TWI808118B - Apparatus for graphene-mediated production of metallized polymer articles - Google Patents

Apparatus for graphene-mediated production of metallized polymer articles Download PDF

Info

Publication number
TWI808118B
TWI808118B TW108102642A TW108102642A TWI808118B TW I808118 B TWI808118 B TW I808118B TW 108102642 A TW108102642 A TW 108102642A TW 108102642 A TW108102642 A TW 108102642A TW I808118 B TWI808118 B TW I808118B
Authority
TW
Taiwan
Prior art keywords
graphene
polymer
layer
ether
sheets
Prior art date
Application number
TW108102642A
Other languages
Chinese (zh)
Other versions
TW201938841A (en
Inventor
林怡君
李曉燕
鍾耀德
阿茹娜 扎姆
博增 張
Original Assignee
美商奈米技術儀器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/924,971 external-priority patent/US20190283378A1/en
Priority claimed from US15/924,957 external-priority patent/US20190283377A1/en
Application filed by 美商奈米技術儀器公司 filed Critical 美商奈米技術儀器公司
Publication of TW201938841A publication Critical patent/TW201938841A/en
Application granted granted Critical
Publication of TWI808118B publication Critical patent/TWI808118B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment

Abstract

Provided is an apparatus for manufacturing a surface-metalized polymer article, the apparatus comprising: (a) a graphene deposition chamber that accommodates a graphene dispersion comprising multiple graphene sheets and an optional conductive filler dispersed in a first liquid medium and an optional adhesive resin dissolved in the first liquid medium, wherein the graphene deposition chamber is operated to deposit the graphene sheets and optional conductive filler to a surface of at least a polymer component for forming at least a graphene-coated polymer component; and (b) a metallization chamber that accommodates a plating solution for plating a layer of a desired metal on the at least a graphene-coated polymer component to obtain the surface-metalized polymer article.

Description

用於石墨烯介導生產金屬化聚合物製品之設備 Equipment for graphene-mediated production of metallized polymer products

相關申請的交叉引用Cross References to Related Applications

本申請要求2018年3月19日提交的美國專利申請案號15/924,957和2018年3月19日提交的美國專利申請案號15/924,971的優先權,出於所有目的這些專利申請特此藉由援引方式結合。 This application claims priority to U.S. Patent Application No. 15/924,957, filed March 19, 2018, and U.S. Patent Application No. 15/924,971, filed March 19, 2018, which are hereby incorporated by reference for all purposes.

本揭露總體上涉及聚合物部件表面的金屬化領域,並且更具體地,涉及石墨烯介導的鍍金屬的聚合物製品及用於生產其的製程和所需設備。 The present disclosure relates generally to the field of metallization of polymeric component surfaces, and more specifically, to graphene-mediated metallized polymeric articles and processes and equipment required for producing the same.

金屬化塑膠通常用於裝飾目的。例如,將諸如丙烯腈-丁二烯-苯乙烯(ABS)和ABS-聚碳酸酯共混物的塑膠的表面金屬化以用於衛浴配件、汽車附件、傢俱、五金器具、珠寶和紐扣/旋鈕。這些製造製品可以被金屬化以賦予製品表面吸引人的外觀。 Metallized plastic is often used for decorative purposes. For example, metallizing the surface of plastics such as acrylonitrile-butadiene-styrene (ABS) and ABS-polycarbonate blends for use in bathroom fittings, automotive accessories, furniture, hardware, jewelry, and buttons/knobs. These articles of manufacture can be metallized to give the surface of the article an attractive appearance.

此外,塑膠、橡膠和聚合物基質複合材料(例如纖維增強的或添加劑填充的熱塑性、熱固性和橡膠基質複合材料)也可以被金屬化以用於功能目的。例如,為了遮罩電磁干擾(EMI)可以進行基於塑膠的電子部件的金屬化。另外,聚合物部件的表面特性可以藉由金屬塗覆以受控方式改變。 In addition, plastic, rubber, and polymer matrix composites such as fiber-reinforced or additive-filled thermoplastic, thermoset, and rubber-matrix composites can also be metallized for functional purposes. For example, metallization of plastic-based electronic components may be performed for electromagnetic interference (EMI) shielding. In addition, the surface properties of polymer parts can be changed in a controlled manner by metal coating.

由不導電聚合物(例如塑膠、橡膠、聚合物基質複合材料等)製成 的製品可以藉由無電金屬化製程金屬化。在典型的製程中,首先清潔和蝕刻製品,然後用貴金屬(例如鈀)處理,並且最後在金屬化溶液中金屬化。蝕刻步驟典型地涉及使用鉻酸或鉻硫酸(chromosulfuric acid)。蝕刻步驟用於藉由改善的表面潤濕性使製品表面易於接受隨後處理步驟中藉由相應的溶液的隨後金屬化,並用於使最終沈積的金屬良好地黏附到聚合物表面。 Made of non-conductive polymers (e.g. plastic, rubber, polymer matrix composites, etc.) The products can be metallized by electroless metallization process. In a typical process, the article is first cleaned and etched, then treated with a noble metal such as palladium, and finally metallized in a metallization solution. The etching step typically involves the use of chromic acid or chromosulfuric acid. The etching step serves to render the surface of the article receptive to subsequent metallization by means of corresponding solutions in subsequent processing steps by means of improved surface wettability and to provide good adhesion of the finally deposited metal to the polymer surface.

在蝕刻步驟中,使用鉻硫酸蝕刻聚合物製品的表面以形成表面微洞,金屬沈積並黏附於這些表面微洞中。在蝕刻步驟之後,借助於典型地包含貴金屬的活化試劑(或活化劑)活化聚合物部件表面,並且然後使用無電鍍進行金屬化。隨後,可以以電解方式沈積較厚的金屬層。 In the etching step, the surface of the polymeric article is etched using chromium sulfuric acid to form surface microvoids into which the metal is deposited and adhered. After the etching step, the surface of the polymer part is activated by means of an activating reagent (or activator) typically comprising a noble metal, and then metallized using electroless plating. Subsequently, thicker metal layers can be deposited electrolytically.

基於鉻硫酸的蝕刻溶液係有毒的,並且因此應在可能的情況下被替換。例如,基於鉻硫酸的蝕刻溶液可以用包含過錳酸鹽的蝕刻溶液替換。長期以來已經確立了在鹼性介質中使用過錳酸鹽進行作為電子電路載體的電路板的金屬化。由於在氧化中產生的六價態(錳酸鹽)係水溶性的並且在鹼性條件下具有足夠的穩定性,因此類似於三價鉻,錳酸鹽可以被以電解方式氧化回原始氧化劑,在這種情況下是過錳酸鹽。對於ABS塑膠的金屬化,已發現鹼性過錳酸鹽溶液係不合適的,因為以這種方式不可能獲得在金屬層與塑膠基材之間的足夠的黏附強度。該黏附強度在“剝離測試”中測定,並且應至少具有0.4N/mm的值。 Chromium sulfuric acid based etching solutions are toxic and should therefore be replaced where possible. For example, an etching solution based on chromium sulfuric acid may be replaced by an etching solution comprising permanganate. The use of permanganates in alkaline media for the metallization of circuit boards as carriers for electronic circuits has long been established. Since the hexavalent state (manganate) produced in oxidation is water soluble and sufficiently stable under alkaline conditions, similar to trivalent chromium, manganate can be electrolytically oxidized back to the original oxidant, in this case permanganate. For the metallization of ABS plastics, alkaline permanganate solutions have been found to be unsuitable, since in this way it is not possible to obtain sufficient adhesive strength between the metal layer and the plastic substrate. The adhesive strength is determined in the "peel test" and should have a value of at least 0.4 N/mm.

作為鉻硫酸的替代物,WO 2009/023628 A2提出了使用包含鹼金屬過錳酸鹽的強酸性溶液。該溶液在40-85重量%的磷酸中含有約20g/l的鹼金屬過錳酸鹽。此類溶液形成難以除去的膠體錳(IV)物種。此外,膠體也難以形成品質優良的塗層。為了解決該問題,WO 2009/023628 A2提出了使用不含任何鹼金屬或鹼土金屬離子的錳(VII)源。然而,此類錳(VII)源的製備係昂貴且不方便的。 As an alternative to chromic sulfuric acid, WO 2009/023628 A2 proposes the use of strongly acidic solutions comprising alkali metal permanganates. The solution contains about 20 g/l of alkali metal permanganate in 40-85% by weight phosphoric acid. Such solutions form colloidal manganese(IV) species that are difficult to remove. In addition, colloids are also difficult to form good quality coatings. To solve this problem, WO 2009/023628 A2 proposes to use a source of manganese(VII) that does not contain any alkali metal or alkaline earth metal ions. However, the preparation of such sources of manganese(VII) is expensive and inconvenient.

因此,迫切需要在不使用鉻酸、鉻硫酸或鹼金屬過錳酸鹽的情況下 進行聚合物部件表面的工業規模金屬化。 Therefore, there is an urgent need for Industrial-scale metallization of polymer component surfaces.

先前技術金屬化製程的另一個主要問題係以下觀點:在蝕刻步驟之後,聚合物部件表面必須借助於活化試劑活化,該活化試劑典型地包含貴金屬(例如鈀)。已知貴金屬係稀有且昂貴的。在替代性製程[L.Naruskevicius等人“Process for metallizing a plastic surface”[用於金屬化塑膠表面的製程],美國專利案號6712948(03/30/2004)]中,將經化學蝕刻的塑膠表面用含有鈷鹽、銀鹽、錫鹽、或鉛鹽的金屬鹽溶液處理。然而,經活化的塑膠表面必須用硫化物溶液進一步處理。整個製程緩慢、繁瑣且昂貴。 Another major problem with prior art metallization processes is the notion that, after the etching step, the surface of the polymer component must be activated by means of an activating agent, typically comprising a noble metal such as palladium. Precious metals are known to be rare and expensive. In an alternative process [L. Naruskevicius et al. "Process for metallizing a plastic surface," US Pat. No. 6,712,948 (03/30/2004)], a chemically etched plastic surface is treated with a metal salt solution containing a cobalt, silver, tin, or lead salt. However, activated plastic surfaces must be further treated with sulfide solutions. The entire process is slow, cumbersome and expensive.

因此,另一迫切需要係,在活化試劑中不使用昂貴的貴金屬或者如果全部可能的話甚至不使用活化步驟的情況下進行聚合物部件表面的工業規模金屬化。 Therefore, there is another pressing need to carry out the industrial scale metallization of the surface of polymeric parts without using expensive noble metals in the activating reagents or even without an activation step if at all possible.

本揭露提供了一種表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件、塗覆在該聚合物部件表面上的由多個石墨烯片和導電填料構成的第一層、以及沈積在該第一層上的被鍍金屬的第二層,其中該多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中該多個石墨烯片和該導電填料在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面上,並且該第一層具有從0.34nm至30μm的厚度。 The present disclosure provides a surface metallized polymer article comprising: a polymer part having a surface, a first layer of a plurality of graphene sheets and a conductive filler coated on the surface of the polymer part, and a metallized second layer deposited on the first layer, wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from a native graphene material having substantially 0% non-carbon elements or a non-native graphene material having 0.001% to 25% by weight non-carbon elements, wherein the non-native graphene sheets Graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodinated graphene, hydrogenated graphene, graphene nitride, doped graphene, chemically functionalized graphene, or combinations thereof, and wherein the plurality of graphene sheets and the conductive filler are bonded to the surface of the polymer part with or without a binder resin, and the first layer has a thickness from 0.34 nm to 30 μm.

本揭露還提供了一種可用於生產該表面金屬化的製品的設備。用於 製造表面金屬化的聚合物製品的設備可以包括:(a)石墨烯沈積室(例如石墨烯分散體浴),該石墨烯沈積室容納石墨烯分散體,該石墨烯分散體包含分散在第一液體介質中的多個石墨烯片和視需要的導電填料以及溶解在該第一液體介質中的視需要的黏合劑樹脂,其中操作該石墨烯沈積室以將這些石墨烯片和視需要的導電填料沈積到至少一個聚合物部件的表面上,以形成至少一個石墨烯塗覆的聚合物部件;以及(b)與該石墨烯沈積室處於工作關係的金屬化室(例如金屬鍍浴),該金屬化室容納鍍液,該鍍液用於在該至少一個石墨烯塗覆的聚合物部件上鍍上所需金屬的層以獲得表面金屬化的聚合物製品;其中該多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合。 The present disclosure also provides an apparatus that can be used to produce the surface metallized article. for The apparatus for making a surface metallized polymer article may comprise: (a) a graphene deposition chamber (e.g., a graphene dispersion bath) containing a graphene dispersion comprising a plurality of graphene sheets and optionally conductive fillers dispersed in a first liquid medium and an optional binder resin dissolved in the first liquid medium, wherein the graphene deposition chamber is operated to deposit the graphene sheets and optional conductive fillers onto the surface of at least one polymeric part to form at least one graphene-coated polymeric part; (b) a metallization chamber (e.g., a metal plating bath) in working relationship with the graphene deposition chamber, the metallization chamber containing a plating solution for plating a layer of the desired metal on the at least one graphene-coated polymer part to obtain a surface metallized polymer article; wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from native graphene materials having substantially 0% non-carbon elements or non-native graphene materials having 0.001% to 25% by weight non-carbon elements, wherein the non-native graphene is selected from Graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodinated graphene, hydrogenated graphene, nitrided graphene, doped graphene, chemically functionalized graphene, or combinations thereof.

該設備可進一步包括可移動載體,該可移動載體用於運載該至少一個聚合物部件並使該至少一個聚合物部件與該石墨烯分散體接觸(例如,用於將該至少一個聚合物部件浸漬在該石墨烯分散體浴中,並且然後將該至少一個聚合物部件從該浴中退出)以生產該至少一個石墨烯塗覆的聚合物部件和/或使該至少一個石墨烯塗覆的聚合物部件與該鍍液接觸(例如用於將該至少一個石墨烯塗覆的聚合物部件浸漬在該金屬鍍浴中的該鍍液中,並且然後將該至少一個石墨烯塗覆的聚合物部件從該鍍浴中退出)以得到所需的表面金屬化的聚合物製品。 The apparatus may further comprise a removable carrier for carrying the at least one polymer part and contacting the at least one polymer part with the graphene dispersion (e.g., for dipping the at least one polymer part in the graphene dispersion bath and then withdrawing the at least one polymer part from the bath) to produce the at least one graphene-coated polymer part and/or for contacting the at least one graphene-coated polymer part with the plating solution (e.g., for dipping the at least one graphene-coated polymer part in the metal plating bath) bath, and then withdrawing the at least one graphene-coated polymer part from the bath) to obtain the desired surface metallized polymer article.

該設備可以進一步包括與該石墨烯沈積室處於工作關係的乾燥、加熱或固化提供裝置(例如,在該石墨烯分散體浴上方)用於從該至少一個石墨烯塗覆的聚合物部件中部分或完全除去該第一液體介質和/或用於聚合或固化該 視需要的黏合劑樹脂以生產包含結合到該至少一個聚合物部件的表面上的多個石墨烯片的該至少一個石墨烯塗覆的聚合物部件。 The apparatus may further comprise drying, heating or curing providing means (e.g., above the graphene dispersion bath) in working relationship with the graphene deposition chamber for partially or completely removing the first liquid medium from the at least one graphene-coated polymer part and/or for polymerizing or curing the An optional binder resin to produce the at least one graphene-coated polymer part comprising a plurality of graphene sheets bonded to the surface of the at least one polymer part.

在該設備中,鍍液可包括化學鍍液、電化學鍍液或電解液。較佳的是,鍍液包括含有溶解在水或有機溶劑中的金屬鹽的化學鍍液。 In the apparatus, the plating solution may include an electroless plating solution, an electrochemical plating solution or an electrolytic solution. Preferably, the plating solution includes an electroless plating solution containing a metal salt dissolved in water or an organic solvent.

在某些實施方式中,導電填料選自:金屬奈米線,碳纖維,碳奈米纖維,碳塗覆的纖維,導電聚合物纖維,SnO2、ZnO2、In2O3或氧化銦錫(ITO)的奈米纖維或奈米線,不呈纖維形式的導電聚合物,或其組合。金屬奈米線較佳的是選自銀(Ag)、金(Au)、銅(Cu)、鉑(Pt)、鋅(Zn)、鎘(Cd)、鈷(Co)、鉬(Mo)、鋁(Al)的奈米線,或其組合。導電聚合物較佳的是選自由以下各項組成的組:聚二乙炔、聚乙炔(PAc)、聚吡咯(PPy)、聚苯胺(PAni)、聚噻吩(PTh)、聚異噻茚(PITN)、聚雜伸芳基伸乙烯基(PArV)(其中雜伸芳基基團可以是噻吩、呋喃或吡咯)、聚對伸苯基(PpP)、聚酞菁(PPhc)以及類似物、及它們的衍生物、以及其組合。 In certain embodiments, the conductive filler is selected from the group consisting of metal nanowires, carbon fibers, carbon nanofibers, carbon-coated fibers, conductive polymer fibers, nanofibers or nanowires of SnO2 , ZnO2 , In2O3 , or indium tin oxide (ITO), conductive polymers not in fiber form, or combinations thereof. The metal nanowires are preferably nanowires selected from silver (Ag), gold (Au), copper (Cu), platinum (Pt), zinc (Zn), cadmium (Cd), cobalt (Co), molybdenum (Mo), aluminum (Al), or combinations thereof. The conductive polymer is preferably selected from the group consisting of polydiacetylene, polyacetylene (PAc), polypyrrole (PPy), polyaniline (PAni), polythiophene (PTh), polyisothiadene (PITN), polyheteroarylidene vinylene (PArV) (wherein the heteroarylene group may be thiophene, furan or pyrrole), polyparaphenylene (PpP), polyphthalocyanine (PPhc) and the like, and derivatives thereof, and combinations thereof.

在一些實施方式中,化學官能基選自烷基或芳基矽烷、烷基或芳烷基基團、羥基基團、羧基基團、胺基團、磺酸基(sulfonate group)(--SO3H)、醛基(aldehydic group)、醌基(quinoidal)、碳氟化合物、或其組合。 In some embodiments, the chemical functional group is selected from an alkyl or aryl silane, an alkyl or aralkyl group, a hydroxyl group, a carboxyl group, an amine group, a sulfonate group (—SO 3 H), an aldehyde group, a quinoidal, a fluorocarbon, or a combination thereof.

可替代地,官能基包括疊氮化合物的衍生物,該疊氮化合物選自由以下各項組成的組:2-疊氮基乙醇,3-疊氮基丙-1-胺,4-(2-疊氮基乙氧基)-4-側氧基丁酸,2-疊氮基乙基-2-溴-2-甲基丙酸酯,氯甲酸酯,疊氮甲酸酯(azidocarbonate),二氯碳烯,碳烯,芳炔,氮烯,(R-)-氧基羰基氮烯,其中R=以下基團中的任一個:

Figure 108102642-A0305-02-0008-2
及其組合。 Alternatively, the functional groups include derivatives of azido compounds selected from the group consisting of 2-azidoethanol, 3-azidopropan-1-amine, 4-(2-azidoethoxy)-4-oxobutanoic acid, 2-azidoethyl-2-bromo-2-methylpropionate, chloroformate, azidocarbonate, dichlorocarbene, carbene, aryne, azone, (R-)-oxycarbonyl Nitrene, where R = any of the following groups:
Figure 108102642-A0305-02-0008-2
and their combinations.

在某些實施方式中,官能基選自由羥基、過氧化物、醚、酮基和醛組成的組。在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2--)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根、及其組合。 In certain embodiments, the functional group is selected from the group consisting of hydroxyl, peroxide, ether, keto, and aldehyde.在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO 3 H、COOH、NH 2 、OH、R'CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR'、SR'、SiR' 3 、Si(--OR'--) y R' 3-y 、Si(--O--SiR' 2 --)OR'、R”、Li、AlR' 2 、Hg--X、TlZ 2和Mg--X;其中y係等於或小於3的整數,R'係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根、及其組合。

官能基可選自由以下各項組成的組:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、環脂族胺、芳族胺、酸酐、酮亞胺、二伸乙基三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、及其組合。 The functional groups may be selected from the group consisting of amidoamines, polyamides, aliphatic amines, modified aliphatic amines, cycloaliphatic amines, aromatic amines, anhydrides, ketimines, diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), polyethylenepolyamines, polyamine epoxy adducts, phenolic hardeners, non-brominated curing agents, non-amine curing agents, and combinations thereof.

在一些實施方式中,官能基可選自:OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原或酶底物、酶抑制劑或酶底物的過渡態類似物的官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、 (--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。 In some embodiments, the functional group may be selected from: OY, NHY, O=C--OY, P=C--NR'Y, O=C--SY, O=C--Y, --CR'1--OY, N'Y or C'Y, and Y is a functional group of a protein, peptide, amino acid, enzyme, antibody, nucleotide, oligonucleotide, antigen or enzyme substrate, enzyme inhibitor or transition state analog of an enzyme substrate or is selected from R'--OH, R'--NR'2, R'SH, R'CHO, R'CN, R'X, R'N+(R')3x-, R'SiR'3、R'Si(--OR'--)the yR'3-y, R'Si(--O--SiR'2--)OR', R'--R", R'--N--CO, (C2h4O--)wH, (--C3h6O--)wH. (--C2h4O)w--R', (C3h6O)w--R', R', and w is an integer greater than 1 and less than 200.

表面金屬化的聚合物製品可選自水龍頭、淋浴頭、管子、管道、連接器、適配器、水槽(例如廚房或浴室水槽)、浴缸蓋、壺嘴、水槽蓋、浴室附件、或廚房附件。 The surface metallized polymeric article may be selected from faucets, shower heads, pipes, pipes, connectors, adapters, sinks (such as kitchen or bathroom sinks), bathtub covers, spouts, sink covers, bathroom accessories, or kitchen accessories.

在某些實施方式中,第一層含有黏合劑樹脂,該黏合劑樹脂將石墨烯片和導電填料化學結合到聚合物部件表面。在某些替代性實施方式中,石墨烯片包含具有從0.01重量%至20重量%的非碳元素含量的非原生石墨烯材料,並且這些非碳元素包括選自氧、氟、氯、溴、碘、氮、氫、或硼的元素。這些石墨烯片可以進一步化學官能化。 In certain embodiments, the first layer contains a binder resin that chemically bonds the graphene sheets and the conductive filler to the surface of the polymer part. In certain alternative embodiments, the graphene sheet comprises a non-native graphene material having a content of non-carbon elements from 0.01% to 20% by weight, and the non-carbon elements include elements selected from the group consisting of oxygen, fluorine, chlorine, bromine, iodine, nitrogen, hydrogen, or boron. These graphene sheets can be further chemically functionalized.

聚合物部件可包含塑膠、橡膠、熱塑性彈性體、聚合物基質複合材料、橡膠基質複合材料、或其組合。在某些實施方式中,聚合物部件包含熱塑性塑膠、熱固性樹脂、互穿網路、橡膠、熱塑性彈性體、天然聚合物、或其組合。在某些較佳的實施方式中,聚合物部件包含選自以下各項的塑膠:丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丙烯腈共聚物(SAN)、聚碳酸酯、聚醯胺或尼龍、聚苯乙烯、高抗沖聚苯乙烯(HIPS)、聚丙烯酸酯、聚乙烯、聚丙烯、聚縮醛、聚酯、聚醚、聚醚碸、聚醚醚酮、聚碸、聚苯醚(PPO)、聚氯乙烯(PVC)、聚醯亞胺、聚醯胺醯亞胺、聚氨酯、聚脲、或其組合。 The polymer component may comprise plastic, rubber, thermoplastic elastomers, polymer matrix composites, rubber matrix composites, or combinations thereof. In certain embodiments, the polymeric component comprises thermoplastics, thermosetting resins, interpenetrating networks, rubber, thermoplastic elastomers, natural polymers, or combinations thereof. In certain preferred embodiments, the polymeric part comprises a plastic selected from the group consisting of: acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), polycarbonate, polyamide or nylon, polystyrene, high-impact polystyrene (HIPS), polyacrylate, polyethylene, polypropylene, polyacetal, polyester, polyether, polyetherpolyester, polyetheretherketone, polyphenylene oxide (PPO), polyvinyl chloride (PVC), poly Amides, polyamidoimides, polyurethanes, polyureas, or combinations thereof.

在表面金屬化的聚合物製品中,被鍍金屬較佳的是選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、其合金、或其組合。對可鍍金屬的類型沒有限制。 In surface metallized polymer articles, the metal to be plated is preferably selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, alloys thereof, or combinations thereof. There is no restriction on the type of metal that can be plated.

石墨烯片可以進一步用催化金屬的奈米級顆粒或塗層(具有從0.5nm至100nm的直徑或厚度)進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合,並且其中該催化金屬在化學組成上與被鍍金屬不同。 The graphene sheet may be further decorated with nanoscale particles or coatings (having a diameter or thickness of from 0.5 nm to 100 nm) of a catalytic metal selected from the group consisting of cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, and wherein the catalytic metal is chemically different from the metal being plated.

在某些實施方式中,聚合物部件表面在沈積有石墨烯片和導電填料 的第一層之前僅含具有的直徑或深度為<0.1μm的小開口或孔。 In some embodiments, the surface of the polymer part is deposited with graphene sheets and conductive fillers The first layer before contains only small openings or pores with a diameter or depth of <0.1 μm.

在某些實施方式中,將多個石墨烯片和導電填料用黏合劑樹脂結合到聚合物部件表面,具有從1/5000至1/10、較佳的是從1/1000至1/100的黏合劑與石墨烯重量比。 In certain embodiments, the plurality of graphene sheets and conductive fillers are bonded to the surface of the polymeric part with a binder resin having a binder to graphene weight ratio of from 1/5000 to 1/10, preferably from 1/1000 to 1/100.

本揭露還提供了一種生產表面金屬化的聚合物製品的方法,該方法包括:(a)提供石墨烯/導電填料混合物分散體,該分散體包含分散在液體介質中的多個石墨烯片和導電填料,使聚合物部件表面與該分散體接觸並促進這些石墨烯片和該導電填料沈積到經表面處理的聚合物部件的表面上,其中這些石墨烯片和該導電填料結合到該表面上以形成覆蓋該聚合物部件表面的結合的石墨烯片和導電填料層(即,形成石墨烯/導電填料覆蓋的聚合物部件表面);並且(b)在該覆蓋的聚合物部件表面上化學、物理、電化學或電解地沈積金屬層,以形成該表面金屬化的聚合物製品。 The present disclosure also provides a method of producing a surface metallized polymer article, the method comprising: (a) providing a graphene/conductive filler mixture dispersion comprising a plurality of graphene sheets and conductive filler dispersed in a liquid medium, contacting a surface of a polymer part with the dispersion and facilitating deposition of the graphene sheets and the conductive filler onto the surface of the surface-treated polymer part, wherein the graphene sheets and the conductive filler are bonded to the surface to form a bonded graphene sheet and conductive filler layer covering the surface of the polymer part (i.e., forming a graphene/conductive filler layer) a filler-coated polymer part surface); and (b) chemically, physically, electrochemically, or electrolytically depositing a metal layer on the covered polymer part surface to form the surface-metallized polymer article.

在某些實施方式中,該方法進一步包括在步驟(a)之前的使該聚合物部件表面經受研磨處理、蝕刻處理、或其組合的步驟。在一些實施方式中,步驟(a)包括使該聚合物部件表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟。 In certain embodiments, the method further comprises, prior to step (a), subjecting the surface of the polymeric part to a grinding treatment, an etching treatment, or a combination thereof. In some embodiments, step (a) includes the step of subjecting the surface of the polymeric part to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof.

較佳的是,該方法進一步包括在步驟(a)之前的在不使用鉻酸或鉻硫酸的情況下使該聚合物部件表面經受蝕刻處理的步驟。更較佳的是,該方法進一步包括在步驟(a)之前的使該聚合物部件表面經受在溫和蝕刻條件下使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟,其中蝕刻在足夠低的溫度下進行足夠短的時間段,以便不產生具有大於0.1μm的平均尺寸的微洞。 Preferably, the method further comprises the step of subjecting the surface of the polymer part to an etching treatment without the use of chromic acid or chromic sulfuric acid prior to step (a). More preferably, the method further comprises, prior to step (a), the step of subjecting the surface of the polymeric part to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof under mild etching conditions, wherein the etching is performed at a temperature low enough for a short enough period of time so as not to produce microvoids having an average size greater than 0.1 μm.

石墨烯片可以進一步用具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、 鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。 The graphene sheets can be further decorated with nanoscale particles or coatings of catalytic metals selected from cobalt, nickel, copper, iron, manganese, tin, Zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof.

在某些實施方式中,步驟(a)包括將該聚合物部件浸泡或浸漬在分散體中,並且然後從該分散體中移出該聚合物部件,以實現石墨烯片和導電填料沈積到經表面處理的聚合物部件的表面上,其中這些石墨烯片和該導電填料結合到該表面以形成結合的石墨烯片和導電填料的層。可替代地,可以簡單地將石墨烯/導電填料混合物分散體噴塗在該聚合物部件表面上,使液體組分蒸發,並使黏合劑(如果存在的話)固化或凝固。 In certain embodiments, step (a) comprises soaking or immersing the polymeric part in a dispersion and then removing the polymeric part from the dispersion to effect deposition of the graphene sheets and conductive filler onto the surface of the surface-treated polymeric part, wherein the graphene sheets and the conductive filler are bonded to the surface to form a layer of bonded graphene sheets and conductive filler. Alternatively, the graphene/conductive filler mixture dispersion can simply be sprayed onto the polymer part surface, allowing the liquid components to evaporate, and allowing the binder (if present) to cure or set.

在所揭露的方法中,步驟(b)可以包括將該聚合物部件浸泡在金屬化浴中。在較佳的程序中,步驟(b)包括將含有結合的石墨烯片/導電填料的層的聚合物部件浸漬在含有溶解在液體介質中的金屬鹽的化學鍍浴中並且然後從中退出以實現該聚合物部件表面的金屬化的步驟。 In the disclosed method, step (b) may comprise soaking the polymer part in a metallization bath. In a preferred procedure, step (b) comprises the step of immersing the polymer part comprising the layer of bonded graphene sheets/conductive filler in and then withdrawing from an electroless plating bath containing a metal salt dissolved in a liquid medium to effect metallization of the surface of the polymer part.

在某些實施方式中,石墨烯/導電填料混合物分散體進一步包含黏合劑樹脂,具有從1/5000至1/10的黏合劑與石墨烯重量比。 In certain embodiments, the graphene/conductive filler mixture dispersion further comprises a binder resin having a binder to graphene weight ratio of from 1/5000 to 1/10.

石墨烯片可以進一步用具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。 The graphene sheets may be further decorated with nanoscale particles or coatings of catalytic metals selected from the group consisting of cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, having a diameter or thickness of from 0.5 nm to 100 nm.

液體介質可以包含溶解在所述液體介質中的過錳酸、磷酸、硝酸、或其組合。在某些實施方式中,液體介質含有溶解在其中的酸、氧化劑、金屬鹽、或其組合。 The liquid medium may comprise permanganic acid, phosphoric acid, nitric acid, or combinations thereof dissolved in the liquid medium. In certain embodiments, the liquid medium contains an acid, an oxidizing agent, a metal salt, or a combination thereof dissolved therein.

步驟(b)可以包括將該聚合物部件浸泡在金屬化浴中以完成化學鍍或無電鍍。沈積的石墨烯片和導電填料的高導電性使得能夠在石墨烯/導電填料塗覆的聚合物部件表面上鍍一個或多個金屬層。可替代地,可以選擇使用物理氣相沈積、濺射、電漿沈積等來完成最終的金屬化程序。 Step (b) may include immersing the polymeric part in a metallization bath to effectuate electroless or electroless plating. The high conductivity of the deposited graphene sheets and conductive fillers enables the plating of one or more metal layers on the graphene/conductive filler-coated polymer component surface. Alternatively, physical vapor deposition, sputtering, plasma deposition, etc. may be chosen for the final metallization procedure.

本揭露還提供了一種石墨烯/導電填料混合物分散體,該分散體包含 分散在液體介質中的多個石墨烯片和導電填料,其中該多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中該分散體進一步包含選自以下各項的一種或多種物種:(i)溶解或分散在該液體介質中的黏合劑樹脂,其中黏合劑與石墨烯重量比為從1/5000至1/10;(ii)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(iii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合;或(iv)其組合。 The present disclosure also provides a graphene/conductive filler mixture dispersion comprising A plurality of graphene sheets and conductive fillers dispersed in a liquid medium, wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from native graphene materials having substantially 0% non-carbon elements or non-native graphene materials having 0.001% to 25% by weight non-native graphene materials, wherein the non-native graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodinated graphene, hydrogenated graphene, nitrided graphene, doped graphene, chemical organo energized graphene, or a combination thereof, and wherein the dispersion further comprises one or more species selected from the group consisting of: (i) a binder resin dissolved or dispersed in the liquid medium, wherein the binder to graphene weight ratio is from 1/5000 to 1/10; (ii) an etchant selected from acids, oxidants, metal salts, or combinations thereof; (iii) nanoscale particles or coatings of catalytic metals selected from the group consisting of cobalt, nickel, copper, iron, Manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof; or (iv) combinations thereof.

導電填料可選自:金屬奈米線,碳纖維,碳奈米纖維,碳塗覆的纖維,導電聚合物纖維,SnO2、ZnO2、In2O3或氧化銦錫(ITO)的奈米纖維或奈米線,不呈纖維形式的導電聚合物,或其組合。金屬奈米線可選自銀(Ag)、金(Au)、銅(Cu)、鉑(Pt)、鋅(Zn)、鎘(Cd)、鈷(Co)、鉬(Mo)、鋁(Al)的奈米線,或其組合。導電聚合物較佳的是選自由以下各項組成的組:聚二乙炔、聚乙炔(PAc)、聚吡咯(PPy)、聚苯胺(PAni)、聚噻吩(PTh)、聚異噻茚(PITN)、聚雜伸芳基伸乙烯基(PArV)(其中雜伸芳基基團可以是噻吩、呋喃或吡咯)、聚對伸苯基(PpP)、聚酞菁(PPhc)以及類似物、及它們的衍生物、以及其組合。 The conductive filler may be selected from: metal nanowires, carbon fibers, carbon nanofibers, carbon coated fibers, conductive polymer fibers, nanofibers or nanowires of SnO2 , ZnO2 , In2O3 or indium tin oxide (ITO), conductive polymers not in fiber form, or combinations thereof. The metal nanowires may be selected from nanowires of silver (Ag), gold (Au), copper (Cu), platinum (Pt), zinc (Zn), cadmium (Cd), cobalt (Co), molybdenum (Mo), aluminum (Al), or combinations thereof. The conductive polymer is preferably selected from the group consisting of polydiacetylene, polyacetylene (PAc), polypyrrole (PPy), polyaniline (PAni), polythiophene (PTh), polyisothiadene (PITN), polyheteroarylidene vinylene (PArV) (wherein the heteroarylene group may be thiophene, furan or pyrrole), polyparaphenylene (PpP), polyphthalocyanine (PPhc) and the like, and derivatives thereof, and combinations thereof.

在石墨烯-導電填料分散體中,催化金屬的奈米級顆粒或塗層可以沈積或修飾在所述多個石墨烯片的表面上。酸可選自過錳酸、磷酸、硝酸、鉻酸、鉻硫酸、羧酸、乙酸、和抗壞血酸、或其組合。 In the graphene-conductive filler dispersion, nanoparticles or coatings of catalytic metal may be deposited or modified on the surface of the plurality of graphene sheets. The acid may be selected from permanganate, phosphoric acid, nitric acid, chromic acid, chromic acid, carboxylic acid, acetic acid, and ascorbic acid, or combinations thereof.

較佳的第一化學官能基或較佳的第二化學官 能基已在本節的前面部分中討論過。 Preferred first chemical functional group or preferred second chemical functional group Energy bases were discussed earlier in this section.

10:水龍頭組件 10: Faucet assembly

12:石墨烯分散體浴 12: Graphene dispersion bath

14:石墨烯分散體 14: Graphene dispersion

16、26:入口 16, 26: Entrance

18、28:出口 18, 28: Export

22:金屬鍍浴 22: Metal plating bath

24:鍍液 24: Plating solution

32:裝置 32: Device

圖1示出用於生產氧化石墨烯片的最常用的製程之流程圖,該製程需要化學氧化/插層、沖洗和高溫膨化程序。 Figure 1 shows a flowchart of the most commonly used process for producing graphene oxide sheets, which requires chemical oxidation/intercalation, washing and high temperature puffing procedures.

圖2石墨烯介導的金屬化聚合物部件之示意圖。 Figure 2. Schematic diagram of graphene-mediated metallization of polymer parts.

圖3用於聚合物製品的石墨烯介導的金屬化的系統之示意圖。 Figure 3. Schematic diagram of a system for graphene-mediated metallization of polymer articles.

下文包括貫穿本說明書使用的各種術語和短語的定義。 The following include definitions of various terms and phrases used throughout this specification.

術語“石墨烯片”意指以下材料,該材料包含鍵合碳原子的一個或多個平面片,這些碳原子密集地填充在六方晶格中,其中碳原子藉由強面內共價鍵鍵合在一起,並且還包含貫穿內部的大部分的完整的環結構。較佳的是,至少80%的內部芳族鍵係完整的。在c-軸(厚度)方向上,這些石墨烯平面可以藉由凡得瓦力弱結合在一起。石墨烯片可在其邊緣或表面含有非碳原子,例如OH和COOH官能基。術語石墨烯片包括原生石墨烯、氧化石墨烯、還原的氧化石墨烯、鹵化石墨烯(包括氟化石墨烯和氯化石墨烯)、氮化石墨烯、氫化石墨烯、摻雜石墨烯、官能化石墨烯、及其組合。典型地,非碳元素占石墨烯片的0重量%至25重量%。氧化石墨烯可包含最多53重量%的氧。術語“摻雜石墨烯”涵蓋具有低於10%的非碳元素的石墨烯。該非碳元素可包括氫、氧、氮、鎂、鐵、硫、氟、溴、碘、硼、磷、鈉、及其組合。石墨烯片可包括單層石墨烯或少層石墨烯,其中少層石墨烯定義為由少於10個石墨烯平面形成的石墨烯片晶。石墨烯片還可以包括石墨烯奈米帶。“原生石墨烯”涵蓋具有基本上0%的非碳元素的石 墨烯片。“奈米石墨烯片晶”(NGP)係指具有從小於0.34nm(單層)至100nm(多層)的厚度的石墨烯片。 The term "graphene sheet" means a material comprising one or more planar sheets of bonded carbon atoms densely packed in a hexagonal lattice, wherein the carbon atoms are bonded together by strong in-plane covalent bonds, and also comprising mostly intact ring structures throughout the interior. Preferably, at least 80% of the internal aromatic linkages are intact. In the c-axis (thickness) direction, these graphene planes can be weakly bound together by van der Waals forces. Graphene sheets can contain non-carbon atoms such as OH and COOH functional groups on their edges or surfaces. The term graphene sheet includes pristine graphene, graphene oxide, reduced graphene oxide, halogenated graphene (including fluorinated graphene and chlorinated graphene), nitrided graphene, hydrogenated graphene, doped graphene, functionalized graphene, and combinations thereof. Typically, non-carbon elements comprise 0% to 25% by weight of the graphene sheet. Graphene oxide may contain up to 53% by weight oxygen. The term "doped graphene" covers graphene with less than 10% non-carbon elements. The non-carbon elements may include hydrogen, oxygen, nitrogen, magnesium, iron, sulfur, fluorine, bromine, iodine, boron, phosphorus, sodium, and combinations thereof. Graphene sheets may include single-layer graphene or few-layer graphene, where few-layer graphene is defined as a graphene platelet formed by fewer than 10 graphene planes. Graphene sheets may also include graphene nanoribbons. "Native graphene" covers stones with essentially 0% non-carbon elements Graphene sheet. "Nanographene platelets" (NGPs) refer to graphene sheets having a thickness from less than 0.34 nm (single layer) to 100 nm (multilayer).

術語“大體上”及其變體被定義為在很大程度上但不一定完全是所指定的(如熟悉該項技術者所理解的),並且在一個非限制性實施方式中,大體上是指在參考範圍的10%以內、5%以內、1%以內、或0.5%以內的範圍。 The term "substantially" and variations thereof are defined as largely, but not necessarily entirely, what is specified (as understood by those skilled in the art), and in one non-limiting embodiment, generally refers to a range within 10%, within 5%, within 1%, or within 0.5% of the referenced range.

術語“基本上”及其變體被定義為在很大程度上但不一定完全是所指定的(如熟悉該項技術者所理解的),並且在一個非限制性實施方式中,大體上是指在參考範圍的10%以內、5%以內、1%以內、或0.5%以內的範圍。 The term "substantially" and variations thereof are defined as largely, but not necessarily completely, what is specified (as understood by those skilled in the art), and in one non-limiting embodiment, generally means within 10%, within 5%, within 1%, or within 0.5% of the referenced range.

從以下附圖、說明和實例,本發明的其他目的、特徵和優點可變得明顯。然而,應該理解的是,這些附圖、說明和實例雖然指明了本發明的具體實施方式,但是僅以說明的方式給出並且不意味著進行限制。在另外的實施方式中,來自具體實施方式的特徵可以與來自其他實施方式的特徵組合。 Other objects, features and advantages of the invention will become apparent from the following drawings, descriptions and examples. It should be understood, however, that the drawings, descriptions and examples, while indicating particular embodiments of the invention, are given by way of illustration only and are not meant to be limiting. In further embodiments, features from specific embodiments may be combined with features from other embodiments.

本揭露提供了一種表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件、塗覆在該聚合物部件表面上的由多個石墨烯片和導電填料構成的第一層、以及沈積在該第一層上的被鍍金屬的第二層,其中該多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中該多個石墨烯片和該導電填料在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面上,如圖2中所示。該第一層具有典型地從0.34nm至30μm(較佳的是從1nm至1μm,並且進一步較佳的是從1nm至100nm)的厚度。該第二層(覆蓋金屬層)較佳的是具有從0.5nm至1.0mm、更較佳的是從1nm至10μm、並且最較佳的是從10nm至1μm的厚度。使用也在 本文描述的出人意料地簡單且有效的方法,可以輕鬆容易地生產這種鍍金屬的聚合物製品。官能化的石墨烯片出人意料地能夠在不使用黏合劑樹脂的情況下結合到許多類型的聚合物部件表面。 The present disclosure provides a surface metallized polymer article comprising: a polymer part having a surface, a first layer of a plurality of graphene sheets and a conductive filler coated on the surface of the polymer part, and a metallized second layer deposited on the first layer, wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from a native graphene material having substantially 0% non-carbon elements or a non-native graphene material having 0.001% to 25% by weight non-carbon elements, wherein the non-native graphene sheets Graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodinated graphene, hydrogenated graphene, nitrided graphene, doped graphene, chemically functionalized graphene, or combinations thereof, and wherein the plurality of graphene sheets and the conductive filler are bonded to the surface of the polymer part with or without a binder resin, as shown in FIG. 2 . The first layer has a thickness typically from 0.34 nm to 30 μm (preferably from 1 nm to 1 μm, and further preferably from 1 nm to 100 nm). The second layer (covering metal layer) preferably has a thickness of from 0.5 nm to 1.0 mm, more preferably from 1 nm to 10 μm, and most preferably from 10 nm to 1 μm. use is also Such metallized polymer articles can be easily and easily produced by the surprisingly simple and efficient method described here. Functionalized graphene sheets are surprisingly capable of being bonded to many types of polymer part surfaces without the use of binder resins.

本揭露還提供了一種可用於生產該表面金屬化的聚合物製品之設備。在某些實施方式中,如圖3中所示,該設備可以包括:(a)石墨烯沈積室(例如石墨烯分散體浴12),該石墨烯沈積室容納石墨烯分散體14,該石墨烯分散體包含分散在第一液體介質中的多個石墨烯片和視需要的導電填料以及溶解在該第一液體介質中的視需要的黏合劑樹脂,其中操作該石墨烯沈積室以將這些石墨烯片和視需要的導電填料沈積到至少一個聚合物部件的表面上,以形成至少一個石墨烯塗覆的聚合物部件(例如,水龍頭組件10);以及(b)與該石墨烯沈積室處於工作關係的金屬化室(例如金屬鍍浴22)(例如,佈置在石墨烯分散體浴12附近),該金屬化室容納鍍液24,該鍍液用於在該至少一個石墨烯塗覆的聚合物部件上鍍所需金屬的層以獲得該表面金屬化的聚合物製品。 The present disclosure also provides an apparatus that can be used to produce the surface metallized polymer article.在某些實施方式中,如圖3中所示,該設備可以包括:(a)石墨烯沈積室(例如石墨烯分散體浴12 ),該石墨烯沈積室容納石墨烯分散體14 ,該石墨烯分散體包含分散在第一液體介質中的多個石墨烯片和視需要的導電填料以及溶解在該第一液體介質中的視需要的黏合劑樹脂,其中操作該石墨烯沈積室以將這些石墨烯片和視需要的導電填料沈積到至少一個聚合物部件的表面上,以形成至少一個石墨烯塗覆的聚合物部件(例如,水龍頭組件10 );以及(b)與該石墨烯沈積室處於工作關係的金屬化室(例如金屬鍍浴22 )(例如,佈置在石墨烯分散體浴12附近),該金屬化室容納鍍液24 ,該鍍液用於在該至少一個石墨烯塗覆的聚合物部件上鍍所需金屬的層以獲得該表面金屬化的聚合物製品。

較佳的是,石墨烯沈積室12具有入口16和出口18,對應地,新鮮石墨烯分散體可藉由該入口泵入該石墨烯沈積室,廢石墨烯分散體可藉由該出口泵出。進一步較佳的是,金屬化室22具有入口26和出口28,對應地,新鮮鍍液可藉由該入口泵入該金屬化室,廢石墨烯分散體可藉由該出口泵出。 Preferably, the graphene deposition chamber 12 has an inlet 16 and an outlet 18 , correspondingly, fresh graphene dispersion can be pumped into the graphene deposition chamber through the inlet, and waste graphene dispersion can be pumped out through the outlet. Further preferably, the metallization chamber 22 has an inlet 26 and an outlet 28 , correspondingly, fresh plating solution can be pumped into the metallization chamber through the inlet, and waste graphene dispersion can be pumped out through the outlet.

該設備可進一步包括可移動載體,該可移動載體用於運載該至少一個聚合物部件並使該至少一個聚合物部件與該石墨烯分散體接觸(例如,用於將該至少一個聚合物部件浸漬在該石墨烯分散體浴中,並且然後將該至少一個聚合物部件從該浴中退出)以生產該至少一個石墨烯塗覆的聚合物部件和/或使該至少一個石墨烯塗覆的聚合物部件與該鍍液接觸(例如用於將該至少一個石墨烯塗覆的聚合物部件浸漬在該金屬鍍浴中的該鍍液中,並且然後將該至少一個石墨烯塗覆的聚合物部件從該鍍浴中退出)以得到所需的表面金屬化的聚合 物製品。 The apparatus may further comprise a removable carrier for carrying the at least one polymer part and contacting the at least one polymer part with the graphene dispersion (e.g., for dipping the at least one polymer part in the graphene dispersion bath and then withdrawing the at least one polymer part from the bath) to produce the at least one graphene-coated polymer part and/or for contacting the at least one graphene-coated polymer part with the plating solution (e.g., for dipping the at least one graphene-coated polymer part in the metal plating bath) bath, and then withdrawing the at least one graphene-coated polymer part from the bath) to obtain the desired polymeric surface metallization Items.

該設備可以進一步包括與石墨烯沈積室處於工作關係的乾燥、加熱或固化提供裝置32(例如,在石墨烯分散體浴與金屬化室上方和之間)用於從該至少一個石墨烯塗覆的聚合物部件中部分或完全除去第一液體介質和/或用於聚合或固化該視需要的黏合劑樹脂以生產包含結合到該至少一個聚合物部件的表面上的多個石墨烯片的該至少一個石墨烯塗覆的聚合物部件。作為實例,如圖3中示意性地示出的,顯示了水龍頭組件10已從石墨烯沈積浴12中退出並正被加熱、乾燥或固化。完成該乾燥/加熱/固化程序後,將該水龍頭浸漬在金屬化浴22中。 The apparatus may further comprise drying, heating or curing providing means 32 in working relationship with the graphene deposition chamber (e.g., above and between the graphene dispersion bath and the metallization chamber) for partially or completely removing the first liquid medium from the at least one graphene-coated polymer part and/or for polymerizing or curing the optional binder resin to produce the at least one graphene-coated polymer part comprising a plurality of graphene sheets bonded to the surface of the at least one polymer part. As an example, as shown schematically in FIG. 3 , the faucet assembly 10 is shown having exited the graphene deposition bath 12 and being heated, dried or cured. After completing the drying/heating/curing procedure, the faucet is immersed in the metallization bath 22 .

在該設備中,鍍液24可包括化學鍍液、電化學鍍液或電解液。較佳的是,鍍液包括含有溶解在水或有機溶劑中的金屬鹽(例如溶解在水中用於鍍銅或鍍鎳的CuSO4或NiNO3)的化學鍍液。結合在聚合物部件表面上的各種石墨烯片出人意料地能夠將金屬離子吸引到石墨烯覆蓋的或石墨烯塗覆的聚合物部件表面上。金屬在該表面上的黏附出人意料地強、耐刮擦且堅硬。沈積的金屬層在聚合物部件表面上提供所需的光澤度和金屬外觀。 In this apparatus, the plating solution 24 may comprise an electroless plating solution, an electrochemical plating solution, or an electrolytic solution. Preferably, the plating solution includes an electroless plating solution containing a metal salt dissolved in water or an organic solvent, such as CuSO 4 or NiNO 3 dissolved in water for copper or nickel plating. Various graphene sheets incorporated on the surface of polymer parts are surprisingly capable of attracting metal ions to the surface of graphene-covered or graphene-coated polymer parts. The adhesion of the metal to this surface is surprisingly strong, scratch-resistant and hard. The deposited metal layer provides the desired gloss and metallic appearance on the surface of the polymer part.

上述程序的操作可以以連續或間歇的方式進行,並且可以完全自動化。 The operation of the above procedure can be carried out in a continuous or batch mode and can be fully automated.

在某些實施方式中,導電填料選自:金屬奈米線,碳纖維,碳奈米纖維,碳塗覆的纖維,導電聚合物纖維,SnO2、ZnO2、In2O3或氧化銦錫(ITO)的奈米纖維或奈米線,不呈纖維形式的導電聚合物,或其組合。金屬奈米線較佳的是選自銀(Ag)、金(Au)、銅(Cu)、鉑(Pt)、鋅(Zn)、鎘(Cd)、鈷(Co)、鉬(Mo)、鋁(Al)的奈米線,或其組合。導電聚合物較佳的是選自由以下各項組成的組:聚二乙炔、聚乙炔(PAc)、聚吡咯(PPy)、聚苯胺(PAni)、聚噻吩(PTh)、聚異噻茚(PITN)、聚雜伸芳基伸乙烯基(PArV)(其中雜伸芳基基團可 以是噻吩、呋喃或吡咯)、聚對伸苯基(PpP)、聚酞菁(PPhc)以及類似物、及它們的衍生物、以及其組合。 In certain embodiments, the conductive filler is selected from the group consisting of metal nanowires, carbon fibers, carbon nanofibers, carbon-coated fibers, conductive polymer fibers, nanofibers or nanowires of SnO2 , ZnO2 , In2O3 , or indium tin oxide (ITO), conductive polymers not in fiber form, or combinations thereof. The metal nanowires are preferably nanowires selected from silver (Ag), gold (Au), copper (Cu), platinum (Pt), zinc (Zn), cadmium (Cd), cobalt (Co), molybdenum (Mo), aluminum (Al), or combinations thereof. The conductive polymer is preferably selected from the group consisting of polydiacetylene, polyacetylene (PAc), polypyrrole (PPy), polyaniline (PAni), polythiophene (PTh), polyisothiadene (PITN), polyheteroarylidene vinylene (PArV) (wherein the heteroarylene group may be thiophene, furan or pyrrole), polyparaphenylene (PpP), polyphthalocyanine (PPhc) and the like, and derivatives thereof, and combinations thereof.

在一些實施方式中,化學官能化石墨烯片含有選自以下各項的化學官能基:烷基或芳基矽烷、烷基或芳烷基基團、羥基基團、羧基基團、胺基團、磺酸基團(--SO3H)、醛基、醌基、碳氟化合物、或其組合。可替代地,官能基包括疊氮化合物的衍生物,該疊氮化合物選自由以下各項組成的組:2-疊氮基乙醇,3-疊氮基丙-1-胺,4-(2-疊氮基乙氧基)-4-側氧基丁酸,2-疊氮基乙基-2-溴-2-甲基丙酸酯,氯甲酸酯,疊氮甲酸酯(azidocarbonate),二氯碳烯,碳烯,芳炔,氮烯,(R-)-氧基羰基氮烯,其中R=以下基團中的任一個:

Figure 108102642-A0305-02-0017-3
及其組合。 In some embodiments, the chemically functionalized graphene sheet contains chemical functional groups selected from the group consisting of alkyl or aryl silanes, alkyl or aralkyl groups, hydroxyl groups, carboxyl groups, amine groups, sulfonic acid groups ( --SO3H ), aldehyde groups, quinone groups, fluorocarbons, or combinations thereof. Alternatively, the functional groups include derivatives of azido compounds selected from the group consisting of 2-azidoethanol, 3-azidopropan-1-amine, 4-(2-azidoethoxy)-4-oxobutanoic acid, 2-azidoethyl-2-bromo-2-methylpropionate, chloroformate, azidocarbonate, dichlorocarbene, carbene, aryne, azone, (R-)-oxycarbonyl Nitrene, where R = any of the following groups:
Figure 108102642-A0305-02-0017-3
and their combinations.

在某些實施方式中,官能基選自由羥基、過氧化物、醚、酮基和醛組成的組。在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2--)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟 代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根、及其組合。 In certain embodiments, the functional group is selected from the group consisting of hydroxyl, peroxide, ether, keto, and aldehyde.在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO 3 H、COOH、NH 2 、OH、R'CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR'、SR'、SiR' 3 、Si(--OR'--) y R' 3-y 、Si(--O--SiR' 2 --)OR'、R”、Li、AlR' 2 、Hg--X、TlZ 2和Mg--X;其中y係等於或小於3的整數,R'係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根、及其組合。

官能基可選自由以下各項組成的組:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、環脂族胺、芳族胺、酸酐、酮亞胺、二伸乙基三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、及其組合。 The functional groups may be selected from the group consisting of amidoamines, polyamides, aliphatic amines, modified aliphatic amines, cycloaliphatic amines, aromatic amines, anhydrides, ketimines, diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), polyethylenepolyamines, polyamine epoxy adducts, phenolic hardeners, non-brominated curing agents, non-amine curing agents, and combinations thereof.

在一些實施方式中,官能基可選自:OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原或酶底物、酶抑制劑或酶底物的過渡態類似物的官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、(--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。 In some embodiments, the functional group can be selected from: OY, NHY, O=C--OY, P=C--NR'Y, O=C--SY, O=C--Y, --CR'1--OY, N'Y or C'Y, and Y is a functional group of a protein, peptide, amino acid, enzyme, antibody, nucleotide, oligonucleotide, antigen or enzyme substrate, enzyme inhibitor or a transition state analog of an enzyme substrate or is selected from R'--OH, R'--NR'2, R'SH, R'CHO, R'CN, R'X, R'N+(R')3x-, R'SiR'3、R'Si(--OR'--)the yR'3-y, R'Si(--O--SiR'2--)OR', R'--R", R'--N--CO, (C2h4O--)wH, (--C3h6O--)wH, (--C2h4O)w--R', (C3h6O)w--R', R', and w is an integer greater than 1 and less than 200.

本揭露還提供了一種金屬化聚合物表面(例如,非電子傳導性塑膠的表面)的方法。在該方法的範圍內,根據本揭露的實施方式,一個塑膠製品的塑膠表面或若干塑膠製品的塑膠表面被金屬化。 The present disclosure also provides a method of metallizing a polymer surface (eg, a surface of a non-electronically conductive plastic). Within the scope of the method, according to an embodiment of the present disclosure, the plastic surface of a plastic article or the plastic surfaces of several plastic articles is metallized.

用金屬塗覆聚合物部件表面(也稱為聚合物電鍍或聚合物金屬化)變得越來越重要。藉由聚合物電鍍方法,生產出結合了聚合物和金屬的優點的層壓製件。與金屬零件相比,聚合物部件的使用可以實現明顯的重量減輕。聚合物模製品的電鍍通常為修飾目的、EMI遮罩或表面特性改性而進行。 Coating polymer part surfaces with metals (also known as polymer plating or polymer metallization) is becoming increasingly important. With the polymer plating method, laminates are produced that combine the advantages of polymers and metals. The use of polymer components allows for significant weight savings compared to metal parts. Electroplating of polymer moldings is often performed for cosmetic purposes, EMI masking or modification of surface properties.

本節開始於用於生產金屬化塑膠製品的最常用的先前技術製程的說明。然後重點描述與該先前技術製程相關的問題。這之後討論克服了所有這些問題的本揭露的製程和所得產品。 This section begins with a description of the most common prior art processes used to produce metallized plastic articles. It then focuses on describing the problems associated with this prior art process. This is followed by a discussion of the process and resulting product of the present disclosure which overcomes all of these problems.

在用於金屬化聚合物零件的先前技術製程中,這些零件通常固定在框架中並以特定的製程順序與多種不同的處理流體接觸。作為第一步驟,典型地對塑膠進行預處理以從表面除去雜質,諸如油脂。隨後,使用蝕刻處理使表 面粗糙化以確保後續金屬層與聚合物表面的充分黏附。在蝕刻操作中,在塑膠表面上形成凹陷(例如表面開口或微洞)形式的均勻結構係特別重要的。隨後,用活化劑處理經粗糙化的表面以形成催化表面用於隨後的化學金屬化或無電鍍。為此目的,使用生成離子的活化劑或膠體系統。 In prior art processes for metallizing polymeric parts, these parts are typically held in a frame and exposed to a number of different process fluids in a specific process sequence. As a first step, the plastic is typically pretreated to remove impurities, such as grease, from the surface. Subsequently, an etching process is used to make the table Surface roughening ensures adequate adhesion of subsequent metal layers to the polymer surface. In etching operations, it is particularly important to form a uniform structure in the form of depressions, such as surface openings or microcavities, on the plastic surface. Subsequently, the roughened surface is treated with an activator to form a catalytic surface for subsequent electroless metallization or electroless plating. For this purpose, ion-generating activators or colloidal systems are used.

在先前技術程序中,首先用錫(II)離子處理用於用生成離子的系統來活化的塑膠表面,在該處理後產生牢固黏附的氧化錫水合物凝膠並且用水沖洗。在隨後用鈀鹽溶液處理中,藉由與錫(II)物種的氧化還原反應在表面上形成鈀核。這些鈀核對化學金屬化具有催化作用。對於用膠體系統活化,通常使用膠體鈀溶液,這些溶液藉由氯化鈀與氯化錫(II)在過量鹽酸存在下反應而形成。 In the prior art procedure, the plastic surface intended for activation with an ion-generating system is first treated with tin(II) ions, after which treatment a firmly adhered tin oxide hydrate gel is produced and rinsed with water. During subsequent treatment with a palladium salt solution, palladium nuclei are formed on the surface by redox reactions with tin(II) species. These palladium nuclei are catalytic for chemical metallation. For activation with colloidal systems, colloidal palladium solutions are generally used, which are formed by reacting palladium chloride with tin(II) chloride in the presence of excess hydrochloric acid.

在活化之後,典型地首先使用金屬化浴的亞穩溶液對塑膠零件進行化學金屬化。這些浴通常包含在水溶液中將以鹽的形式沈積的金屬和用於該金屬鹽的還原劑。當化學金屬化浴與塑膠表面上的金屬核(例如鈀種子)接觸時,藉由還原形成金屬,該金屬作為牢固黏附的層沈積在該表面上。化學金屬化步驟通常用於沈積銅、鎳或具有磷和/或硼的鎳合金。 After activation, the plastic part is typically first chemically metallized using a metastable solution of a metallization bath. These baths generally contain the metal to be deposited as a salt in aqueous solution and a reducing agent for the metal salt. When the chemical metallization bath comes into contact with metal nuclei (eg, palladium seeds) on the plastic surface, a metal is formed by reduction, which deposits on the surface as a firmly adherent layer. The chemical metallization step is typically used to deposit copper, nickel or nickel alloys with phosphorous and/or boron.

然後該化學金屬化的聚合物表面可以進一步電解地沈積有金屬層。典型地,在電化學施加所需的修飾性鉻層之前,進行銅層或另外的鎳層的電解沈積。 The chemically metallized polymer surface can then be further electrolytically deposited with a metal layer. Electrolytic deposition of a copper layer or an additional nickel layer is typically performed prior to the electrochemical application of the desired decorative chromium layer.

存在與這種用於生產金屬化聚合物製品的先前技術製程相關的幾個主要問題: There are several major problems associated with this prior art process for producing metallized polymer articles:

1)該製程係繁瑣的,涉及許多步驟:預處理、化學蝕刻、活化、化學金屬化和多個金屬層的電解沈積(因此,多個步驟)。 1) The process is tedious and involves many steps: pretreatment, chemical etching, activation, chemical metallization and electrolytic deposition of multiple metal layers (hence, multiple steps).

2)最常用的蝕刻劑係鉻-硫酸(chromium-sulfuric acid)或鉻硫酸(chromo-sulfuric acid)(硫酸中的三氧化鉻),特別是對於ABS(丙烯腈-丁二烯- 苯乙烯共聚物)或聚碳酸酯而言。鉻-硫酸毒性很大,並且在蝕刻程序中、處理後和廢棄處置中需要特殊的防範措施。由於蝕刻處理中的化學過程(例如所用鉻化合物的還原),鉻-硫酸蝕刻劑被用盡並且通常不可重複使用。 2) The most commonly used etchant is chromium-sulfuric acid or chromo-sulfuric acid (chromium trioxide in sulfuric acid), especially for ABS (acrylonitrile-butadiene- styrene copolymer) or polycarbonate. Chromium-sulfuric acid is very toxic and requires special precautions during etching procedures, after handling and disposal. Due to chemical processes in the etching process (such as reduction of the chromium compounds used), the chromium-sulfuric acid etchant is used up and generally cannot be reused.

3)塑膠電鍍的關鍵製程步驟係產生微洞,以使金屬能夠黏附在塑膠表面上。這些微洞在後面的金屬化步驟中用作金屬核生長的起點。通常,這些微洞具有約0.1μm至10μm的尺寸。特別地,這些微洞顯示出在從0.1μm至10μm範圍內的深度(即,從塑膠表面朝向內部的程度)。不幸地,表面微洞可能是應力集中位點,這些位點會削弱塑膠部件的強度。 3) The key process step of plastic electroplating is to create micro-holes so that the metal can adhere to the plastic surface. These microvoids serve as starting points for the growth of metal nuclei in subsequent metallization steps. Typically, these microvoids have a size of about 0.1 μm to 10 μm. In particular, these microcavities exhibit a depth (ie, the degree from the plastic surface towards the interior) in the range from 0.1 μm to 10 μm. Unfortunately, surface microvoids can be stress concentration sites that can weaken plastic parts.

4)在塑膠表面的蝕刻或粗糙化之後,首先用膠體鈀或生成離子的鈀活化表面。在膠體製程的情況下,這種活化之後是除去保護性錫膠體,或者在生成離子製程的情況下,這種活化之後是還原為元素鈀。隨後,將銅或鎳化學沈積在塑膠表面上作為導電層。在此之後,進行電鍍或金屬化。在實踐中,塑膠表面的這種直接金屬化僅適用於某些塑膠。如果藉由蝕刻塑膠表面不可能使塑膠充分粗糙化或形成合適的微洞,則不能保證金屬層與塑膠表面的功能地牢固的黏附。因此,在先前技術製程中,能夠被塗覆的塑膠的數量受到很大限制。 4) After etching or roughening of the plastic surface, the surface is first activated with colloidal palladium or ion-generating palladium. This activation is followed by removal of the protective tin colloid in the case of colloidal processes, or by reduction to elemental palladium in the case of ionogenic processes. Subsequently, copper or nickel is chemically deposited on the plastic surface as a conductive layer. After this, electroplating or metallization takes place. In practice, this direct metallization of plastic surfaces is only possible with certain plastics. If it is not possible to sufficiently roughen the plastic or form suitable microcavities by etching the plastic surface, a functionally firm adhesion of the metal layer to the plastic surface cannot be guaranteed. Therefore, in prior art processes, the amount of plastic that can be coated is very limited.

5)諸如鈀的貴金屬非常昂貴。 5) Precious metals such as palladium are very expensive.

本揭露提供了一種用於生產金屬化聚合物製品的石墨烯介導之方法。所揭露的方法克服了所有這些問題。 The present disclosure provides a graphene-mediated method for producing metallized polymer articles. The disclosed method overcomes all these problems.

在某些實施方式中,該方法包括:(a)視需要處理聚合物部件的表面以製備經表面處理的聚合物部件(該程序係視需要的,因為石墨烯分散體本身就能夠預處理聚合物表面);(b)提供石墨烯分散體(在本文中也稱為石墨烯/導電填料混合物分散體),該分散體包含分散在液體介質中的多個石墨烯片(官能化或未官能化的)和導電填料(以奈米纖維、奈米顆粒、奈米線等的形式),使該經表面處理或未處理的聚合物部件與該石墨烯分散體接觸,並且使這些石墨 烯片和該導電填料沈積到該經表面處理的聚合物部件的表面上,其中這些石墨烯片和該導電填料結合到該表面上以形成覆蓋(部分或完全)聚合物部件表面的結合的石墨烯片/導電填料的層;並且(c)在該覆蓋的聚合物部件表面的表面上化學、物理、電化學或電解地沈積金屬層,以形成該表面金屬化的聚合物製品。再一次,步驟(a)在所揭露的方法中係視需要的。 In certain embodiments, the method comprises: (a) optionally treating the surface of the polymeric part to produce a surface-treated polymeric part (this procedure is optional because the graphene dispersion itself is capable of pretreating the polymer surface); (b) providing a graphene dispersion (also referred to herein as a graphene/conductive filler mixture dispersion) comprising a plurality of graphene sheets (functionalized or unfunctionalized) and a conductive filler (in the form of nanofibers, nanoparticles, nanowires, etc.) dispersed in a liquid medium, such that the Surface-treated or untreated polymer parts are contacted with the graphene dispersion, and the graphite depositing olefin sheets and the conductive filler onto the surface of the surface-treated polymer part, wherein the graphene sheets and the conductive filler are bonded to the surface to form a layer of bonded graphene sheets/conductive filler covering (partially or completely) the surface of the polymer part; and (c) chemically, physically, electrochemically or electrolytically depositing a metal layer on the surface of the covered polymer part surface to form the surface metallized polymer article. Again, step (a) is optional in the disclosed methods.

作為實例,聚合物部件可選自聚乙烯、聚丙烯、聚丁烯、聚氯乙烯、聚碳酸酯、丙烯腈-丁二烯-苯乙烯(ABS)、聚酯、聚乙烯醇、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚苯醚(PPO)、聚甲基丙烯酸甲酯(PMMA)、其共聚物、其聚合物共混物、或其組合。該聚合物也可以選自酚醛樹脂、聚糠醇、聚丙烯腈、聚醯亞胺、聚醯胺、聚

Figure 108102642-A0305-02-0021-7
二唑、聚苯並
Figure 108102642-A0305-02-0021-8
唑、聚苯並二
Figure 108102642-A0305-02-0021-9
唑、聚噻唑、聚苯並噻唑、聚苯並二噻唑、聚(對伸苯基伸乙烯基)、聚苯並咪唑、聚苯並二咪唑、其共聚物、其聚合物共混物、或其組合。 As an example, the polymeric component may be selected from polyethylene, polypropylene, polybutylene, polyvinyl chloride, polycarbonate, acrylonitrile-butadiene-styrene (ABS), polyester, polyvinyl alcohol, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyphenylene oxide (PPO), polymethyl methacrylate (PMMA), copolymers thereof, polymer blends thereof, or combinations thereof. The polymer can also be selected from phenolic resin, polyfurfuryl alcohol, polyacrylonitrile, polyimide, polyamide, poly
Figure 108102642-A0305-02-0021-7
Oxadiazole, polybenzo
Figure 108102642-A0305-02-0021-8
Azole, Polybenzobis
Figure 108102642-A0305-02-0021-9
oxazole, polythiazole, polybenzothiazole, polybenzobithiazole, poly(p-phenylene vinylene), polybenzimidazole, polybenzodiimidazole, copolymers thereof, polymer blends thereof, or combinations thereof.

在某些實施方式中,從該製程中省略步驟(a),因為石墨烯分散體中的液體介質通常能夠從聚合物部件表面除去油脂和其他不希望的物種。石墨烯分散體中的一些液體介質可以進一步提供蝕刻效應以產生具有<0.1μm的深度的小表面凹陷(溫和蝕刻條件)。在這些情形下,整個製程只需要三個簡單的步驟。 In certain embodiments, step (a) is omitted from the process because the liquid medium in the graphene dispersion is generally capable of removing grease and other undesirable species from the surface of the polymer part. Some liquid medium in the graphene dispersion can further provide an etching effect to produce small surface depressions with a depth of <0.1 μm (mild etching conditions). In these cases, the entire process requires only three simple steps.

在某些實施方式中,步驟(a)可包括使聚合物部件表面經受研磨處理、蝕刻處理、或其組合的步驟。在一些實施方式中,步驟(a)包括使該聚合物部件表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟。較佳的是,步驟(a)包括在不使用鉻酸或鉻硫酸的情況下使聚合物部件表面經受蝕刻處理的步驟。更較佳的是,步驟(a)包括使聚合物部件表面在溫和蝕刻條件下經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟,其中蝕刻在足夠低的溫度下進行足夠短的時間段,以便 不產生具有大於0.1μm的平均尺寸的微洞。 In certain embodiments, step (a) may include the step of subjecting the surface of the polymeric part to an abrasive treatment, an etching treatment, or a combination thereof. In some embodiments, step (a) includes the step of subjecting the surface of the polymeric part to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof. Preferably, step (a) includes the step of subjecting the surface of the polymer part to an etching treatment without using chromic acid or chromic sulfuric acid. More preferably, step (a) comprises the step of subjecting the surface of the polymeric part to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or combinations thereof under mild etching conditions, wherein the etching is performed at a temperature sufficiently low for a sufficiently short period of time so that Microvoids with an average size greater than 0.1 μm were not produced.

本發明中提到的溫和蝕刻意指“蝕刻”或用蝕刻溶液處理塑膠表面在低溫下和/或較短時間段內在低蝕刻溶液濃度下發生。當滿足前述三個條件之一時,可以實現溫和蝕刻條件。本揭露中提到的低溫意指最高溫度為40℃、較佳的是<30℃、並且最較佳的是從15℃至25℃。在以上提及的低溫下,用蝕刻溶液進行預處理在3分鐘至15分鐘、較佳的是5分鐘至15分鐘、並且甚至更較佳的是5分鐘至10分鐘的時間段內進行。溫度越高,處理時間越短。然而,如果選擇的處理時間適當地短,則在超過40℃的溫度下也可以實現溫和蝕刻條件。根據本揭露的一個實施方式,蝕刻處理在40℃至95℃、較佳的是50℃至70℃的溫度下進行15秒至5分鐘、較佳的是0.5分鐘至3分鐘的處理時間。實際上,根據所用蝕刻溶液的類型來選擇製程溫度和/或製程時間。 Mild etching as referred to in the present invention means that "etching" or treating the plastic surface with an etching solution occurs at low temperature and/or for a short period of time at a low concentration of the etching solution. Mild etching conditions can be achieved when one of the aforementioned three conditions is satisfied. Low temperature mentioned in this disclosure means a maximum temperature of 40°C, preferably <30°C, and most preferably from 15°C to 25°C. At the low temperature mentioned above, the pretreatment with the etching solution is carried out within a period of 3 minutes to 15 minutes, preferably 5 minutes to 15 minutes, and even more preferably 5 minutes to 10 minutes. The higher the temperature, the shorter the processing time. However, mild etch conditions can also be achieved at temperatures in excess of 40 °C if the selected processing time is suitably short. According to an embodiment of the present disclosure, the etching process is performed at a temperature of 40° C. to 95° C., preferably 50° C. to 70° C., for a processing time of 15 seconds to 5 minutes, preferably 0.5 minute to 3 minutes. Actually, the process temperature and/or process time are selected according to the type of etching solution used.

溫和蝕刻還意味著,與以上提到的先前技術製程相反,不進行聚合物表面的粗糙化或聚合物表面中微洞的產生。根據先前技術製程用蝕刻產生的微洞通常具有在0.1μm至10μm的尺寸範圍內的直徑或深度。在本揭露中,對蝕刻條件進行調節,使得在聚合物表面中僅產生小的開口或孔,這些小的開口或孔具有<0.1μm、較佳的是<0.05μm的直徑並且尤其是深度。在此方面,深度意指從聚合物表面到聚合物內部的開口/通道的程度。因此,此處不進行先前技術製程情況下的經典意義上的蝕刻。在本揭露的其中消除了步驟(a)的製程中,石墨烯分散體中的液體介質通常可以產生具有<0.1μm的尺寸的開口或孔。與先前技術傳授內容所建議的相反,我們出人意料地觀察到,本揭露的石墨烯介導的金屬化方法不需要產生尺寸大於0.1μm的微洞。該方法即使在高度光滑的表面上也能工作。 Gentle etching also means that, contrary to the above-mentioned prior art processes, no roughening of the polymer surface or generation of microvoids in the polymer surface takes place. Microcavities produced with etching according to prior art processes typically have a diameter or depth in the size range of 0.1 μm to 10 μm. In the present disclosure, the etching conditions are adjusted such that only small openings or pores are produced in the polymer surface, these small openings or pores having a diameter of <0.1 μm, preferably <0.05 μm and especially a depth. In this context, depth means the extent from the surface of the polymer to the openings/channels inside the polymer. Etching in the classical sense as in the case of prior art processes is therefore not performed here. In the process of the present disclosure, where step (a) is eliminated, the liquid medium in the graphene dispersion can typically produce openings or pores with a size <0.1 μm. Contrary to what was suggested by prior art teaching, we have surprisingly observed that the graphene-mediated metallization method of the present disclosure does not require the generation of microvoids with a size larger than 0.1 μm. The method works even on highly smooth surfaces.

在步驟(a)中,可以用蝕刻溶液和/或藉由電漿處理或藉由電漿蝕刻、離子轟擊等實現蝕刻處理。 In step (a), the etching treatment may be achieved with an etching solution and/or by plasma treatment or by plasma etching, ion bombardment, or the like.

較佳的是,用於蝕刻的蝕刻溶液包含至少一種氧化劑。在本揭露的範圍內的溫和蝕刻還意味著氧化劑以低濃度使用。過錳酸鹽和/或過二硫酸鹽和/或高碘酸鹽和/或過氧化物可用作氧化劑。根據本揭露的一個實施方式,藉由酸蝕刻溶液進行蝕刻,該酸蝕刻溶液包含至少一種氧化劑。可以將氧化劑和/或酸或鹼性溶液(下面討論的)添加到石墨烯分散體中代替使用單獨的蝕刻溶液,並且如此,步驟(a)和步驟(b)基本上組合成一個單一的步驟。 Preferably, the etching solution used for etching contains at least one oxidizing agent. Mild etching within the scope of the present disclosure also means that the oxidizer is used in low concentrations. Permanganates and/or peroxodisulfates and/or periodates and/or peroxides can be used as oxidizing agents. According to one embodiment of the present disclosure, the etching is performed by an acid etching solution comprising at least one oxidizing agent. An oxidizing agent and/or an acid or basic solution (discussed below) may be added to the graphene dispersion instead of using a separate etching solution, and as such, step (a) and step (b) are essentially combined into a single step.

較佳的是,使用含有過錳酸鹽和磷酸(H3PO4)和/或硫酸的水性蝕刻溶液。過錳酸鉀可用作過錳酸鹽。非常較佳的是使用酸蝕刻溶液,該酸蝕刻溶液僅含有磷酸或者主要含有磷酸以及僅少量的硫酸。 Preferably, an aqueous etching solution containing permanganate and phosphoric acid (H 3 PO 4 ) and/or sulfuric acid is used. Potassium permanganate can be used as permanganate. It is very preferred to use an acid etching solution which contains only phosphoric acid or mainly phosphoric acid and only small amounts of sulfuric acid.

根據本揭露的另一個實施方式,蝕刻處理係藉由含有過錳酸鹽的鹼性水溶液進行的。這裡再一次,較佳的是使用過錳酸鉀。鹼性水溶液可含有鹼液。所用蝕刻溶液的類型取決於待處理的聚合物的類型。蝕刻溶液中氧化劑的較佳的濃度為0.05mol/l至0.6mol/l。較佳的是,蝕刻溶液含有0.05mol/l至0.6mol/l的過錳酸鹽或過硫酸鹽。蝕刻溶液可含有0.1mol/l至0.5mol/l的高碘酸鹽或過氧化氫。較佳的過錳酸鹽比例為1g/l直至過錳酸鹽、較佳的是過錳酸鉀的溶解度極限。過錳酸鹽溶液較佳的是含有2g/l至15g/l的過錳酸鹽,更較佳的是2g/l至15g/l的過錳酸鉀。過錳酸鹽溶液可含有潤濕劑。 According to another embodiment of the present disclosure, the etching treatment is performed by an alkaline aqueous solution containing permanganate. Here again, it is preferred to use potassium permanganate. The alkaline aqueous solution may contain lye. The type of etching solution used depends on the type of polymer being treated. A preferred concentration of the oxidizing agent in the etching solution is 0.05 mol/l to 0.6 mol/l. Preferably, the etching solution contains 0.05 mol/l to 0.6 mol/l of permanganate or persulfate. The etching solution may contain 0.1 mol/l to 0.5 mol/l of periodate or hydrogen peroxide. A preferred permanganate ratio is 1 g/l up to the solubility limit of permanganate, preferably potassium permanganate. The permanganate solution preferably contains 2 g/l to 15 g/l permanganate, more preferably 2 g/l to 15 g/l potassium permanganate. The permanganate solution may contain a wetting agent.

藉由使用稀過硫酸鹽水溶液或高碘化物溶液或稀過氧化物水溶液(用作單獨的蝕刻溶液或作為石墨烯分散體的一部分)也可以實現溫和蝕刻。較佳的是,在攪拌溶液的同時進行利用蝕刻溶液的溫和蝕刻處理。在溫和蝕刻之後,將塑膠表面在水中沖洗例如1分鐘至3分鐘。根據本揭露的較佳的實施方式,用金屬鹽溶液處理在<30℃、較佳的是在15℃與25℃(包括室溫)之間的溫度下進行。在實踐中,用金屬鹽溶液處理係在不攪拌的情況下進行的。較佳的處理時間為30秒至15分鐘,較佳的是3分鐘至12分鐘。較佳的是,使用金屬鹽溶 液,該溶液具有在7.5與12.5之間、較佳的是調節到在8與12之間的pH值。較佳的是,使用含有氨和/或至少一種胺的金屬鹽溶液。以上提及的pH值調節可以在氨的幫助下實現,並且較佳的是使用鹼金屬鹽溶液。還可以使用含有一種或多種胺的金屬鹽溶液。例如,金屬鹽溶液可含有單乙醇胺和/或三乙醇胺。用金屬鹽溶液處理意味著較佳的是將聚合物部件表面浸泡到金屬鹽溶液中。 Mild etching can also be achieved by using dilute persulfate aqueous solution or periodide solution or dilute peroxide aqueous solution (used as a separate etching solution or as part of the graphene dispersion). It is preferable to perform the mild etching treatment with the etching solution while stirring the solution. After mild etching, the plastic surface is rinsed in water, eg, for 1 to 3 minutes. According to a preferred embodiment of the present disclosure, the treatment with the metal salt solution is carried out at a temperature <30°C, preferably between 15°C and 25°C (room temperature included). In practice, the treatment with the metal salt solution is carried out without stirring. The preferred treatment time is 30 seconds to 15 minutes, more preferably 3 minutes to 12 minutes. Preferably, the use of metal salts solution, the solution has a pH value between 7.5 and 12.5, preferably adjusted to between 8 and 12. Preferably, a metal salt solution containing ammonia and/or at least one amine is used. The above mentioned pH adjustment can be achieved with the aid of ammonia, and preferably with an alkali metal salt solution. Metal salt solutions containing one or more amines may also be used. For example, the metal salt solution may contain monoethanolamine and/or triethanolamine. Treatment with a metal salt solution means preferably immersing the surface of the polymer part in the metal salt solution.

在某些實施方式中,步驟(b)包括將經表面處理或未處理的聚合物部件浸泡或浸漬在石墨烯分散體中,並且然後從該石墨烯分散體中移出該聚合物部件,以實現石墨烯片和導電填料沈積到該經表面處理的聚合物部件的表面上,其中石墨烯片和導電填料結合到該表面上以形成結合的石墨烯片/導電填料的層。可替代地,可以簡單地將石墨烯分散體噴塗在該聚合物部件表面上,使液體組分蒸發,並使黏合劑(如果存在的話)固化或凝固。 In certain embodiments, step (b) comprises soaking or immersing the surface-treated or untreated polymeric part in a graphene dispersion, and then removing the polymeric part from the graphene dispersion to effect deposition of graphene sheets and conductive fillers onto the surface of the surface-treated polymeric part, wherein the graphene sheets and conductive fillers are bonded to the surface to form a bonded graphene sheet/conductive filler layer. Alternatively, the graphene dispersion can simply be sprayed onto the polymer part surface, the liquid component is allowed to evaporate, and the binder (if present) is allowed to cure or set.

如果存在,黏合劑樹脂層可以由包含黏合劑樹脂作為主要成分的黏合劑樹脂組成物形成。黏合劑樹脂組成物可以包含固化劑和偶聯劑以及黏合劑樹脂。黏合劑樹脂的實例可包括酯樹脂、烏拉坦樹脂、烏拉坦酯樹脂、丙烯酸樹脂、和丙烯酸烏拉坦樹脂,特別是包含新戊二醇(NPG)、乙二醇(EG)、間苯二甲酸和對苯二甲酸的酯樹脂。基於100重量份的黏合劑樹脂,固化劑可以按1至30重量份的量存在。偶聯劑可包括環氧矽烷化合物。 If present, the adhesive resin layer may be formed of an adhesive resin composition containing an adhesive resin as a main component. The binder resin composition may contain a curing agent and a coupling agent as well as a binder resin. Examples of the binder resin may include ester resins, urethane resins, urethane ester resins, acrylic resins, and acrylic urethane resins, particularly ester resins containing neopentyl glycol (NPG), ethylene glycol (EG), isophthalic acid, and terephthalic acid. The curing agent may be present in an amount of 1 to 30 parts by weight based on 100 parts by weight of the binder resin. The coupling agent may include epoxysilane compounds.

可以經由熱、UV或電離輻射進行該黏合劑層的固化。這可以涉及將塗有可熱固化的組成物的層加熱到至少70℃、較佳的是90℃至150℃的溫度持續至少1分鐘(典型地最多2小時,並且更典型地從2分鐘至30分鐘),以便形成堅硬的塗層。 Curing of the adhesive layer can be performed via heat, UV or ionizing radiation. This may involve heating the layer coated with the thermally curable composition to a temperature of at least 70°C, preferably 90°C to 150°C, for at least 1 minute (typically up to 2 hours, and more typically from 2 minutes to 30 minutes) to form a hard coating.

可以使用浸漬、塗覆(例如,刮刀塗覆、棒式塗覆、狹縫式模頭塗覆、逗號塗覆、逆轉輥塗覆等)、卷對卷製程、噴墨印刷、網版印刷、微接觸、凹版塗覆、噴塗、超音波噴塗、靜電噴塗和柔版印刷使聚合物部件表面與石墨 烯或CNT分散體接觸。硬塗層或黏合劑層的厚度通常為約1nm至10μm,較佳的是10nm至2μm。 The surfaces of polymeric parts can be bonded to graphite using dipping, coating (e.g., doctor blade coating, rod coating, slot die coating, comma coating, reverse roll coating, etc.), roll-to-roll processing, inkjet printing, screen printing, microcontact, gravure coating, spray coating, ultrasonic spray coating, electrostatic spray coating, and flexographic printing. ene or CNT dispersions. The thickness of the hard coat layer or adhesive layer is usually about 1 nm to 10 μm, preferably 10 nm to 2 μm.

對於可熱固化的樹脂,多官能環氧單體可較佳的是選自二甘油四縮水甘油醚、二季戊四醇四縮水甘油醚、山梨糖醇聚縮水甘油醚、聚甘油聚縮水甘油醚、季戊四醇聚縮水甘油醚(例如季戊四醇四縮水甘油醚)、或其組合。雙官能或三官能環氧單體可選自由以下各項組成的組:三羥甲基乙烷三縮水甘油醚、三羥甲基甲烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、三羥苯基甲烷(triphenylolmethane)三縮水甘油醚、三苯酚三縮水甘油醚、四羥苯基乙烷三縮水甘油醚、四羥苯基乙烷四縮水甘油醚、對胺基苯酚三縮水甘油醚、1,2,6-己三醇三縮水甘油醚、甘油三縮水甘油醚、二甘油三縮水甘油醚、甘油乙氧基三縮水甘油醚、蓖麻油三縮水甘油醚、丙氧基化丙三醇三縮水甘油醚、乙二醇二縮水甘油醚、1,4-丁二醇二縮水甘油醚、新戊二醇二縮水甘油醚、環己烷二甲醇二縮水甘油醚、二丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、二溴新戊二醇二縮水甘油醚、氫化雙酚A二縮水甘油醚、(3,4-環氧環己烷)甲基3,4-環氧環己基甲酸酯以及混合物。 For thermally curable resins, the polyfunctional epoxy monomer may preferably be selected from diglyceryl tetraglycidyl ether, dipentaerythritol tetraglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether (such as pentaerythritol tetraglycidyl ether), or combinations thereof. The difunctional or trifunctional epoxy monomer may be selected from the group consisting of trimethylolethane triglycidyl ether, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triphenylolmethane triglycidyl ether, triphenol triglycidyl ether, tetrahydroxyphenylethane triglycidyl ether, tetrahydroxyphenylethane triglycidyl ether, p-aminophenol triglycidyl ether, 1,2,6-hexane triglycidyl ether Alcohol Triglycidyl Ether, Glycerin Triglycidyl Ether, Diglycerol Triglycidyl Ether, Glycerin Ethoxylated Triglycidyl Ether, Castor Oil Triglycidyl Ether, Propoxylated Glycerol Triglycidyl Ether, Ethylene Glycol Diglycidyl Ether, 1,4-Butanediol Diglycidyl Ether, Neopentyl Glycol Diglycidyl Ether, Cyclohexanedimethanol Diglycidyl Ether, Dipropylene Glycol Diglycidyl Ether, Polypropylene Glycol Diglycidyl Ether, Dibromoneopentyl Glycidyl Diglycidyl Ether Hydrogenated glyceryl ether, hydrogenated bisphenol A diglycidyl ether, (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexyl carboxylate and mixtures.

在某些實施方式中,本揭露的可熱固化的組成物有利地進一步含有少量、較佳的是從0.05重量%至0.20重量%的至少一種表面活性化合物。表面活性劑對於基材的良好潤濕係重要的,從而產生令人滿意的最終硬塗層。 In certain embodiments, the thermally curable compositions of the present disclosure advantageously further contain a small amount, preferably from 0.05% to 0.20% by weight, of at least one surface active compound. Surfactants are important for good wetting of the substrate, resulting in a satisfactory final hardcoat.

可用於在本揭露中使用的黏合劑層的可UV輻射固化的樹脂和漆係衍生自多官能化合物的可光聚合的單體和低聚物(諸如丙烯酸酯和甲基丙烯酸酯低聚物(本文使用的術語“(甲基)丙烯酸酯”係指丙烯酸酯和甲基丙烯酸酯))的那些,諸如具有(甲基)丙烯酸酯官能基的多元醇和它們的衍生物,諸如乙氧基化的三羥甲基丙烷三(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇 四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、或新戊二醇二(甲基)丙烯酸酯及其混合物,以及衍生自低分子量聚酯樹脂、聚醚樹脂、環氧樹脂、聚氨酯樹脂、醇酸樹脂、螺縮醛樹脂、環氧丙烯酸酯、聚丁二烯樹脂、和聚硫醇-聚烯樹脂的丙烯酸酯和甲基丙烯酸酯低聚物。 UV radiation-curable resins and lacquers useful for the adhesive layer used in the present disclosure are those derived from photopolymerizable monomers and oligomers of polyfunctional compounds, such as acrylate and methacrylate oligomers (the term "(meth)acrylate" as used herein refers to acrylate and methacrylate), such as polyols with (meth)acrylate functionality and their derivatives, such as ethoxylated trimethylolpropane tri(meth)acrylate, tripropylene glycol di(meth)acrylate, Trimethylolpropane Tri(meth)acrylate, Diethylene Glycol Di(meth)acrylate, Pentaerythritol Tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, or neopentyl glycol di(meth)acrylate and mixtures thereof, and acrylate and methacrylate oligomers derived from low molecular weight polyester resins, polyether resins, epoxy resins, polyurethane resins, alkyd resins, spiroacetal resins, epoxy acrylates, polybutadiene resins, and polythiol-polyene resins.

塗覆可UV聚合的單體和低聚物(例如從浸漬中退出後)並乾燥,並且隨後暴露於UV輻射以形成光學透明的交聯耐磨層。較佳的UV固化劑量在50mJ/cm2與1000mJ/cm2之間。 The UV polymerizable monomers and oligomers are applied (for example after exiting from dipping) and dried, and then exposed to UV radiation to form an optically clear crosslinked abrasion resistant layer. The preferred UV curing dose is between 50mJ/cm 2 and 1000mJ/cm 2 .

可UV固化的樹脂典型地也是可電離輻射固化的。可電離輻射固化的樹脂可含有相對大量的反應性稀釋劑。可用於本文的反應性稀釋劑包括單官能單體,諸如(甲基)丙烯酸乙酯、(甲基)丙烯酸乙基己酯、苯乙烯、乙烯基甲苯、和N-乙烯基吡咯啶酮;以及多官能單體,例如三羥甲基丙烷三(甲基)丙烯酸酯、己二醇(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、或新戊二醇二(甲基)丙烯酸酯。 UV curable resins are typically also ionizing radiation curable. Ionizing radiation curable resins may contain relatively large amounts of reactive diluents. Reactive diluents useful herein include monofunctional monomers such as ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, vinyltoluene, and N-vinylpyrrolidone; and polyfunctional monomers such as trimethylolpropane tri(meth)acrylate, hexanediol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate , 1,6-hexanediol di(meth)acrylate, or neopentyl glycol di(meth)acrylate.

在所揭露的方法中,步驟(c)可以包括將石墨烯結合的聚合物部件浸泡在金屬化浴中。沈積的石墨烯片的高導電性容易使得能夠在石墨烯/導電填料塗覆的聚合物部件表面上電鍍一個或多個金屬層。 In the disclosed method, step (c) may comprise soaking the graphene-bonded polymer part in a metallization bath. The high conductivity of the deposited graphene sheets readily enables the electroplating of one or more metal layers on the surface of graphene/conductive filler-coated polymer components.

可替代地且有利地,最終的金屬化步驟可以藉由使用不採用昂貴的貴金屬溶液的化學鍍方法來完成。該步驟可包括將石墨烯/導電填料塗覆的聚合物部件浸漬(浸泡)在化學鍍浴中,該化學鍍浴包含溶解在液體介質中的金屬鹽(預期金屬諸如Cu、Ni或Co的鹽)(例如,溶於水的CuSO4或溶於水的NiNO3)。此種浸漬程序典型地需要從3秒至30分鐘的接觸時間。 Alternatively and advantageously, the final metallization step can be accomplished by using an electroless plating method that does not employ expensive precious metal solutions. This step may involve immersing (soaking) the graphene/conductive filler-coated polymer part in an electroless plating bath containing a metal salt (a salt of a metal such as Cu, Ni, or Co expected) dissolved in a liquid medium (e.g., CuSO in water or NiNO in water). Such an impregnation procedure typically requires a contact time of from 3 seconds to 30 minutes.

銅金屬鍍浴(或鎳鍍浴)可包含銅鹽(或Ni鹽)和添加劑消耗抑制 化合物。添加劑消耗抑制化合物可包括甲基亞碸、甲基碸、四亞甲基亞碸、巰基乙酸、2(5H)噻吩酮、1,4-二噻、反式-1,2-二噻、四氫噻吩-3-酮、3-噻吩甲醇、1,3,5-三噻、3-噻吩乙酸、硫代特窗酸、冠硫醚、四吡啶化物(tetrapyrid)、二丙基三硫化物、雙(3-三乙氧基矽基丙基四硫化物、二甲基四硫化物、甲烷硫代硫酸甲酯、(2-磺酸根合乙基)甲烷、對甲苯基二亞碸、對甲苯基二碸、雙(苯磺醯基)硫醚、4-(氯磺醯基)苯甲酸、異丙基磺醯氯、1-丙烷磺醯氯、硫辛酸、4-羥基苯磺酸、苯基乙烯基碸、或其混合物。 Copper metal plating baths (or nickel plating baths) may contain copper salts (or Ni salts) and additive depletion inhibitors compound. Additive depletion inhibiting compounds may include methylthione, methylthione, tetramethylenethione, mercaptoacetic acid, 2(5H)thiophenone, 1,4-dithiophene, trans-1,2-dithiophene, tetrahydrothiophen-3-one, 3-thiophenemethanol, 1,3,5-trithiophene, 3-thiopheneacetic acid, thiotetronic acid, crown thioether, tetrapyrid, dipropyltrisulfide, bis(3-trithiophene) Ethoxysilylpropyl tetrasulfide, dimethyl tetrasulfide, methyl methanethiosulfate, (2-sulfatoethyl)methane, p-tolyldisulfide, p-tolyldisulfide, bis(phenylsulfonyl)sulfide, 4-(chlorosulfonyl)benzoic acid, isopropylsulfonyl chloride, 1-propanesulfonyl chloride, lipoic acid, 4-hydroxybenzenesulfonic acid, phenylvinylsulfide, or mixtures thereof.

可替代地,可以選擇使用物理氣相沈積、濺射、電漿沈積等來完成最終的金屬化程序。 Alternatively, physical vapor deposition, sputtering, plasma deposition, etc. may be chosen for the final metallization procedure.

石墨烯片和石墨烯分散體的製備描述如下:已知碳具有五種獨特的晶體結構,包括金剛石、富勒烯(0-D奈米石墨材料)、碳奈米管或碳奈米纖維(1-D奈米石墨材料)、石墨烯(2-D奈米石墨材料)和石墨(3-D石墨材料)。碳奈米管(CNT)係指以單壁或多壁生長的管狀結構。碳奈米管(CNT)和碳奈米纖維(CNF)具有約幾奈米到幾百奈米的直徑。其縱向、空心結構賦予材料獨特的機械、電學和化學特性。CNT或CNF係一維奈米碳或1-D奈米石墨材料。 The preparation of graphene sheets and graphene dispersions is described as follows: Carbon is known to have five unique crystal structures, including diamond, fullerene (0-D nanographite material), carbon nanotubes or carbon nanofibers (1-D nanographite material), graphene (2-D nanographite material), and graphite (3-D graphite material). Carbon nanotubes (CNTs) refer to tubular structures grown with single or multiple walls. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have diameters of about several nanometers to several hundred nanometers. Its longitudinal, hollow structure endows the material with unique mechanical, electrical and chemical properties. CNT or CNF is one-dimensional nano-carbon or 1-D nano-graphite material.

早在2002年,我們的研究小組開創了石墨烯材料及相關生產製程的開發:(1)B.Z.Jang和W.C.Huang,“ano-scaled Graphene Plates[奈米級石墨烯板]”,美國專利案號7,071,258(07/04/2006),2002年10月21日提交的申請;(2)B.Z.Jang等人“Process for Producing Nano-scaled Graphene Plates[用於生產奈米級石墨烯板的製程]”,美國專利申請案號10/858,814(06/03/2004)(美國專利公開號2005/0271574);和(3)B.Z.Jang,A.Zhamu和J.Guo,“Process for Producing Nano-scaled Platelets and Nanocomposites[用於生產奈米級片晶和奈米複合材料的製程]”,美國專利申請案號11/509,424(08/25/2006)(美國專利公開號2008-0048152)。 As early as 2002, our research group pioneered the development of graphene materials and related production processes: (1) B.Z. Jang and W.C. Huang, "ano-scaled Graphene Plates [nano-scale graphene plates]", U.S. Patent No. 7,071,258 (07/04/2006), application filed on October 21, 2002; (2) B.Z. Jang et al. "Process for Producing Nano-scaled Graphene Plates," U.S. Patent Application No. 10/858,814 (06/03/2004) (U.S. Patent Publication No. 2005/0271574); and (3) B.Z. Jang, A. Zhamu, and J. Guo, "Process for Producing Nano-scaled Platelets and Nano composites [Processes for the production of nanoscale platelets and nanocomposites]", U.S. Patent Application No. 11/509,424 (08/25/2006) (U.S. Patent Publication No. 2008-0048152).

單層石墨烯片由佔據二維六方晶格的碳原子構成。多層石墨烯係由多於一個石墨烯平面構成的片晶。單獨的單層石墨烯片和多層石墨烯片晶在本文中統稱為奈米石墨烯片晶(NGP)或石墨烯材料。NGP包括原生石墨烯(基本上99%的碳原子)、微氧化石墨烯(<5重量%的氧)、氧化石墨烯(

Figure 108102642-A0305-02-0028-10
5重量%的氧)、微氟化石墨烯(<5重量%的氟)、氟化石墨烯(
Figure 108102642-A0305-02-0028-11
5重量%的氟)、其他鹵化石墨烯、以及化學官能化石墨烯。 Single-layer graphene sheets are made of carbon atoms occupying a two-dimensional hexagonal lattice. Multilayer graphene is a lamella composed of more than one plane of graphene. Individual single-layer graphene sheets and multi-layer graphene platelets are collectively referred to herein as nanographene platelets (NGPs) or graphene materials. NGPs include pristine graphene (essentially 99% carbon atoms), micrographene oxide (<5% by weight oxygen), graphene oxide (
Figure 108102642-A0305-02-0028-10
5% by weight of oxygen), microfluorinated graphene (<5% by weight of fluorine), fluorinated graphene (
Figure 108102642-A0305-02-0028-11
5% by weight of fluorine), other halogenated graphene, and chemically functionalized graphene.

已發現NGP具有一系列不尋常的物理、化學和機械特性。例如,發現石墨烯表現出所有現有材料的最高固有強度和最高導熱率。儘管未預想石墨烯的實際電子器件應用(例如,替換Si作為電晶體中的骨架)在未來5-10年內發生,但其作為奈米填料在複合材料中以及作為電極材料在儲能器件中的應用即將到來。大量可加工的石墨烯片的可用性對於成功開發石墨烯的複合材料、能量和其他應用係至關重要的。 NGPs have been found to possess a range of unusual physical, chemical and mechanical properties. For example, graphene was found to exhibit the highest intrinsic strength and highest thermal conductivity of all existing materials. Although practical electronic device applications of graphene (e.g., replacing Si as the backbone in transistors) are not envisioned to occur within the next 5–10 years, its applications as nanofillers in composite materials and as electrode materials in energy storage devices are imminent. The availability of large quantities of processable graphene sheets is critical to the successful development of graphene for composites, energy, and other applications.

最近,我們綜述了生產NGP和NGP奈米複合材料的製程[Bor Z.Jang和A Zhamu,“Processing of Nano Graphene Platelets(NGPs)and NGP Nanocomposites:A Review[奈米石墨烯片晶(NGP)和NGP奈米複合材料的加工:綜述]”,J.Materials Sci.[材料科學雜誌]43(2008)5092-5101]。 Recently, we reviewed the processes for producing NGP and NGP nanocomposites [Bor Z. Jang and A Zhamu, "Processing of Nano Graphene Platelets (NGPs) and NGP Nanocomposites: A Review," J. Materials Sci. 43 (2008) 5092-510 1].

非常有用的方法(圖1)需要用插層劑和氧化劑(例如,分別為濃硫酸和硝酸)處理天然石墨粉以獲得石墨插層化合物(GIC)或實際上是氧化石墨(GO)。[William S.Hummers,Jr.等人,Preparation of Graphitic Oxide[氧化石墨的製備],Journal of the American Chemical Society[美國化學會誌],1958,第1339頁。]在插層或氧化之前,石墨具有大約0.335nm的石墨烯平面間間距(L dd 002=0.335nm)。在插層和氧化處理的情況下,石墨烯間間距增加到典型大於0.6nm的值。這係石墨材料在該化學路線過程中經歷的第一膨脹階段。然後使用熱衝擊暴露法或基於溶液的超音波處理輔助的石墨烯層膨化(exfoliation)法使所得 GiC或GO經受進一步膨脹(常常被稱為膨化)。 A very useful method (Fig. 1) entails treating natural graphite powder with an intercalation agent and an oxidizing agent (e.g., concentrated sulfuric acid and nitric acid, respectively) to obtain graphite intercalation compounds (GICs) or indeed graphite oxide (GO). [William S.Hummers, Jr. et al., Preparation of Graphitic Oxide[Graphite Oxide Preparation], Journal of the American Chemical Society[American Chemical Society Journal], 1958, p. 1339. ] Prior to intercalation or oxidation, graphite has a graphene interplanar spacing of approximately 0.335 nm ( L dd 002 =0.335 nm). In the case of intercalation and oxidation treatments, the intergraphene spacing increases to values typically greater than 0.6 nm. This is the first expansion stage that graphite materials undergo during this chemical route. The resulting GiC or GO is then subjected to further expansion (often referred to as exfoliation ) using thermal shock exposure or solution-based ultrasonic treatment-assisted exfoliation of the graphene layer.

在熱衝擊暴露法中,使GiC或GO暴露於高溫(典型地800ºC-1,050℃)持續短時間段(典型地15至60秒)以使GIC或GO膨化或膨脹以形成膨化的或進一步膨脹的石墨,該石墨典型地呈由仍彼此互連的石墨薄片構成的“石墨蠕蟲”的形式。這種熱衝擊程序可以產生一些分離的石墨薄片或石墨烯片,但通常大部分石墨薄片保持互連。典型地,然後使用空氣碾磨、機械剪切或在水中的超音波處理使膨化的石墨或石墨蠕蟲經受薄片分離處理。因此,方法1基本上需要三個不同的程序:第一膨脹(氧化或插層)、進一步膨脹(或”膨化”)、以及分離。 In the thermal shock exposure method, GiC or GO is exposed to high temperature (typically 800°C-1,050°C) for a short period of time (typically 15 to 60 seconds) to puff or expand the GIC or GO to form puffed or further expanded graphite, typically in the form of "graphite worms" composed of graphite flakes that are still interconnected to each other. This thermal shock procedure can produce some detached graphite flakes or graphene sheets, but usually most of the graphite flakes remain interconnected. Typically, the extruded graphite or graphite worms are then subjected to flake separation using air milling, mechanical shearing, or ultrasonic treatment in water. Thus, Method 1 essentially requires three distinct procedures: first expansion (oxidation or intercalation), further expansion (or "expansion"), and separation.

在基於溶液的分離法中,將膨脹的或膨化的GO粉末分散在水或醇水溶液中,使其經受超音波處理。重要的是注意到,在這些製程中,在石墨的插層和氧化之後(即,在第一膨脹之後)以及典型地在所得GIC或GO的熱衝擊暴露之後(在第二膨脹之後)使用超音波處理。可替代地,使分散在水中的GO粉末經受離子交換或冗長的純化程序,其方式為使得存在於平面間空間中的離子之間的推斥力勝過石墨烯間的凡得瓦力,導致石墨烯層分離。 In the solution-based separation method, swollen or puffed GO powders were dispersed in water or alcoholic aqueous solutions and subjected to sonication. It is important to note that in these processes, ultrasonic treatment is used after the intercalation and oxidation of graphite (ie, after the first expansion) and typically after the thermal shock exposure of the resulting GIC or GO (after the second expansion). Alternatively, GO powders dispersed in water were subjected to ion exchange or lengthy purification procedures in such a way that the repulsive forces between ions present in the interplanar space outweighed the van der Waals forces between the graphenes, resulting in graphene layer separation.

在上述實例中,用於製備石墨烯片或NGP的起始材料係石墨材料,該材料可以選自由以下各項組成的組:天然石墨、人造石墨、氧化石墨、氟化石墨、石墨纖維、碳纖維、碳奈米纖維、碳奈米管、中間相碳微珠(MCMB)或碳質微球(CMS)、軟碳、硬碳、及其組合。 In the above example, the starting material for preparing graphene sheets or NGPs is a graphite material, which can be selected from the group consisting of natural graphite, artificial graphite, graphite oxide, fluorinated graphite, graphite fiber, carbon fiber, carbon nanofiber, carbon nanotube, mesocarbon microbeads (MCMB) or carbonaceous microspheres (CMS), soft carbon, hard carbon, and combinations thereof.

氧化石墨可以藉由在所需的溫度(典型地為0ºC至70℃)下將層狀石墨材料(例如,天然片狀石墨或合成石墨的粉末)分散或浸泡在氧化劑中持續足夠長的時間(典型地為4小時至5天)來製備,該氧化劑典型地係插層劑(例如濃硫酸)和氧化劑(例如硝酸、過氧化氫、高氯酸鈉、過錳酸鉀)的混合物。然後將所得的氧化石墨顆粒用水沖洗幾次,以將pH值典型地調節至2-5。然後使所得的分散在水中的氧化石墨顆粒懸浮液經受超音波處理,以產生分散在水中 的分離的氧化石墨烯片的分散體。可以添加少量還原劑(例如Na4B)以獲得還原的氧化石墨烯(RDO)片。 Graphite oxide can be prepared by dispersing or soaking a layered graphite material (e.g., powder of natural flake graphite or synthetic graphite) in an oxidizing agent, typically a mixture of an intercalating agent (e.g., concentrated sulfuric acid) and an oxidizing agent (e.g., nitric acid, hydrogen peroxide, sodium perchlorate, potassium permanganate) at a desired temperature (typically 0°C to 70°C) or soaking for a sufficient period of time (typically 4 hours to 5 days). The resulting graphite oxide particles are then washed several times with water to adjust the pH to typically 2-5. The resulting suspension of graphite oxide particles dispersed in water was then subjected to ultrasonic treatment to produce a dispersion of isolated graphene oxide sheets dispersed in water. A small amount of reducing agent such as Na4B can be added to obtain reduced graphene oxide (RDO) sheets.

為了減少產生先質溶液或懸浮液所需的時間,可以選擇將石墨氧化至一定程度持續一段較短的時間(例如,30分鐘至4小時),以獲得石墨插層化合物(GIC)。然後將GIC顆粒暴露於熱衝擊,較佳的是在600ºC至1,100℃的溫度範圍內典型地持續15秒至60秒,以獲得膨化的石墨或石墨蠕蟲,使其視需要(但較佳的是)經受機械剪切(例如使用機械剪切機或超音波波發生器)以破碎構成石墨蠕蟲的石墨薄片。然後將已經分離的石墨烯片(在機械剪切之後)或未破碎的石墨蠕蟲或單獨的石墨薄片再分散在水、酸或有機溶劑中並超音波處理以獲得石墨烯分散體。 To reduce the time required to generate the precursor solution or suspension, one may choose to oxidize the graphite to some extent for a shorter period of time (eg, 30 minutes to 4 hours) to obtain a graphite intercalation compound (GIC). The GIC particles are then exposed to thermal shock, preferably in the temperature range of 600°C to 1,100°C typically for 15 seconds to 60 seconds, to obtain expanded graphite or graphite worms, which are optionally (but preferably) subjected to mechanical shear (e.g. using a mechanical shear or ultrasonic wave generator) to break up the graphite flakes that make up the graphite worms. The graphene sheets that have been separated (after mechanical shearing) or unbroken graphite worms or individual graphite flakes are then redispersed in water, acid or organic solvents and ultrasonicated to obtain graphene dispersions.

原生石墨烯材料較佳的是藉由以下三種製程之一產生:(A)將石墨材料用非氧化劑插層,然後在非氧化環境中進行熱或化學膨化處理;(B)使石墨材料經受超臨界流體環境以進行石墨烯層間的滲透和膨化;或(C)將粉末形式的石墨材料分散到含有表面活性劑或分散劑的水溶液中以獲得懸浮液並使該懸浮液經受直接超音波處理以獲得石墨烯分散體。 The native graphene material is preferably produced by one of the following three processes: (A) intercalation of the graphite material with a non-oxidizing agent followed by thermal or chemical expansion in a non-oxidizing environment; (B) subjecting the graphite material to a supercritical fluid environment for infiltration and expansion between graphene layers; or (C) dispersing the graphite material in powder form into an aqueous solution containing a surfactant or dispersant to obtain a suspension and subjecting the suspension to direct ultrasonic treatment to obtain a graphene dispersion.

在程序(A)中,特別較佳的步驟包括(i)將石墨材料用選自鹼金屬(例如鉀、鈉、鋰或銫),鹼土金屬,或鹼金屬或鹼土金屬的合金、混合物、或者共晶的非氧化劑插層;以及(ii)化學膨化處理(例如,藉由將鉀插層石墨浸泡在乙醇溶液中)。 In procedure (A), a particularly preferred step comprises (i) intercalating the graphite material with a non-oxidizing agent selected from an alkali metal (e.g., potassium, sodium, lithium, or cesium), an alkaline earth metal, or an alloy, mixture, or eutectic of an alkali metal or an alkaline earth metal; and (ii) chemical expansion treatment (e.g., by soaking the potassium intercalated graphite in an ethanol solution).

在程序(B)中,較佳的步驟包括將石墨材料浸泡到超臨界流體諸如二氧化碳(例如,在溫度T>31℃和壓力P>7.4MPa下)和水(例如,在T>374℃和P>22.1MPa下)中持續足以使石墨烯層間滲透(暫時插層)的時間段。然後在該步驟之後進行突然的減壓以膨化各個石墨烯層。其他合適的超臨界流體包括甲烷、乙烷、乙烯、過氧化氫、臭氧、水氧化物(含有高濃度溶解氧的水)、 或其混合物。 In procedure (B), a preferred step involves immersing the graphite material in a supercritical fluid such as carbon dioxide (e.g., at a temperature T>31° C. and a pressure P>7.4 MPa) and water (e.g., at a temperature T>374° C. and a pressure P>22.1 MPa) for a period of time sufficient to allow graphene interlayer infiltration (temporary intercalation). This step is then followed by a sudden decompression to expand the individual graphene layers. Other suitable supercritical fluids include methane, ethane, ethylene, hydrogen peroxide, ozone, water oxides (water with high concentrations of dissolved oxygen), or a mixture thereof.

在程序(C)中,較佳的步驟包括(a)將石墨材料的顆粒分散在其中含有表面活性劑或分散劑的液體介質中,以得到懸浮液或漿液;以及(b)將該懸浮液或漿液暴露於一定能量水平的超音波波(通常稱為超音波處理的過程)持續足夠長的時間,以產生分散在液體介質(例如水、醇或有機溶劑)中的分離的石墨烯片(非氧化的NGP)的石墨烯分散體。 In procedure (C), the preferred steps include (a) dispersing particles of graphitic material in a liquid medium containing a surfactant or dispersant therein to obtain a suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves of a certain energy level (a process commonly referred to as sonication) for a time sufficient to produce a graphene dispersion of isolated graphene sheets (non-oxidized NGP) dispersed in a liquid medium such as water, alcohol or an organic solvent.

可以產生氧含量不大於25重量%、較佳的是低於20重量%、進一步較佳的是低於5%的NGP。典型地,氧含量係在5重量%與20重量%之間。可以使用化學元素分析和/或X射線光電子能譜法(XPS)測定氧含量。 NGPs can be produced with an oxygen content of not more than 25% by weight, preferably less than 20% by weight, more preferably less than 5%. Typically, the oxygen content is between 5% and 20% by weight. Oxygen content can be determined using chemical elemental analysis and/or X-ray photoelectron spectroscopy (XPS).

用於生產GIC、氧化石墨和隨後製成的膨化石墨、柔性石墨片和石墨烯片晶的先前技術製程中使用的層狀石墨材料在大多數情況下是天然石墨。然而,本揭露不限於天然石墨。起始材料可選自由以下各項組成的組:天然石墨、人造石墨(例如,高定向熱解石墨,HOPG)、氧化石墨、氟化石墨、石墨纖維、碳纖維、碳奈米纖維、碳奈米管、中間相碳微珠(MCMB)或碳質微球(CMS)、軟碳、硬碳、及其組合。所有這些材料都含有石墨微晶,這些石墨微晶由經由凡得瓦力堆疊或結合在一起的石墨烯平面層構成。在天然石墨中,多個石墨烯平面疊層(其中石墨烯平面取向隨疊層的不同而變化)聚集在一起。在碳纖維中,石墨烯平面通常沿較佳的方向取向。一般而言,軟碳係由液態芳族分子的碳化而獲得的碳質材料。它們的芳環或石墨烯結構大體上彼此平行,從而使得能夠進一步石墨化。硬碳係由芳族固體材料(例如聚合物,諸如酚醛樹脂和聚糠醇)獲得的碳質材料。它們的石墨烯結構係相對隨機取向的,並且因此即使在高於2,500℃的溫度下也難以實現進一步的石墨化。但是,石墨烯片確實存在於這些碳中。 The layered graphite material used in the prior art processes for the production of GIC, graphite oxide and subsequently fabricated exfoliated graphite, flexible graphite flakes and graphene platelets is in most cases natural graphite. However, the present disclosure is not limited to natural graphite. The starting material may be selected from the group consisting of natural graphite, artificial graphite (e.g., highly oriented pyrolytic graphite, HOPG), graphite oxide, graphite fluoride, graphite fibers, carbon fibers, carbon nanofibers, carbon nanotubes, mesocarbon microbeads (MCMB) or carbonaceous microspheres (CMS), soft carbon, hard carbon, and combinations thereof. All of these materials contain graphitic crystallites consisting of planar layers of graphene stacked or bonded together via van der Waals forces. In natural graphite, multiple planar stacks of graphene (where the orientation of the graphene planes vary from stack to stack) are clustered together. In carbon fibers, graphene planes are usually oriented in a preferred direction. In general, soft carbons are carbonaceous materials obtained by carbonization of liquid aromatic molecules. Their aromatic rings or graphene structures are substantially parallel to each other, enabling further graphitization. Hard carbons are carbonaceous materials obtained from aromatic solid materials such as polymers such as phenolic resins and polyfurfuryl alcohol. Their graphene structures are relatively randomly oriented, and thus further graphitization is difficult to achieve even at temperatures above 2,500°C. However, graphene sheets do exist in these carbons.

本文使用氟化石墨烯或石墨烯氟化物作為鹵化石墨烯材料組的實 例。存在兩種不同的方法,已經遵循這些方法來生產氟化石墨烯:(1)預合成的石墨烯的氟化:這種方法需要用氟化劑如XeF2或F基電漿處理藉由機械膨化或藉由CVD生長製備的石墨烯;(2)多層氟化石墨的膨化:氟化石墨的機械膨化和液相膨化兩者都可以容易地實現[F.Karlicky等人“Halagenated Graphenes:Rapidly Growing Family of Graphene Derivatives”[鹵代石墨烯:石墨烯衍生物的快速增長家族]ACS Nano[ACS奈米],2013,7(8),第6434-6464頁]。 Fluorinated graphene or graphene fluoride is used herein as an example of the group of halogenated graphene materials. There are two different approaches, which have been followed to produce fluorinated graphene: (1) fluorination of pre-synthesized graphene: this method requires treatment of graphene prepared by mechanical expansion or by CVD growth with a fluorinating agent such as XeF2 or F-based plasma; (2) expansion of multilayer fluorinated graphite: both mechanical expansion and liquid phase expansion of fluorinated graphite can be easily achieved [F. Karlicky et al. " Halagenated Graphenes: Rapidly Growing Families ly of Graphene Derivatives "[Halographene: a rapidly growing family of graphene derivatives] ACS Nano [ACS Nano], 2013, 7(8), pp. 6434-6464].

F2與石墨在高溫下的相互作用導致共價氟化石墨(CF) n 或(C2F) n ,而在低溫下形成石墨插層化合物(GIC)C x F(2

Figure 108102642-A0305-02-0032-12
x
Figure 108102642-A0305-02-0032-13
24)。在(CF) n 中碳原子係sp3雜化的並且因此氟碳化合物層係波紋狀的,由反式連接的環己烷椅組成。在(C2F) n 中,只有一半的C原子被氟化,並且每對相鄰的碳片藉由共價C-C鍵連接在一起。對氟化反應的系統研究表明,所得到的F/C比率在很大程度上取決於氟化溫度、氟化氣體中氟的分壓和石墨先質的物理特性,包括石墨化度、粒度和比表面積。除了氟(F2)之外,可以使用其他氟化劑,儘管大多數現有文獻涉及用F2氣體進行氟化(有時在氟化物的存在下)。 The interaction of F 2 with graphite at high temperature leads to covalent fluorinated graphite (CF) n or (C 2 F) n , while at low temperature a graphite intercalation compound (GIC) C x F(2
Figure 108102642-A0305-02-0032-12
x
Figure 108102642-A0305-02-0032-13
twenty four). The carbon atoms in (CF) n are sp3 hybridized and thus the fluorocarbon layer is corrugated, consisting of trans-linked cyclohexane chairs. In (C 2 F) n , only half of the C atoms are fluorinated, and each pair of adjacent carbon sheets is linked together by covalent CC bonds. Systematic studies of fluorination reactions have shown that the resulting F/C ratios are highly dependent on the fluorination temperature, the partial pressure of fluorine in the fluorination gas, and the physical properties of the graphitic precursors, including degree of graphitization, particle size, and specific surface area. In addition to fluorine ( F2 ), other fluorinating agents can be used, although most of the existing literature refers to fluorination with F2 gas (sometimes in the presence of fluoride).

為了將分層的先質材料膨化成獨自的單個石墨烯層或少層的狀態,必須克服相鄰層之間的吸引力並進一步穩定這些層。這可以藉由官能基共價修飾石墨烯表面或藉由使用特定溶劑、表面活性劑、聚合物或供體-受體芳香族分子的非共價修飾來實現。液相膨化的過程包括在液體介質中超音波處理氟化石墨以產生分散在液體介質中的氟化石墨烯片。所得分散體可直接用於聚合物部件表面的石墨烯沈積。 In order to puff layered precursor materials into individual graphene-layer or few-layer states, it is necessary to overcome the attractive forces between adjacent layers and further stabilize these layers. This can be achieved by covalently modifying the graphene surface with functional groups or by non-covalent modification using specific solvents, surfactants, polymers, or donor-acceptor aromatic molecules. The process of liquid phase expansion involves ultrasonic treatment of fluorinated graphite in a liquid medium to produce fluorinated graphene sheets dispersed in the liquid medium. The resulting dispersion can be used directly for graphene deposition on the surface of polymer parts.

石墨烯的氮化可以藉由在高溫(200ºC-400ºC)下將石墨烯材料(例如氧化石墨烯)暴露於氨來進行。氮化石墨烯還可以藉由水熱法在較低溫度下形成;例如藉由將GO和氨密封在高壓釜中並且然後升溫至150ºC-250ºC。合成氮摻雜的石墨烯的其他方法包括在石墨烯上進行氮氣電漿處理、在氨存在下石墨 電極之間的電弧放電、在CVD條件下氧化石墨烯的氨解以及在不同溫度下氧化石墨烯和尿素的水熱處理。 Nitriding of graphene can be performed by exposing graphene material (eg graphene oxide) to ammonia at high temperature (200ºC-400ºC). Graphene nitride can also be formed at lower temperatures by a hydrothermal method; for example by sealing GO and ammonia in an autoclave and then raising the temperature to 150ºC-250ºC. Other methods of synthesizing nitrogen-doped graphene include nitrogen plasma treatment on graphene, graphene in the presence of ammonia, Arc discharge between electrodes, ammonolysis of graphene oxide under CVD conditions, and hydrothermal treatment of graphene oxide and urea at different temperatures.

為了限定本申請的申請專利範圍的目的,NGP或石墨烯材料包括單層和多層(典型地小於10層,少層石墨烯)原生石墨烯、氧化石墨烯、還原的氧化石墨烯(RGO)、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、化學官能化石墨烯、摻雜石墨烯(例如被B或N摻雜)的離散的片/片晶。原生石墨烯具有基本上0%的氧。RGO典型地具有0.001重量%至5重量%的氧含量。氧化石墨烯(包括RGO)可以具有0.001重量%至50重量%的氧。除原生石墨烯之外,所有石墨烯材料都具有0.001重量%至50重量%的非碳元素(例如O、H、N、B、F、Cl、Br、I等)。這些材料在本文被稱為非原生石墨烯材料。本揭露的石墨烯可含有原生或非原生石墨烯,並且所揭露的方法允許這種靈活性。這些石墨烯片都可以被化學官能化。 For purposes of defining the scope of the present application, NGP or graphene materials include single and multilayer (typically less than 10 layers, few-layer graphene) discrete platelets/platelets of native graphene, graphene oxide, reduced graphene oxide (RGO), fluorinated graphene, chlorinated graphene, brominated graphene, iodinated graphene, hydrogenated graphene, nitrided graphene, chemically functionalized graphene, doped graphene (e.g., doped with B or N). Native graphene has essentially 0% oxygen. RGO typically has an oxygen content of 0.001% to 5% by weight. Graphene oxide (including RGO) may have 0.001 wt% to 50 wt% oxygen. Except native graphene, all graphene materials have 0.001 wt% to 50 wt% of non-carbon elements (eg, O, H, N, B, F, Cl, Br, I, etc.). These materials are referred to herein as non-native graphene materials. The graphenes of the present disclosure can contain native or non-native graphene, and the disclosed methods allow for this flexibility. These graphene sheets can all be chemically functionalized.

石墨烯片具有相當大比例的對應於石墨晶體的邊緣平面的邊緣。邊緣平面上的碳原子係反應性的並且必須含有某種雜原子或基團以滿足碳化合價。此外,存在許多類型的官能基(例如羥基和羧基),其在藉由化學或電化學方法生產的石墨烯片的邊緣或表面上天然存在。使用本領域公知的方法,可以容易地將許多化學官能基(例如-NH2等)賦予石墨烯邊緣和/或表面。 Graphene sheets have a substantial proportion of edges corresponding to the edge planes of graphite crystals. The carbon atoms on the edge planes are reactive and must contain some kind of heteroatom or group to satisfy the carbon valence. In addition, there are many types of functional groups, such as hydroxyl and carboxyl groups, which naturally occur on the edges or surfaces of graphene sheets produced by chemical or electrochemical methods. Many chemical functional groups (eg -NH2 , etc.) can be readily imparted to graphene edges and/or surfaces using methods well known in the art.

在一個較佳的實施方式中,所得的官能化石墨烯片(NGP)可廣義地具有下式(e):[NGP]--Rm,其中m係不同官能基類型的數目(典型地在1與5之間),R選自SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2-)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根。 In a preferred embodiment, the resulting functionalized graphene sheet (NGP) can broadly have the following formula (e): [NGP]--Rm, where m is the number of different functional group types (typically between 1 and 5), and R is selected from SO3H, COOH, NH2, OH, R'CHOH, CHO, CN, COCl, Halide, COSH, SH, COOR', SR', SiR'3、Si(--OR'--)the yR'3-y, Si(--O--SiR'2-)OR', R", Li, AlR'2, Hg--X, TlZ2and Mg—X; wherein y is an integer equal to or less than 3, R' is hydrogen, alkyl, aryl, cycloalkyl or aralkyl, cycloaryl or poly(alkyl ether), R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl, fluoroaralkyl or cycloaryl, X is halide, and Z is carboxylate or trifluoroacetate.

為了使NGP成為環氧樹脂中的有效增強填料,官能基-NH2係特別感興趣的。例如,對於環氧樹脂常用的固化劑係二伸乙基三胺(DETA),它具有三個-NH2基團。如果DETA包含在撞擊室中,則三個-NH2基團中的一個可以鍵合到石墨烯片的邊緣或表面上,並且剩餘的兩個未反應的-NH2基團將可用於隨後與環氧樹脂反應。此種安排提供了複合材料的NGP(石墨烯片)與基質樹脂之間的良好介面鍵合。 In order for NGPs to be effective reinforcing fillers in epoxy resins, the functional group -NH2 is of particular interest. For example, a common curing agent for epoxy resins is diethylenetriamine (DETA), which has three -NH2 groups. If DETA is included in the impact chamber, one of the three -NH2 groups can bond to the edge or surface of the graphene sheet, and the remaining two unreacted -NH2 groups will be available for subsequent reaction with epoxy resin. This arrangement provides good interfacial bonding between the NGPs (graphene sheets) of the composite and the matrix resin.

其他有用的化學官能基或反應分子可選自下組,該組由以下各項組成:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、脂環族胺、芳香族胺、酸酐、酮亞胺、二伸乙基三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、六亞甲基四胺、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、以及其組合。這些官能基係多官能的,具有與至少兩種化學物種從至少兩個端部反應的能力。最重要的是,它們能夠使用其端部之一鍵合到石墨烯的邊緣或表面,並且在隨後的環氧固化階段能夠在一個或兩個其他的端部與環氧化物或環氧樹脂反應。 Other useful chemical functional groups or reactive molecules may be selected from the group consisting of amidoamines, polyamides, aliphatic amines, modified aliphatic amines, cycloaliphatic amines, aromatic amines, anhydrides, ketimines, diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), hexamethylenetetramine, polyethylenepolyamines, polyamine epoxy adducts, phenolic hardeners, non-brominated curing agents , non-amine curing agents, and combinations thereof. These functional groups are polyfunctional, having the ability to react with at least two chemical species from at least two ends. Most importantly, they can use one of their ends to bond to the edge or surface of the graphene, and one or both of the other ends can be reacted with epoxy or epoxy resin during the subsequent epoxy curing stage.

以上描述的[NGP]--Rm可以進一步官能化。所得石墨烯片包括具有下式的組成物:[NGP]--Am,其中A選自OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原、或酶底物、酶抑制劑或酶底物的過渡態類似物的適當官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、(--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。CNT可以類似地官能化。 The [NGP]-- Rm described above can be further functionalized.所得石墨烯片包括具有下式的組成物:[NGP]--A m ,其中A選自OY、NHY、O=C--OY、P=C--NR'Y、O=C--SY、O=C--Y、--CR'1--OY、N'Y或C'Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原、或酶底物、酶抑制劑或酶底物的過渡態類似物的適當官能基或者選自R'--OH、R'--NR' 2 、R'SH、R'CHO、R'CN、R'X、R'N + (R') 3 X - 、R'SiR' 3 、R'Si(--OR'--) y R' 3-y 、R'Si(--O--SiR' 2 --)OR'、R'--R”、R'--N--CO、(C 2 H 4 O--) w H、(--C 3 H 6 O--) w H、(--C 2 H 4 O) w --R'、(C 3 H 6 O) w --R'、R',並且w係大於1且小於200的整數。CNT可以類似地官能化。

NGP和導電添加劑(例如碳奈米纖維)也可以被官能化以產生具有下式的組成物:[NGP]--[R’--A]m,其中m、R’和A如上所定義。本揭露的組成物還 包括其上吸附某些環狀化合物的NGP。這些包括具有下式的物質的組成物:[NGP]--[X--R a ]m,其中a係零或小於10的數,X係多核芳族部分、多雜核芳族部分或金屬多雜核芳族部分,並且R係如上所定義的。較佳的環狀化合物係平面的。用於吸附的更較佳的環狀化合物係卟啉和酞菁。吸附的環狀化合物可以被官能化。此類組成物包括具有式[NGP]--[X--A a ]m的化合物,其中m、a、X和A係如上所定義的。 NGPs and conductive additives (such as carbon nanofibers) can also be functionalized to produce compositions with the formula: [NGP]—[R′—A] m , where m, R′ and A are as defined above. The compositions of the present disclosure also include NGPs on which certain cyclic compounds are adsorbed. These include compositions of matter having the following formula: [NGP]—[X—R a ] m , where a is zero or a number less than 10, X is a polynuclear aromatic moiety, a polyheteronuclear aromatic moiety or a metal polyheteronuclear aromatic moiety, and R is as defined above. Preferred cyclic compounds are planar. More preferred cyclic compounds for adsorption are porphyrins and phthalocyanines. Adsorbed cyclic compounds can be functionalized. Such compositions include compounds having the formula [NGP]--[X--A a ] m , wherein m, a , X and A are as defined above.

本揭露的官能化NGP可以藉由磺化、親電加成到去氧石墨烯片晶表面、或金屬化來直接製備。石墨烯片晶可以在與官能化劑接觸之前進行加工。此種加工可以包括將石墨烯片晶分散在溶劑中。在一些實例中,片晶然後可以在接觸之前進行過濾和乾燥。一種特別有用的官能基類型係羧酸部分,如果NGP係從前面討論的酸插層路線製備的,則這些羧酸部分自然地存在於NGP的表面上。如果需要羧酸官能化,則可以使NGP經受氯酸鹽、硝酸或過硫酸銨氧化。 The functionalized NGPs of the present disclosure can be directly prepared by sulfonation, electrophilic addition to the surface of deoxygraphene platelets, or metallization. Graphene platelets can be processed prior to exposure to functionalizing agents. Such processing may include dispersing the graphene platelets in a solvent. In some examples, the platelets can then be filtered and dried prior to contacting. One particularly useful type of functional group is the carboxylic acid moiety, which occurs naturally on the surface of the NGP if the NGP is prepared from the acid intercalation route discussed above. If carboxylic acid functionalization is desired, NGPs can be subjected to chlorate, nitric acid, or ammonium persulfate oxidation.

羧酸官能化的石墨烯片或片晶係特別有用的,因為它們可以充當用於製備其他類型的官能化NGP的起點。例如,醇或醯胺可以容易地與該酸連接以得到穩定的酯或醯胺。如果醇或胺係二-或多-官能分子的一部分,則藉由O-或NH-的鍵聯留下其他官能基作為側基。這些反應可以使用如本領域已知的開發用於用醇酯化或用胺胺化羧酸的任何方法來進行。這些方法的實例可以見於G.W.Anderson等人,J.Amer.Chem.Soc.[美國化學會誌]86,1839(1964),該文獻藉由引用以其全文結合在此。胺基基團可以藉由以下方式直接引入到石墨片晶上:用硝酸和硫酸處理片晶以獲得硝化的片晶,然後用還原劑諸如連二亞硫酸鈉化學還原該硝化形式以獲得胺基官能化的片晶。 Carboxylic acid-functionalized graphene sheets or platelet systems are particularly useful, as they can serve as starting points for the preparation of other types of functionalized NGPs. For example, alcohols or amides can be readily attached to the acid to give stable esters or amides. If the alcohol or amine is part of a di- or poly-functional molecule, the linkage via O- or NH- leaves other functional groups as side groups. These reactions can be performed using any method developed for esterification with alcohols or amination of carboxylic acids with amines as known in the art. Examples of these methods can be found in G. W. Anderson et al., J. Amer. Chem. Soc. 86, 1839 (1964), which is hereby incorporated by reference in its entirety. Amino groups can be introduced directly onto graphite platelets by treating the platelets with nitric and sulfuric acid to obtain nitrated platelets, followed by chemical reduction of the nitrated form with a reducing agent such as sodium dithionite to obtain amine-functionalized platelets.

所產生的石墨烯分散體可以進一步添加有酸、金屬鹽、氧化劑、或其組合,以製備用於聚合物部件的石墨烯塗覆的更具反應性的分散體。還可以添加視需要的黏合劑樹脂。在這些情形下,表面清潔、蝕刻和石墨烯塗覆可以 在一個步驟中完成。可以簡單地將聚合物部件浸漬到石墨烯溶液中數秒至數分鐘(較佳的是5秒至15分鐘),並且然後將聚合物部件從石墨烯-液體分散體中退出。在除去液體(例如經由自然或強制蒸發)後,石墨烯片自然地塗覆並結合到聚合物部件表面上。 The resulting graphene dispersion can be further added with acid, metal salt, oxidizing agent, or a combination thereof to prepare a more reactive dispersion for graphene coating of polymer parts. A binder resin may also be added as needed. In these cases, surface cleaning, etching, and graphene coating can Done in one step. The polymer part can simply be dipped into the graphene solution for a few seconds to minutes (preferably 5 seconds to 15 minutes), and then the polymer part is withdrawn from the graphene-liquid dispersion. After removal of the liquid (eg, via natural or forced evaporation), the graphene sheets are naturally coated and bonded to the surface of the polymer part.

在某些實施方式中,官能化石墨烯片和/或導電填料可以用催化金屬的奈米級顆粒預塗覆或修飾,該催化金屬可以催化隨後的化學金屬化過程。該催化金屬較佳的是呈具有從0.5nm至100nm的直徑或厚度的離散奈米級顆粒或塗層的形式,並且較佳的是選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。可替代地,該催化金屬可以最初呈先質形式(例如作為金屬鹽),該先質隨後轉化為沈積在石墨烯表面上的奈米級金屬。 In certain embodiments, functionalized graphene sheets and/or conductive fillers can be pre-coated or decorated with nanoparticles of catalytic metals that can catalyze the subsequent chemical metallization process. The catalytic metal is preferably in the form of discrete nanoscale particles or coatings having a diameter or thickness of from 0.5 nm to 100 nm, and is preferably selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof. Alternatively, the catalytic metal may initially be in the form of a precursor (eg, as a metal salt) that is subsequently converted to a nanoscale metal deposited on the graphene surface.

因此,本揭露還提供了用於聚合物表面的金屬化的石墨烯分散體(或石墨烯/導電填料分散體)。該石墨烯分散體包含分散在液體介質中的多個石墨烯片和導電填料,其中該多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中該分散體進一步包含選自以下各項的一種或多種物種:(i)溶解或分散在該液體介質中的黏合劑樹脂,其中黏合劑與石墨烯重量比為從1/5000至1/10;(ii)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(iii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合;或(iv)其組合。 Accordingly, the present disclosure also provides metallized graphene dispersions (or graphene/conductive filler dispersions) for use on polymer surfaces. The graphene dispersion comprises a plurality of graphene sheets and conductive fillers dispersed in a liquid medium, wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from native graphene materials having substantially 0% non-carbon elements or non-native graphene materials having 0.001 wt. Graphene, chemically functionalized graphene, or a combination thereof, and wherein the dispersion further comprises one or more species selected from: (i) a binder resin dissolved or dispersed in the liquid medium, wherein the binder to graphene weight ratio is from 1/5000 to 1/10; (ii) an etchant selected from acids, oxidants, metal salts, or combinations thereof; (iii) nanoscale particles or coatings of catalytic metals selected from cobalt, nickel, having a diameter or thickness of from 0.5 nm to 100 nm , copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof; or (iv) combinations thereof.

一旦石墨烯片結合在聚合物部件的表面上,所揭露方法中的步驟(c)就可以包括將石墨烯/導電填料結合的聚合物部件浸泡在金屬化浴中以用於金屬 的無電鍍(化學金屬化)。非常出人意料的是,石墨烯表面本身(即使沒有過渡金屬或貴金屬)就能夠促進一些金屬鹽轉化為沈積在石墨烯表面上的金屬。這將消除將昂貴的貴金屬(例如鈀或鉑)作為核用於金屬晶體的後續化學生長的需要,如先前技術的製程所需要的。 Once the graphene sheets are bonded to the surface of the polymer part, step (c) of the disclosed method may include immersing the graphene/conductive filler bonded polymer part in a metallization bath for metallization. Electroless plating (chemical metallization). Quite unexpectedly, the graphene surface itself (even in the absence of transition metals or noble metals) is able to facilitate the conversion of some metal salts to metals deposited on the graphene surface. This would eliminate the need to use expensive noble metals such as palladium or platinum as nuclei for subsequent chemical growth of metal crystals, as required by prior art processes.

沈積的石墨烯片的高導電性和高比表面積(能夠覆蓋聚合物部件的寬表面積)使得能夠在石墨烯塗覆的聚合物部件表面上電鍍一個或多個金屬層。還發現沈積在聚合物部件表面上的石墨烯片顯著增強沈積金屬層的強度、硬度、耐久性和耐刮擦性。 The high conductivity and high specific surface area of the deposited graphene sheets (capable of covering a wide surface area of a polymer part) enables the electroplating of one or more metal layers on the surface of a graphene-coated polymer part. It was also found that the graphene sheets deposited on the surface of the polymer part significantly enhanced the strength, hardness, durability and scratch resistance of the deposited metal layer.

可替代地,可以選擇使用物理氣相沈積、濺射、電漿沈積等來完成最終的金屬化程序。 Alternatively, physical vapor deposition, sputtering, plasma deposition, etc. may be chosen for the final metallization procedure.

因此,所揭露的方法產生表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件,塗覆在該聚合物部件表面上的多個石墨烯片和導電填料的第一層,以及沈積在該第一層上的被鍍金屬的第二層,其中該多個石墨烯片(官能化或非官能化的)包括單層石墨烯片或少層石墨烯片(2-10個石墨烯平面),其中該多個石墨烯片在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面。 Thus, the disclosed method produces a surface metallized polymeric article comprising: a polymeric part having a surface, a first layer of a plurality of graphene sheets and conductive fillers coated on the surface of the polymeric part, and a metallized second layer deposited on the first layer, wherein the plurality of graphene sheets (functionalized or non-functionalized) includes single-layer graphene sheets or few-layer graphene sheets (2-10 graphene planes), wherein the plurality of graphene sheets are bonded to the surface with or without a binder resin. Polymer part surfaces.

該第一層典型地具有從0.34nm至30μm(較佳的是從1nm至1μm,並且進一步較佳的是從1nm至100nm)的厚度。該第二層較佳的是具有從0.5nm至1.0mm,並且更較佳的是從1nm至10μm的厚度。該摻雜石墨烯較佳的是包含N-摻雜的、硼摻雜的、磷摻雜的石墨烯、或其組合。石墨烯片包含原生石墨烯,並且第一層包含將石墨烯片化學結合到聚合物部件表面的黏合劑樹脂。在某些替代性實施方式中,石墨烯片包含具有從0.01重量%至20重量%的非碳元素含量的非原生石墨烯材料,並且這些非碳元素包括選自氧、氟、氯、溴、碘、氮、氫、或硼的元素。 The first layer typically has a thickness of from 0.34 nm to 30 μm (preferably from 1 nm to 1 μm, and further preferably from 1 nm to 100 nm). The second layer preferably has a thickness of from 0.5 nm to 1.0 mm, and more preferably from 1 nm to 10 μm. The doped graphene preferably comprises N-doped, boron-doped, phosphorus-doped graphene, or a combination thereof. The graphene sheets contain native graphene, and the first layer contains a binder resin that chemically bonds the graphene sheets to the surface of the polymer part. In certain alternative embodiments, the graphene sheet comprises a non-native graphene material having a content of non-carbon elements from 0.01% to 20% by weight, and the non-carbon elements include elements selected from the group consisting of oxygen, fluorine, chlorine, bromine, iodine, nitrogen, hydrogen, or boron.

作為一些實例,表面金屬化的聚合物製品可選自水龍頭、淋浴頭、管子、管道、連接器、適配器、水槽(例如廚房或浴室水槽)、浴缸蓋、壺嘴、水槽蓋、浴室附件、或廚房附件。 As some examples, the surface metallized polymeric article may be selected from faucets, shower heads, pipes, pipes, connectors, adapters, sinks (such as kitchen or bathroom sinks), bathtub covers, spouts, sink covers, bathroom accessories, or kitchen accessories.

聚合物部件可包含塑膠、橡膠、熱塑性彈性體、聚合物基質複合材料、橡膠基質複合材料、或其組合。在某些實施方式中,聚合物部件包含熱塑性塑膠、熱固性樹脂、互穿網路、橡膠、熱塑性彈性體、天然聚合物、或其組合。在某些較佳的實施方式中,聚合物部件包含選自以下各項的塑膠:丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丙烯腈共聚物(SAN)、聚碳酸酯、聚醯胺或尼龍、聚苯乙烯、聚丙烯酸酯、聚乙烯、聚丙烯、聚縮醛、聚酯、聚醚、聚醚碸、聚醚醚酮(PEEK)、聚碸、聚苯醚(PPO)、聚氯乙烯(PVC)、聚醯亞胺、聚醯胺醯亞胺、聚氨酯、聚脲、或其組合。 The polymer component may comprise plastic, rubber, thermoplastic elastomers, polymer matrix composites, rubber matrix composites, or combinations thereof. In certain embodiments, the polymeric component comprises thermoplastics, thermosetting resins, interpenetrating networks, rubber, thermoplastic elastomers, natural polymers, or combinations thereof. In certain preferred embodiments, the polymeric part comprises a plastic selected from the group consisting of acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), polycarbonate, polyamide or nylon, polystyrene, polyacrylate, polyethylene, polypropylene, polyacetal, polyester, polyether, polyetheretherketone (PEEK), polyphenylene oxide (PPO), polyvinyl chloride (PVC), polyimide, Polyamideimide, polyurethane, polyurea, or combinations thereof.

在表面金屬化的聚合物製品中,被鍍金屬較佳的是選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、其合金、或其組合。 In surface metallized polymer articles, the metal to be plated is preferably selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, alloys thereof, or combinations thereof.

石墨烯片可以進一步用催化金屬的奈米級顆粒或塗層(具有從0.5nm至100nm的直徑或厚度)進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合,並且其中該催化金屬在化學組成上與被鍍金屬不同。催化金屬顆粒或塗層被至少一層被鍍金屬覆蓋。 The graphene sheet may be further decorated with nanoscale particles or coatings (having a diameter or thickness of from 0.5 nm to 100 nm) of a catalytic metal selected from the group consisting of cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, and wherein the catalytic metal is chemically different from the metal being plated. The catalytic metal particles or coating are covered by at least one layer of metallization.

在某些實施方式中,聚合物部件表面在沈積有石墨烯片的第一層之前僅含具有的直徑或深度為<0.1μm的小開口或孔。 In certain embodiments, the surface of the polymeric part contains only small openings or pores having a diameter or depth of <0.1 μm prior to deposition of the first layer of graphene sheets.

在某些實施方式中,將多個石墨烯片用黏合劑樹脂結合到聚合物部件表面,具有從1/5000至1/10、較佳的是從1/1000至1/100的黏合劑與石墨烯重量比。 In certain embodiments, the plurality of graphene sheets are bonded to the surface of the polymer part with a binder resin, having a binder to graphene weight ratio of from 1/5000 to 1/10, preferably from 1/1000 to 1/100.

以下實例用於說明關於實踐本揭露的最佳模式的一些具體細節並且不應該被解釋為限制本發明的範圍。 The following examples are used to illustrate some specific details regarding the best mode of practicing the disclosure and should not be construed as limiting the scope of the invention.

實例1:來自MCMB的硫酸插層和膨化的氧化石墨烯 Example 1 : Sulfuric acid intercalation and expanded graphene oxide from MCMB

MCMB(中間相碳微珠)由中國鋼鐵化工股份有限公司(China Steel Chemical Co.)供應。這種材料具有約2.24g/cm3的密度和約16μm的中值粒徑。用酸溶液(4:1:0.05比率的硫酸、硝酸和過錳酸鉀)對MCMB(10克)進行48小時的插層處理。在反應完成後,將混合物倒入去離子水中並過濾。在HCl的5%溶液中反復地洗滌經插層的MCMB以除去大部分硫酸根離子。然後用去離子水反復地洗滌樣品直至濾液的pH為中性。將漿液乾燥並儲存在60℃下的真空烘箱中保持24小時。將乾燥的粉末樣品置於石英管中並插入預設在所需溫度800℃-1,100℃下的水平管式爐中30秒至90秒,以獲得石墨烯片。將一定量的石墨烯片與水混合並以60W功率超音波處理10分鐘以獲得石墨烯分散體。 MCMB (Mesocarbon Microbeads) were supplied by China Steel Chemical Co. This material has a density of about 2.24 g/cm 3 and a median particle size of about 16 μm. MCMB (10 g) was intercalated with an acid solution (4:1:0.05 ratio of sulfuric acid, nitric acid, and potassium permanganate) for 48 h. After the reaction was complete, the mixture was poured into deionized water and filtered. The intercalated MCMB was repeatedly washed in 5% HCl to remove most of the sulfate ions. The samples were then washed repeatedly with deionized water until the pH of the filtrate was neutral. The slurry was dried and stored in a vacuum oven at 60°C for 24 hours. The dried powder sample was placed in a quartz tube and inserted into a horizontal tube furnace preset at a desired temperature of 800°C-1,100°C for 30 seconds to 90 seconds to obtain graphene sheets. A certain amount of graphene flakes was mixed with water and treated with 60W power ultrasonic wave for 10 minutes to obtain graphene dispersion.

將少量取樣、乾燥並用TEM研究,表明大部分NGP在1層與10層之間。所產生的石墨烯粉末(GO或RGO)的氧含量為從0.1%至約25%,取決於膨化溫度和時間。 A small amount was sampled, dried and studied with TEM, showing that the majority of NGPs were between 1 and 10 layers. The oxygen content of the resulting graphene powder (GO or RGO) is from 0.1% to about 25%, depending on the puffing temperature and time.

幾種石墨烯分散體分別添加有各種酸、金屬鹽和氧化劑物種用於聚合物的金屬化。 Several graphene dispersions were separately added with various acids, metal salts and oxidizing species for metallization of the polymers.

實例2:天然石墨的氧化和膨化 Example 2 : Oxidation and expansion of natural graphite

根據Hummers的方法[美國專利案號2,798,878,1957年7月9日],藉由用處於4:1:0.05比率的硫酸、硝酸鈉和過錳酸鉀在30℃氧化石墨薄片持續48小時來製備氧化石墨。在反應完成後,將混合物倒入去離子水中並過濾。然後將樣品用5%的HCl溶液洗滌以去除大部分硫酸根離子和殘留鹽,並且然後用去離子水反復沖洗直到濾液的pH係大約4。意圖係將所有硫酸和硝酸殘留物從石墨間隙去除。將漿液乾燥並儲存在60℃下的真空烘箱中保持24小時。 According to the method of Hummers [US Pat. No. 2,798,878, Jul. 9, 1957], graphite oxide was prepared by oxidizing graphite flakes with sulfuric acid, sodium nitrate, and potassium permanganate in a 4:1:0.05 ratio at 30° C. for 48 hours. After the reaction was complete, the mixture was poured into deionized water and filtered. The samples were then washed with 5% HCl solution to remove most of the sulfate ions and residual salts, and then rinsed repeatedly with deionized water until the pH of the filtrate was about 4. The intent is to remove all sulfuric and nitric acid residues from the graphite interstitials. The slurry was dried and stored in a vacuum oven at 60°C for 24 hours.

藉由將樣品置於插入預設在1.050℃的水平管式爐中的石英管中來膨化經乾燥的、插層(氧化)的化合物,以獲得高度膨化的石墨。將膨化的石墨 與1%表面活性劑一起在45℃下分散在平底燒瓶中的水中,並使所得的懸浮液經受超音波處理持續15分鐘的時間段以獲得氧化石墨烯(GO)片的分散體。 The dried, intercalated (oxidized) compound was expanded by placing the sample in a quartz tube inserted into a horizontal tube furnace preset at 1.050° C. to obtain highly expanded graphite. exfoliated graphite Disperse with 1% surfactant in water in a flat-bottomed flask at 45°C, and subject the resulting suspension to ultrasonic treatment for a period of 15 minutes to obtain a dispersion of graphene oxide (GO) sheets.

實例3:原生石墨烯的製備 Example 3 : the preparation of native graphene

原生石墨烯片藉由使用直接超音波處理或液相膨化製程來生產。在典型的程序中,將磨碎至約20μm尺寸的5克石墨薄片分散在1,000mL去離子水(含有0.1重量%的分散劑,來自杜邦公司(DuPont)的ZonyI® FSO)中以獲得懸浮液。使用85W的超音波能量水平(Branson S450超音波發生器)用於石墨烯片的膨化、分離和尺寸減小持續15分鐘至2小時的時間段。所得石墨烯片係從未被氧化並且是無氧的和相對沒有缺陷的原生石墨烯。 Native graphene sheets are produced by using direct ultrasonic treatment or liquid phase expansion processes. In a typical procedure, 5 grams of graphite flakes ground to a size of about 20 μm were dispersed in 1,000 mL of deionized water (containing 0.1 wt % dispersant, Zonyl® FSO from DuPont) to obtain a suspension. An ultrasonic energy level of 85 W (Branson S450 ultrasonic generator) was used for the expansion, separation and size reduction of the graphene sheets for a period of 15 minutes to 2 hours. The resulting graphene sheets are never oxidized and are oxygen-free and relatively defect-free pristine graphene.

實例4:氟化石墨烯的製備 Example 4 : the preparation of fluorinated graphene

我們已經使用了幾種製程來生產GF,但是本文作為實例只描述了一種製程。在典型的程序中,高度膨化的石墨(HEG)由插層化合物C2F.xClF3製備。HEG被三氟化氯蒸氣進一步氟化以產生氟化的高度膨化的石墨(FHEG)。將預先冷卻的特氟隆反應器填充有20mL-30mL預先冷卻的液體ClF3,並且然後將反應器關閉並冷卻至液氮溫度。隨後,將不超過1g的HEG放入容器中,該容器具有用於ClF3氣體進入反應器的孔。在7-10天後,形成了具有近似式C2F的灰米色產物。然後將GF片分散在鹵化溶劑中以形成懸浮液。 We have used several processes to produce GF, but this article describes only one process as an example. In a typical procedure, highly expanded graphite (HEG) is composed of intercalation compounds C 2 F. x ClF 3 preparation. HEG is further fluorinated by chlorine trifluoride vapor to produce fluorinated highly expanded graphite (FHEG). A pre-cooled Teflon reactor was filled with 20 mL-30 mL of pre-cooled liquid ClF3 , and the reactor was then closed and cooled to liquid nitrogen temperature. Subsequently, no more than 1 g of HEG was placed in a container with a hole for the ClF gas to enter the reactor. After 7-10 days, a gray beige product of approximate formula C2F was formed. The GF flakes were then dispersed in a halogenated solvent to form a suspension.

實例5:氮化石墨烯的製備 Example 5 : the preparation of graphene nitride

將實例2中合成的氧化石墨烯(GO)用不同比例的脲精細研磨,並將造粒的混合物在微波反應器中加熱(900W)30s。產物用去離子水洗滌數次並真空乾燥。在這種方法中,氧化石墨烯被同時還原並摻雜有氮。將用1/0.5、1/1和1/2的石墨烯/脲質量比獲得的產物分別命名為N-1、N-2和N-3,並且如藉由元素分析測定的這些樣品的氮含量分別為14.7wt.%、18.2wt.%和17.5wt.%。這些氮化石墨烯片保持可分散在水中。 The graphene oxide (GO) synthesized in Example 2 was finely ground with different proportions of urea, and the granulated mixture was heated (900W) in a microwave reactor for 30s. The product was washed several times with deionized water and dried under vacuum. In this method, graphene oxide is simultaneously reduced and doped with nitrogen. The products obtained with graphene/urea mass ratios of 1/0.5, 1/1, and 1/2 were named N-1, N-2, and N-3, respectively, and the nitrogen contents of these samples, as determined by elemental analysis, were 14.7 wt.%, 18.2 wt.%, and 17.5 wt.%, respectively. These graphene nitride sheets remained dispersible in water.

實例6:石墨烯結合/活化的ABS Example 6: Graphene-bound/activated ABS

將第一組幾個各自具有50cm2表面的ABS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of ABS plastic each with a surface of 50 cm2 was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. On a separate basis, use a second set of several strips of the same size, but do not etch.

將兩組樣本在40℃下在實例1中製備的RGO-水溶液中浸泡30秒的時間段,並且然後從該溶液中移出並在空氣中乾燥。隨後,將RGO結合的ABS條在含硫酸的銅電解質中鍍銅。我們出人意料地觀察到,本揭露的方法能夠在不進行蝕刻的情況下成功地對ABS和多種塑膠進行金屬化。由石墨烯片介導的結合金屬層在表面硬度、耐刮擦性和對加熱/冷卻循環的耐久性方面表現同樣好。 Both sets of samples were soaked in the RGO-water solution prepared in Example 1 at 40°C for a period of 30 seconds, and then removed from the solution and dried in air. Subsequently, the RGO-bonded ABS strips were copper-plated in a sulfuric acid-containing copper electrolyte. We have surprisingly observed that the method of the present disclosure can successfully metallize ABS and various plastics without etching. Bonded metal layers mediated by graphene sheets performed equally well in terms of surface hardness, scratch resistance, and durability to heating/cooling cycles.

對比實例6a:Pd/Sn活化的ABS Comparative Example 6a: Pd/Sn activated ABS

將第一組幾個各自具有50cm2表面的ABS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of ABS plastic each with a surface of 50 cm2 was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. On a separate basis, use a second set of several strips of the same size, but do not etch.

將兩組樣本在40℃下在含Pd/Sn膠體的溶液中浸泡5分鐘的時間段,該溶液含有250mg/L的鈀、10g/L的錫(II)和110g/L的HCl。隨後,將這些樣本在水中沖洗並在含硫酸的銅電解質中鍍銅。我們觀察到,在沒有重度蝕刻的情況下,即使在蝕刻表面上實施了一些大量的昂貴稀有金屬(例如Pd)時,ABS塑膠表面也不能適當地(均勻地)金屬化。 Two sets of samples were soaked at 40° C. for a period of 5 minutes in a solution containing Pd/Sn colloid containing 250 mg/L palladium, 10 g/L tin(II) and 110 g/L HCl. Subsequently, these samples were rinsed in water and copper-plated in a copper electrolyte containing sulfuric acid. We observed that ABS plastic surfaces could not be properly (uniformly) metallized without heavy etching, even when some large amount of expensive rare metals (such as Pd) were implemented on the etched surface.

實例7:石墨烯結合/活化的高抗沖聚苯乙烯(HIPS) Example 7: Graphene-incorporated/activated high-impact polystyrene (HIPS)

將第一組幾個各自具有50cm2表面的HIPS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of HIPS plastic, each with a surface of 50 cm, was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. On a separate basis, use a second set of several strips of the same size, but do not etch.

此後,用含有5重量%的石墨烯片和0.01重量%的環氧樹脂的原生石墨烯-黏合劑溶液噴塗塑膠製品。在除去液體介質(丙酮)並在150℃下固化15分鐘 後,石墨烯片很好地結合到塑膠表面上。 Thereafter, the plastic was sprayed with a virgin graphene-adhesive solution containing 5% by weight of graphene sheets and 0.01% by weight of epoxy resin. After removing the liquid medium (acetone) and curing at 150°C for 15 minutes Afterwards, the graphene sheets were well bonded to the plastic surface.

在此處理之後,使石墨烯結合的塑膠製品經受電化學鍍鎳。為此,將製品在Watts電解質中處理15分鐘,該電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3。初始電流為0.3A/dm2,並且鍍鎳在40℃下進行。 After this treatment, the graphene-bonded plastic was subjected to electrochemical nickel plating. For this, the articles were treated for 15 minutes in a Watts electrolyte containing 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5M H 3 BO 3 . The initial current was 0.3 A/dm 2 , and nickel plating was performed at 40°C.

對比實例7a:硫化物活化的高抗沖聚苯乙烯(HIPS) Comparative Example 7a: Sulfide Activated High Impact Polystyrene (HIPS)

將第一組幾個各自具有50cm2表面的HIPS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of HIPS plastic, each with a surface of 50 cm, was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. On a separate basis, use a second set of several strips of the same size, but do not etch.

此後,將塑膠製品在含有0.5M CuSO4.5H2O的氨溶液中處理30秒,該溶液具有9.5的pH值以及20℃的溫度。然後將塑膠製品在蒸餾水中浸沒20秒,並且隨後在20℃下用含有0.1M Na2S2的硫化物溶液處理30秒。在此處理之後,再次在冷水中洗滌塑膠製品。這之後進行電化學鍍鎳。為此,將製品在Watts電解質中處理15分鐘,該電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3。初始電流為0.3A/dm2,並且鍍鎳在40℃下進行。我們觀察到,在沒有重度蝕刻的情況下,使用硫化物播種方法不能均勻地金屬化HIPS塑膠表面。相比之下,本發明的石墨烯介導方法使得幾乎所有種類的金屬都能成功地鍍在不僅HIPS表面上而且鍍在任何其他類型的聚合物表面上。 Thereafter, the plastic article was treated for 30 seconds in an ammonia solution containing 0.5M CuSO 4.5H 2 O, the solution having a pH value of 9.5 and a temperature of 20°C. The plastic articles were then immersed in distilled water for 20 seconds and subsequently treated with a sulfide solution containing 0.1M Na2S2 for 30 seconds at 20°C. After this treatment, wash the plastic again in cold water. This is followed by electrochemical nickel plating. For this, the articles were treated for 15 minutes in a Watts electrolyte containing 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5M H 3 BO 3 . The initial current was 0.3 A/dm 2 , and nickel plating was performed at 40°C. We observed that the HIPS plastic surface could not be uniformly metallized using the sulfide seeding method without heavy etching. In contrast, the graphene-mediated method of the present invention enables the successful plating of almost all kinds of metals on not only HIPS surfaces but also on any other type of polymer surface.

實例8:石墨烯實現的基於聚氨酯的熱塑性彈性體(TPE) Example 8: Graphene-Enabled Polyurethane-Based Thermoplastic Elastomers (TPE)

將TPE條浸泡在含有5g/L氫氧化鈉和0.5g/L GO的鹼性水溶液中15分鐘。然後從該溶液(實際上是石墨烯分散體)中移出這些條,使得氧化石墨烯片能夠在除去水的同時塗覆到TPE表面上。用水沖洗掉殘留的NaOH。 Soak the TPE strips in an alkaline aqueous solution containing 5 g/L NaOH and 0.5 g/L GO for 15 min. The strips were then removed from the solution (actually the graphene dispersion), allowing the graphene oxide sheets to be coated onto the TPE surface while the water was being removed. Rinse off residual NaOH with water.

使GO塗覆的條在含氨的鎳電解質中在30℃下經受無電鍍鎳10分鐘。在單獨的基礎上,將Ni層直接電化學沈積到GO塗覆的TPE表面上。發現兩種方法都提供了具有高硬度、耐刮擦性和光澤度的Ni層。這種簡潔簡單的兩步製程在提 供多種多樣的金屬化聚合物製品方面出人意料地有效。 The GO-coated strips were subjected to electroless nickel plating in an ammoniacal nickel electrolyte at 30 °C for 10 min. On a separate basis, a Ni layer was directly electrochemically deposited onto the GO-coated TPE surface. Both methods were found to provide Ni layers with high hardness, scratch resistance and gloss. This simple and simple two-step process improves It is surprisingly effective in providing a wide variety of metallized polymer articles.

相比之下,如果不使用強鉻硫酸作為蝕刻劑來產生深度大於0.3μm的大尺寸微洞(表面空洞),則不能在Pd/Sn催化劑種子的說明下均勻地金屬化TPE零件。在30℃下將經蝕刻的TPE樣本浸泡在含有80mg/L鈀、10g/L錫(II)和110g/LHCl的含Pd/Sn膠體的溶液中10分鐘後,這種Pd/Sn催化劑沈積到TPE的大表面空洞上。 In contrast, TPE parts cannot be uniformly metallized under the instruction of Pd/Sn catalyst seeds without the use of strong chromium-sulfuric acid as etchant to generate large-sized microcavities (surface voids) with a depth greater than 0.3 μm. After immersing the etched TPE samples in a solution containing 80 mg/L palladium, 10 g/L tin(II), and 110 g/L HCl containing Pd/Sn colloids at 30 °C for 10 min, this Pd/Sn catalyst was deposited onto the large surface cavities of the TPE.

例9:石墨烯結合的玻璃纖維增強的聚酯複合材料 Example 9: Graphene-Incorporated Glass Fiber Reinforced Polyester Composites

催化金屬可以使用以下多種製程沈積到石墨烯表面上:物理氣相沈積、濺射、化學氣相沈積、化學還原/氧化、電化學還原/氧化等。在此實例中,Co用作代表性催化金屬,並將來自溶液的化學氧化/還原用於在石墨烯表面上沈積奈米顆粒。 Catalytic metals can be deposited onto graphene surfaces using a variety of processes: physical vapor deposition, sputtering, chemical vapor deposition, chemical reduction/oxidation, electrochemical reduction/oxidation, etc. In this example, Co was used as a representative catalytic metal, and chemical oxidation/reduction from solution was used to deposit nanoparticles on the graphene surface.

使用鈷鹽溶液作為金屬鹽溶液。鈷(II)鹽水溶液含有1g/L至10g/L的CoSO4.7H2O和一種氧化劑,即過氧化氫。將氧化石墨烯片分散在溶液中以形成分散體。加熱此種分散體使得至少部分鈷(II)被H2O2氧化成鈷(III),鈷(III)在進一步加熱時沈積在石墨烯表面上。然後允許進行複合表面的電解直接金屬化。將該複合表面在鎳浴中電鍍,其中將0.3A/dm2的初始電流密度用於電化學鍍鎳,其後來增加到3A/dm2。電化學鍍鎳在Watts電解質中在30℃至40℃下進行10分鐘至15分鐘的處理時間。Watts電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3A cobalt salt solution was used as the metal salt solution. The cobalt(II) brine solution contains 1g/L to 10g/L CoSO 4 .7H 2 O and an oxidizing agent, namely hydrogen peroxide. The graphene oxide sheets are dispersed in the solution to form a dispersion. Heating this dispersion causes at least part of the cobalt(II) to be oxidized by H2O2 to cobalt (III), which deposits on the graphene surface upon further heating. Electrolytic direct metallization of the composite surface is then allowed to proceed. The composite surface was electroplated in a nickel bath, where an initial current density of 0.3 A/dm 2 was used for electrochemical nickel plating, which was later increased to 3 A/dm 2 . Electrochemical nickel plating is carried out in Watts electrolyte at 30°C to 40°C for a treatment time of 10 minutes to 15 minutes. The Watts electrolyte contained 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5M H 3 BO 3 .

實例10:官能化石墨烯-和CNT-結合的聚醚醚酮(PEEK)和其他聚合物部件 Example 10: Functionalizing Graphene- and CNT-Combined Polyetheretherketone (PEEK) and Other Polymer Components

將第一組幾個各自具有50cm2表面的PEEK塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。單獨地,使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of PEEK plastic, each with a 50 cm surface, was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. Separately, a second set of several strips of the same size was used, but not etched.

隨後,將塑膠製品浸漬到含有5重量%的石墨烯片或碳奈米管(CNT)和0.01重量%的環氧樹脂或聚氨酯的官能化石墨烯/CNT-黏合劑分散體中。本研究中涉及的化學官能基包括疊氮化合物(2-疊氮基乙醇)、烷基矽烷、羥基基團、羧基基團、胺基團、磺酸基團(--SO3H)和二伸乙基三胺(DETA)。這些官能化的石墨烯片和CNT由台灣台北市的台灣石墨烯股份有限公司(Taiwan Graphene Co.)供應。在除去液體介質(丙酮)並在150℃下固化15分鐘後,石墨烯片和CNT很好地結合到塑膠表面上。 Subsequently, the plastic article was dipped into a functionalized graphene/CNT-binder dispersion containing 5% by weight of graphene sheets or carbon nanotubes (CNTs) and 0.01% by weight of epoxy resin or polyurethane. The chemical functional groups involved in this study include azides (2-azidoethanol), alkylsilanes, hydroxyl groups, carboxyl groups, amine groups, sulfonic acid groups ( --SO3H ), and diethylenetriamine (DETA). These functionalized graphene sheets and CNTs were supplied by Taiwan Graphene Co., Taipei, Taiwan. After removing the liquid medium (acetone) and curing at 150 °C for 15 min, the graphene sheets and CNTs were well bonded to the plastic surface.

在此處理之後,使石墨烯-和CNT-結合的塑膠製品經受化學鍍鎳或化學鍍銅。對於鍍鎳,將官能化的石墨烯-和CNT-結合的製品在含有1.2M NiSO4.7H2O的化學鍍液中在40℃下處理15分鐘。對於鍍Cu,將官能化的石墨烯-和CNT-結合的塑膠零件浸漬在含0.5M CuSO4.5H2O的氨溶液中30秒,該溶液具有9.5的pH值以及20℃的溫度。 After this treatment, the graphene- and CNT-bonded plastics were subjected to electroless nickel or copper plating. For nickel plating, the functionalized graphene- and CNT-bound articles were treated in an electroless plating solution containing 1.2M NiSO 4 .7H 2 O at 40 °C for 15 min. For Cu plating, the functionalized graphene- and CNT-bonded plastic parts were immersed for 30 seconds in an ammonia solution containing 0.5M CuSO 4.5H 2 O with a pH of 9.5 and a temperature of 20°C.

對於其他聚合物部件的金屬化也進行了類似的程序,包括炭黑填充的天然橡膠、矽酮橡膠、氯化橡膠、聚碳酸酯、ABS、聚對苯二甲酸乙二醇酯(PET)和短切的凱芙拉(Kevlar)纖維填充的酚醛樹脂。 A similar procedure was performed for the metallization of other polymer parts, including carbon black-filled natural rubber, silicone rubber, chlorinated rubber, polycarbonate, ABS, polyethylene terephthalate (PET), and chopped Kevlar fiber-filled phenolic resins.

我們已經觀察到,一般來講,即使沒有進行蝕刻處理,使用本揭露的官能化石墨烯介導方法也可以很好地金屬化聚合物部件。在所有實例中,金屬與聚合物部件表面良好結合,這些表面具有優異的無光澤外觀和傑出的耐刮擦性。如果單獨包含官能化石墨烯片或與官能化CNT相結合,與在浸漬分散體中單獨使用官能化CNT相比,金屬化表面通常更光滑。 We have observed that, in general, polymeric parts can be well metallized using the functionalized graphene-mediated methods of the present disclosure even without an etching process. In all instances, the metal bonded well to the polymer part surfaces, which had an excellent matte appearance and outstanding scratch resistance. If functionalized graphene sheets were included alone or in combination with functionalized CNTs, the metallized surface was generally smoother compared to functionalized CNTs alone in the impregnation dispersion.

實例11:石墨烯/導電添加劑結合的聚醚碸(PES)和其他聚合物部件 Example 11: Graphene/conductive additive combined polyethersulfone (PES) and other polymer parts

將第一組幾個各自具有50cm2表面的PES塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。單獨地, 使用第二組幾個相同尺寸的條,但不進行蝕刻。 A first set of several rectangular strips of PES plastic each with a surface of 50 cm2 was soaked in an etching solution consisting of 4M H2SO4 and 3.5M CrO3 at 70 °C for 3 min. Rinse the strips with water. Separately, a second set of several strips of the same size was used, but not etched.

隨後,將塑膠製品浸漬到含有5重量%的石墨烯片、0.5重量%的氣相生長碳奈米纖維和0.01重量%的環氧樹脂或聚氨酯的石墨烯/導電填料/黏合劑分散體中。在此實例中,Cu奈米線和Ni塗覆的聚丙烯腈奈米纖維(藉由電紡絲而獲得)也用作導電填料。本研究中涉及的化學官能基包括烷基矽烷、羥基基團、羧基基團、胺基團和二伸乙基三胺(DETA)。這些官能化的石墨烯片由台灣台北市的台灣石墨烯股份有限公司供應。在除去液體介質(丙酮)並在150℃下固化15分鐘後,石墨烯片很好地結合到塑膠表面上。 Subsequently, the plastic article was dipped into a graphene/conductive filler/binder dispersion containing 5 wt% graphene sheets, 0.5 wt% vapor-grown carbon nanofibers, and 0.01 wt% epoxy or polyurethane. In this example, Cu nanowires and Ni-coated polyacrylonitrile nanofibers (obtained by electrospinning) were also used as conductive fillers. The chemical functional groups involved in this study include alkylsilanes, hydroxyl groups, carboxyl groups, amine groups, and diethylenetriamine (DETA). These functionalized graphene sheets were supplied by Taiwan Graphene Corporation, Taipei, Taiwan. After removing the liquid medium (acetone) and curing at 150 °C for 15 minutes, the graphene sheets were well bonded to the plastic surface.

在此處理之後,使石墨烯/導電填料結合的塑膠製品經受化學鍍鎳或化學鍍銅。對於鍍鎳,將結合或覆蓋的聚合物部件在含有1.2M NiSO4.7H2O的化學鍍液中在40℃下處理15分鐘。對於鍍Cu,將結合或覆蓋的塑膠零件浸漬在含0.5M CuSO4.5H2O的氨溶液中30秒,該溶液具有9.5的pH值以及20℃的溫度。 After this treatment, the graphene/conductive filler combined plastic was subjected to electroless nickel or electroless copper plating. For nickel plating, the bonded or covered polymer parts were treated in an electroless bath containing 1.2M NiSO 4 .7H 2 O at 40°C for 15 minutes. For Cu plating, the bonded or covered plastic parts were dipped for 30 seconds in an ammonia solution containing 0.5M CuSO 4.5H 2 O having a pH of 9.5 and a temperature of 20°C.

對於其他聚合物部件的金屬化也進行了類似的程序,包括炭黑填充的SBR橡膠、矽酮橡膠、聚碳酸酯、ABS、聚對苯二甲酸乙二醇酯(PET)和短切的玻璃纖維填充的酚醛樹脂。 A similar procedure was performed for the metallization of other polymer parts, including carbon black-filled SBR rubber, silicone rubber, polycarbonate, ABS, polyethylene terephthalate (PET), and chopped glass-fiber-filled phenolic resin.

我們已經觀察到,一般來講,即使沒有進行蝕刻處理,使用本揭露的官能化石墨烯介導方法也可以很好地金屬化聚合物部件。在所有實例中,金屬與聚合物部件表面良好結合,這些表面具有優異的無光澤外觀和傑出的耐刮擦性。如果單獨包含石墨烯片或與導電填料相結合,與在浸漬分散體中單獨使用導電填料相比,金屬化表面通常更光滑。 We have observed that, in general, polymeric parts can be well metallized using the functionalized graphene-mediated methods of the present disclosure even without an etching process. In all instances, the metal bonded well to the polymer part surfaces, which had an excellent matte appearance and outstanding scratch resistance. If graphene sheets are included alone or in combination with conductive fillers, metallized surfaces are generally smoother than when conductive fillers are used alone in the impregnation dispersion.

本揭露具有以下意想不到的優點: The present disclosure has the following unexpected advantages:

1.即使不使用鉻酸或鉻硫酸,也可以經由官能化的石墨烯片介導和/或官能化的CNT介導來實現沈積的金屬層與輕度蝕刻的聚合物表面之間的強黏附。這些良好結合的金屬層顯示出耐高溫循環性,並且經受住所有通常的溫度 循環衝擊。 1. Even without the use of chromic acid or chromic sulfuric acid, strong adhesion between deposited metal layers and lightly etched polymer surfaces can be achieved via functionalized graphene sheet-mediated and/or functionalized CNT-mediated. These well-bonded metal layers exhibit resistance to high temperature cycling and withstand all usual temperatures Loop shock.

2.多種多樣的化學官能基可以附接到使得聚合物部件能夠快速金屬化的介導石墨烯片或碳奈米管的邊緣或表面上。 2. A wide variety of chemical functional groups can be attached to the edges or surfaces of mediating graphene sheets or carbon nanotubes enabling rapid metallization of polymer parts.

3.所揭露的製程可以在只需要短的時間段的非常溫和的條件下進行。在不重複先前技術製程通常所需的製程步驟的情況下,也可實現最佳結果。 3. The disclosed process can be performed under very mild conditions requiring only a short period of time. Optimal results are also achieved without duplication of process steps typically required by prior art processes.

4.高品質的金屬層可沈積在聚合物部件表面上,而無需巨大資金投入和大量材料消耗。此外,可以以最終影響金屬層品質的在功能上安全且簡單的方式控制該製程。 4. High-quality metal layers can be deposited on the surface of polymer parts without huge capital investment and large material consumption. Furthermore, the process can be controlled in a functionally safe and simple manner which ultimately affects the quality of the metal layer.

5.出人意料的多種多樣的聚合物(不僅包括塑膠還包括橡膠和複合材料)都可以有效地金屬化。相比之下,用先前技術製程只能對有限數量的塑膠進行令人滿意的金屬化。 5. A surprisingly wide variety of polymers (including not only plastics but also rubbers and composites) can be effectively metallized. In contrast, only a limited number of plastics can be satisfactorily metallized with prior art processes.

6.由於不需要在高溫下蝕刻塑膠表面,因此可以實現節能。由於只在必要時在極少情況下(例如,高度平滑的超高分子量PE表面)需要溫和蝕刻條件,因此可以使用更廣泛範圍的溫和蝕刻溶液;避免了使用受環境限制的化學品的需要。 6. Since there is no need to etch the plastic surface at high temperature, energy saving can be achieved. Since mild etch conditions are required only when necessary and in rare cases (eg, highly smooth UHMWPE surfaces), a wider range of mild etch solutions can be used; avoiding the need to use environmentally restricted chemicals.

7.本揭露的製程或方法可以僅涉及兩個步驟:使聚合物部件表面與石墨烯分散體接觸(例如浸漬步驟),以及使石墨烯/導電填料結合的聚合物部件表面與化學鍍液或電化學鍍液接觸(例如另一快速浸漬步驟)。相比之下,先前技術製程需要許多步驟:預處理、化學蝕刻、活化、化學金屬化、和多個金屬層的電解沈積(因此,另外的多個步驟)。 7. The process or method of the present disclosure may involve only two steps: contacting the polymer part surface with the graphene dispersion (e.g., a dipping step), and contacting the graphene/conductive filler-bonded polymer part surface with an electroless or electrochemical plating solution (e.g., another quick dipping step). In contrast, prior art processes require many steps: pretreatment, chemical etching, activation, chemical metallization, and electrolytic deposition of multiple metal layers (hence, additional multiple steps).

Claims (19)

一種表面金屬化的聚合物製品,所述聚合物製品包括:具有表面的聚合物部件、塗覆在所述聚合物部件表面上的由多個石墨烯片和導電填料構成的第一層、以及沈積在所述第一層上的被鍍金屬的第二層,其中所述多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中所述多個石墨烯片和所述導電填料在有或沒有黏合劑樹脂的情況下結合到所述聚合物部件表面上,並且所述第一層具有從0.34nm至30μm的厚度,其中所述導電填料選自:碳奈米纖維;碳塗覆的纖維;SnO2.ZnO2、In2O3或氧化銦錫(ITO)的奈米纖維或奈米線;及其組合。 A surface metallized polymeric article comprising: a polymeric part having a surface, a first layer consisting of a plurality of graphene sheets and a conductive filler coated on the surface of the polymeric part, and a metallized second layer deposited on the first layer, wherein the plurality of graphene sheets comprise single or few-layer graphene sheets selected from a native graphene material having substantially 0% non-carbon elements or a non-native graphene material having 0.001% to 25% by weight non-carbon elements, wherein the non-native graphene is selected from graphene oxide Graphene, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene, graphene nitride, doped graphene, chemically functionalized graphene, or combinations thereof, and wherein the plurality of graphene sheets and the conductive filler are bonded to the surface of the polymer part with or without a binder resin, and the first layer has a thickness from 0.34 nm to 30 μm, wherein the conductive filler is selected from the group consisting of: carbon nanofibers; carbon-coated fibers; SnO2.ZnO2、In2o3or nanofibers or nanowires of indium tin oxide (ITO); and combinations thereof. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述第二層具有從0.5nm至1.0mm的厚度。 The surface metallized polymer article as described in claim 1 , wherein the second layer has a thickness from 0.5 nm to 1.0 mm. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述表面金屬化的聚合物部件選自水龍頭、淋浴頭、管子、管、連接器、適配器、廚房水槽或浴室水槽、浴缸蓋、壺嘴、水槽蓋、浴室附件、或廚房附件。 The surface metallized polymer product as described in claim 1 , wherein the surface metallized polymer part is selected from faucets, shower heads, pipes, tubes, connectors, adapters, kitchen sinks or bathroom sinks, bathtub covers, spouts, sink covers, bathroom accessories, or kitchen accessories. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述第一層包含黏合劑樹脂,所述黏合劑樹脂將所述石墨烯片和所述導電填料化學結合到所述聚合物部件表面。 The surface metallized polymer article as described in claim 1 , wherein the first layer includes an adhesive resin that chemically bonds the graphene sheet and the conductive filler to the surface of the polymer component. 如申請專利範圍第4項所述之表面金屬化的聚合物製品,其中所述黏合劑樹脂包括酯樹脂、新戊二醇(NPG)、乙二醇(EG)、間苯二甲酸、對苯二甲酸、烏拉坦樹脂、烏拉坦酯樹脂、丙烯酸樹脂、丙烯酸烏拉坦樹脂、或其組合。 The surface metallized polymer product as described in item 4 of the scope of the patent application, wherein the binder resin includes ester resin, neopentyl glycol (NPG), ethylene glycol (EG), isophthalic acid, terephthalic acid, urethane resin, urethane ester resin, acrylic resin, acrylic urethane resin, or a combination thereof. 如申請專利範圍第4項所述之表面金屬化的聚合物製品,其中所述黏 合劑樹脂基於100重量份的所述黏合劑樹脂包含1至30重量份的量的固化劑和/或偶聯劑。 The surface metallized polymer article as described in item 4 of the patent claims, wherein the binder resin contains 1 to 30 parts by weight of curing agent and/or coupling agent based on 100 parts by weight of the binder resin. 如申請專利範圍第4項所述之表面金屬化的聚合物製品,其中所述黏合劑樹脂包含可熱固化的樹脂,所述可熱固化的樹脂包含選自二甘油四縮水甘油醚、二季戊四醇四縮水甘油醚、山梨糖醇聚縮水甘油醚、聚甘油聚縮水甘油醚、季戊四醇聚縮水甘油醚、或其組合的多官能環氧單體。 The surface metallized polymer product as described in item 4 of the scope of the patent application, wherein the binder resin comprises a heat-curable resin, and the heat-curable resin comprises a polyfunctional epoxy monomer selected from the group consisting of diglycerol tetraglycidyl ether, dipentaerythritol tetraglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, or a combination thereof. 如申請專利範圍第4項所述之表面金屬化的聚合物製品,其中所述黏合劑樹脂包含可熱固化的樹脂,所述可熱固化的樹脂包含選自由以下各項組成的組的雙官能或三官能環氧單體:三羥甲基乙烷三縮水甘油醚、三羥甲基甲烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、三羥苯基甲烷三縮水甘油醚、三苯酚三縮水甘油醚、四羥苯基乙烷三縮水甘油醚、四羥苯基乙烷四縮水甘油醚、對胺基苯酚三縮水甘油醚、1,2,6-己三醇三縮水甘油醚、甘油三縮水甘油醚、二甘油三縮水甘油醚、甘油乙氧基三縮水甘油醚、蓖麻油三縮水甘油醚、丙氧基化丙三醇三縮水甘油醚、乙二醇二縮水甘油醚、1,4-丁二醇二縮水甘油醚、新戊二醇二縮水甘油醚、環己烷二甲醇二縮水甘油醚、二丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、二溴新戊二醇二縮水甘油醚、氫化雙酚A二縮水甘油醚、(3,4-環氧環己烷)甲基3,4-環氧環己基甲酸酯、及其混合物。 If the scope of patent application4The surface metallized polymer article of claim 1, wherein the binder resin comprises a thermally curable resin comprising a difunctional or trifunctional epoxy monomer selected from the group consisting of trimethylolethane triglycidyl ether, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, trihydroxyphenylmethane triglycidyl ether, triphenol triglycidyl ether, tetraphenylolethane triglycidyl ether, tetrahydroxyphenylethane tetraglycidyl ether Ether, p-aminophenol triglycidyl ether, 1,2,6-hexanetriol triglycidyl ether, glycerin triglycidyl ether, diglycerol triglycidyl ether, glycerol ethoxy triglycidyl ether, castor oil triglycidyl ether, propoxylated glycerol triglycidyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, dipropylene glycol diglycidyl ether Glyceryl ether, polypropylene glycol diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexyl carboxylate, and mixtures thereof. 如申請專利範圍第4項所述之表面金屬化的聚合物製品,其中所述黏合劑樹脂包含選自以下各項的可UV輻射固化的樹脂或漆:丙烯酸酯和甲基丙烯酸酯低聚物,(甲基)丙烯酸酯(丙烯酸酯和甲基丙烯酸酯),具有(甲基)丙烯酸酯官能基的多元醇及其衍生物,包括乙氧基化的三羥甲基丙烷三(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸 酯、或新戊二醇二(甲基)丙烯酸酯及其混合物,以及衍生自低分子量聚酯樹脂、聚醚樹脂、環氧樹脂、聚氨酯樹脂、醇酸樹脂、螺縮醛樹脂、環氧丙烯酸酯、聚丁二烯樹脂、和聚硫醇-聚烯樹脂的丙烯酸酯和甲基丙烯酸酯低聚物。 If the scope of patent application4The surface metallized polymer article of claim 1, wherein the binder resin comprises a UV radiation curable resin or lacquer selected from the group consisting of acrylate and methacrylate oligomers, (meth)acrylates (acrylates and methacrylates), polyols with (meth)acrylate functionality and derivatives thereof, including ethoxylated trimethylolpropane tri(meth)acrylate, tripropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, diethylene glycol di(meth)acrylate, quaternary Pentaerythritol tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate esters, or neopentyl glycol di(meth)acrylates and mixtures thereof, and acrylate and methacrylate oligomers derived from low molecular weight polyester resins, polyether resins, epoxy resins, polyurethane resins, alkyd resins, spiroacetal resins, epoxy acrylates, polybutadiene resins, and polythiol-polyene resins. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述被鍍金屬選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、其合金、或其組合。 The surface metallized polymer product as described in item 1 of the scope of the patent application, wherein the metal to be plated is selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, alloys thereof, or combinations thereof. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述石墨烯片進一步用催化金屬的具有從0.5nm至100nm的直徑或厚度的奈米級顆粒或塗層進行修飾,所述催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合,並且其中所述催化金屬在化學組成上不同於所述被鍍金屬。 The surface metallized polymer product as described in item 1 of the scope of the patent application, wherein the graphene sheet is further modified with nano-scale particles or coatings having a diameter or thickness from 0.5nm to 100nm of a catalytic metal, the catalytic metal is selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, and wherein the catalytic metal is chemically different from the metal to be plated. 一種生產如申請專利範圍第1項所述之表面金屬化的聚合物製品之方法,所述方法包括:a)提供包含分散在液體介質中的多個石墨烯片和導電填料的石墨烯-導電填料混合物分散體,使聚合物部件的表面與所述分散體接觸並促進所述多個石墨烯片和所述導電填料沈積到所述聚合物部件的所述表面上構成第一層,其中所述多個石墨烯片和所述導電填料結合到所述表面上以形成覆蓋所述聚合物部件表面的結合的石墨烯片和導電填料的層,其中所述多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中所述多個石墨烯片和所述導電填料在有或沒有黏合劑樹脂的情況下結合到所述聚合物部件表面上,並且所述第一層具有從0.34nm至30μm的厚度,其中所述導電填料選自:碳奈米纖維;碳 塗覆的纖維;SnO2.ZnO2、In2O3或氧化銦錫(ITO)的奈米纖維或奈米線;及其組合;以及b)在所述覆蓋的聚合物部件表面的所述第一層上化學、物理、電化學或電解地沈積金屬的第二層,以形成所述表面金屬化的聚合物製品。 A method of producing a surface metallized polymer article as described in claim 1, the method comprising: a) providing a graphene-conductive filler mixture dispersion comprising a plurality of graphene sheets and conductive fillers dispersed in a liquid medium, contacting the surface of a polymer part with the dispersion and promoting deposition of the plurality of graphene sheets and the conductive filler onto the surface of the polymer part to form a first layer, wherein the plurality of graphene sheets and the conductive filler are bonded to the surface to form a layer of bonded graphene sheets and conductive fillers covering the surface of the polymer part, wherein The plurality of graphene sheets comprises single or few-layer graphene sheets selected from native graphene materials having substantially 0% non-carbon elements or non-native graphene materials having 0.001% to 25% by weight non-carbon elements, wherein the non-native graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene, nitrided graphene, doped graphene, chemically functionalized graphene, or combinations thereof, and wherein the plurality of graphene sheets and the conductive A filler is bonded to the surface of the polymer part with or without a binder resin, and the first layer has a thickness from 0.34 nm to 30 μm, wherein the conductive filler is selected from the group consisting of: carbon nanofibers; carbon Coated fibers; SnO2.ZnO2、In2o3or nanofibers or nanowires of indium tin oxide (ITO); and combinations thereof; and b) chemically, physically, electrochemically or electrolytically depositing a second layer of metal on said first layer of the surface of said covered polymer component to form said surface metallized polymer article. 如申請專利範圍第12項所述之方法,進一步包括在步驟(a)之前的使所述聚合物部件表面經受研磨處理、蝕刻處理、或其組合的步驟。 The method as described in claim 12 , further comprising a step of subjecting the surface of the polymer component to grinding treatment, etching treatment, or a combination thereof prior to step (a). 如申請專利範圍第12項所述之方法,其中所述步驟(b)包括將所述覆蓋的聚合物部件浸漬到包含溶解在液體介質中的金屬鹽的化學鍍浴中並且然後從中退出以實現所述聚合物部件表面的金屬化的步驟。 The method of claim 12 , wherein said step (b) comprises the step of dipping said covered polymeric part into and then withdrawing from an electroless plating bath comprising a metal salt dissolved in a liquid medium to effect metallization of the surface of said polymeric part. 如申請專利範圍第12項所述之方法,其中所述液體介質包含溶解在所述液體介質中的過錳酸、磷酸、硝酸、或其組合。 The method described in claim 12 , wherein the liquid medium comprises permanganic acid, phosphoric acid, nitric acid, or a combination thereof dissolved in the liquid medium. 一種用於製造表面金屬化的聚合物製品之設備,所述設備包括:(a)石墨烯沈積室,所述石墨烯沈積室容納石墨烯分散體,所述石墨烯分散體包含分散在第一液體介質中的多個石墨烯片,其中操作所述石墨烯沈積室以將所述石墨烯片沈積到至少一個聚合物部件的表面上,以形成至少一個石墨烯塗覆的聚合物部件;以及(b)與所述石墨烯沈積室處於工作關係的金屬化室,所述金屬化室容納鍍液,所述鍍液用於在所述至少一個石墨烯塗覆的聚合物部件上鍍上所需金屬的層以獲得所述表面金屬化的聚合物製品;其中所述多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合。 An apparatus for making a surface metallized polymer article, the apparatus comprising: (a) a graphene deposition chamber containing a graphene dispersion comprising a plurality of graphene sheets dispersed in a first liquid medium, wherein the graphene deposition chamber is operative to deposit the graphene sheets onto the surface of at least one polymer part to form at least one graphene-coated polymer part; A graphene-coated polymer part coated with a layer of the desired metal to obtain said surface metallized polymer article; wherein said plurality of graphene sheets comprise single or few-layer graphene sheets selected from the group consisting of native graphene materials having substantially 0% non-carbon elements or non-native graphene materials having 0.001 wt. ene, doped graphene, chemically functionalized graphene, or combinations thereof. 如申請專利範圍第16項所述之設備,進一步包括可移動載體,所述可移動載體用於運載所述至少一個聚合物部件並使所述至少一個聚合物部件與所述聚合物分散體接觸以生產所述至少一個石墨烯塗覆的聚合物部件和/或使所述至少一個石墨烯塗覆的聚合物部件與所述鍍液接觸以獲得所述表面金屬化的聚合物製品。 The apparatus of claim 16 , further comprising a movable carrier for carrying the at least one polymer part and contacting the at least one polymer part with the polymer dispersion to produce the at least one graphene-coated polymer part and/or contacting the at least one graphene-coated polymer part with the plating solution to obtain the surface metallized polymer article. 如申請專利範圍第16項所述之設備,進一步包括與所述石墨烯沈積室處於工作關係的乾燥、加熱或固化提供裝置,其用於從所述至少一個石墨烯塗覆的聚合物部件中部分或完全除去所述第一液體介質以生產包含結合到所述至少一個聚合物部件的所述表面上的所述多個石墨烯片的所述至少一個石墨烯塗覆的聚合物部件。 The apparatus of claim 16 , further comprising drying, heating or curing providing means in operative relationship with said graphene deposition chamber for partially or completely removing said first liquid medium from said at least one graphene-coated polymer part to produce said at least one graphene-coated polymer part comprising said plurality of graphene sheets bonded to said surface of said at least one polymer part. 如申請專利範圍第16項所述之設備,其中所述鍍液包括化學鍍液、電化學鍍液或電解液。 The device as described in item 16 of the scope of the patent application, wherein the plating solution includes an electroless plating solution, an electrochemical plating solution or an electrolytic solution.
TW108102642A 2018-03-19 2019-01-24 Apparatus for graphene-mediated production of metallized polymer articles TWI808118B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/924,971 2018-03-19
US15/924,957 2018-03-19
US15/924,971 US20190283378A1 (en) 2018-03-19 2018-03-19 Apparatus for graphene-mediated production of metallized polymer articles
US15/924,957 US20190283377A1 (en) 2018-03-19 2018-03-19 Conductive graphene mixture-mediated metallization of polymer article

Publications (2)

Publication Number Publication Date
TW201938841A TW201938841A (en) 2019-10-01
TWI808118B true TWI808118B (en) 2023-07-11

Family

ID=67987865

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108102642A TWI808118B (en) 2018-03-19 2019-01-24 Apparatus for graphene-mediated production of metallized polymer articles

Country Status (2)

Country Link
TW (1) TWI808118B (en)
WO (1) WO2019182652A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970720B (en) * 2008-03-13 2014-10-15 巴斯夫欧洲公司 Method and dispersion for applying a metal layer to a substrate and metallizable thermoplastic molding compound
US9905373B2 (en) * 2016-01-04 2018-02-27 Nanotek Instruments, Inc. Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode
US10199637B2 (en) * 2016-06-07 2019-02-05 Nanotek Instruments, Inc. Graphene-metal hybrid foam-based electrode for an alkali metal battery
US20180130569A1 (en) * 2016-11-08 2018-05-10 The Regents Of The University Of California Graphene-polymer nanocomposites incorporating chemically doped graphene-polymer heterostructure for flexible and transparent conducting films

Also Published As

Publication number Publication date
WO2019182652A1 (en) 2019-09-26
TW201938841A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
TWI784124B (en) Products containing graphene-mediated metallized polymer component
US20190292722A1 (en) Process for graphene-mediated metallization of fibers, yarns, and fabrics
US20190292721A1 (en) Process for graphene-mediated metallization of fibers, yarns, and fabrics
US20190292675A1 (en) Process for graphene-mediated metallization of polymer films
US20190283377A1 (en) Conductive graphene mixture-mediated metallization of polymer article
US20190143656A1 (en) Products containing graphene-mediated metallized polymer component
US20190283379A1 (en) Graphene-mediated metallization of polymer films
TWI720365B (en) Graphene-mediated metal-plated polymer article and production method
US20190292720A1 (en) Graphene-Mediated Metallization of Fibers, Yarns, and Fabrics
US20190143369A1 (en) Process for graphene-mediated metallization of polymer article
US10730070B2 (en) Continuous process for manufacturing graphene-mediated metal-plated polymer article
US20190283378A1 (en) Apparatus for graphene-mediated production of metallized polymer articles
US20190292671A1 (en) Metal matrix nanocomposite containing oriented graphene sheets and production process
US11629420B2 (en) Production process for metal matrix nanocomposite containing oriented graphene sheets
US11332830B2 (en) Functionalized graphene-mediated metallization of polymer article
WO2019183205A1 (en) Graphene-mediated metallization of fibers, yarns, and fabrics
Wang et al. Electromagnetic interference shielding MWCNT-Fe3O4@ Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability
Tien et al. Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive
US20190292676A1 (en) Process for graphene-mediated metallization of polymer films
Ren et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption
KR20180094874A (en) Chemical-free manufacturing of graphene reinforced polymer matrix composites
CN101474898A (en) Conductive carbon film based on graphene as well as preparation method and application
US20190144621A1 (en) Graphene-Mediated Metal-Plated Polymer Article and Production Method
US20180272565A1 (en) Chemical-free production of graphene-polymer pellets and graphene-polymer nanocomposite products
WO2019191014A1 (en) Metal matrix nanocomposite containing oriented graphene sheets and production process