to the electrically conductive path.
33. The system of claim 32 wherein the processing device includes an op-amp.
34. The system of claim 31 wherein the first Hall effect sensor and the second Hall effect sensor are positioned about a periphery of the electrically conductive path.
35. The system of claim 31 wherein the current flow through the electrically conductive path includes at least one of a direct current (DC) and an alternating current (AC).
36. The system of claim 35 wherein the current flow includes a frequency of greater than 30 kHz.
37. The system of claim 31 further comprising a second electrically conductive path proximate the electrically conductive path.
38. The system of claim 37 wherein the electrically conductive path and the second electrically conductive path include a wire having a first radius and a second radius, respectively.
39. The system of claim 38 wherein the electrically conductive path and the second electrically conductive path are disposed at a distance separating the electrically conductive path and the second electrically conductive path by approximately three times a greater of the first radius and the second radius to provide a buffer for common mode error correcting.
40. The system of claim 39 wherein the buffer is configured such that a summed difference of the first measure of the current flow through the electrically conductive path and the second measure of the current flow through the electrically conductive path includes an error of not greater than 1%.
41. The system of claim 37 wherein the electrically conductive path and the second electrically conductive path each include a bus bar and wherein the bus bars are disposed at a distance of approximately one-and-one half times a width of the bus bars.
42. The system of claim 41 wherein the buffer is configured such that a summed difference of the first measure of the current flow through the electrically conductive path and the second measure of the current flow through the electrically conductive path includes an error of not greater than 1%.
43. The system of claim 31 wherein a summed difference of the first measure of the current flow and the second measure of the current flow is substantially free of variations due to hysteresis, magnetic core saturation, and eddy currents.
44. The system of claim 31 wherein the first current sensor and the second current sensor are matched to provide feedback such that a summed difference of the first measure of the current flow and the second measure of the current flow is zero when no current flow is present through the electrically conductive path.
45. A current sensor system comprising:
means for carrying current;
means for generating a first feedback upon detecting magnetic flux in a first direction induced from the means for carrying current;
means for generating a second feedback upon detecting magnetic flux in a second direction induced from the means for carrying current, wherein the first direction is substantially opposite the direction; and
means for generating an anti-differential sum from the first feedback and the second feedback to reduce feedback generated upon detecting stray magnetic flux.
US10/711,745 2003-10-01 2004-10-01 System and method for current sensing using anti-differential, error correcting current sensing Abandoned US20050073292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/711,745 US20050073292A1 (en) 2003-10-01 2004-10-01 System and method for current sensing using anti-differential, error correcting current sensing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50789603P 2003-10-01 2003-10-01
US10/711,745 US20050073292A1 (en) 2003-10-01 2004-10-01 System and method for current sensing using anti-differential, error correcting current sensing

Publications (1)

Publication Number Publication Date
US20050073292A1 true US20050073292A1 (en) 2005-04-07

Family

ID=34421684

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/711,746 Active 2024-12-11 US7250748B2 (en) 2003-10-01 2004-10-01 Integrated anti-differential current sensing system
US10/711,745 Abandoned US20050073292A1 (en) 2003-10-01 2004-10-01 System and method for current sensing using anti-differential, error correcting current sensing
US10/711,743 Active 2024-10-28 US7157898B2 (en) 2003-10-01 2004-10-01 Magnetic flux concentrator anti-differential current sensing topology
US11/162,220 Active US7259546B1 (en) 2003-10-01 2005-09-01 Temperature compensating integrated anti-differential current sensing system
US11/468,065 Active US7298133B2 (en) 2003-10-01 2006-08-29 Magnetic flux concentrator anti-differential current sensor with flux concentrating recesses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/711,746 Active 2024-12-11 US7250748B2 (en) 2003-10-01 2004-10-01 Integrated anti-differential current sensing system

Family Applications After (3)

Application Number Title Priority Date Filing Date
US10/711,743 Active 2024-10-28 US7157898B2 (en) 2003-10-01 2004-10-01 Magnetic flux concentrator anti-differential current sensing topology
US11/162,220 Active US7259546B1 (en) 2003-10-01 2005-09-01 Temperature compensating integrated anti-differential current sensing system
US11/468,065 Active US7298133B2 (en) 2003-10-01 2006-08-29 Magnetic flux concentrator anti-differential current sensor with flux concentrating recesses

Country Status (2)

Country Link
US (5) US7250748B2 (en)
WO (3) WO2005033717A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284613A1 (en) * 2003-10-01 2006-12-21 Hastings Jerome K Magnetic flux concentrator anti-differential current sensor
US20070041140A1 (en) * 2005-08-17 2007-02-22 Kimihiko Furukawa Method to determine current detection circuit failure
US20090027047A1 (en) * 2007-07-26 2009-01-29 Honeywell International Inc. Current sensor having sandwiched magnetic permeability layer
EP2202527A1 (en) * 2008-12-23 2010-06-30 Abb Research Ltd. Current measurement device and method
US20130057997A1 (en) * 2011-09-05 2013-03-07 Koolbridge Inc. Potential Arc Fault Detection and Suppression
US20150061660A1 (en) * 2013-09-05 2015-03-05 Renesas Electronics Corporation Sensor device
US9438152B2 (en) 2011-04-11 2016-09-06 Robert Bosch Gmbh Electronically commutated electric motor comprising rotor position detection with interference field compensation
JP2017050993A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Motor device
JP2017058275A (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Current sensor and power conversion device equipped with the same
US9735703B2 (en) 2011-05-08 2017-08-15 Paul Wilkinson Dent Smart load center for distribution of power from two sources
US10033302B2 (en) 2014-08-29 2018-07-24 Koolbridge Solar, Inc. Rotary solar converter
US10090777B2 (en) 2011-05-08 2018-10-02 Koolbridge Solar, Inc. Inverter with independent current and voltage controlled outputs
US10148093B2 (en) 2015-06-16 2018-12-04 Koolbridge Solar, Inc. Inter coupling of microinverters
US10250162B2 (en) 2017-08-14 2019-04-02 Koolbridge Solar, Inc. DC bias prevention in transformerless inverters
US11196272B2 (en) 2016-06-29 2021-12-07 Koolbridge Solar, Inc. Rapid de-energization of DC conductors with a power source at both ends
US11228171B2 (en) 2017-08-14 2022-01-18 Koolbridge Solar, Inc. Overcurrent trip coordination between inverter and circuit breakers
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536238B2 (en) * 2003-12-31 2009-05-19 Sd3, Llc Detection systems for power equipment
JP3655295B2 (en) * 2002-07-22 2005-06-02 富士通株式会社 Inverter current detection method, current detection circuit thereof, abnormality detection method thereof, abnormality detection circuit thereof, display device and information processing device
JP4360998B2 (en) * 2004-10-01 2009-11-11 Tdk株式会社 Current sensor
US7221251B2 (en) * 2005-03-22 2007-05-22 Acutechnology Semiconductor Air core inductive element on printed circuit board for use in switching power conversion circuitries
US7481400B2 (en) * 2005-07-01 2009-01-27 Portec, Rail Products Ltd. Railway wheel sensor
JP4612554B2 (en) * 2006-02-16 2011-01-12 株式会社東海理化電機製作所 Current sensor
CN101432594B (en) * 2006-04-27 2011-02-16 旭化成电子材料元件株式会社 Position detection device and position detection method
WO2008011843A1 (en) * 2006-07-26 2008-01-31 Siemens Aktiengesellschaft Measuring apparatus
ATE467842T1 (en) * 2006-09-08 2010-05-15 Promethean Devices Llc SENSOR, METHOD AND SYSTEM FOR MONITORING TRANSMISSION LINES
US7460344B2 (en) 2006-12-13 2008-12-02 Eaton Corporation Direct current and battery disconnect apparatus
FR2919730A1 (en) * 2007-08-02 2009-02-06 Abb France CURRENT SENSOR FOR MEASURING CURRENT CIRCULATING IN AT LEAST ONE DRIVER
US8619443B2 (en) 2010-09-29 2013-12-31 The Powerwise Group, Inc. System and method to boost voltage
US20110182094A1 (en) * 2007-08-13 2011-07-28 The Powerwise Group, Inc. System and method to manage power usage
US8085009B2 (en) 2007-08-13 2011-12-27 The Powerwise Group, Inc. IGBT/FET-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8085010B2 (en) 2007-08-24 2011-12-27 The Powerwise Group, Inc. TRIAC/SCR-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8120307B2 (en) 2007-08-24 2012-02-21 The Powerwise Group, Inc. System and method for providing constant loading in AC power applications
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8810190B2 (en) * 2007-09-14 2014-08-19 The Powerwise Group, Inc. Motor controller system and method for maximizing energy savings
US8094034B2 (en) 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
GB0723621D0 (en) * 2007-12-04 2008-01-09 Ecoauditors Ltd Measuring alternating current flowing through an electricity supply distribution unit
US7915885B2 (en) * 2008-08-04 2011-03-29 Infineon Technologies Ag Sensor system and method
US8004255B2 (en) 2008-08-07 2011-08-23 The Powerwise Group, Inc. Power supply for IGBT/FET drivers
US7739934B2 (en) * 2008-09-08 2010-06-22 Power Tool Institute Detection system for power tool
US7719258B2 (en) * 2008-10-13 2010-05-18 National Taiwan University Of Science And Technology Method and apparatus for current measurement using hall sensors without iron cores
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
EP2278344A3 (en) * 2009-07-10 2014-10-08 Avalon Innovation AB Current sensing device
DE102009029209A1 (en) * 2009-09-04 2011-03-10 Robert Bosch Gmbh Current sensor, current measuring module and method for current measurement
CA2771121C (en) * 2009-09-08 2018-05-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8698446B2 (en) * 2009-09-08 2014-04-15 The Powerwise Group, Inc. Method to save energy for devices with rotating or reciprocating masses
US8930152B2 (en) * 2009-09-25 2015-01-06 University Of Washington Whole structure contactless power consumption sensing
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
US8704514B2 (en) * 2010-02-11 2014-04-22 Infineon Technologies Ag Current sensor including a sintered metal layer
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
US8442787B2 (en) 2010-04-30 2013-05-14 Infineon Technologies Ag Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US8461824B2 (en) * 2010-06-07 2013-06-11 Infineon Technologies Ag Current sensor
US8680843B2 (en) 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
EA027503B1 (en) 2010-07-02 2017-08-31 Белкин Интернэшнл, Инк. Systems and methods for measuring electrical power usage in a structure and systems and methods of calibrating the same
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
US8283742B2 (en) 2010-08-31 2012-10-09 Infineon Technologies, A.G. Thin-wafer current sensors
CH703903B1 (en) * 2010-10-01 2014-04-30 Melexis Tessenderlo Nv Current sensor.
US20120146165A1 (en) 2010-12-09 2012-06-14 Udo Ausserlechner Magnetic field current sensors
US8593133B2 (en) * 2010-12-29 2013-11-26 General Electric Company Current measuring systems and methods of assembling the same
CN103328986B (en) * 2011-01-11 2015-05-20 阿尔卑斯绿色器件株式会社 Current sensor
CN103392067B (en) 2011-01-21 2016-02-24 维斯塔斯风力系统集团公司 Wind turbine fault-detecting circuit and method
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US8907340B2 (en) * 2011-09-23 2014-12-09 Infineon Technologies Austria Ag Semiconductor arrangement with an integrated hall sensor
US9304150B2 (en) * 2011-09-30 2016-04-05 Keysight Technologies, Inc. Closed core current probe
KR101950710B1 (en) * 2012-04-04 2019-02-21 알레그로 마이크로시스템스, 엘엘씨 High accuracy differential current sensor for applications like ground fault interrupters
US9007054B2 (en) 2012-04-04 2015-04-14 Allegro Microsystems, Llc Angle sensor with misalignment detection and correction
US9081041B2 (en) 2012-04-04 2015-07-14 Allegro Microsystems, Llc High accuracy differential current sensor for applications like ground fault interrupters
US8896295B2 (en) 2012-04-04 2014-11-25 Allegro Microsystems, Llc Magnetic field sensor having multiple sensing elements and a programmable misalignment adjustment device for misalignment detection and correction in current sensing and other applications
EP2661034B1 (en) * 2012-05-04 2020-03-11 ams AG Electric circuit arrangement for galvanic isolated communication
DE102012104348A1 (en) 2012-05-21 2013-11-21 Konrad Slanec Contactless current sensor system for measuring electric current flowing in current conductor, has ferromagnetic core portions arranged so that two air gaps are formed such that magnetic field sensors are arranged in each air-gaps
US8907669B2 (en) * 2012-07-24 2014-12-09 Allegro Microsystems, Llc Circuits and techniques for adjusting a sensitivity of a closed-loop current sensor
CN104871018B (en) 2012-11-29 2017-10-31 株式会社Sirc Device for measurement of electrical energy
US9244134B2 (en) * 2013-01-15 2016-01-26 Infineon Technologies Ag XMR-sensor and method for manufacturing the XMR-sensor
US9341684B2 (en) 2013-03-13 2016-05-17 Plures Technologies, Inc. Magnetic field sensing apparatus and methods
JP6306823B2 (en) * 2013-04-01 2018-04-04 富士通コンポーネント株式会社 Current sensor
JP3208924U (en) * 2013-08-30 2017-03-02 ハネウェル・インターナショナル・インコーポレーテッド Interference rejection for current measurement systems
US9134351B2 (en) 2013-12-11 2015-09-15 Eaton Corporation Bi-directional direct current sensing circuit and current sensing assembly including the same
US9746500B2 (en) 2013-12-11 2017-08-29 Eaton Corporation Electrical current sensing apparatus
US9846180B2 (en) 2013-12-11 2017-12-19 Eaton Corporation Current sensing assembly employing magnetic sensors
TWI499791B (en) 2013-12-20 2015-09-11 Ind Tech Res Inst A compensating apparatus for a non-contact current sensor installing variation in two wire power cable
CN104614570B (en) * 2015-01-22 2017-11-10 青岛海信移动通信技术股份有限公司 A kind of method and device for measuring electric current
WO2016130685A1 (en) 2015-02-11 2016-08-18 Pulse Electronics, Inc. Miniature arc fault current sensor and systems
JP6414498B2 (en) * 2015-03-27 2018-10-31 愛知製鋼株式会社 Differential magnetic sensor
US10228398B2 (en) 2015-04-02 2019-03-12 Rosemount Aerospace Inc. System and method for minimizing magnetic field effect on an isolated magnetometer
RU2636796C1 (en) * 2016-06-22 2017-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения" Method for determining instant values of currents in three-core cable without metal cover
WO2018092336A1 (en) * 2016-11-17 2018-05-24 株式会社村田製作所 Current sensor
KR102039784B1 (en) * 2017-08-31 2019-11-01 전자부품연구원 Current Sensor based on Magnetic Sensor using a Variable Bias for Smart Grid
US10581643B1 (en) * 2017-09-21 2020-03-03 Apple Inc. Inductors for power over data line circuits
CN107656120B (en) * 2017-10-20 2020-01-07 吉林大学 High-precision low-noise direct-current large-current detection device and method
US11079424B2 (en) * 2018-12-07 2021-08-03 Schneider Electric USA, Inc. Combined low frequency and high frequency current sensor
US11061100B2 (en) * 2019-06-12 2021-07-13 Texas Instruments Incorporated System for continuous calibration of hall sensors
US11867773B2 (en) 2019-06-18 2024-01-09 Texas Instruments Incorporated Switched capacitor integrator circuit with reference, offset cancellation and differential to single-ended conversion
KR20210083979A (en) * 2019-12-27 2021-07-07 삼성전기주식회사 Position detection apparatus of aperture module
US11002804B1 (en) * 2020-01-14 2021-05-11 Honeywell International Inc. Magnetic field sensor compensation methods and systems
CN113219230A (en) * 2020-02-05 2021-08-06 弗兰克公司 Sensor probe for contactless electrical measurement with a clamp having an adjustable inner region
EP3862762A1 (en) 2020-02-05 2021-08-11 Fluke Corporation Non-contact voltage measurement with adjustable size rogowski coil
DE102020119340A1 (en) * 2020-07-22 2022-01-27 Phoenix Contact Gmbh & Co. Kg Current meter for recording measured values, current sensor and current transducer
US20230052689A1 (en) * 2021-08-13 2023-02-16 Texas Instruments Incorporated Magnetic sensor array processing for interference reduction
DE102021131638B4 (en) 2021-12-01 2023-06-29 Infineon Technologies Ag Sensor devices, associated manufacturing processes and methods for determining a measurement current
CN114544044A (en) * 2022-02-23 2022-05-27 北京奇力建通工程技术有限公司 Magnetic flux sensor detection member and open type magnetic flux sensor
US20230333147A1 (en) * 2022-04-15 2023-10-19 Allegro Microsystems, Llc Current sensor assemblies for low currents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559495A (en) * 1981-03-26 1985-12-17 Lgz Landis & Gyr Zug Ag Transducer free of any magnetic core for contactless current measurement
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US5841272A (en) * 1995-12-20 1998-11-24 Sundstrand Corporation Frequency-insensitive current sensor
US20030151406A1 (en) * 2002-02-11 2003-08-14 Hong Wan Magnetic field sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283643A (en) * 1979-05-25 1981-08-11 Electric Power Research Institute, Inc. Hall sensing apparatus
JPS5762510A (en) * 1980-10-03 1982-04-15 Toshiba Corp Current transformer
CH651672A5 (en) * 1980-12-24 1985-09-30 Landis & Gyr Ag Magnetoresistive current detector.
JPH04252934A (en) * 1991-01-29 1992-09-08 Sanki Eng Kk Multi-countercurrent type centrifugal continuous multistage extraction apparatus
GB2255645A (en) * 1991-05-10 1992-11-11 Electronic Components Ltd Current sensing device
DE9113081U1 (en) * 1991-10-21 1991-12-12 Siemens Ag, 8000 Muenchen, De
DE29818370U1 (en) * 1998-01-12 1999-01-21 Siemens Ag Device for measuring the current flowing in a conductor, in particular a strip conductor, and strip conductor therefor
DE19813890A1 (en) * 1998-03-28 1999-09-30 Abb Research Ltd Current measurement method
DE19914772A1 (en) * 1999-03-31 2000-10-12 Aeg Niederspannungstech Gmbh Current sensors
US6130599A (en) * 1999-08-03 2000-10-10 Eaton Corporation Electrical current sensing apparatus
US6271656B1 (en) * 1999-08-03 2001-08-07 Eaton Corporation Electrical current sensing apparatus
US6819095B1 (en) * 1999-09-16 2004-11-16 International Rectifier Corporation Power semiconductor device assembly with integrated current sensing and control
US6348800B1 (en) * 1999-09-28 2002-02-19 Rockwell Automation Technologies, Inc. Multi-phase ground fault current sensor system
DE10023837B4 (en) * 2000-05-16 2006-01-05 Infineon Technologies Ag Device for measuring electric currents
FR2827962B1 (en) * 2001-07-25 2004-04-02 Socomec Sa HALL EFFECT MEASUREMENT DEVICE FOR THE INTENSITY OF AN ELECTRIC CURRENT
US6642704B2 (en) * 2001-09-28 2003-11-04 Eaton Corporation Device for sensing electrical current and housing therefor
WO2005033717A1 (en) * 2003-10-01 2005-04-14 Eaton Corporation Magnetic flux concentrator current sensing topology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559495A (en) * 1981-03-26 1985-12-17 Lgz Landis & Gyr Zug Ag Transducer free of any magnetic core for contactless current measurement
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US5841272A (en) * 1995-12-20 1998-11-24 Sundstrand Corporation Frequency-insensitive current sensor
US20030151406A1 (en) * 2002-02-11 2003-08-14 Hong Wan Magnetic field sensor

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284613A1 (en) * 2003-10-01 2006-12-21 Hastings Jerome K Magnetic flux concentrator anti-differential current sensor
US7298133B2 (en) 2003-10-01 2007-11-20 Eaton Corporation Magnetic flux concentrator anti-differential current sensor with flux concentrating recesses
US20070041140A1 (en) * 2005-08-17 2007-02-22 Kimihiko Furukawa Method to determine current detection circuit failure
US7466139B2 (en) * 2005-08-17 2008-12-16 Sanyo Electric Co., Ltd. Method to determine current detection circuit failure
US20090027047A1 (en) * 2007-07-26 2009-01-29 Honeywell International Inc. Current sensor having sandwiched magnetic permeability layer
US7612553B2 (en) 2007-07-26 2009-11-03 Honeywell International Inc. Current sensor having sandwiched magnetic permeability layer
EP2202527A1 (en) * 2008-12-23 2010-06-30 Abb Research Ltd. Current measurement device and method
US9438152B2 (en) 2011-04-11 2016-09-06 Robert Bosch Gmbh Electronically commutated electric motor comprising rotor position detection with interference field compensation
US11509163B2 (en) 2011-05-08 2022-11-22 Koolbridge Solar, Inc. Multi-level DC to AC inverter
US11791711B2 (en) 2011-05-08 2023-10-17 Koolbridge Solar, Inc. Safety shut-down system for a solar energy installation
US10135361B2 (en) 2011-05-08 2018-11-20 Koolbridge Solar, Inc. Residential electrical energy installation
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
US10998755B2 (en) 2011-05-08 2021-05-04 Koolbridge Solar, Inc. Transformerless DC to AC converter using selectively series-connected capacitors and PWM
US10784710B2 (en) 2011-05-08 2020-09-22 Koolbridge Solar, Inc. Transformerless DC to AC converter
US9735703B2 (en) 2011-05-08 2017-08-15 Paul Wilkinson Dent Smart load center for distribution of power from two sources
US10666161B2 (en) 2011-05-08 2020-05-26 Koolbridge Solar, Inc. Safety shut-down system for a solar energy installation
US10205324B2 (en) 2011-05-08 2019-02-12 Koolbridge Solar, Inc. Remotely controlled photovoltaic string combiner
US10090777B2 (en) 2011-05-08 2018-10-02 Koolbridge Solar, Inc. Inverter with independent current and voltage controlled outputs
US10128774B2 (en) 2011-05-08 2018-11-13 Koolbridge Solar, Inc. Inverter inrush current limiting
US8891211B2 (en) * 2011-09-05 2014-11-18 Paul Wilkinson Dent Potential arc fault detection and suppression
US20130057997A1 (en) * 2011-09-05 2013-03-07 Koolbridge Inc. Potential Arc Fault Detection and Suppression
US9875962B2 (en) 2013-09-05 2018-01-23 Renesas Electronics Corporation Sensor device having inductors, analog and logic circuits for detecting power flowing through a powerline
US9632119B2 (en) * 2013-09-05 2017-04-25 Renesas Electronics Corporation Sensor device having inductors for detecting power flowing through a power line
US20150061660A1 (en) * 2013-09-05 2015-03-05 Renesas Electronics Corporation Sensor device
US10033302B2 (en) 2014-08-29 2018-07-24 Koolbridge Solar, Inc. Rotary solar converter
US10148093B2 (en) 2015-06-16 2018-12-04 Koolbridge Solar, Inc. Inter coupling of microinverters
JP2017050993A (en) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 Motor device
JP2017058275A (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Current sensor and power conversion device equipped with the same
US11196272B2 (en) 2016-06-29 2021-12-07 Koolbridge Solar, Inc. Rapid de-energization of DC conductors with a power source at both ends
US10250162B2 (en) 2017-08-14 2019-04-02 Koolbridge Solar, Inc. DC bias prevention in transformerless inverters
US11228171B2 (en) 2017-08-14 2022-01-18 Koolbridge Solar, Inc. Overcurrent trip coordination between inverter and circuit breakers
US11460488B2 (en) 2017-08-14 2022-10-04 Koolbridge Solar, Inc. AC electrical power measurements

Also Published As

Publication number Publication date
US7298133B2 (en) 2007-11-20
US7259546B1 (en) 2007-08-21
US7157898B2 (en) 2007-01-02
WO2005033717A1 (en) 2005-04-14
US20060284613A1 (en) 2006-12-21
WO2005033716A1 (en) 2005-04-14
US20050073295A1 (en) 2005-04-07
US20050073293A1 (en) 2005-04-07
WO2005033718A1 (en) 2005-04-14
US7250748B2 (en) 2007-07-31

Similar Documents

Publication Publication Date Title
US20050073292A1 (en) System and method for current sensing using anti-differential, error correcting current sensing
US6984989B2 (en) Current sensor and overload current protective device therewith
JP5385996B2 (en) Current measuring device
US7298132B2 (en) Current sensor
CN102870013B (en) Detection of a metal or magnetic object
US10101413B2 (en) Magnetic field detection device
JP3445362B2 (en) AC current sensor
US11199593B2 (en) Magnetic sensor
JP2004132790A (en) Current sensor
JP2007187530A (en) Current sensor and installation technique thereof
JP2009210406A (en) Current sensor and watthour meter
US20200249258A1 (en) Sensor apparatus for measuring direct and alternating currents
EP1166132B1 (en) An improved current sensing device for low-voltage power circuit breakers
US20170205447A1 (en) Current sensor
JP2006003209A (en) Current detector
JP2004108955A (en) Magnetic reading device
US20240044945A1 (en) Magnetic sensor, current detection apparatus and current detection method
JP2019152558A (en) Current sensor and voltmeter
JP7286932B2 (en) magnetic sensor
JP2008101914A (en) Current sensor and electronic watthour meter
CN113167819A (en) Position compensated current measuring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: EATON CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASTINGS, JEROME K.;SOLVESON, MARK G.;GASS, DALE L.;REEL/FRAME:015225/0980

Effective date: 20040929

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION