TWI720365B - Graphene-mediated metal-plated polymer article and production method - Google Patents

Graphene-mediated metal-plated polymer article and production method Download PDF

Info

Publication number
TWI720365B
TWI720365B TW107140377A TW107140377A TWI720365B TW I720365 B TWI720365 B TW I720365B TW 107140377 A TW107140377 A TW 107140377A TW 107140377 A TW107140377 A TW 107140377A TW I720365 B TWI720365 B TW I720365B
Authority
TW
Taiwan
Prior art keywords
graphene
polymer
layer
metal
sheets
Prior art date
Application number
TW107140377A
Other languages
Chinese (zh)
Other versions
TW201922880A (en
Inventor
林怡君
李曉燕
鍾耀德
阿茹娜 扎姆
博增 張
Original Assignee
美商奈米技術儀器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/813,996 external-priority patent/US20190144621A1/en
Priority claimed from US15/914,224 external-priority patent/US10730070B2/en
Priority claimed from US15/922,024 external-priority patent/US11332830B2/en
Application filed by 美商奈米技術儀器公司 filed Critical 美商奈米技術儀器公司
Publication of TW201922880A publication Critical patent/TW201922880A/en
Application granted granted Critical
Publication of TWI720365B publication Critical patent/TWI720365B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Abstract

Provided is a surface-metalized polymer article comprising a polymer component having a surface, a first layer of multiple graphene sheets, multiple functionalized graphene sheets having a first chemical functional group, multiple functionalized carbon nanotubes having a second chemical group functional group, or a combination, which are coated on the polymer component surface, and a second layer of a metal deposited on the first layer, wherein the multiple functionalized graphene sheets may contain single-layer or few-layer graphene sheets and/or the multiple functionalized carbon nanotubes may contain single-walled or multiwalled carbon nanotubes, and wherein the multiple functionalized graphene sheets or functionalized carbon nanotubes are bonded to the polymer component surface with or without an adhesive resin.

Description

石墨烯介導的鍍金屬的聚合物製品及生產方法 Graphene-mediated metal-plated polymer product and production method

本揭露總體上涉及聚合物部件表面的金屬化領域,並且更具體地,涉及石墨烯-和/或碳奈米管-實現的鍍金屬的聚合物製品、其生產方法、和包含其的產品。 The present disclosure generally relates to the field of metallization of the surface of polymer parts, and more specifically, to graphene- and/or carbon nanotube-realized metal-plated polymer products, their production methods, and products containing the same.

金屬化塑膠通常用於裝飾目的。例如,將諸如丙烯腈-丁二烯-苯乙烯(ABS)和ABS-聚碳酸酯共混物的塑膠的表面金屬化以用於衛浴配件、汽車附件、傢俱、五金器具、珠寶和紐扣/旋鈕。這些製造製品可以被金屬化以賦予製品表面吸引人的外觀。 Metallized plastics are often used for decorative purposes. For example, metalizing the surface of plastics such as acrylonitrile-butadiene-styrene (ABS) and ABS-polycarbonate blends for sanitary fittings, car accessories, furniture, hardware, jewelry, and buttons/knobs . These manufactured products can be metalized to give the surface an attractive appearance.

此外,塑膠、橡膠和聚合物基質複合材料(例如纖維增強的或添加劑填充的熱塑性、熱固性和橡膠基質複合材料)也可以被金屬化以用於功能目的。例如,為了遮罩電磁干擾(EMI)可以進行基於塑膠的電子部件的金屬化。另外,聚合物部件的表面特性可以藉由金屬塗覆以受控方式改變。 In addition, plastic, rubber, and polymer matrix composites (such as fiber-reinforced or additive-filled thermoplastic, thermoset, and rubber matrix composites) can also be metalized for functional purposes. For example, to shield electromagnetic interference (EMI), plastic-based electronic components can be metallized. In addition, the surface properties of polymer parts can be changed in a controlled manner by metal coating.

由不導電聚合物(例如塑膠、橡膠、聚合物基質複合材料等)製成的製品可以藉由無電金屬化製程金屬化。在典型的製程中,首先清潔和蝕刻製品,然後用貴金屬(例如鈀)處理,並且最後在金屬化溶液中金屬化。蝕刻步驟典型地涉及使用鉻酸或鉻硫酸(chromosulfuric acid)。蝕刻步驟用於藉由改善 的表面潤濕性使製品表面易於接受隨後處理步驟中藉由相應的溶液的隨後金屬化,並用於使最終沈積的金屬良好地黏附到聚合物表面。 Products made of non-conductive polymers (such as plastic, rubber, polymer matrix composite materials, etc.) can be metalized by an electroless metallization process. In a typical manufacturing process, the article is first cleaned and etched, then treated with a precious metal (such as palladium), and finally metalized in a metalizing solution. The etching step typically involves the use of chromic acid or chromosulfuric acid. The etching step is used to improve The surface wettability of the product makes the surface of the product easy to accept the subsequent metalization with the corresponding solution in the subsequent processing steps, and is used to make the final deposited metal adhere to the polymer surface well.

在蝕刻步驟中,使用鉻硫酸蝕刻聚合物製品的表面以形成表面微洞,金屬沈積並黏附於這些表面微洞中。在蝕刻步驟之後,借助於典型地包含貴金屬的活化試劑(或活化劑)活化聚合物部件表面,並且然後使用無電鍍進行金屬化。隨後,可以以電解方式沈積較厚的金屬層。 In the etching step, chromium sulfuric acid is used to etch the surface of the polymer product to form surface cavities, and metal is deposited and adhered to these surface cavities. After the etching step, the surface of the polymer part is activated by means of an activating agent (or activator) that typically contains a precious metal, and then metallization is performed using electroless plating. Subsequently, a thicker metal layer can be deposited electrolytically.

基於鉻硫酸的蝕刻溶液係有毒的,並且因此應在可能的情況下被替換。例如,基於鉻硫酸的蝕刻溶液可以用包含過錳酸鹽的蝕刻溶液替換。長期以來已經確立了在鹼性介質中使用過錳酸鹽進行作為電子電路載體的電路板的金屬化。由於在氧化中產生的六價態(錳酸鹽)係水溶性的並且在鹼性條件下具有足夠的穩定性,因此類似於三價鉻,錳酸鹽可以被以電解方式氧化回原始氧化劑,在這種情況下是過錳酸鹽。對於ABS塑膠的金屬化,已發現鹼性過錳酸鹽溶液係不合適的,因為以這種方式不可能獲得在金屬層與塑膠基材之間的足夠的黏附強度。該黏附強度在“剝離測試”中測定,並且應至少具有0.4N/mm的值。 Etching solutions based on chromium sulfuric acid are toxic and should therefore be replaced when possible. For example, an etching solution based on chromium sulfuric acid can be replaced with an etching solution containing permanganate. It has been established for a long time that permanganate is used in alkaline medium for metallization of circuit boards as electronic circuit carriers. Since the hexavalent state (manganate) produced in oxidation is water-soluble and has sufficient stability under alkaline conditions, similar to trivalent chromium, manganate can be electrolytically oxidized back to the original oxidant. In this case it is permanganate. For the metallization of ABS plastics, alkaline permanganate solutions have been found to be inappropriate, because it is impossible to obtain sufficient adhesion strength between the metal layer and the plastic substrate in this way. The adhesion strength is determined in the "peel test" and should have a value of at least 0.4 N/mm.

作為鉻硫酸的替代物,WO 2009/023628 A2提出了使用包含鹼金屬過錳酸鹽的強酸性溶液。該溶液在40-85重量%的磷酸中含有約20g/l的鹼金屬過錳酸鹽。此類溶液形成難以除去的膠體錳(IV)物種。此外,膠體也難以形成品質優良的塗層。為了解決該問題,WO 2009/023628 A2提出了使用不含任何鹼金屬或鹼土金屬離子的錳(VII)源。然而,此類錳(VII)源的製備係昂貴且不方便的。 As an alternative to chromium sulfuric acid, WO 2009/023628 A2 proposes the use of a strong acid solution containing alkali metal permanganate. The solution contains about 20 g/l of alkali metal permanganate in 40-85% by weight of phosphoric acid. Such solutions form colloidal manganese (IV) species that are difficult to remove. In addition, colloids are also difficult to form high-quality coatings. In order to solve this problem, WO 2009/023628 A2 proposes to use a manganese (VII) source that does not contain any alkali metal or alkaline earth metal ions. However, the preparation of such manganese (VII) sources is expensive and inconvenient.

因此,迫切需要在不使用鉻酸、鉻硫酸或鹼金屬過錳酸鹽的情況下進行聚合物部件表面的工業規模金屬化。 Therefore, there is an urgent need for industrial-scale metallization of the surface of polymer parts without the use of chromic acid, chromic sulfuric acid or alkali metal permanganate.

先前技術金屬化製程的另一個主要問題係以下觀點:在蝕刻步驟之 後,聚合物部件表面必須借助於活化試劑活化,該活化試劑典型地包含貴金屬(例如鈀)。已知貴金屬係稀有且昂貴的。在替代性製程[L.Naruskevicius等人“Process for metallizing a plastic surface”[用於金屬化塑膠表面的製程],美國專利案號6712948(2004年3月30日)]中,將經化學蝕刻的塑膠表面用含有鈷鹽、銀鹽、錫鹽、或鉛鹽的金屬鹽溶液處理。然而,經活化的塑膠表面必須用硫化物溶液進一步處理。整個製程緩慢、繁瑣且昂貴。 Another major problem of the prior art metallization process is the following point of view: In the etching step Later, the surface of the polymer part must be activated by means of an activating agent, which typically contains a precious metal (e.g. palladium). It is known that precious metals are rare and expensive. In an alternative process [L. Naruskevicius et al. "Process for metallizing a plastic surface" [process for metallizing a plastic surface], US Patent No. 6712948 (March 30, 2004)], the chemically etched The plastic surface is treated with a metal salt solution containing cobalt salt, silver salt, tin salt, or lead salt. However, the activated plastic surface must be further treated with a sulfide solution. The entire process is slow, cumbersome and expensive.

因此,另一迫切需要係,在活化試劑中不使用昂貴的貴金屬或者如果全部可能的話甚至不使用活化步驟的情況下進行聚合物部件表面的工業規模金屬化。 Therefore, another urgent need is to perform industrial-scale metallization of the surface of polymer parts without using expensive noble metals in the activation reagent or even without using an activation step if all possible.

本申請要求2017年11月15日提交的美國專利申請案號15/813,996、2018年3月7日提交的美國專利申請案號15/914,224和2018年3月15日提交的美國專利申請案號15/922,024的優先權,這些專利申請特此藉由援引方式結合。 This application requires U.S. patent application number 15/813,996 filed on November 15, 2017, U.S. patent application number 15/914,224 filed on March 7, 2018, and U.S. patent application number filed on March 15, 2018 The priority of 15/922,024, these patent applications are hereby incorporated by reference.

本揭露提供了一種表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件;塗覆在該聚合物部件表面上的多個石墨烯片,即,具有第一化學官能基的官能化石墨烯片,具有第二化學官能基(與該第一官能基相同或不同)的多個官能化碳奈米管,或其組合的第一層;以及沈積在該第一層上的被鍍金屬的第二層,其中該多個官能化石墨烯片可包含單層或少層石墨烯片或該多個官能化碳奈米管包含單壁或多壁碳奈米管,並且其中該多個官能化石墨烯片或官能化碳奈米管在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面上。該第一層具有從0.34nm至30μm(較佳的是從1nm至1μm,並且進一步較佳的是從1nm至100nm)的厚度。該第二層較佳的是具有從0.5nm至1.0mm,並且更較佳的是從1nm至10μm的厚度。使用也在本文描述的出人意料地 簡單且有效的方法,可以輕鬆容易地生產這種鍍金屬的聚合物製品。 The present disclosure provides a polymer product with a metalized surface, the polymer product comprising: a polymer part having a surface; a plurality of graphene sheets coated on the surface of the polymer part, that is, having a first chemical functional group A functionalized graphene sheet, a first layer of a plurality of functionalized carbon nanotubes with a second chemical functional group (same or different from the first functional group), or a combination thereof; and deposited on the first layer The metal-plated second layer, wherein the plurality of functionalized graphene sheets may include single-layer or few-layer graphene sheets or the plurality of functionalized carbon nanotubes include single-wall or multi-wall carbon nanotubes, and The plurality of functionalized graphene sheets or functionalized carbon nanotubes are bonded to the surface of the polymer component with or without a binder resin. The first layer has a thickness of from 0.34 nm to 30 μm (preferably from 1 nm to 1 μm, and further preferably from 1 nm to 100 nm). The second layer preferably has a thickness from 0.5 nm to 1.0 mm, and more preferably from 1 nm to 10 μm. The unexpected use is also described in this article A simple and effective method can easily and easily produce such metal-plated polymer products.

在一些實施方式中,第一或第二化學官能基選自烷基或芳基矽烷、烷基或芳烷基基團、羥基基團、羧基基團、胺基團、磺酸基(sulfonate group)(--SO3H)、醛基(aldehydic group)、醌基(quinoidal)、碳氟化合物、或其組合。 In some embodiments, the first or second chemical functional group is selected from alkyl or aryl silane, alkyl or aralkyl group, hydroxyl group, carboxyl group, amine group, sulfonate group ) ( --SO 3 H), aldehydic group, quinoidal, fluorocarbon, or a combination thereof.

可替代地,該第一或第二官能基包括疊氮化合物的衍生物,該疊氮化合物選自由以下各項組成的組:2-疊氮基乙醇,3-疊氮基丙-1-胺,4-(2-疊氮基乙氧基)-4-側氧基丁酸,2-疊氮基乙基-2-溴-2-甲基丙酸酯,氯甲酸酯,疊氮甲酸酯(azidocarbonate),二氯碳烯,碳烯,芳炔,氮烯,(R-)-氧基羰基氮烯,其中R=以下基團中的任一個:

Figure 107140377-A0305-02-0007-9
及其組合。 Alternatively, the first or second functional group includes a derivative of an azide compound selected from the group consisting of: 2-azidoethanol, 3-azidoprop-1-amine , 4-(2-azidoethoxy)-4-oxobutanoic acid, 2-azidoethyl-2-bromo-2-methylpropionate, chloroformate, methyl azide Ester (azidocarbonate), dichlorocarbene, carbene, aryne, azene, (R-)-oxycarbonyl azene, where R=any of the following groups:
Figure 107140377-A0305-02-0007-9
And its combination.

在某些實施方式中,該第一或第二官能基選自由羥基、過氧化物、醚、酮基和醛組成的組。在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2--)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z 係羧酸根或三氟乙酸根、及其組合。 In certain embodiments, the first or second functional group is selected from the group consisting of hydroxyl, peroxide, ether, ketone, and aldehyde. In some embodiments, the functionalizing agent contains a functional group selected from the group consisting of SO 3 H, COOH, NH 2 , OH, R'CHOH, CHO, CN, COCl, halogen Root (halide), COSH, SH, COOR', SR', SiR' 3 , Si(--OR'--) y R'3 -y , Si(--O--SiR' 2 --)OR' , R", Li, AlR' 2 , Hg--X, TlZ 2 and Mg--X; wherein y is an integer equal to or less than 3, and R'is hydrogen, alkyl, aryl, cycloalkyl or aralkyl Group, cyclic aryl or poly(alkyl ether), R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl, fluoroaralkyl or cyclic aryl, X is halide, and Z is Carboxylate or trifluoroacetate, and combinations thereof.

該第一或第二官能基可選自由以下各項組成的組:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、環脂族胺、芳族胺、酸酐、酮亞胺、二伸乙基三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、及其組合。 The first or second functional group may be selected from the group consisting of: amidoamine, polyamide, aliphatic amine, modified aliphatic amine, cycloaliphatic amine, aromatic amine, acid anhydride, ketone Amine, diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), polyethylenepolyamine, polyamine epoxy adduct, phenol hardener , Non-brominated curing agent, non-amine curing agent, and combinations thereof.

在一些實施方式中,該第一或第二官能基可選自:OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原或酶底物、酶抑制劑或酶底物的過渡態類似物的官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、(--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。 In some embodiments, the first or second functional group can be selected from: OY, NHY, O=C--OY, P=C--NR'Y, O=C--SY, O=C-- Y, --CR'1--OY, N'Y or C'Y, and Y is protein, peptide, amino acid, enzyme, antibody, nucleotide, oligonucleotide, antigen or enzyme substrate, enzyme The functional group of the transition state analog of the inhibitor or enzyme substrate or selected from R'--OH, R'--NR' 2 , R'SH, R'CHO, R'CN, R'X, R'N + (R ') 3 X - , R'SiR' 3, R'Si (- OR '-) y R' 3-y, R'Si (- O - SiR '2 -) OR' , R'--R”, R'--N--CO, (C 2 H 4 O--) w H, ( --C 3 H 6 O--) w H, ( --C 2 H 4 O) w --R', (C 3 H 6 O) w --R', R', and w is an integer greater than 1 and less than 200.

該摻雜石墨烯較佳的是包含氮摻雜的、硼摻雜的、磷摻雜的石墨烯、或其組合。 The doped graphene preferably includes nitrogen-doped, boron-doped, phosphorus-doped graphene, or a combination thereof.

表面金屬化的聚合物製品可選自水龍頭、淋浴頭、管子、管道、連接器、適配器、水槽(例如廚房或浴室水槽)、浴缸蓋、壺嘴、水槽蓋、浴室附件、或廚房附件。 The metalized polymer product can be selected from faucets, shower heads, pipes, pipes, connectors, adapters, sinks (such as kitchen or bathroom sinks), bathtub covers, spouts, sink covers, bathroom accessories, or kitchen accessories.

在某些實施方式中,石墨烯片包含原生石墨烯,並且第一層包含將石墨烯片化學結合到聚合物部件表面的黏合劑樹脂。在某些替代性實施方式中,石墨烯片包含具有從0.01重量%至20重量%的非碳元素含量的非原生石墨烯材料,並且這些非碳元素包括選自氧、氟、氯、溴、碘、氮、氫、或硼的元素。 In some embodiments, the graphene sheet includes native graphene, and the first layer includes a binder resin that chemically bonds the graphene sheet to the surface of the polymer component. In some alternative embodiments, the graphene sheet comprises a non-native graphene material having a non-carbon element content of from 0.01% to 20% by weight, and these non-carbon elements include those selected from oxygen, fluorine, chlorine, bromine, Elements of iodine, nitrogen, hydrogen, or boron.

聚合物部件可包含塑膠、橡膠、熱塑性彈性體、聚合物基質複合材料、橡膠基質複合材料、或其組合。在某些實施方式中,聚合物部件包含熱塑性塑膠、熱固性樹脂、互穿網路、橡膠、熱塑性彈性體、天然聚合物、或其組 合。在某些較佳的實施方式中,聚合物部件包含選自以下各項的塑膠:丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丙烯腈共聚物(SAN)、聚碳酸酯、聚醯胺或尼龍、聚苯乙烯、高抗沖聚苯乙烯(HIPS)、聚丙烯酸酯、聚乙烯、聚丙烯、聚縮醛、聚酯、聚醚、聚醚碸、聚醚醚酮(PEEK)、聚碸、聚苯醚(PPO)、聚氯乙烯(PVC)、聚醯亞胺、聚醯胺醯亞胺、聚氨酯、聚脲、或其組合。 The polymer component may include plastic, rubber, thermoplastic elastomer, polymer matrix composite material, rubber matrix composite material, or a combination thereof. In certain embodiments, the polymer component includes thermoplastics, thermosetting resins, interpenetrating networks, rubber, thermoplastic elastomers, natural polymers, or combinations thereof. Together. In some preferred embodiments, the polymer component comprises a plastic selected from the group consisting of: acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), polycarbonate Ester, polyamide or nylon, polystyrene, high impact polystyrene (HIPS), polyacrylate, polyethylene, polypropylene, polyacetal, polyester, polyether, polyether ether, polyether ether ketone (PEEK), polyethere, polyphenylene oxide (PPO), polyvinyl chloride (PVC), polyimide, polyimide, polyurethane, polyurea, or a combination thereof.

在表面金屬化的聚合物製品中,被鍍金屬較佳的是選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、銠、其合金、或其組合。對可鍍金屬的類型沒有限制。 In polymer products with metallized surfaces, the metal to be plated is preferably selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, rhodium, alloys thereof, or combinations thereof. There is no restriction on the type of metal that can be plated.

石墨烯片可以進一步用催化金屬的奈米級顆粒或塗層(具有從0.5nm至100nm的直徑或厚度)進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合,並且其中該催化金屬在化學組成上與被鍍金屬不同。 The graphene sheet can be further modified with nano-scale particles or coatings (having a diameter or thickness from 0.5nm to 100nm) of a catalytic metal selected from the group consisting of cobalt, nickel, copper, iron, manganese, tin, zinc, Lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, and wherein the catalytic metal is chemically different from the metal to be plated.

在某些實施方式中,聚合物部件表面在沈積有石墨烯片的第一層之前僅含具有的直徑或深度為<0.1μm的小開口或孔。 In some embodiments, the surface of the polymer component only contains small openings or holes with a diameter or depth of <0.1 μm before depositing the first layer of graphene sheet.

在某些實施方式中,將多個石墨烯片用黏合劑樹脂結合到聚合物部件表面,具有從1/5000至1/10、較佳的是從1/1000至1/100的黏合劑與石墨烯重量比。 In some embodiments, a plurality of graphene sheets are bonded to the surface of the polymer part with an adhesive resin, with an adhesive and a resin ranging from 1/5000 to 1/10, preferably from 1/1000 to 1/100. Graphene weight ratio.

本揭露還提供了一種生產表面金屬化的聚合物製品的方法,該方法包括:(a)對聚合物部件的表面進行化學、物理或機械處理以製備經表面處理的聚合物部件;(b)提供包含分散在液體介質中的多個石墨烯片的石墨烯分散體,使該經表面處理的聚合物部件與該石墨烯分散體接觸並促進這些石墨烯片沈積到該經表面處理的聚合物部件的表面上,其中這些石墨烯片結合到該表面上以形成結合的石墨烯片的層;以及(c)在該結合的石墨烯片的層上化學、物理、電化學或電解地沈積金屬層,以形成該表面金屬化的聚合物製品。這些石墨烯 片可包含石墨烯、原生石墨烯、氧化石墨烯、非原生石墨烯、摻雜石墨烯、化學官能化石墨烯、及其組合。 The present disclosure also provides a method for producing a polymer product with a metalized surface, the method comprising: (a) chemically, physically or mechanically treating the surface of the polymer part to prepare a surface-treated polymer part; (b) Provide a graphene dispersion comprising a plurality of graphene sheets dispersed in a liquid medium, contact the surface-treated polymer part with the graphene dispersion and promote the deposition of the graphene sheets onto the surface-treated polymer On the surface of the component, where the graphene sheets are bonded to the surface to form a layer of bonded graphene sheets; and (c) depositing metal chemically, physically, electrochemically, or electrolytically on the layer of the bonded graphene sheets Layer to form a metalized polymer product on the surface. These graphenes The sheet may include graphene, native graphene, graphene oxide, non-native graphene, doped graphene, chemically functionalized graphene, and combinations thereof.

在某些實施方式中,步驟(a)包括使聚合物部件表面經受研磨處理、蝕刻處理、或其組合的步驟。在一些實施方式中,步驟(a)包括使該聚合物部件表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟。 In some embodiments, step (a) includes the step of subjecting the surface of the polymer component to a grinding process, an etching process, or a combination thereof. In some embodiments, step (a) includes the step of subjecting the surface of the polymer component to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof.

較佳的是,步驟(a)包括在不使用鉻酸或鉻硫酸的情況下使聚合物部件表面經受蝕刻處理的步驟。更較佳的是,步驟(a)包括使聚合物部件表面在溫和蝕刻條件下經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟,其中蝕刻在足夠低的溫度下進行足夠短的時間段,以便不產生具有大於0.1μm的平均尺寸的微洞。 Preferably, step (a) includes a step of subjecting the surface of the polymer part to an etching treatment without using chromic acid or chromic sulfuric acid. More preferably, step (a) includes the step of subjecting the surface of the polymer part to an etching treatment using an etchant selected from an acid, an oxidizer, a metal salt, or a combination thereof under mild etching conditions, wherein the etching is performed at a sufficiently low temperature The temperature is low enough for a short period of time so as not to produce micro-holes with an average size greater than 0.1 μm.

石墨烯片可以進一步用具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。 The graphene sheet can be further modified with nano-scale particles or coatings of catalytic metal having a diameter or thickness ranging from 0.5nm to 100nm, the catalytic metal being selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead , Bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof.

在某些實施方式中,步驟(b)包括將經表面處理的聚合物部件浸泡或浸漬在石墨烯分散體中,並且從該石墨烯分散體中移出該經表面處理的聚合物部件,以實現石墨烯片沈積到該經表面處理的聚合物部件的表面上,其中這些石墨烯片結合到該表面上以形成結合的石墨烯片的層。可替代地,可以簡單地將石墨烯分散體噴塗在聚合物部件表面上,使液體組分蒸發,並使黏合劑(如果存在的話)固化或凝固。 In some embodiments, step (b) includes immersing or immersing the surface-treated polymer part in the graphene dispersion, and removing the surface-treated polymer part from the graphene dispersion to achieve Graphene sheets are deposited on the surface of the surface-treated polymer part, wherein the graphene sheets are bonded to the surface to form a layer of bonded graphene sheets. Alternatively, the graphene dispersion can be simply sprayed onto the surface of the polymer part to allow the liquid components to evaporate and the binder (if present) to solidify or solidify.

在所揭露的方法中,步驟(c)可以包括將該聚合物部件浸泡在金屬化浴中。在較佳的程序中,步驟(c)包括將含有結合的多個官能化石墨烯片或碳奈米管的層的聚合物部件浸漬在含有溶解在液體介質中的金屬鹽的化學鍍浴中並且從中退出以實現該聚合物部件的金屬化的步驟。 In the disclosed method, step (c) may include immersing the polymer component in a metalizing bath. In a preferred procedure, step (c) includes immersing the polymer part containing the combined layers of a plurality of functionalized graphene sheets or carbon nanotubes in an electroless plating bath containing a metal salt dissolved in a liquid medium And withdraw from it to achieve the step of metallization of the polymer component.

在某些實施方式中,石墨烯分散體進一步包含黏合劑樹脂,具有從1/5000至1/10的黏合劑與石墨烯重量比。 In some embodiments, the graphene dispersion further includes a binder resin having a weight ratio of binder to graphene ranging from 1/5000 to 1/10.

可替代地,該聚合物部件表面不經受預處理(與先前技術方法中通常所需的化學蝕刻步驟形成對比)。此種生產表面金屬化的聚合物製品的方法包括:(A)提供包含分散在液體介質中的多個石墨烯片的石墨烯分散體,使該聚合物部件表面與該石墨烯分散體接觸並促進這些石墨烯片沈積到該聚合物部件的表面上,其中這些石墨烯片結合到該表面上以形成結合的石墨烯片的層;以及(B)在該結合的石墨烯片的層上化學、物理、電化學或電解地沈積金屬層,以形成該表面金屬化的聚合物製品。 Alternatively, the surface of the polymer part is not subjected to pretreatment (in contrast to the chemical etching step normally required in prior art methods). The method for producing a polymer product with a metallized surface includes: (A) providing a graphene dispersion containing a plurality of graphene sheets dispersed in a liquid medium, contacting the surface of the polymer component with the graphene dispersion and Facilitate the deposition of the graphene sheets onto the surface of the polymer component, wherein the graphene sheets are bonded to the surface to form a layer of bonded graphene sheets; and (B) chemically on the layer of the bonded graphene sheets , Physically, electrochemically or electrolytically depositing a metal layer to form a polymer product with a metalized surface.

石墨烯片可以進一步用具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層進行修飾,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。 The graphene sheet can be further modified with nano-scale particles or coatings of catalytic metal having a diameter or thickness ranging from 0.5nm to 100nm, the catalytic metal being selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead , Bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof.

石墨烯分散體可進一步包含黏合劑樹脂,具有從1/5000至1/10的黏合劑與石墨烯重量比。 The graphene dispersion may further include a binder resin having a weight ratio of binder to graphene from 1/5000 to 1/10.

液體介質可以包含溶解在所述液體介質中的過錳酸、磷酸、硝酸、或其組合。在某些實施方式中,液體介質含有溶解在其中的酸、氧化劑、金屬鹽、或其組合。 The liquid medium may include permanganic acid, phosphoric acid, nitric acid, or a combination thereof dissolved in the liquid medium. In certain embodiments, the liquid medium contains an acid, an oxidizing agent, a metal salt, or a combination thereof dissolved therein.

步驟(A)可包括將經表面處理的聚合物部件浸泡或浸漬在石墨烯分散體中,並且從該石墨烯分散體中移出該經表面處理的聚合物部件,以實現石墨烯片沈積到該經表面處理的聚合物部件的表面上,其中石墨烯片結合到該表面上以形成結合的石墨烯片的層。 Step (A) may include immersing or immersing the surface-treated polymer part in the graphene dispersion, and removing the surface-treated polymer part from the graphene dispersion, so as to realize the deposition of the graphene sheet on the graphene dispersion. On the surface of the surface-treated polymer part, where graphene sheets are bonded to the surface to form a layer of bonded graphene sheets.

步驟(B)可以包括將該聚合物部件浸泡在金屬化浴中以完成化學鍍或無電鍍。沈積的石墨烯片的高導電性使得能夠在石墨烯塗覆的聚合物部件表面上電鍍一個或多個金屬層。可替代地,可以選擇使用物理氣相沈積、濺射、 電漿沈積等來完成最終的金屬化程序。 Step (B) may include immersing the polymer part in a metalizing bath to complete electroless plating or electroless plating. The high conductivity of the deposited graphene sheet enables the electroplating of one or more metal layers on the surface of the graphene-coated polymer part. Alternatively, physical vapor deposition, sputtering, Plasma deposition and so on to complete the final metallization process.

本揭露還提供了一種用於生產表面金屬化的聚合物製品的連續方法。該方法包括:(a)將聚合物製品連續浸泡到包含分散在液體介質中的多個石墨烯片的石墨烯分散體中持續一段浸泡時間,並且然後將所述聚合物製品從該分散體中退出,從而使得石墨烯片能夠沈積到該聚合物製品的表面上以形成石墨烯附著的聚合物製品;(b)連續地將該石墨烯附著的聚合物製品移動到乾燥或碳奈米管(CNT)加熱區,以使石墨烯片能夠結合到該表面上以形成石墨烯覆蓋的聚合物製品;以及(c)將該石墨烯覆蓋的聚合物製品連續移動到金屬化區中,在該金屬化區中,將金屬層化學、物理、電化學或電解地沈積到該石墨烯覆蓋的聚合物製品的表面上,以形成該表面金屬化的聚合物製品。 The present disclosure also provides a continuous method for producing polymer products with metalized surfaces. The method includes: (a) continuously immersing a polymer article into a graphene dispersion containing a plurality of graphene sheets dispersed in a liquid medium for a period of soaking time, and then removing the polymer article from the dispersion Exit, so that the graphene sheet can be deposited on the surface of the polymer product to form a graphene-attached polymer product; (b) continuously move the graphene-attached polymer product to a dry or carbon nanotube ( CNT) heating zone to enable graphene sheets to be bonded to the surface to form a graphene-covered polymer product; and (c) the graphene-covered polymer product is continuously moved into the metallization zone, where the metal In the chemical zone, a metal layer is chemically, physically, electrochemically or electrolytically deposited on the surface of the graphene-covered polymer product to form the polymer product with the surface metallization.

在某些較佳的實施方式中,該方法進一步包括在步驟(a)之前的將聚合物製品連續移動到表面處理區中以處理該聚合物製品表面的額外步驟。該額外步驟可包括使該聚合物製品表面經受研磨處理、蝕刻處理、或其組合。在某些實施方式中,該額外步驟包括使該聚合物製品表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理。在某些較佳的實施方式中,該額外步驟包括使該聚合物製品表面經受不使用鉻酸或鉻硫酸進行的蝕刻處理。 In some preferred embodiments, the method further includes an additional step of continuously moving the polymer article to the surface treatment zone to treat the surface of the polymer article before step (a). The additional step may include subjecting the surface of the polymer article to a grinding process, an etching process, or a combination thereof. In certain embodiments, the additional step includes subjecting the surface of the polymer article to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof. In certain preferred embodiments, the additional step includes subjecting the surface of the polymer article to an etching treatment that does not use chromic acid or chromic sulfuric acid.

在某些實施方式中,該額外步驟包括使該聚合物製品表面經受在溫和蝕刻條件下使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理,其中蝕刻在足夠低的溫度下進行足夠短的時間段,以便不產生具有大於0.1μm的平均尺寸的微洞。 In some embodiments, the additional step includes subjecting the surface of the polymer article to an etching treatment under mild etching conditions using an etchant selected from the group consisting of acids, oxidants, metal salts, or combinations thereof, wherein the etching is performed at a sufficiently low temperature. The temperature is carried out for a short enough period of time so as not to generate micro-holes having an average size greater than 0.1 μm.

該方法可進一步包括用具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層對這些石墨烯片進行修飾的步驟,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。 The method may further include the step of modifying the graphene sheets with nano-scale particles or coatings of catalytic metal having a diameter or thickness ranging from 0.5 nm to 100 nm, the catalytic metal being selected from the group consisting of cobalt, nickel, copper, iron, Manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof.

液體介質可以包含溶解在該液體介質中的過錳酸、磷酸、硝酸、或其組合。該液體介質可以包含溶解在該液體介質中的酸、氧化劑、金屬鹽、或其組合。 The liquid medium may include permanganic acid, phosphoric acid, nitric acid, or a combination thereof dissolved in the liquid medium. The liquid medium may include an acid, an oxidizing agent, a metal salt, or a combination thereof dissolved in the liquid medium.

在某些實施方式中,石墨烯分散體進一步包含黏合劑樹脂,具有從1/5000至1/10的黏合劑與石墨烯重量比。 In some embodiments, the graphene dispersion further includes a binder resin having a weight ratio of binder to graphene ranging from 1/5000 to 1/10.

本發明還提供了用於聚合物表面的金屬化的石墨烯分散體。在某些實施方式中,該石墨烯或碳奈米管分散體包含分散在液體介質中的多個官能化石墨烯片(具有第一化學官能基)和/或官能化碳奈米管(具有與該第一官能基相同或不同的第二化學官能基),其中該多個石墨烯片包含單層或少層石墨烯片或該多個官能化碳奈米管包含單壁或多壁碳奈米管,並且其中該石墨烯或碳奈米管分散體進一步包含選自以下的一種或多種物種:(i)溶解或分散在該液體介質中的黏合劑樹脂,其中黏合劑與石墨烯或黏合劑與碳奈米管的重量比為從1/5000至1/10;(ii)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(iii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合;或(iv)其組合。較佳的是,石墨烯分散體或CNT分散體僅含物種(i),而不含(ii)或(iii)。 The present invention also provides metallized graphene dispersions for polymer surfaces. In some embodiments, the graphene or carbon nanotube dispersion comprises a plurality of functionalized graphene sheets (having a first chemical functional group) and/or functionalized carbon nanotubes (having a A second chemical functional group that is the same as or different from the first functional group), wherein the plurality of graphene sheets comprise single-layer or few-layer graphene sheets or the plurality of functionalized carbon nanotubes comprise single-wall or multi-wall carbon Nanotubes, and wherein the graphene or carbon nanotube dispersion further comprises one or more species selected from the following: (i) a binder resin dissolved or dispersed in the liquid medium, wherein the binder is combined with graphene or The weight ratio of the binder to the carbon nanotube is from 1/5000 to 1/10; (ii) an etchant selected from acid, oxidant, metal salt, or a combination thereof; (iii) having a diameter from 0.5nm to 100nm Or thickness of nano-scale particles or coatings of catalytic metal selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or Combination; or (iv) its combination. Preferably, the graphene dispersion or the CNT dispersion only contains species (i), and does not contain (ii) or (iii).

較佳的是,在石墨烯或CNT分散體中,催化金屬的奈米級顆粒或塗層沈積或修飾在多個官能化石墨烯片或多個官能化碳奈米管的表面上。 Preferably, in the graphene or CNT dispersion, nano-scale particles or coatings of catalytic metal are deposited or modified on the surface of multiple functionalized graphene sheets or multiple functionalized carbon nanotubes.

在石墨烯或CNT分散體中,酸可選自過錳酸、磷酸、硝酸、鉻酸、鉻硫酸或其組合。然而,其他更環境友好的酸諸如羧酸、乙酸和抗壞血酸係較佳的。 In the graphene or CNT dispersion, the acid may be selected from permanganic acid, phosphoric acid, nitric acid, chromic acid, chromium sulfuric acid, or a combination thereof. However, other more environmentally friendly acids such as carboxylic acid, acetic acid and ascorbic acid are preferred.

較佳的第一化學官能基或較佳的第二化學官能基已在本節的前面部分中討論過。 The preferred first chemical functional group or the preferred second chemical functional group have been discussed earlier in this section.

圖1示出用於生產氧化石墨烯片的最常用的製程之流程圖,該製程需要化學氧化/插層、沖洗和高溫膨化程序。 Figure 1 shows a flow chart of the most commonly used process for the production of graphene oxide sheets, which requires chemical oxidation/intercalation, washing, and high-temperature expansion procedures.

圖2示出金屬化聚合物製品表面的連續方法之流程圖。所有程序可以以連續方式進行。 Figure 2 shows a flow chart of a continuous method of metallizing the surface of a polymer article. All procedures can be performed in a continuous manner.

圖3為石墨烯介導的金屬化聚合物部件之示意圖 Figure 3 is a schematic diagram of graphene-mediated metallized polymer parts

下文包括貫穿本說明書使用的各種術語和短語的定義。 The following includes definitions of various terms and phrases used throughout this specification.

術語“石墨烯片”意指以下材料,該材料包含鍵合碳原子的一個或多個平面片,這些碳原子密集地填充在六方晶格中,其中碳原子藉由強面內共價鍵鍵合在一起,並且還包含貫穿內部的大部分的完整的環結構。較佳的是,至少80%的內部芳族鍵係完整的。在c-軸(厚度)方向上,這些石墨烯平面可以藉由凡得瓦力弱結合在一起。石墨烯片可在其邊緣或表面含有非碳原子,例如OH和COOH官能基。術語石墨烯片包括原生石墨烯、氧化石墨烯、還原的氧化石墨烯、鹵化石墨烯(包括氟化石墨烯和氯化石墨烯)、氮化石墨烯、氫化石墨烯、摻雜石墨烯、官能化石墨烯、及其組合。典型地,非碳元素占石墨烯片的0重量%至25重量%。氧化石墨烯可包含最多53重量%的氧。術語“摻雜石墨烯”涵蓋具有低於10%的非碳元素的石墨烯。該非碳元素可包括氫、氧、氮、鎂、鐵、硫、氟、溴、碘、硼、磷、鈉、及其組合。石墨烯片可包括單層石墨烯或少層石墨烯,其中少層石墨烯定義為由少於10個石墨烯平面形成的石墨烯片晶。石墨烯片還可以包括石墨烯奈米帶。“原生石墨烯”涵蓋具有基本上0%的非碳元素的石 墨烯片。“奈米石墨烯片晶”(NGP)係指具有從小於0.34nm(單層)至100nm(多層)的厚度的石墨烯片。 The term "graphene sheet" means a material that contains one or more flat sheets of bonded carbon atoms densely packed in a hexagonal lattice, in which the carbon atoms are bonded by strong in-plane covalent bonds Together, and also contains a complete ring structure that runs through most of the interior. Preferably, at least 80% of the internal aromatic bonds are intact. In the c-axis (thickness) direction, these graphene planes can be weakly joined together by Van der Waals force. Graphene sheets may contain non-carbon atoms, such as OH and COOH functional groups, on their edges or surfaces. The term graphene sheet includes native graphene, graphene oxide, reduced graphene oxide, halogenated graphene (including fluorinated graphene and chlorinated graphene), nitrided graphene, hydrogenated graphene, doped graphene, functional Graphene, and combinations thereof. Typically, non-carbon elements account for 0% to 25% by weight of the graphene sheet. Graphene oxide may contain up to 53% by weight of oxygen. The term "doped graphene" encompasses graphene with less than 10% of non-carbon elements. The non-carbon element may include hydrogen, oxygen, nitrogen, magnesium, iron, sulfur, fluorine, bromine, iodine, boron, phosphorus, sodium, and combinations thereof. The graphene sheet may include a single-layer graphene or a few-layer graphene, where the few-layer graphene is defined as a graphene sheet crystal formed by less than 10 graphene planes. The graphene sheet may also include graphene nanoribbons. "Native graphene" covers stone with essentially 0% non-carbon elements Ink vinyl film. "Nanographene sheet crystal" (NGP) refers to a graphene sheet having a thickness from less than 0.34nm (single layer) to 100nm (multilayer).

術語“大體上”及其變體被定義為在很大程度上但不一定完全是所指定的(如熟悉該項技術者所理解的),並且在一個非限制性實施方式中,大體上是指在參考範圍的10%以內、5%以內、1%以內、或0.5%以內的範圍。 The term "substantially" and its variants are defined as largely but not necessarily fully specified (as understood by those skilled in the art), and in a non-limiting embodiment, generally Refers to the range within 10%, within 5%, within 1%, or within 0.5% of the reference range.

從以下附圖、說明和實例,本發明的其他目的、特徵和優點可變得明顯。然而,應該理解的是,這些附圖、說明和實例雖然指明了本發明的具體實施方式,但是僅以說明的方式給出並且不意味著進行限制。在另外的實施方式中,來自具體實施方式的特徵可以與來自其他實施方式的特徵組合。 Other objects, features and advantages of the present invention may become apparent from the following drawings, descriptions and examples. However, it should be understood that although these drawings, descriptions and examples indicate specific embodiments of the present invention, they are only given in an illustrative manner and are not meant to be limiting. In other embodiments, features from specific embodiments may be combined with features from other embodiments.

本揭露提供了一種表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件;塗覆在該聚合物部件表面上的具有第一化學官能基的多個官能化石墨烯片、具有第二化學官能基的多個官能化碳奈米管、或兩者的組合的第一層;以及沈積在該第一層上的被鍍金屬的第二層,其中該多個官能化石墨烯片包含單層或少層石墨烯片和/或該多個官能化碳奈米管包含單壁或多壁碳奈米管,並且其中該多個官能化石墨烯片或官能化碳奈米管在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面上,如圖2所示。該第一層(石墨烯或CNT層)具有從0.34nm至30μm(較佳的是從1nm至1μm,並且進一步較佳的是從1nm至100nm)的厚度。該第二層(覆蓋金屬層)較佳的是具有從0.5nm至1.0mm、更較佳的是從1nm至10μm、並且最較佳的是從10nm至1μm的厚度。使用也在本文描述的出人意料地簡單且有效的方法,可以輕鬆容易地生產這種鍍金屬的聚合物製品。官能化的石墨烯片出人意料地能夠在不使用黏合劑樹脂的情況下結合到許多類型的聚合物部件表面。 The present disclosure provides a polymer product with a metalized surface, the polymer product comprising: a polymer part having a surface; a plurality of functionalized graphene sheets having a first chemical functional group coated on the surface of the polymer part , A first layer of a plurality of functionalized carbon nanotubes with a second chemical functional group, or a combination of the two; and a second layer of metal plated deposited on the first layer, wherein the plurality of functionalized The graphene sheet includes single-layer or few-layer graphene sheets and/or the plurality of functionalized carbon nanotubes include single-wall or multi-wall carbon nanotubes, and wherein the plurality of functionalized graphene sheets or functionalized carbon nanotubes The rice tube is bonded to the surface of the polymer part with or without binder resin, as shown in Figure 2. The first layer (graphene or CNT layer) has a thickness of from 0.34 nm to 30 μm (preferably from 1 nm to 1 μm, and further preferably from 1 nm to 100 nm). The second layer (covering metal layer) preferably has a thickness of from 0.5 nm to 1.0 mm, more preferably from 1 nm to 10 μm, and most preferably from 10 nm to 1 μm. This metal-plated polymer article can be easily and easily produced using the unexpectedly simple and effective method also described herein. Functionalized graphene sheets are surprisingly able to be bonded to the surface of many types of polymer parts without the use of binder resins.

在一些實施方式中,第一或第二化學官能基選自烷基或芳基矽烷、烷基或芳烷基基團、羥基基團、羧基基團、胺基團、磺酸基(sulfonate group) (--SO3H)、醛基(aldehydic group)、醌基(quinoidal)、碳氟化合物、或其組合。 In some embodiments, the first or second chemical functional group is selected from alkyl or aryl silane, alkyl or aralkyl group, hydroxyl group, carboxyl group, amine group, sulfonate group ) (--SO 3 H), aldehydic group, quinoidal, fluorocarbon, or a combination thereof.

可替代地,該第一或第二官能基包括疊氮化合物的衍生物,該疊氮化合物選自由以下各項組成的組:2-疊氮基乙醇,3-疊氮基丙-1-胺,4-(2-疊氮基乙氧基)-4-側氧基丁酸,2-疊氮基乙基-2-溴-2-甲基丙酸酯,氯甲酸酯,疊氮甲酸酯(azidocarbonate),二氯碳烯,碳烯,芳炔,氮烯,(R-)-氧基羰基氮烯,其中R=以下基團中的任一個:

Figure 107140377-A0305-02-0016-12
及其組合。 Alternatively, the first or second functional group includes a derivative of an azide compound selected from the group consisting of: 2-azidoethanol, 3-azidoprop-1-amine , 4-(2-azidoethoxy)-4-oxobutanoic acid, 2-azidoethyl-2-bromo-2-methylpropionate, chloroformate, methyl azide Ester (azidocarbonate), dichlorocarbene, carbene, aryne, azene, (R-)-oxycarbonyl azene, where R=any of the following groups:
Figure 107140377-A0305-02-0016-12
And its combination.

在某些實施方式中,該第一或第二官能基選自由羥基、過氧化物、醚、酮基和醛組成的組。在某些實施方式中,該官能化劑含有選自下組的官能基,該組由以下各項組成:SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根(halide)、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2--)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根、及其組合。 In certain embodiments, the first or second functional group is selected from the group consisting of hydroxyl, peroxide, ether, ketone, and aldehyde. In some embodiments, the functionalizing agent contains a functional group selected from the group consisting of SO 3 H, COOH, NH 2 , OH, R'CHOH, CHO, CN, COCl, halogen Root (halide), COSH, SH, COOR', SR', SiR' 3 , Si(--OR'--) y R'3 -y , Si(--O--SiR' 2 --)OR' , R", Li, AlR' 2 , Hg--X, TlZ 2 and Mg--X; wherein y is an integer equal to or less than 3, and R'is hydrogen, alkyl, aryl, cycloalkyl or aralkyl Group, cyclic aryl or poly(alkyl ether), R" is fluoroalkyl, fluoroaryl, fluorocycloalkyl, fluoroaralkyl or cyclic aryl, X is halide, and Z is Carboxylate or trifluoroacetate, and combinations thereof.

該第一或第二官能基可選自由以下各項組成的組:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、環脂族胺、芳族胺、酸酐、酮亞胺、二伸乙基 三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、及其組合。 The first or second functional group may be selected from the group consisting of: amidoamine, polyamide, aliphatic amine, modified aliphatic amine, cycloaliphatic amine, aromatic amine, acid anhydride, ketone Amine, diethylene Triamine (DETA), Triethylenetetramine (TETA), Tetraethylenepentamine (TEPA), Polyethylenepolyamine, Polyamine Epoxy Adduct, Phenol Hardener, Non-brominated Curing Agent , Non-amine curing agents, and combinations thereof.

在一些實施方式中,該第一或第二官能基可選自:OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原或酶底物、酶抑制劑或酶底物的過渡態類似物的官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、(--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。 In some embodiments, the first or second functional group can be selected from: OY, NHY, O=C--OY, P=C--NR'Y, O=C--SY, O=C-- Y, --CR'1--OY, N'Y or C'Y, and Y is protein, peptide, amino acid, enzyme, antibody, nucleotide, oligonucleotide, antigen or enzyme substrate, enzyme The functional group of the transition state analog of the inhibitor or enzyme substrate or selected from R'--OH, R'--NR' 2 , R'SH, R'CHO, R'CN, R'X, R'N + (R ') 3 X - , R'SiR' 3, R'Si (- OR '-) y R' 3-y, R'Si (- O - SiR '2 -) OR' , R'--R”, R'--N--CO, (C 2 H 4 O--) w H, ( --C 3 H 6 O--) w H, ( --C 2 H 4 O) w --R', (C 3 H 6 O) w --R', R', and w is an integer greater than 1 and less than 200.

本揭露還提供了一種金屬化聚合物表面(例如,不導電塑膠的表面)的方法。在該方法的範圍內,根據本揭露的實施方式,一個塑膠製品的塑膠表面或若干塑膠製品的塑膠表面被金屬化。 The present disclosure also provides a method for metalizing polymer surfaces (for example, surfaces of non-conductive plastics). Within the scope of the method, according to the embodiments of the present disclosure, the plastic surface of one plastic product or the plastic surfaces of several plastic products are metalized.

用金屬塗覆聚合物部件表面(也稱為聚合物電鍍或聚合物金屬化)變得越來越重要。藉由聚合物電鍍方法,生產出結合了聚合物和金屬的優點的層壓製件。與金屬零件相比,聚合物部件的使用可以實現明顯的重量減輕。聚合物模製品的電鍍通常為修飾目的、EMI遮罩或表面特性改性而進行。 Coating the surface of polymer parts with metal (also known as polymer plating or polymer metallization) is becoming more and more important. Through the polymer electroplating method, a laminate that combines the advantages of polymer and metal is produced. Compared with metal parts, the use of polymer parts can achieve significant weight savings. Electroplating of polymer moldings is usually performed for modification purposes, EMI masking, or surface property modification.

本節開始於用於生產金屬化塑膠製品的最常用的先前技術製程的說明。然後重點描述與該先前技術製程相關的問題。這之後討論克服了所有這些問題的本揭露的製程和所得產品。 This section starts with the description of the most common prior art process used to produce metallized plastic products. Then focus on the problems related to the prior art process. After that, the disclosed manufacturing process and the resulting product that overcome all these problems will be discussed.

在用於金屬化聚合物零件的先前技術製程中,這些零件通常固定在框架中並以特定的製程順序與多種不同的處理流體接觸。作為第一步驟,典型地對塑膠進行預處理以從表面除去雜質,諸如油脂。隨後,使用蝕刻處理使表面粗糙化以確保後續金屬層與聚合物表面的充分黏附。在蝕刻操作中,在塑膠表面上形成凹陷(例如表面開口或微洞)形式的均勻結構係特別重要的。隨後, 用活化劑處理經粗糙化的表面以形成催化表面用於隨後的化學金屬化或無電鍍。為此目的,使用生成離子的活化劑或膠體系統。 In the prior art manufacturing process for metallized polymer parts, these parts are usually fixed in a frame and in contact with a variety of different processing fluids in a specific process sequence. As the first step, the plastic is typically pretreated to remove impurities, such as grease, from the surface. Subsequently, an etching process is used to roughen the surface to ensure sufficient adhesion of the subsequent metal layer to the polymer surface. In the etching operation, it is particularly important to form a uniform structure in the form of depressions (such as surface openings or micro-holes) on the plastic surface. Subsequently, The roughened surface is treated with an activator to form a catalytic surface for subsequent chemical metallization or electroless plating. For this purpose, ion-generating activators or colloidal systems are used.

在先前技術程序中,首先用錫(II)離子處理用於用生成離子的系統來活化的塑膠表面,在該處理後產生牢固黏附的氧化錫水合物凝膠並且用水沖洗。在隨後用鈀鹽溶液處理中,藉由與錫(II)物種的氧化還原反應在表面上形成鈀核。這些鈀核對化學金屬化具有催化作用。對於用膠體系統活化,通常使用膠體鈀溶液,這些溶液藉由氯化鈀與氯化錫(II)在過量鹽酸存在下反應而形成。 In the prior art procedure, the plastic surface used for activation with the ion-generating system is first treated with tin (II) ions, after the treatment, a firmly adhered tin oxide hydrate gel is produced and rinsed with water. In the subsequent treatment with a palladium salt solution, a palladium nucleus is formed on the surface by an oxidation-reduction reaction with tin(II) species. These palladium nuclei have a catalytic effect on chemical metallization. For activation with colloidal systems, colloidal palladium solutions are usually used, which are formed by the reaction of palladium chloride and tin(II) chloride in the presence of excess hydrochloric acid.

在活化之後,典型地首先使用金屬化浴的亞穩溶液對塑膠零件進行化學金屬化。這些浴通常包含在水溶液中將以鹽的形式沈積的金屬和用於該金屬鹽的還原劑。當化學金屬化浴與塑膠表面上的金屬核(例如鈀種子)接觸時,藉由還原形成金屬,該金屬作為牢固黏附的層沈積在該表面上。化學金屬化步驟通常用於沈積銅、鎳或具有磷和/或硼的鎳合金。 After activation, the metastable solution of the metalization bath is typically used to chemically metalize the plastic part. These baths usually contain a metal to be deposited in the form of a salt in an aqueous solution and a reducing agent for the metal salt. When the chemical metallization bath comes into contact with a metal core (such as a palladium seed) on the plastic surface, metal is formed by reduction, and the metal is deposited on the surface as a firmly adhered layer. The chemical metallization step is generally used to deposit copper, nickel or nickel alloys with phosphorus and/or boron.

然後該化學金屬化的聚合物表面可以進一步電解地沈積有金屬層。典型地,在電化學施加所需的修飾性鉻層之前,進行銅層或另外的鎳層的電解沈積。 The chemically metallized polymer surface can then be further electrolytically deposited with a metal layer. Typically, electrolytic deposition of a copper layer or another nickel layer is performed before the electrochemical application of the required modified chromium layer.

存在與這種用於生產金屬化聚合物製品的先前技術製程相關的幾個主要問題: There are several major issues related to this prior art process used to produce metallized polymer articles:

1)該製程係繁瑣的,涉及許多步驟:預處理、化學蝕刻、活化、化學金屬化和多個金屬層的電解沈積(因此,多個步驟)。 1) The process is cumbersome and involves many steps: pretreatment, chemical etching, activation, chemical metallization, and electrolytic deposition of multiple metal layers (hence, multiple steps).

2)最常用的蝕刻劑係鉻-硫酸(chromium-sulfuric acid)或鉻硫酸(chromo-sulfuric acid)(硫酸中的三氧化鉻),特別是對於ABS(丙烯腈-丁二烯-苯乙烯共聚物)或聚碳酸酯而言。鉻-硫酸毒性很大,並且在蝕刻程序中、處理後和廢棄處置中需要特殊的防範措施。由於蝕刻處理中的化學過程(例如所用 鉻化合物的還原),鉻-硫酸蝕刻劑被用盡並且通常不可重複使用。 2) The most commonly used etchant is chromium-sulfuric acid or chromo-sulfuric acid (chromium trioxide in sulfuric acid), especially for ABS (acrylonitrile-butadiene-styrene copolymer).物) or polycarbonate. Chromium-sulfuric acid is very toxic and requires special precautions during the etching process, after treatment, and disposal. Due to the chemical process in the etching process (e.g. the used Reduction of chromium compounds), chromium-sulfuric acid etchant is used up and usually cannot be reused.

3)塑膠電鍍的關鍵製程步驟係產生微洞,以使金屬能夠黏附在塑膠表面上。這些微洞在後面的金屬化步驟中用作金屬核生長的起點。通常,這些微洞具有約0.1μm至10μm的尺寸。特別地,這些微洞顯示出在從0.1μm至10μm範圍內的深度(即,從塑膠表面朝向內部的程度)。不幸地,表面微洞可能是應力集中位點,這些位點會削弱塑膠部件的強度。 3) The key process step of plastic electroplating is to produce micro-holes so that the metal can adhere to the plastic surface. These micro-holes are used as the starting point for metal core growth in the subsequent metallization step. Generally, these microcavities have a size of about 0.1 μm to 10 μm. In particular, these micro-holes show a depth in the range from 0.1 μm to 10 μm (that is, the extent from the surface of the plastic toward the inside). Unfortunately, surface cavities may be stress concentration sites, which can weaken the strength of plastic parts.

4)在塑膠表面的蝕刻或粗糙化之後,首先用膠體鈀或生成離子的鈀活化表面。在膠體製程的情況下,這種活化之後是除去保護性錫膠體,或者在生成離子製程的情況下,這種活化之後是還原為元素鈀。隨後,將銅或鎳化學沈積在塑膠表面上作為導電層。在此之後,進行電鍍或金屬化。在實踐中,塑膠表面的這種直接金屬化僅適用於某些塑膠。如果藉由蝕刻塑膠表面不可能使塑膠充分粗糙化或形成合適的微洞,則不能保證金屬層與塑膠表面的功能地牢固的黏附。因此,在先前技術製程中,能夠被塗覆的塑膠的數量受到很大限制。 4) After etching or roughening the plastic surface, first activate the surface with colloidal palladium or ion-generating palladium. In the case of the colloidal process, this activation is followed by the removal of the protective tin colloid, or in the case of the ion generation process, the activation is followed by reduction to elemental palladium. Subsequently, copper or nickel is chemically deposited on the plastic surface as a conductive layer. After that, electroplating or metallization is performed. In practice, this direct metallization of the plastic surface is only suitable for certain plastics. If it is impossible to sufficiently roughen the plastic or form suitable micro-holes by etching the plastic surface, the functional and firm adhesion of the metal layer to the plastic surface cannot be ensured. Therefore, in the prior art manufacturing process, the amount of plastic that can be coated is greatly limited.

5)諸如鈀的貴金屬非常昂貴。 5) Noble metals such as palladium are very expensive.

本揭露提供了一種用於生產金屬化聚合物製品的石墨烯介導的方法。所揭露的方法克服了所有這些問題。 The present disclosure provides a graphene-mediated method for producing metallized polymer articles. The disclosed method overcomes all these problems.

在某些實施方式中,該方法包括:(a)視需要處理聚合物部件的表面以製備經表面處理的聚合物部件(該程序係視需要的,因為石墨烯分散體本身就能夠預處理聚合物表面);(b)提供包含分散在液體介質中的多個官能化石墨烯片或官能化CNT的石墨烯分散體或CNT分散體,使該經表面處理的聚合物部件與該石墨烯分散體或CNT分散體接觸,以及使得這些石墨烯片能夠沈積到該經表面處理的聚合物部件的表面上,其中這些官能化石墨烯片和/或CNT結合到該表面上以形成結合的石墨烯片的層;以及(c)在石墨烯/CNT結合的聚合物部件表面上化學、物理、電化學或電解地沈積金屬層,以形成表面金屬化的聚合 物製品。步驟(a)在所揭露的方法中係視需要的。 In some embodiments, the method includes: (a) optionally treating the surface of the polymer part to prepare a surface-treated polymer part (this procedure is optional because the graphene dispersion itself can pre-process the polymer物surface); (b) providing a graphene dispersion or CNT dispersion containing a plurality of functionalized graphene sheets or functionalized CNT dispersed in a liquid medium, so that the surface-treated polymer part is dispersed with the graphene Body or CNT dispersion contact, and enabling the graphene sheets to be deposited on the surface of the surface-treated polymer component, wherein the functionalized graphene sheets and/or CNTs are bonded to the surface to form bonded graphene And (c) depositing a metal layer chemically, physically, electrochemically or electrolytically on the surface of the graphene/CNT-bonded polymer component to form a surface metalized polymer Products. Step (a) is optional in the disclosed method.

作為實例,聚合物部件可選自聚乙烯、聚丙烯、聚丁烯、聚氯乙烯、聚碳酸酯、丙烯腈-丁二烯-苯乙烯(ABS)、聚酯、聚乙烯醇、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚苯醚(PPO)、聚甲基丙烯酸甲酯(PMMA)、其共聚物、其聚合物共混物、或其組合。該聚合物也可以選自酚醛樹脂、聚糠醇、聚丙烯腈、聚醯亞胺、聚醯胺、聚

Figure 107140377-A0305-02-0020-17
二唑、聚苯並
Figure 107140377-A0305-02-0020-18
唑、聚苯並二
Figure 107140377-A0305-02-0020-19
唑、聚噻唑、聚苯並噻唑、聚苯並二噻唑、聚(對伸苯基伸乙烯基)、聚苯並咪唑、聚苯並二咪唑、其共聚物、其聚合物共混物、或其組合。 As an example, the polymer component may be selected from polyethylene, polypropylene, polybutene, polyvinyl chloride, polycarbonate, acrylonitrile-butadiene-styrene (ABS), polyester, polyvinyl alcohol, polyvinylidene Vinyl fluoride (PVDF), polytetrafluoroethylene (PTFE), polyphenylene oxide (PPO), polymethyl methacrylate (PMMA), copolymers thereof, polymer blends thereof, or combinations thereof. The polymer can also be selected from phenolic resin, polyfurfuryl alcohol, polyacrylonitrile, polyimide, polyamide, poly
Figure 107140377-A0305-02-0020-17
Diazole, polybenzo
Figure 107140377-A0305-02-0020-18
Azole, polybenzodi
Figure 107140377-A0305-02-0020-19
Azole, polythiazole, polybenzothiazole, polybenzodithiazole, poly(paraphenylene vinylene), polybenzimidazole, polybenzimidazole, copolymers thereof, polymer blends thereof, or combination.

在某些實施方式中,從該製程中省略步驟(a),因為石墨烯分散體中的液體介質通常能夠從聚合物部件表面除去油脂和其他不希望的物種。石墨烯分散體中的一些液體介質可以進一步提供蝕刻效應以產生具有<0.1μm的深度的小表面凹陷(溫和蝕刻條件)。在這些情形下,整個製程只需要三個簡單的步驟。 In some embodiments, step (a) is omitted from the process because the liquid medium in the graphene dispersion is generally capable of removing grease and other undesirable species from the surface of the polymer part. Some liquid media in the graphene dispersion can further provide an etching effect to produce small surface depressions with a depth of <0.1 μm (mild etching conditions). In these situations, the entire process requires only three simple steps.

在某些實施方式中,步驟(a)可包括使聚合物部件表面經受研磨處理、蝕刻處理、或其組合的步驟。在一些實施方式中,步驟(a)包括使該聚合物部件表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟。較佳的是,步驟(a)包括在不使用鉻酸或鉻硫酸的情況下使聚合物部件表面經受蝕刻處理的步驟。更較佳的是,步驟(a)包括使聚合物部件表面在溫和蝕刻條件下經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟,其中蝕刻在足夠低的溫度下進行足夠短的時間段,以便不產生具有大於0.1μm的平均尺寸的微洞。 In some embodiments, step (a) may include the step of subjecting the surface of the polymer component to a grinding process, an etching process, or a combination thereof. In some embodiments, step (a) includes the step of subjecting the surface of the polymer component to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof. Preferably, step (a) includes a step of subjecting the surface of the polymer part to an etching treatment without using chromic acid or chromic sulfuric acid. More preferably, step (a) includes the step of subjecting the surface of the polymer part to an etching treatment using an etchant selected from an acid, an oxidizer, a metal salt, or a combination thereof under mild etching conditions, wherein the etching is performed at a sufficiently low temperature The temperature is low enough for a short period of time so as not to produce micro-holes with an average size greater than 0.1 μm.

本揭露中提到的溫和蝕刻意指“蝕刻”或用蝕刻溶液處理塑膠表面在低溫下和/或較短時間段內在低蝕刻溶液濃度下發生。當滿足前述三個條件之一時,可以實現溫和蝕刻條件。本揭露中提到的低溫意指最高溫度為40℃、較佳 的是<30℃、並且最較佳的是從15℃至25℃。在以上提及的低溫下,用蝕刻溶液進行預處理在3分鐘至15分鐘、較佳的是5分鐘至15分鐘、並且甚至更較佳的是5分鐘至10分鐘的時間段內進行。溫度越高,處理時間越短。然而,如果選擇的處理時間適當地短,則在超過40℃的溫度下也可以實現溫和蝕刻條件。根據本揭露的一個實施方式,蝕刻處理在40℃至95℃、較佳的是50℃至70℃的溫度下進行15秒至5分鐘、較佳的是0.5分鐘至3分鐘的處理時間。實際上,根據所用蝕刻溶液的類型來選擇製程溫度和/或製程時間。 The mild etching mentioned in this disclosure means that "etching" or treating the plastic surface with an etching solution occurs at a low temperature and/or at a low etching solution concentration in a short period of time. When one of the aforementioned three conditions is met, mild etching conditions can be achieved. The low temperature mentioned in this disclosure means that the maximum temperature is 40°C, preferably Is <30°C, and most preferably from 15°C to 25°C. At the above-mentioned low temperature, the pretreatment with the etching solution is performed in a period of 3 minutes to 15 minutes, preferably 5 minutes to 15 minutes, and even more preferably 5 minutes to 10 minutes. The higher the temperature, the shorter the processing time. However, if the selected treatment time is appropriately short, mild etching conditions can also be achieved at temperatures exceeding 40°C. According to an embodiment of the present disclosure, the etching treatment is performed at a temperature of 40° C. to 95° C., preferably 50° C. to 70° C., for a treatment time of 15 seconds to 5 minutes, preferably 0.5 minutes to 3 minutes. In fact, the process temperature and/or process time are selected according to the type of etching solution used.

溫和蝕刻還意味著,與以上提到的先前技術製程相反,不進行聚合物表面的粗糙化或聚合物表面中微洞的產生。根據先前技術製程用蝕刻產生的微洞通常具有在0.1μm至10μm的尺寸範圍內的直徑或深度。在本揭露中,對蝕刻條件進行調節,使得在聚合物表面中僅產生小的開口或孔,這些小的開口或孔具有<0.1μm、較佳的是<0.05μm的直徑並且尤其是深度。在此方面,深度意指從聚合物表面到聚合物內部的開口/通道的程度。因此,此處不進行先前技術製程情況下的經典意義上的蝕刻。在本揭露的其中消除了步驟(a)的製程中,石墨烯分散體中的液體介質通常可以產生具有<0.1μm的尺寸的開口或孔。與先前技術傳授內容所建議的相反,我們出人意料地觀察到,本揭露的石墨烯介導的金屬化方法不需要產生尺寸大於0.1μm的微洞。該方法即使在高度光滑的表面上也能工作。 Gentle etching also means that, contrary to the prior art process mentioned above, no roughening of the polymer surface or generation of micro-holes in the polymer surface is performed. The microcavities produced by etching according to the prior art process generally have a diameter or depth in the size range of 0.1 μm to 10 μm. In the present disclosure, the etching conditions are adjusted so that only small openings or holes are generated in the polymer surface, and these small openings or holes have a diameter and especially a depth of <0.1 μm, preferably <0.05 μm. In this respect, depth means the degree of openings/channels from the surface of the polymer to the inside of the polymer. Therefore, the classic etching in the case of the prior art process is not performed here. In the process of the present disclosure in which step (a) is eliminated, the liquid medium in the graphene dispersion can generally produce openings or pores having a size of <0.1 μm. Contrary to what is suggested by the previous technical teaching content, we unexpectedly observed that the graphene-mediated metallization method of the present disclosure does not require the generation of micro-holes with a size greater than 0.1 μm. This method works even on highly smooth surfaces.

在步驟(a)中,可以用蝕刻溶液和/或藉由電漿處理或藉由電漿蝕刻、離子轟擊等實現蝕刻處理。 In step (a), an etching solution and/or plasma treatment or plasma etching, ion bombardment, etc. can be used to achieve the etching treatment.

較佳的是,用於蝕刻的蝕刻溶液包含至少一種氧化劑。在本揭露的範圍內的溫和蝕刻還意味著氧化劑以低濃度使用。過錳酸鹽和/或過二硫酸鹽和/或高碘酸鹽和/或過氧化物可用作氧化劑。根據本揭露的一個實施方式,藉由酸蝕刻溶液進行蝕刻,該酸蝕刻溶液包含至少一種氧化劑。可以將氧化劑和/或酸 或鹼性溶液(下面討論的)添加到石墨烯分散體中代替使用單獨的蝕刻溶液,並且如此,步驟(a)和步驟(b)基本上組合成一個單一的步驟。 Preferably, the etching solution used for etching contains at least one oxidizing agent. Gentle etching within the scope of the present disclosure also means that the oxidant is used in a low concentration. Permanganate and/or peroxodisulfate and/or periodate and/or peroxide can be used as oxidizing agent. According to an embodiment of the present disclosure, etching is performed by an acid etching solution, the acid etching solution containing at least one oxidizing agent. The oxidant and/or acid can be Or an alkaline solution (discussed below) is added to the graphene dispersion instead of using a separate etching solution, and as such, step (a) and step (b) are basically combined into a single step.

較佳的是,使用含有過錳酸鹽和磷酸(H3PO4)和/或硫酸的水性蝕刻溶液。過錳酸鉀可用作過錳酸鹽。非常較佳的是使用酸蝕刻溶液,該酸蝕刻溶液僅含有磷酸或者主要含有磷酸以及僅少量的硫酸。 Preferably, an aqueous etching solution containing permanganate and phosphoric acid (H 3 PO 4 ) and/or sulfuric acid is used. Potassium permanganate can be used as permanganate. It is very preferable to use an acid etching solution which contains only phosphoric acid or mainly phosphoric acid and only a small amount of sulfuric acid.

根據本揭露的另一個實施方式,蝕刻處理係藉由含有過錳酸鹽的鹼性水溶液進行的。這裡再一次,較佳的是使用過錳酸鉀。鹼性水溶液可含有鹼液。所用蝕刻溶液的類型取決於待處理的聚合物的類型。蝕刻溶液中氧化劑的較佳的濃度為0.05mol/l至0.6mol/l。較佳的是,蝕刻溶液含有0.05mol/l至0.6mol/l的過錳酸鹽或過硫酸鹽。蝕刻溶液可含有0.1mol/l至0.5mol/l的高碘酸鹽或過氧化氫。較佳的過錳酸鹽比例為1g/l直至過錳酸鹽、較佳的是過錳酸鉀的溶解度極限。過錳酸鹽溶液較佳的是含有2g/l至15g/l的過錳酸鹽,更較佳的是2g/l至15g/l的過錳酸鉀。過錳酸鹽溶液可含有潤濕劑。 According to another embodiment of the present disclosure, the etching treatment is performed by an alkaline aqueous solution containing permanganate. Here again, it is preferable to use potassium permanganate. The alkaline aqueous solution may contain lye. The type of etching solution used depends on the type of polymer to be processed. The preferred concentration of the oxidant in the etching solution is 0.05 mol/l to 0.6 mol/l. Preferably, the etching solution contains 0.05 mol/l to 0.6 mol/l permanganate or persulfate. The etching solution may contain 0.1 mol/l to 0.5 mol/l periodate or hydrogen peroxide. The preferred ratio of permanganate is 1 g/l up to the solubility limit of permanganate, preferably potassium permanganate. The permanganate solution preferably contains 2 g/l to 15 g/l permanganate, more preferably 2 g/l to 15 g/l potassium permanganate. The permanganate solution may contain a wetting agent.

藉由使用稀過硫酸鹽水溶液或高碘化物溶液或稀過氧化物水溶液(用作單獨的蝕刻溶液或作為石墨烯分散體的一部分)也可以實現溫和蝕刻。較佳的是,在攪拌溶液的同時進行利用蝕刻溶液的溫和蝕刻處理。在溫和蝕刻之後,將塑膠表面在水中沖洗例如1分鐘至3分鐘。根據本揭露的較佳的實施方式,用金屬鹽溶液處理在<30℃、較佳的是在15℃與25℃(包括室溫)之間的溫度下進行。在實踐中,用金屬鹽溶液處理係在不攪拌的情況下進行的。較佳的處理時間為30秒至15分鐘,較佳的是3分鐘至12分鐘。較佳的是,使用金屬鹽溶液,該溶液具有在7.5與12.5之間、較佳的是調節到在8與12之間的pH值。較佳的是,使用含有氨和/或至少一種胺的金屬鹽溶液。以上提及的pH值調節可以在氨的幫助下實現,並且較佳的是使用鹼金屬鹽溶液。還可以使用含有一種或多種胺的金屬鹽溶液。例如,金屬鹽溶液可含有單乙醇胺和/或三乙醇胺。用金屬 鹽溶液處理意味著較佳的是將聚合物部件表面浸泡到金屬鹽溶液中。 Gentle etching can also be achieved by using a dilute persulfate aqueous solution or a periodate solution or a dilute peroxide aqueous solution (used as a separate etching solution or as part of a graphene dispersion). Preferably, the gentle etching process using the etching solution is performed while stirring the solution. After gentle etching, the plastic surface is rinsed in water for, for example, 1 minute to 3 minutes. According to a preferred embodiment of the present disclosure, the treatment with the metal salt solution is performed at a temperature of <30°C, preferably between 15°C and 25°C (including room temperature). In practice, the treatment with the metal salt solution is carried out without stirring. The preferred treatment time is 30 seconds to 15 minutes, preferably 3 minutes to 12 minutes. Preferably, a metal salt solution is used, which has a pH between 7.5 and 12.5, preferably adjusted to between 8 and 12. Preferably, a metal salt solution containing ammonia and/or at least one amine is used. The above-mentioned pH adjustment can be achieved with the help of ammonia, and it is preferable to use an alkali metal salt solution. It is also possible to use metal salt solutions containing one or more amines. For example, the metal salt solution may contain monoethanolamine and/or triethanolamine. Use metal Salt solution treatment means that it is preferable to immerse the surface of the polymer part in a metal salt solution.

在某些實施方式中,步驟(b)包括將經表面處理的聚合物部件浸泡或浸漬在石墨烯或CNT分散體中,並且從該石墨烯或CNT分散體中移出該經表面處理的聚合物部件,以實現石墨烯片沈積到該經表面處理的聚合物部件的表面上,其中這些石墨烯片或CNT結合到該表面上以形成結合的石墨烯片的層。可替代地,可以簡單地將石墨烯分散體或CNT分散體噴塗在聚合物部件表面上,使液體組分蒸發,並使黏合劑(如果存在的話)固化或凝固。 In certain embodiments, step (b) includes soaking or immersing the surface-treated polymer component in the graphene or CNT dispersion, and removing the surface-treated polymer from the graphene or CNT dispersion Component to achieve the deposition of graphene sheets on the surface of the surface-treated polymer component, wherein the graphene sheets or CNTs are bonded to the surface to form a layer of bonded graphene sheets. Alternatively, the graphene dispersion or CNT dispersion can be simply sprayed onto the surface of the polymer part to evaporate the liquid component and cure or solidify the binder (if present).

如果存在,黏合劑樹脂層可以由包含黏合劑樹脂作為主要成分的黏合劑樹脂組成物形成。黏合劑樹脂組成物可以包含固化劑和偶聯劑以及黏合劑樹脂。黏合劑樹脂的實例可包括酯樹脂、烏拉坦樹脂、烏拉坦酯樹脂、丙烯酸樹脂、和丙烯酸烏拉坦樹脂,特別是包含新戊二醇(NPG)、乙二醇(EG)、間苯二甲酸和對苯二甲酸的酯樹脂。基於100重量份的黏合劑樹脂,固化劑可以按1至30重量份的量存在。偶聯劑可包括環氧矽烷化合物。 If present, the binder resin layer may be formed of a binder resin composition containing a binder resin as a main component. The binder resin composition may include a curing agent, a coupling agent, and a binder resin. Examples of the binder resin may include ester resins, urethane resins, urethane resins, acrylic resins, and urethane acrylate resins, particularly including neopentyl glycol (NPG), ethylene glycol (EG), isophthalic acid And terephthalic acid ester resin. Based on 100 parts by weight of the binder resin, the curing agent may be present in an amount of 1 to 30 parts by weight. The coupling agent may include an epoxy silane compound.

可以經由熱、UV或電離輻射進行該黏合劑層的固化。這可以涉及將塗有可熱固化的組成物的層加熱到至少70℃、較佳的是90℃至150℃的溫度持續至少1分鐘(典型地最多2小時,並且更典型地從2分鐘至30分鐘),以便形成堅硬的塗層。 The curing of the adhesive layer can be performed via heat, UV or ionizing radiation. This may involve heating the layer coated with the heat-curable composition to a temperature of at least 70°C, preferably 90°C to 150°C, for at least 1 minute (typically up to 2 hours, and more typically from 2 minutes to 30 minutes) to form a hard coating.

可以使用浸漬、塗覆(例如,刮刀塗覆、棒式塗覆、狹縫式模頭塗覆、逗號塗覆、逆轉輥塗覆等)、卷對卷製程、噴墨印刷、網版印刷、微接觸、凹版塗覆、噴塗、超音波噴塗、靜電噴塗和柔版印刷使聚合物部件表面與石墨烯或CNT分散體接觸。硬塗層或黏合劑層的厚度通常為約1nm至10μm,較佳的是10nm至2μm。 Dipping, coating (for example, doctor blade coating, bar coating, slot die coating, comma coating, reverse roll coating, etc.), roll-to-roll process, inkjet printing, screen printing, etc. can be used. Micro-contact, gravure coating, spraying, ultrasonic spraying, electrostatic spraying, and flexographic printing bring the surface of the polymer part into contact with graphene or CNT dispersion. The thickness of the hard coat layer or the adhesive layer is usually about 1 nm to 10 μm, preferably 10 nm to 2 μm.

對於可熱固化的樹脂,多官能環氧單體可較佳的是選自二甘油四縮水甘油醚、二季戊四醇四縮水甘油醚、山梨糖醇聚縮水甘油醚、聚甘油聚縮水 甘油醚、季戊四醇聚縮水甘油醚(例如季戊四醇四縮水甘油醚)、或其組合。雙官能或三官能環氧單體可選自由以下各項組成的組:三羥甲基乙烷三縮水甘油醚、三羥甲基甲烷三縮水甘油醚、三羥甲基丙烷三縮水甘油醚、三羥苯基甲烷(triphenylolmethane)三縮水甘油醚、三苯酚三縮水甘油醚、四羥苯基乙烷三縮水甘油醚、四羥苯基乙烷四縮水甘油醚、對胺基苯酚三縮水甘油醚、1,2,6-己三醇三縮水甘油醚、甘油三縮水甘油醚、二甘油三縮水甘油醚、甘油乙氧基三縮水甘油醚、蓖麻油三縮水甘油醚、丙氧基化丙三醇三縮水甘油醚、乙二醇二縮水甘油醚、1,4-丁二醇二縮水甘油醚、新戊二醇二縮水甘油醚、環己烷二甲醇二縮水甘油醚、二丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、二溴新戊二醇二縮水甘油醚、氫化雙酚A二縮水甘油醚、(3,4-環氧環己烷)甲基3,4-環氧環己基甲酸酯以及混合物。 For heat-curable resins, the multifunctional epoxy monomer may preferably be selected from diglycerol tetraglycidyl ether, dipentaerythritol tetraglycidyl ether, sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether Glyceryl ether, pentaerythritol polyglycidyl ether (for example, pentaerythritol tetraglycidyl ether), or a combination thereof. The bifunctional or trifunctional epoxy monomer can be selected from the group consisting of: trimethylolethane triglycidyl ether, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, Triphenylolmethane (triphenylolmethane) triglycidyl ether, triphenol triglycidyl ether, tetrahydroxyphenylethane triglycidyl ether, tetrahydroxyphenylethane tetraglycidyl ether, p-aminophenol triglycidyl ether , 1,2,6-Hexanetriol triglycidyl ether, glycerol triglycidyl ether, diglycerol triglycidyl ether, glycerol ethoxytriglycidyl ether, castor oil triglycidyl ether, propoxylated triglycidyl ether Alcohol triglycidyl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane dimethanol diglycidyl ether, dipropylene glycol diglycidyl ether Ether, polypropylene glycol diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, (3,4-epoxycyclohexane) methyl 3,4-epoxycyclohexyl Formate and mixtures.

在某些實施方式中,本揭露的可熱固化的組成物有利地進一步含有少量、較佳的是從0.05重量%至0.20重量%的至少一種表面活性化合物。表面活性劑對於基材的良好潤濕係重要的,從而產生令人滿意的最終硬塗層。 In certain embodiments, the heat-curable composition of the present disclosure advantageously further contains a small amount, preferably from 0.05% to 0.20% by weight of at least one surface active compound. Surfactants are important for good wetting of the substrate to produce a satisfactory final hard coat.

可用於在本揭露中使用的黏合劑層的可UV輻射固化的樹脂和漆係衍生自多官能化合物的可光聚合的單體和低聚物(諸如丙烯酸酯和甲基丙烯酸酯低聚物(本文使用的術語“(甲基)丙烯酸酯”係指丙烯酸酯和甲基丙烯酸酯))的那些,諸如具有(甲基)丙烯酸酯官能基的多元醇和它們的衍生物,諸如乙氧基化的三羥甲基丙烷三(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、或新戊二醇二(甲基)丙烯酸酯及其混合物,以及衍生自低分子量聚酯樹脂、聚醚樹脂、環氧樹脂、聚氨酯樹脂、醇酸樹脂、螺縮醛樹脂、環氧丙烯酸酯、聚丁二烯樹脂、和聚硫醇-聚烯樹脂的 丙烯酸酯和甲基丙烯酸酯低聚物。 UV radiation curable resins and lacquers that can be used in the adhesive layer used in the present disclosure are photopolymerizable monomers and oligomers derived from polyfunctional compounds (such as acrylate and methacrylate oligomers ( The term "(meth)acrylate" as used herein refers to those of acrylate and methacrylate)), such as polyols having (meth)acrylate functional groups and their derivatives, such as ethoxylated Trimethylolpropane tri(meth)acrylate, tripropylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, diethylene glycol di(meth)acrylate, pentaerythritol tetra (Meth) acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, or neopentyl glycol bis(meth)acrylate ) Acrylic esters and mixtures thereof, and derived from low molecular weight polyester resins, polyether resins, epoxy resins, polyurethane resins, alkyd resins, spiroacetal resins, epoxy acrylates, polybutadiene resins, and polysulfides Alcohol-polyene resin Acrylate and methacrylate oligomers.

塗覆可UV聚合的單體和低聚物(例如從浸漬中退出後)並乾燥,並且隨後暴露於UV輻射以形成光學透明的交聯耐磨層。較佳的UV固化劑量在50mJ/cm2與1000mJ/cm2之間。 UV polymerizable monomers and oligomers are coated (for example after exiting from immersion) and dried, and then exposed to UV radiation to form an optically transparent cross-linked wear-resistant layer. The preferred UV curing dose is between 50 mJ/cm 2 and 1000 mJ/cm 2 .

可UV固化的樹脂典型地也是可電離輻射固化的。可電離輻射固化的樹脂可含有相對大量的反應性稀釋劑。可用於本文的反應性稀釋劑包括單官能單體,諸如(甲基)丙烯酸乙酯、(甲基)丙烯酸乙基己酯、苯乙烯、乙烯基甲苯、和N-乙烯基吡咯啶酮;以及多官能單體,例如三羥甲基丙烷三(甲基)丙烯酸酯、己二醇(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、或新戊二醇二(甲基)丙烯酸酯。 UV curable resins are typically also ionizing radiation curable. The ionizing radiation curable resin may contain a relatively large amount of reactive diluent. Reactive diluents that can be used herein include monofunctional monomers such as ethyl (meth)acrylate, ethylhexyl (meth)acrylate, styrene, vinyl toluene, and N-vinylpyrrolidone; and Multifunctional monomers, such as trimethylolpropane tri(meth)acrylate, hexanediol (meth)acrylate, tripropylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate , Pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol di(meth)acrylate, or neopentyl glycol di(meth)acrylate.

在所揭露的方法中,步驟(c)可以包括將石墨烯結合的聚合物部件浸泡在金屬化浴中。沈積的石墨烯片的高導電性容易使得能夠在石墨烯或CNT塗覆的聚合物部件表面上電鍍一個或多個金屬層。 In the disclosed method, step (c) may include immersing the graphene-bonded polymer component in a metalizing bath. The high conductivity of the deposited graphene sheets easily enables the electroplating of one or more metal layers on the surface of graphene or CNT-coated polymer parts.

可替代地且有利地,最終的金屬化步驟可以藉由使用不採用昂貴的貴金屬溶液的化學鍍方法來完成。該步驟可包括將石墨烯或CNT塗覆的聚合物部件浸漬(浸泡)在化學鍍浴中,該化學鍍浴包含溶解在液體介質中的金屬鹽(預期金屬諸如Cu、Ni或Co的鹽)(例如,溶於水的CuSO4或溶於水的NiNO3)。此種浸漬典型地需要從3秒至30分鐘的接觸時間。 Alternatively and advantageously, the final metallization step can be accomplished by using an electroless plating method that does not use expensive noble metal solutions. This step may include immersing (immersing) the graphene or CNT-coated polymer part in an electroless plating bath containing a metal salt dissolved in a liquid medium (a salt of a metal such as Cu, Ni, or Co is expected) (For example, CuSO 4 soluble in water or NiNO 3 soluble in water). Such impregnation typically requires a contact time of from 3 seconds to 30 minutes.

銅金屬鍍浴(或鎳鍍浴)可包含銅鹽(或Ni鹽)和添加劑消耗抑制化合物。添加劑消耗抑制化合物可包括甲基亞碸、甲基碸、四亞甲基亞碸、巰基乙酸、2(5H)噻吩酮、1,4-二噻、反式-1,2-二噻、四氫噻吩-3-酮、3-噻吩甲醇、1,3,5-三噻、3-噻吩乙酸、硫代特窗酸、冠硫醚、四吡啶化物(tetrapyrid)、二丙基三硫化物、雙(3-三乙氧基矽基丙基四硫化物、二甲基四硫化物、甲烷硫代硫酸 甲酯、(2-磺酸根合乙基)甲烷、對甲苯基二亞碸、對甲苯基二碸、雙(苯磺醯基)硫醚、4-(氯磺醯基)苯甲酸、異丙基磺醯氯、1-丙烷磺醯氯、硫辛酸、4-羥基苯磺酸、苯基乙烯基碸、或其混合物。 The copper metal plating bath (or nickel plating bath) may contain a copper salt (or Ni salt) and an additive consumption inhibiting compound. Additive consumption inhibiting compounds may include methyl sulfene, methyl sulfide, tetramethylene sulfene, thioglycolic acid, 2(5H) thiophenone, 1,4-dithio, trans-1,2-dithio, tetramethylene Hydrothiophene-3-one, 3-thiophene methanol, 1,3,5-trithiophene, 3-thiopheneacetic acid, thiotetronic acid, crown sulfide, tetrapyrid, dipropyl trisulfide, Bis(3-triethoxysilylpropyl tetrasulfide, dimethyl tetrasulfide, methanethiosulfuric acid Methyl ester, (2-sulfonate ethyl) methane, p-tolyl disulfide, p-tolyl disulfide, bis(phenylsulfonyl) sulfide, 4-(chlorosulfonyl) benzoic acid, isopropyl Sulfonyl chloride, 1-propanesulfonyl chloride, lipoic acid, 4-hydroxybenzenesulfonic acid, phenylvinyl sulfonate, or mixtures thereof.

可替代地,可以選擇使用物理氣相沈積、濺射、電漿沈積等來完成最終的金屬化程序。 Alternatively, physical vapor deposition, sputtering, plasma deposition, etc. can be selected to complete the final metallization process.

所有這些程序可以以連續方式進行。圖2示出了用於生產表面金屬化的聚合物製品的連續方法。該方法包括:(a)將聚合物製品連續浸泡到包含分散在液體介質中的多個石墨烯片的石墨烯分散體中持續一段浸泡時間,並且然後將所述聚合物製品從該分散體中退出,從而使得石墨烯片能夠沈積到該聚合物製品的表面上以形成石墨烯附著的聚合物製品;(b)連續地將該石墨烯附著的聚合物製品移動到乾燥或加熱區,以使石墨烯片能夠結合到該表面上以形成石墨烯覆蓋的聚合物製品;以及(c)將該石墨烯覆蓋的聚合物製品連續移動到金屬化區中,在該金屬化區中,將金屬層化學、物理、電化學或電解地沈積到該石墨烯覆蓋的聚合物製品的表面上,以形成該表面金屬化的聚合物製品。 All these procedures can be performed in a continuous manner. Figure 2 shows a continuous process for producing a polymer article with a metallized surface. The method includes: (a) continuously immersing a polymer article into a graphene dispersion containing a plurality of graphene sheets dispersed in a liquid medium for a period of soaking time, and then removing the polymer article from the dispersion Exit, so that the graphene sheet can be deposited on the surface of the polymer product to form a graphene-attached polymer product; (b) continuously move the graphene-attached polymer product to a drying or heating zone to make The graphene sheet can be bonded to the surface to form a graphene-covered polymer product; and (c) the graphene-covered polymer product is continuously moved into the metallization zone, where the metal layer Chemically, physically, electrochemically, or electrolytically deposited on the surface of the graphene-covered polymer product to form the surface metalized polymer product.

在某些實施方式中,步驟(a)包括(或之前係)使聚合物製品表面經受研磨處理、蝕刻處理、或其組合的步驟。在一些實施方式中,步驟(a)包括使該聚合物部件表面經受使用選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑進行的蝕刻處理的步驟。 In some embodiments, step (a) includes (or previously) subjecting the surface of the polymer article to a grinding process, an etching process, or a combination thereof. In some embodiments, step (a) includes the step of subjecting the surface of the polymer component to an etching treatment using an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof.

石墨烯片和石墨烯分散體的製備描述如下:已知碳具有五種獨特的晶體結構,包括金剛石、富勒烯(0-D奈米石墨材料)、碳奈米管或碳奈米纖維(1-D奈米石墨材料)、石墨烯(2-D奈米石墨材料)和石墨(3-D石墨材料)。碳奈米管(CNT)係指以單壁或多壁生長的管狀結構。碳奈米管(CNT)和碳奈米纖維(CNF)具有約幾奈米到幾百奈米的直徑。其縱向、空心結構賦予材料獨特的機械、電學和化學特性。CNT或CNF係一維奈米碳或1-D奈米石墨材料。 The preparation of graphene sheets and graphene dispersions is described as follows: Carbon is known to have five unique crystal structures, including diamond, fullerene (0-D nanographite material), carbon nanotube or carbon nanofiber ( 1-D nanographite material), graphene (2-D nanographite material) and graphite (3-D graphite material). Carbon nanotube (CNT) refers to a tubular structure grown with single or multi-wall. Carbon nanotubes (CNT) and carbon nanofibers (CNF) have a diameter of about several nanometers to several hundred nanometers. Its longitudinal, hollow structure gives the material unique mechanical, electrical and chemical properties. CNT or CNF are one-dimensional nanocarbon or 1-D nanographite materials.

早在2002年,我們的研究小組開創了石墨烯材料及相關生產製程的開發:(1)B.Z.Jang和W.C.Huang,“Nano-scaled Graphene Plates[奈米級石墨烯板]”,美國專利案號7,071,258(2006年7月4日),2002年10月21日提交的申請;(2)B.Z.Jang等人“Process for Producing Nano-scaled Graphene Plates[用於生產奈米級石墨烯板的製程]”,美國專利申請案號10/858,814(2004年6月3日)(美國專利公開號2005/0271574);和(3)B.Z.Jang,A.Zhamu和J.Guo,“Process for Producing Nano-scaled Platelets and Nanocomposites[用於生產奈米級片晶和奈米複合材料的製程]”,美國專利申請案號11/509,424(2006年8月25日)(美國專利公開號2008-0048152)。 As early as 2002, our research team pioneered the development of graphene materials and related production processes: (1) BZJang and WCHuang, "Nano-scaled Graphene Plates [Nano-scaled Graphene Plates]", US patent number 7,071,258 (July 4, 2006), an application filed on October 21, 2002; (2) BZJang et al. "Process for Producing Nano-scaled Graphene Plates [Process for Producing Nano-scaled Graphene Plates]" , U.S. Patent Application No. 10/858,814 (June 3, 2004) (U.S. Patent Publication No. 2005/0271574); and (3) BZJang, A. Zhamu and J. Guo, "Process for Producing Nano-scaled Platelets and Nanocomposites [Process for the production of nano-scale lamellae and nanocomposites]", U.S. Patent Application No. 11/509,424 (August 25, 2006) (U.S. Patent Publication No. 2008-0048152).

單層石墨烯片由佔據二維六方晶格的碳原子構成。多層石墨烯係由多於一個石墨烯平面構成的片晶。單獨的單層石墨烯片和多層石墨烯片晶在本文中統稱為奈米石墨烯片晶(NGP)或石墨烯材料。NGP包括原生石墨烯(基本上99%的碳原子)、微氧化石墨烯(<5重量%的氧)、氧化石墨烯(

Figure 107140377-A0305-02-0027-15
5重量%的氧)、微氟化石墨烯(<5重量%的氟)、氟化石墨烯(
Figure 107140377-A0305-02-0027-16
5重量%的氟)、其他鹵化石墨烯、以及化學官能化石墨烯。 A single-layer graphene sheet is composed of carbon atoms occupying a two-dimensional hexagonal lattice. Multilayer graphene is a platelet composed of more than one graphene plane. Individual single-layer graphene sheets and multi-layer graphene sheet crystals are collectively referred to herein as nanographene sheet crystals (NGP) or graphene materials. NGP includes primary graphene (essentially 99% of carbon atoms), micrographene oxide (<5% by weight of oxygen), graphene oxide (
Figure 107140377-A0305-02-0027-15
5 wt% oxygen), microfluorinated graphene (<5 wt% fluorine), fluorinated graphene (
Figure 107140377-A0305-02-0027-16
5 wt% fluorine), other halogenated graphenes, and chemically functionalized graphenes.

已發現NGP具有一系列不尋常的物理、化學和機械特性。例如,發現石墨烯表現出所有現有材料的最高固有強度和最高導熱率。儘管未預想石墨烯的實際電子器件應用(例如,替換Si作為電晶體中的骨架)在未來5-10年內發生,但其作為奈米填料在複合材料中以及作為電極材料在儲能器件中的應用即將到來。大量可加工的石墨烯片的可用性對於成功開發石墨烯的複合材料、能量和其他應用係至關重要的。 It has been found that NGP has a series of unusual physical, chemical and mechanical properties. For example, it was found that graphene exhibits the highest inherent strength and highest thermal conductivity of all existing materials. Although graphene's actual electronic device applications (for example, replacing Si as the skeleton in transistors) are not expected to occur within the next 5-10 years, it is used as a nanofiller in composite materials and as an electrode material in energy storage devices. The application is coming soon. The availability of a large number of processable graphene sheets is critical to the successful development of graphene composites, energy and other applications.

最近,我們綜述了生產NGP和NGP奈米複合材料的製程[Bor Z.Jang和A Zhamu,“Processing of Nano Graphene Platelets(NGPs)and NGP Nanocomposites:A Review[奈米石墨烯片晶(NGP)和NGP奈米複合材料的加 工:綜述]”,J.Materials Sci.[材料科學雜誌]43(2008)5092-5101]。 Recently, we reviewed the process of producing NGP and NGP nanocomposites [Bor Z.Jang and A Zhamu, "Processing of Nano Graphene Platelets (NGPs) and NGP Nanocomposites: A Review [Nanographene platelets (NGP) and The addition of NGP nanocomposites Engineering: Review]", J. Materials Sci. [Journal of Materials Science] 43 (2008) 5092-5101].

非常有用的方法(圖1)需要用插層劑和氧化劑(例如,分別為濃硫酸和硝酸)處理天然石墨粉以獲得石墨插層化合物(GIC)或實際上是氧化石墨(GO)。[William S.Hummers,Jr.等人,Preparation of Graphitic Oxide[氧化石墨的製備],Journal of the American Chemical Society[美國化學會誌],1958,第1339頁。]在插層或氧化之前,石墨具有大約0.335nm的石墨烯平面間間距(L dd 002=0.335nm)。在插層和氧化處理的情況下,石墨烯間間距增加到典型大於0.6nm的值。這係石墨材料在該化學路線過程中經歷的第一膨脹階段。然後使用熱衝擊暴露法或基於溶液的超音波處理輔助的石墨烯層膨化(exfoliation)法使所得GIC或GO經受進一步膨脹(常常被稱為膨化)。 A very useful method (Figure 1) requires the treatment of natural graphite powder with intercalating agents and oxidizing agents (for example, concentrated sulfuric acid and nitric acid, respectively) to obtain graphite intercalation compound (GIC) or actually graphite oxide (GO). [William S. Hummers, Jr. et al., Preparation of Graphitic Oxide [Preparation of Graphitic Oxide], Journal of the American Chemical Society [American Chemical Society], 1958, page 1339. ] Before intercalation or oxidation, graphite has an inter-graphene spacing of approximately 0.335nm ( L dd 002 =0.335nm). In the case of intercalation and oxidation treatment, the inter-graphene spacing is increased to a value typically greater than 0.6 nm. This is the first expansion stage that the graphite material undergoes during the chemical route. The resulting GIC or GO is then subjected to further expansion (often referred to as expansion ) using a thermal shock exposure method or a graphene layer exfoliation method assisted by solution-based ultrasonic treatment.

在熱衝擊暴露法中,使GIC或GO暴露於高溫(典型地800℃-1,050℃)持續短時間段(典型地15至60秒)以使GIC或GO膨化或膨脹以形成膨化的或進一步膨脹的石墨,該石墨典型地呈由仍彼此互連的石墨薄片構成的“石墨蠕蟲”的形式。這種熱衝擊程序可以產生一些分離的石墨薄片或石墨烯片,但通常大部分石墨薄片保持互連。典型地,然後使用空氣碾磨、機械剪切或在水中的超音波處理使膨化的石墨或石墨蠕蟲經受薄片分離處理。因此,方法1基本上需要三個不同的程序:第一膨脹(氧化或插層)、進一步膨脹(或“膨化”)、以及分離。 In the thermal shock exposure method, GIC or GO is exposed to high temperature (typically 800°C-1,050°C) for a short period of time (typically 15 to 60 seconds) to expand or expand GIC or GO to form expanded or further expanded The graphite is typically in the form of "graphite worms" composed of graphite flakes that are still interconnected with each other. This thermal shock procedure can produce some separated graphite flakes or graphene flakes, but usually most of the graphite flakes remain interconnected. Typically, air milling, mechanical shearing, or ultrasonic treatment in water is then used to subject the expanded graphite or graphite worms to a flake separation treatment. Therefore, Method 1 basically requires three different procedures: first expansion (oxidation or intercalation), further expansion (or "puffing"), and separation.

在基於溶液的分離法中,將膨脹的或膨化的GO粉末分散在水或醇水溶液中,使其經受超音波處理。重要的是注意到,在這些製程中,在石墨的插層和氧化之後(即,在第一膨脹之後)以及典型地在所得GIC或GO的熱衝擊暴露之後(在第二膨脹之後)使用超音波處理。可替代地,使分散在水中的GO粉末經受離子交換或冗長的純化程序,其方式為使得存在於平面間空間中的離子之間的推斥力勝過石墨烯間的凡得瓦力,導致石墨烯層分離。 In the solution-based separation method, the expanded or puffed GO powder is dispersed in water or an aqueous alcohol solution and subjected to ultrasonic treatment. It is important to note that in these processes, after the intercalation and oxidation of graphite (ie, after the first expansion) and typically after the thermal shock exposure of the resulting GIC or GO (after the second expansion), super Sonic processing. Alternatively, the GO powder dispersed in water is subjected to ion exchange or lengthy purification procedures in such a way that the repulsive force between the ions existing in the interplane space exceeds the van der Waals force between graphene, resulting in graphite The olefin layer is separated.

在上述實例中,用於製備石墨烯片或NGP的起始材料係石墨材料, 該材料可以選自由以下各項組成的組:天然石墨、人造石墨、氧化石墨、氟化石墨、石墨纖維、碳纖維、碳奈米纖維、碳奈米管、中間相碳微珠(MCMB)或碳質微球(CMS)、軟碳、硬碳、及其組合。 In the above example, the starting material used to prepare graphene sheets or NGP is graphite material, The material can be selected from the group consisting of: natural graphite, artificial graphite, graphite oxide, graphite fluoride, graphite fiber, carbon fiber, carbon nanofiber, carbon nanotube, mesophase carbon microbeads (MCMB) or carbon Microspheres (CMS), soft carbon, hard carbon, and combinations thereof.

氧化石墨可以藉由在所需的溫度(典型地為0℃至70℃)下將層狀石墨材料(例如,天然片狀石墨或合成石墨的粉末)分散或浸泡在氧化劑中持續足夠長的時間(典型地為4小時至5天)來製備,該氧化劑典型地係插層劑(例如濃硫酸)和氧化劑(例如硝酸、過氧化氫、高氯酸鈉、過錳酸鉀)的混合物。然後將所得的氧化石墨顆粒用水沖洗幾次,以將pH值典型地調節至2-5。然後使所得的分散在水中的氧化石墨顆粒懸浮液經受超音波處理,以產生分散在水中的分離的氧化石墨烯片的分散體。可以添加少量還原劑(例如Na4B)以獲得還原的氧化石墨烯(RDO)片。 Graphite oxide can be obtained by dispersing or immersing a layered graphite material (for example, powder of natural flake graphite or synthetic graphite) in an oxidizing agent at a desired temperature (typically 0°C to 70°C) or soaking in an oxidizing agent for a sufficient time (Typically 4 hours to 5 days) to prepare, the oxidizing agent is typically a mixture of intercalating agent (such as concentrated sulfuric acid) and oxidizing agent (such as nitric acid, hydrogen peroxide, sodium perchlorate, potassium permanganate). The resulting graphite oxide particles are then washed several times with water to adjust the pH value typically to 2-5. The resulting suspension of graphite oxide particles dispersed in water is then subjected to ultrasonic treatment to produce a dispersion of separated graphene oxide flakes dispersed in water. A small amount of reducing agent (such as Na 4 B) can be added to obtain reduced graphene oxide (RDO) flakes.

為了減少產生先質溶液或懸浮液所需的時間,可以選擇將石墨氧化至一定程度持續一段較短的時間(例如,30分鐘至4小時),以獲得石墨插層化合物(GIC)。然後將GIC顆粒暴露於熱衝擊,較佳的是在600℃至1,100℃的溫度範圍內典型地持續15秒至60秒,以獲得膨化的石墨或石墨蠕蟲,使其視需要(但較佳的是)經受機械剪切(例如使用機械剪切機或超音波波發生器)以破碎構成石墨蠕蟲的石墨薄片。然後將已經分離的石墨烯片(在機械剪切之後)或未破碎的石墨蠕蟲或單獨的石墨薄片再分散在水、酸或有機溶劑中並超音波處理以獲得石墨烯分散體。 In order to reduce the time required to generate the precursor solution or suspension, the graphite can be oxidized to a certain extent for a short period of time (for example, 30 minutes to 4 hours) to obtain graphite intercalation compound (GIC). The GIC particles are then exposed to thermal shock, preferably in the temperature range of 600°C to 1,100°C, typically for 15 to 60 seconds, to obtain expanded graphite or graphite worms, making them as needed (but preferably It is) subjected to mechanical shearing (for example, using a mechanical shearing machine or ultrasonic wave generator) to break the graphite flakes that make up the graphite worm. Then the separated graphene flakes (after mechanical shearing) or unbroken graphite worms or individual graphite flakes are re-dispersed in water, acid or organic solvent and ultrasonically processed to obtain a graphene dispersion.

原生石墨烯材料較佳的是藉由以下三種製程之一產生:(A)將石墨材料用非氧化劑插層,然後在非氧化環境中進行熱或化學膨化處理;(B)使石墨材料經受超臨界流體環境以進行石墨烯層間的滲透和膨化;或(C)將粉末形式的石墨材料分散到含有表面活性劑或分散劑的水溶液中以獲得懸浮液並使該懸浮液經受直接超音波處理以獲得石墨烯分散體。 The primary graphene material is preferably produced by one of the following three processes: (A) intercalation of the graphite material with a non-oxidizing agent, and then thermal or chemical expansion treatment in a non-oxidizing environment; (B) subjecting the graphite material to super Critical fluid environment for infiltration and expansion between graphene layers; or (C) dispersing graphite material in powder form into an aqueous solution containing a surfactant or dispersant to obtain a suspension and subjecting the suspension to direct ultrasonic treatment to A graphene dispersion is obtained.

在程序(A)中,特別較佳的步驟包括(i)將石墨材料用選自鹼金屬(例如鉀、鈉、鋰或銫),鹼土金屬,或鹼金屬或鹼土金屬的合金、混合物、或者共晶的非氧化劑插層;以及(ii)化學膨化處理(例如,藉由將鉀插層石墨浸泡在乙醇溶液中)。 In procedure (A), a particularly preferred step includes (i) using the graphite material selected from alkali metals (such as potassium, sodium, lithium or cesium), alkaline earth metals, or alloys, mixtures, or mixtures of alkali metals or alkaline earth metals, or Eutectic non-oxidant intercalation; and (ii) chemical expansion treatment (for example, by immersing potassium intercalation graphite in an ethanol solution).

在程序(B)中,較佳的步驟包括將石墨材料浸泡到超臨界流體諸如二氧化碳(例如,在溫度T>31℃和壓力P>7.4MPa下)和水(例如,在T>374℃和P>22.1MPa下)中持續足以使石墨烯層間滲透(暫時插層)的時間段。然後在該步驟之後進行突然的減壓以膨化各個石墨烯層。其他合適的超臨界流體包括甲烷、乙烷、乙烯、過氧化氫、臭氧、水氧化物(含有高濃度溶解氧的水)、或其混合物。 In procedure (B), a preferred step includes immersing the graphite material in a supercritical fluid such as carbon dioxide (for example, at a temperature T>31°C and a pressure P>7.4MPa) and water (for example, at T>374°C and P>22.1MPa) for a period of time sufficient to penetrate (temporarily intercalate) the graphene layers. Then a sudden decompression is performed after this step to expand each graphene layer. Other suitable supercritical fluids include methane, ethane, ethylene, hydrogen peroxide, ozone, water oxides (water containing a high concentration of dissolved oxygen), or mixtures thereof.

在程序(C)中,較佳的步驟包括(a)將石墨材料的顆粒分散在其中含有表面活性劑或分散劑的液體介質中,以得到懸浮液或漿液;以及(b)將該懸浮液或漿液暴露於一定能量水平的超音波波(通常稱為超音波處理的過程)持續足夠長的時間,以產生分散在液體介質(例如水、醇或有機溶劑)中的分離的石墨烯片(非氧化的NGP)的石墨烯分散體。 In the procedure (C), a preferred step includes (a) dispersing particles of graphite material in a liquid medium containing a surfactant or dispersant to obtain a suspension or slurry; and (b) the suspension Or the slurry is exposed to ultrasonic waves of a certain energy level (a process commonly referred to as ultrasonic treatment) for a long enough time to produce separated graphene sheets dispersed in a liquid medium (e.g., water, alcohol, or organic solvent) ( Non-oxidized NGP) graphene dispersion.

可以產生氧含量不大於25重量%、較佳的是低於20重量%、進一步較佳的是低於5%的NGP。典型地,氧含量係在5重量%與20重量%之間。可以使用化學元素分析和/或X射線光電子能譜法(XPS)測定氧含量。 It is possible to produce NGP with an oxygen content of not more than 25% by weight, preferably less than 20% by weight, and more preferably less than 5%. Typically, the oxygen content is between 5% and 20% by weight. The oxygen content can be determined using chemical element analysis and/or X-ray photoelectron spectroscopy (XPS).

用於生產GIC、氧化石墨和隨後製成的膨化石墨、柔性石墨片和石墨烯片晶的先前技術製程中使用的層狀石墨材料在大多數情況下是天然石墨。然而,本揭露不限於天然石墨。起始材料可選自由以下各項組成的組:天然石墨、人造石墨(例如,高定向熱解石墨,HOPG)、氧化石墨、氟化石墨、石墨纖維、碳纖維、碳奈米纖維、碳奈米管、中間相碳微珠(MCMB)或碳質微球(CMS)、軟碳、硬碳、及其組合。所有這些材料都含有石墨微晶,這些石墨微晶由經由 凡得瓦力堆疊或結合在一起的石墨烯平面層構成。在天然石墨中,多個石墨烯平面疊層(其中石墨烯平面取向隨疊層的不同而變化)聚集在一起。在碳纖維中,石墨烯平面通常沿較佳的方向取向。一般而言,軟碳係由液態芳族分子的碳化而獲得的碳質材料。它們的芳環或石墨烯結構大體上彼此平行,從而使得能夠進一步石墨化。硬碳係由芳族固體材料(例如聚合物,諸如酚醛樹脂和聚糠醇)獲得的碳質材料。它們的石墨烯結構係相對隨機取向的,並且因此即使在高於2,500℃的溫度下也難以實現進一步的石墨化。但是,石墨烯片確實存在於這些碳中。 The layered graphite material used in the prior art process for the production of GIC, graphite oxide and subsequent expanded graphite, flexible graphite flakes and graphene platelets is in most cases natural graphite. However, the present disclosure is not limited to natural graphite. The starting material can be selected from the group consisting of: natural graphite, artificial graphite (for example, highly oriented pyrolytic graphite, HOPG), graphite oxide, graphite fluoride, graphite fiber, carbon fiber, carbon nanofiber, carbon nanofiber Tubes, mesophase carbon microspheres (MCMB) or carbonaceous microspheres (CMS), soft carbon, hard carbon, and combinations thereof. All these materials contain graphite crystallites. These graphite crystallites are produced by Van der Waals consists of stacked or bonded graphene plane layers. In natural graphite, multiple graphene plane stacks (where the graphene plane orientation varies with stacks) are gathered together. In carbon fibers, graphene planes are usually oriented in a preferred direction. Generally speaking, soft carbon is a carbonaceous material obtained by carbonization of liquid aromatic molecules. Their aromatic rings or graphene structures are substantially parallel to each other, thereby enabling further graphitization. Hard carbon is a carbonaceous material obtained from aromatic solid materials (for example, polymers such as phenolic resin and polyfurfuryl alcohol). Their graphene structure is relatively randomly oriented, and therefore it is difficult to achieve further graphitization even at a temperature higher than 2,500°C. However, graphene sheets do exist in these carbons.

本文使用氟化石墨烯或石墨烯氟化物作為鹵化石墨烯材料組的實例。存在兩種不同的方法,已經遵循這些方法來生產氟化石墨烯:(1)預合成的石墨烯的氟化:這種方法需要用氟化劑如XeF2或F基電漿處理藉由機械膨化或藉由CVD生長製備的石墨烯;(2)多層氟化石墨的膨化:氟化石墨的機械膨化和液相膨化兩者都可以容易地實現[F.Karlicky等人“Halogenated Graphenes:Rapidly Growing Family of Graphene Derivatives”[鹵代石墨烯:石墨烯衍生物的快速增長家族]ACS Nano[ACS奈米],2013,7(8),第6434-6464頁]。 Here, fluorinated graphene or graphene fluoride is used as an example of the halogenated graphene material group. There are two different methods that have been followed to produce fluorinated graphene: (1) Fluorination of pre-synthesized graphene: This method requires a fluorinating agent such as XeF 2 or F-based plasma treatment by mechanical Puffing or graphene prepared by CVD growth; (2) Puffing of multilayer fluorinated graphite: Both mechanical expansion and liquid phase puffing of fluorinated graphite can be easily achieved [F.Karlicky et al. " Halogenated Graphenes: Rapidly Growing" Family of Graphene Derivatives "[halogenated graphene: a rapidly growing family of graphene derivatives] ACS Nano[ACS Nano], 2013, 7(8), p. 6434-6464].

F2與石墨在高溫下的相互作用導致共價氟化石墨(CF) n 或(C2F) n ,而在低溫下形成石墨插層化合物(GIC)C x F(2

Figure 107140377-A0305-02-0031-13
x
Figure 107140377-A0305-02-0031-14
24)。在(CF) n 中碳原子係sp3雜化的並且因此氟碳化合物層係波紋狀的,由反式連接的環己烷椅組成。在(C2F) n 中,只有一半的C原子被氟化,並且每對相鄰的碳片藉由共價C-C鍵連接在一起。對氟化反應的系統研究表明,所得到的F/C比率在很大程度上取決於氟化溫度、氟化氣體中氟的分壓和石墨先質的物理特性,包括石墨化度、粒度和比表面積。除了氟(F2)之外,可以使用其他氟化劑,儘管大多數現有文獻涉及用F2氣體進行氟化(有時在氟化物的存在下)。 The interaction between F 2 and graphite at high temperature leads to covalent fluorinated graphite (CF) n or (C 2 F) n , while at low temperature the graphite intercalation compound (GIC) C x F(2
Figure 107140377-A0305-02-0031-13
x
Figure 107140377-A0305-02-0031-14
twenty four). The carbon atoms in (CF) n are sp3 hybridized and therefore the fluorocarbon layer is corrugated, consisting of trans-connected cyclohexane chairs. In (C 2 F) n , only half of the C atoms are fluorinated, and each pair of adjacent carbon sheets are connected by covalent CC bonds. The systematic study of the fluorination reaction shows that the obtained F/C ratio largely depends on the fluorination temperature, the partial pressure of fluorine in the fluorinated gas and the physical properties of the graphite precursor, including the degree of graphitization, particle size and Specific surface area. In addition to fluorine (F 2 ), other fluorinating agents can be used, although most of the existing literature relates to fluorination with F 2 gas (sometimes in the presence of fluoride).

為了將分層的先質材料膨化成獨自的單個石墨烯層或少層的狀態, 必須克服相鄰層之間的吸引力並進一步穩定這些層。這可以藉由官能基共價修飾石墨烯表面或藉由使用特定溶劑、表面活性劑、聚合物或供體-受體芳香族分子的非共價修飾來實現。液相膨化的過程包括在液體介質中超音波處理氟化石墨以產生分散在液體介質中的氟化石墨烯片。所得分散體可直接用於聚合物部件表面的石墨烯沈積。 In order to expand the layered precursor material into a single graphene layer or a few layers, The attraction between adjacent layers must be overcome and these layers must be further stabilized. This can be achieved by covalently modifying the graphene surface with functional groups or by non-covalent modification using specific solvents, surfactants, polymers, or donor-acceptor aromatic molecules. The process of liquid phase expansion includes ultrasonic treatment of fluorinated graphite in a liquid medium to produce fluorinated graphene sheets dispersed in the liquid medium. The resulting dispersion can be directly used for graphene deposition on the surface of polymer parts.

石墨烯的氮化可以藉由在高溫(200℃-400℃)下將石墨烯材料(例如氧化石墨烯)暴露於氨來進行。氮化石墨烯還可以藉由水熱法在較低溫度下形成;例如藉由將GO和氨密封在高壓釜中並且然後升溫至150℃-250℃。合成氮摻雜的石墨烯的其他方法包括在石墨烯上進行氮氣電漿處理、在氨存在下石墨電極之間的電弧放電、在CVD條件下氧化石墨烯的氨解以及在不同溫度下氧化石墨烯和尿素的水熱處理。 The nitridation of graphene can be performed by exposing graphene materials (such as graphene oxide) to ammonia at high temperatures (200°C-400°C). Nitride graphene can also be formed by a hydrothermal method at a lower temperature; for example, by sealing GO and ammonia in an autoclave and then raising the temperature to 150°C-250°C. Other methods of synthesizing nitrogen-doped graphene include nitrogen plasma treatment on graphene, arc discharge between graphite electrodes in the presence of ammonia, ammonolysis of graphene oxide under CVD conditions, and graphite oxide at different temperatures Hydrothermal treatment of olefin and urea.

為了限定本申請的申請專利範圍的目的,NGP或石墨烯材料包括單層和多層(典型地小於10層,少層石墨烯)原生石墨烯、氧化石墨烯、還原的氧化石墨烯(RGO)、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、化學官能化石墨烯、摻雜石墨烯(例如被B或N摻雜)的離散的片/片晶。原生石墨烯具有基本上0%的氧。RGO典型地具有0.001重量%至5重量%的氧含量。氧化石墨烯(包括RGO)可以具有0.001重量%至50重量%的氧。除原生石墨烯之外,所有石墨烯材料都具有0.001重量%至50重量%的非碳元素(例如O、H、N、B、F、Cl、Br、I等)。這些材料在本文被稱為非原生石墨烯材料。本揭露的石墨烯可含有原生或非原生石墨烯,並且所揭露的方法允許這種靈活性。這些石墨烯片都可以被化學官能化。 For the purpose of limiting the scope of the patent application of this application, NGP or graphene materials include single-layer and multi-layer (typically less than 10 layers, few layers of graphene) native graphene, graphene oxide, reduced graphene oxide (RGO), Discrete fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene, nitrided graphene, chemically functionalized graphene, doped graphene (for example, doped with B or N)的片/片晶。 Native graphene has substantially 0% oxygen. RGO typically has an oxygen content of 0.001% to 5% by weight. Graphene oxide (including RGO) may have 0.001 wt% to 50 wt% oxygen. Except for native graphene, all graphene materials have 0.001% to 50% by weight of non-carbon elements (for example, O, H, N, B, F, Cl, Br, I, etc.). These materials are referred to herein as non-native graphene materials. The graphene disclosed in the present disclosure may contain native or non-native graphene, and the disclosed method allows this flexibility. These graphene sheets can all be chemically functionalized.

石墨烯片具有相當大比例的對應於石墨晶體的邊緣平面的邊緣。邊緣平面上的碳原子係反應性的並且必須含有某種雜原子或基團以滿足碳化合價。此外,存在許多類型的官能基(例如羥基和羧基),其在藉由化學或電化學 方法生產的石墨烯片的邊緣或表面上天然存在。使用本領域公知的方法,可以容易地將許多化學官能基(例如-NH2等)賦予石墨烯邊緣和/或表面。 The graphene sheet has a considerable proportion of edges corresponding to the edge plane of the graphite crystals. The carbon atoms on the edge plane are reactive and must contain certain heteroatoms or groups to satisfy the carbon valence. In addition, there are many types of functional groups (such as hydroxyl groups and carboxyl groups), which are naturally present on the edges or surfaces of graphene sheets produced by chemical or electrochemical methods. Using methods known in the art, many chemical functional groups (such as -NH 2 etc.) can be easily imparted to the edges and/or surfaces of graphene.

在一個較佳的實施方式中,所得的官能化石墨烯片(NGP)可廣義地具有下式(e):[NGP]--Rm,其中m係不同官能基類型的數目(典型地在1與5之間),R選自SO3H、COOH、NH2、OH、R’CHOH、CHO、CN、COCl、鹵根、COSH、SH、COOR’、SR’、SiR’3、Si(--OR’--)yR’3-y、Si(--O--SiR’2-)OR’、R”、Li、AlR’2、Hg--X、TlZ2和Mg--X;其中y係等於或小於3的整數,R’係氫、烷基、芳基、環烷基或芳烷基、環芳基或聚(烷基醚),R”係氟代烷基、氟代芳基、氟代環烷基、氟代芳烷基或環芳基,X係鹵根,並且Z係羧酸根或三氟乙酸根。 In a preferred embodiment, the resulting functionalized graphene sheet (NGP) can broadly have the following formula (e): [NGP]--R m , where m is the number of different functional group types (typically in 1 and 5), R is selected from SO 3 H, COOH, NH 2 , OH, R'CHOH, CHO, CN, COCl, halide, COSH, SH, COOR', SR', SiR' 3 , Si( --OR'--) y R'3-y , Si(--O--SiR' 2 -)OR', R”, Li, AlR' 2 , Hg--X, TlZ 2 and Mg--X ; Wherein y is an integer equal to or less than 3, R'is hydrogen, alkyl, aryl, cycloalkyl or aralkyl, cycloaryl or poly(alkyl ether), R" is fluoroalkyl, fluorine Substituted aryl, fluorocycloalkyl, fluoroaralkyl, or cycloaryl, X is halide, and Z is carboxylate or trifluoroacetate.

為了使NGP或CNT成為環氧樹脂中的有效增強填料,官能基-NH2係特別感興趣的。例如,對於環氧樹脂常用的固化劑係二伸乙基三胺(DETA),它具有三個-NH2基團。如果DETA包含在撞擊室中,則三個-NH2基團中的一個可以鍵合到石墨烯片的邊緣或表面上,並且剩餘的兩個未反應的-NH2基團將可用於隨後與環氧樹脂反應。此種安排提供了複合材料的NGP(石墨烯片)與基質樹脂之間的良好介面鍵合。 In order to make NGP or CNT an effective reinforcing filler in epoxy resins, the functional group -NH 2 is of particular interest. For example, diethylene triamine (DETA), a commonly used curing agent for epoxy resins, has three -NH 2 groups. If DETA is contained in the impact chamber, one of the three -NH 2 groups can be bonded to the edge or surface of the graphene sheet, and the remaining two unreacted -NH 2 groups will be available for subsequent interaction with Epoxy reaction. This arrangement provides a good interface bond between the NGP (graphene sheet) of the composite material and the matrix resin.

其他有用的化學官能基或反應分子可選自下組,該組由以下各項組成:醯胺基胺、聚醯胺、脂肪族胺、改性脂肪族胺、脂環族胺、芳香族胺、酸酐、酮亞胺、二伸乙基三胺(DETA)、三伸乙基四胺(TETA)、四伸乙基五胺(TEPA)、六亞甲基四胺、多伸乙基多胺、多胺環氧加合物、酚硬化劑、非溴化固化劑、非胺固化劑、以及其組合。這些官能基係多官能的,具有與至少兩種化學物種從至少兩個端部反應的能力。最重要的是,它們能夠使用其端部之一鍵合到石墨烯的邊緣或表面,並且在隨後的環氧固化階段能夠在一個或兩個其他的端部與環氧化物或環氧樹脂反應。 Other useful chemical functional groups or reactive molecules can be selected from the following group consisting of: amidoamines, polyamides, aliphatic amines, modified aliphatic amines, cycloaliphatic amines, aromatic amines , Acid anhydride, ketimine, diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), hexamethylenetetramine, polyethylene polyamine , Polyamine epoxy adducts, phenol hardeners, non-brominated hardeners, non-amine hardeners, and combinations thereof. These functional groups are multifunctional and have the ability to react with at least two chemical species from at least two ends. Most importantly, they can be bonded to the edge or surface of graphene using one of their ends, and can react with epoxy or epoxy at one or two other ends in the subsequent epoxy curing stage .

以上描述的[NGP]--Rm可以進一步官能化。所得石墨烯片包括具有下 式的組成物:[NGP]--Am,其中A選自OY、NHY、O=C--OY、P=C--NR’Y、O=C--SY、O=C--Y、--CR’1--OY、N’Y或C’Y,並且Y係蛋白質、肽、胺基酸、酶、抗體、核苷酸、寡核苷酸、抗原、或酶底物、酶抑制劑或酶底物的過渡態類似物的適當官能基或者選自R’--OH、R’--NR’2、R’SH、R’CHO、R’CN、R’X、R’N+(R’)3X-、R’SiR’3、R’Si(--OR’--)yR’3-y、R’Si(--O--SiR’2--)OR’、R’--R”、R’--N--CO、(C2H4O--)wH、(--C3H6O--)wH、(--C2H4O)w--R’、(C3H6O)w--R’、R’,並且w係大於1且小於200的整數。CNT可以類似地官能化。 [NGP]--R m described above can be further functionalized. The obtained graphene sheet includes a composition having the following formula: [NGP]--A m , where A is selected from OY, NHY, O=C--OY, P=C--NR'Y, O=C--SY , O=C--Y, --CR'1--OY, N'Y or C'Y, and Y is protein, peptide, amino acid, enzyme, antibody, nucleotide, oligonucleotide, antigen , Or appropriate functional groups of enzyme substrates, enzyme inhibitors or transition state analogs of enzyme substrates or selected from R'--OH, R'--NR' 2 , R'SH, R'CHO, R'CN , R'X, R'N + (R ' ) 3 X -, R'SiR' 3, R'Si (- OR '-) y R' 3-y, R'Si (- O-- SiR' 2 --)OR', R'--R”, R'--N--CO, (C 2 H 4 O--) w H, ( --C 3 H 6 O--) w H , ( --C 2 H 4 O) w --R', (C 3 H 6 O) w --R', R', and w is an integer greater than 1 and less than 200. CNTs can be similarly functionalized.

NGP和CNT也可以被官能化以產生具有下式的組成物:[NGP]--[R’--A]m,其中m、R’和A係如上所定義的。本揭露的組成物還包括其上吸附某些環狀化合物的NGP。這些包括具有下式的物質的組成物:[NGP]--[X--R a ]m,其中a係零或小於10的數,X係多核芳族部分、多雜核芳族部分或金屬多雜核芳族部分,並且R係如上所定義的。較佳的環狀化合物係平面的。用於吸附的更較佳的環狀化合物係卟啉和酞菁。吸附的環狀化合物可以被官能化。此類組成物包括具有式[NGP]--[X--A a ]m的化合物,其中m、a、X和A係如上所定義的。 NGP and CNT can also be functionalized to produce a composition having the formula: [NGP]--[R'--A] m , where m, R', and A are as defined above. The composition of the present disclosure also includes NGP on which certain cyclic compounds are adsorbed. These include the composition of substances with the following formula: [NGP]--[X--R a ] m , where a is zero or a number less than 10, and X is a polynuclear aromatic part, a polyheteronuclear aromatic part or a metal Polyheteronuclear aromatic moiety, and R is as defined above. The preferred cyclic compounds are planar. More preferable cyclic compounds for adsorption are porphyrin and phthalocyanine. The adsorbed cyclic compound can be functionalized. Such compositions include compounds having the formula [NGP]--[X--A a ] m , where m, a , X and A are as defined above.

本揭露的官能化NGP或CNT可以藉由磺化、親電加成到去氧石墨烯片晶或CNT表面、或金屬化來直接製備。石墨烯片晶或CNT可以在與官能化劑接觸之前進行加工。此種加工可以包括將片晶或CNT分散在溶劑中。在一些實例中,片晶或CNT然後可以在接觸之前進行過濾和乾燥。一種特別有用的官能基類型係羧酸部分,如果NGP係從前面討論的酸插層路線製備的,則這些羧酸部分自然地存在於NGP的表面上。如果需要羧酸官能化,則可以使NGP經受氯酸鹽、硝酸或過硫酸銨氧化。 The functionalized NGP or CNT of the present disclosure can be directly prepared by sulfonation, electrophilic addition to the surface of deoxygraphene platelets or CNT, or metalization. Graphene platelets or CNTs can be processed before contacting with the functionalizing agent. Such processing can include dispersing platelets or CNTs in a solvent. In some instances, the platelets or CNTs can then be filtered and dried before contacting. A particularly useful type of functional group is the carboxylic acid moiety. If the NGP is prepared from the acid intercalation route discussed above, these carboxylic acid moieties are naturally present on the surface of the NGP. If carboxylic acid functionalization is required, the NGP can be subjected to oxidation by chlorate, nitric acid, or ammonium persulfate.

羧酸官能化的石墨片晶或CNT係特別有用的,因為它們可以充當用於製備其他類型的官能化NGP或官能化CNT的起點。例如,醇或醯胺可以容易 地與該酸連接以得到穩定的酯或醯胺。如果醇或胺係二-或多-官能分子的一部分,則藉由O-或NH-的鍵聯留下其他官能基作為側基。這些反應可以使用如本領域已知的開發用於用醇酯化或用胺胺化羧酸的任何方法來進行。這些方法的實例可以見於G.W.Anderson等人,J.Amer.Chem.Soc.[美國化學會誌]96,1839(1965),該文獻藉由引用以其全文結合在此。胺基基團可以藉由以下方式直接引入到石墨片晶上:用硝酸和硫酸處理片晶以獲得硝化的片晶,然後用還原劑諸如連二亞硫酸鈉化學還原該硝化形式以獲得胺基官能化的片晶。 Carboxylic acid functionalized graphite platelets or CNT systems are particularly useful because they can serve as a starting point for the preparation of other types of functionalized NGPs or functionalized CNTs. For example, alcohol or amide can easily Connect with the acid to obtain a stable ester or amide. If the alcohol or amine is part of a di- or multi-functional molecule, the O- or NH- linkage leaves other functional groups as side groups. These reactions can be carried out using any method developed for esterification with alcohols or amination of carboxylic acids with amines as known in the art. Examples of these methods can be found in G.W. Anderson et al., J. Amer. Chem. Soc. [American Chemical Society] 96, 1839 (1965), which is incorporated herein by reference in its entirety. The amine group can be directly introduced onto the graphite platelets by treating the platelets with nitric acid and sulfuric acid to obtain nitrated platelets, and then chemically reducing the nitrated form with a reducing agent such as sodium dithionite to obtain amine functionalization的片晶。 The lamellae.

所產生的石墨烯分散體或CNT分散體可以進一步添加有酸、金屬鹽、氧化劑、或其組合,以製備用於聚合物部件的石墨烯塗覆的更具反應性的分散體。還可以添加視需要的黏合劑樹脂。在這些情形下,表面清潔、蝕刻和石墨烯塗覆可以在一個步驟中完成。可以簡單地將聚合物部件浸漬到石墨烯溶液中數秒至數分鐘(較佳的是5秒至15分鐘),並且然後將聚合物部件從石墨烯-液體分散體中退出。在除去液體(例如經由自然或強制蒸發)後,石墨烯片自然地塗覆並結合到聚合物部件表面上。 The resulting graphene dispersion or CNT dispersion may be further added with acid, metal salt, oxidizing agent, or a combination thereof to prepare a more reactive dispersion for graphene coating of polymer parts. If necessary, a binder resin can also be added. In these cases, surface cleaning, etching, and graphene coating can be completed in one step. It is possible to simply immerse the polymer part in the graphene solution for several seconds to several minutes (preferably from 5 seconds to 15 minutes), and then withdraw the polymer part from the graphene-liquid dispersion. After removing the liquid (for example via natural or forced evaporation), the graphene sheet is naturally coated and bonded to the surface of the polymer part.

在某些實施方式中,石墨烯片、官能化石墨烯片或CNT可以用催化金屬的奈米級顆粒預塗覆或修飾,該催化金屬可以催化隨後的化學金屬化過程。該催化金屬較佳的是呈具有從0.5nm至100nm的直徑或厚度的離散奈米級顆粒或塗層的形式,並且較佳的是選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合。可替代地,該催化金屬可以最初呈先質形式(例如作為金屬鹽),該先質隨後轉化為沈積在石墨烯表面上的奈米級金屬。 In some embodiments, the graphene sheet, functionalized graphene sheet, or CNT may be pre-coated or modified with nano-scale particles of a catalytic metal that can catalyze the subsequent chemical metalization process. The catalytic metal is preferably in the form of discrete nano-scale particles or coatings having a diameter or thickness from 0.5 nm to 100 nm, and is preferably selected from cobalt, nickel, copper, iron, manganese, tin, zinc , Lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof. Alternatively, the catalytic metal may initially be in the form of a precursor (e.g., as a metal salt), which is subsequently converted to nanoscale metal deposited on the surface of the graphene.

因此,本揭露還提供了用於聚合物表面的金屬化的石墨烯分散體或CNT分散體。該石墨烯或CNT分散體包含分散在液體介質中的多個官能化石墨烯片和/或官能化碳奈米管,其中所述多個石墨烯片包含單層或少層石墨烯片或所述多個官能化碳奈米管包含單壁或多壁碳奈米管,並且其中所述石墨烯或碳 奈米管分散體進一步包含選自以下的一種或多種物種:(i)溶解或分散在所述液體介質中的黏合劑樹脂,其中黏合劑與石墨烯或黏合劑與碳奈米管的重量比為從1/5000至1/10;(較佳的是從1/1000至5/100);(ii)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(iii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合;或(iv)其組合。 Therefore, the present disclosure also provides metallized graphene dispersions or CNT dispersions for polymer surfaces. The graphene or CNT dispersion comprises a plurality of functionalized graphene sheets and/or functionalized carbon nanotubes dispersed in a liquid medium, wherein the plurality of graphene sheets comprise single-layer or few-layer graphene sheets or all The plurality of functionalized carbon nanotubes include single-wall or multi-wall carbon nanotubes, and wherein the graphene or carbon The nanotube dispersion further comprises one or more species selected from the following: (i) a binder resin dissolved or dispersed in the liquid medium, wherein the weight ratio of the binder to the graphene or the binder to the carbon nanotube Is from 1/5000 to 1/10; (preferably from 1/1000 to 5/100); (ii) an etchant selected from acid, oxidant, metal salt, or a combination thereof; (iii) having from 0.5 Nano-scale particles or coatings of catalytic metal with a diameter or thickness of from nm to 100 nm, the catalytic metal selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, Its alloy, or its combination; or (iv) its combination.

一旦石墨烯片和CNT結合在聚合物部件的表面上,所揭露方法中的步驟(c)就可以包括將石墨烯或CNT結合的聚合物部件浸泡在金屬化浴中以用於金屬的無電鍍(化學金屬化)。非常出人意料的是,石墨烯表面本身(即使沒有過渡金屬或貴金屬)對於將一些金屬鹽轉化成沈積在石墨烯或CNT表面上的金屬來說就是催化性的。這將消除將昂貴的貴金屬(例如鈀或鉑)作為核用於金屬晶體的後續化學生長的需要,如先前技術的製程所需要的。 Once the graphene sheet and CNT are bonded on the surface of the polymer part, step (c) in the disclosed method may include immersing the graphene or CNT-bonded polymer part in a metalization bath for electroless plating of metal (Chemical metallization). Very unexpectedly, the graphene surface itself (even without transition metals or precious metals) is catalytic for converting some metal salts into metals deposited on the graphene or CNT surface. This will eliminate the need to use expensive noble metals (such as palladium or platinum) as nuclei for the subsequent chemical growth of metal crystals, as required by prior art processes.

沈積的石墨烯片的高導電性和高比表面積(能夠覆蓋聚合物部件的寬表面積)使得能夠在石墨烯塗覆的聚合物部件表面上電鍍一個或多個金屬層。還發現沈積在聚合物部件表面上的石墨烯片顯著增強沈積金屬層的強度、硬度、耐久性和耐刮擦性。 The high conductivity and high specific surface area (capable of covering the wide surface area of the polymer part) of the deposited graphene sheet enables the electroplating of one or more metal layers on the surface of the graphene-coated polymer part. It has also been found that the graphene sheets deposited on the surface of the polymer component significantly enhance the strength, hardness, durability and scratch resistance of the deposited metal layer.

可替代地,可以選擇使用物理氣相沈積、濺射、電漿沈積等來完成最終的金屬化程序。 Alternatively, physical vapor deposition, sputtering, plasma deposition, etc. can be selected to complete the final metallization process.

因此,所揭露的方法產生表面金屬化的聚合物製品,該聚合物製品包括:具有表面的聚合物部件,塗覆在該聚合物部件表面上的多個官能化石墨烯片和/或多個官能化CNT的第一層,以及沈積在該第一層上的被鍍金屬的第二層,其中該多個官能化石墨烯片包括單層石墨烯片或少層石墨烯片(2-10個石墨烯平面),並且CNT包括單壁或多壁CNT,並且其中該多個石墨烯片在有或沒有黏合劑樹脂的情況下結合到該聚合物部件表面上。 Therefore, the disclosed method produces a polymer article with a metalized surface, the polymer article comprising: a polymer part having a surface, a plurality of functionalized graphene sheets and/or a plurality of functionalized graphene sheets coated on the surface of the polymer part A first layer of functionalized CNT, and a second layer of metal plated deposited on the first layer, wherein the plurality of functionalized graphene sheets include single-layer graphene sheets or few-layer graphene sheets (2-10 Graphene planes), and the CNT includes single-wall or multi-wall CNT, and wherein the plurality of graphene sheets are bonded to the surface of the polymer component with or without a binder resin.

該第一層典型地具有從0.34nm至30μm(較佳的是從1nm至1μm,並且進一步較佳的是從1nm至100nm)的厚度。該第二層較佳的是具有從0.5nm至1.0mm,並且更較佳的是從1nm至10μm的厚度。該摻雜石墨烯較佳的是包含氮摻雜的、硼摻雜的、磷摻雜的石墨烯、或其組合。石墨烯片包含原生石墨烯,並且第一層包含將石墨烯片化學結合到聚合物部件表面的黏合劑樹脂。在某些替代性實施方式中,石墨烯片包含具有從0.01重量%至20重量%的非碳元素含量的非原生石墨烯材料,並且這些非碳元素包括選自氧、氟、氯、溴、碘、氮、氫、或硼的元素。 The first layer typically has a thickness from 0.34 nm to 30 μm (preferably from 1 nm to 1 μm, and further preferably from 1 nm to 100 nm). The second layer preferably has a thickness from 0.5 nm to 1.0 mm, and more preferably from 1 nm to 10 μm. The doped graphene preferably includes nitrogen-doped, boron-doped, phosphorus-doped graphene, or a combination thereof. The graphene sheet contains native graphene, and the first layer contains a binder resin that chemically bonds the graphene sheet to the surface of the polymer part. In some alternative embodiments, the graphene sheet comprises a non-native graphene material having a non-carbon element content of from 0.01% to 20% by weight, and these non-carbon elements include those selected from oxygen, fluorine, chlorine, bromine, Elements of iodine, nitrogen, hydrogen, or boron.

作為一些實例,表面金屬化的聚合物製品可選自水龍頭、淋浴頭、管子、管道、連接器、適配器、水槽(例如廚房或浴室水槽)、浴缸蓋、壺嘴、水槽蓋、浴室附件、廚房工具、汽車車身零件、汽車裝飾件、汽車裝飾附件、電子設備外殼、傢俱、五金器具、珠寶、按鈕和旋鈕。 As some examples, polymer products with metalized surfaces can be selected from faucets, shower heads, pipes, pipes, connectors, adapters, sinks (such as kitchen or bathroom sinks), bathtub covers, spouts, sink covers, bathroom accessories, kitchens Tools, car body parts, car decoration parts, car decoration accessories, electronic equipment shells, furniture, hardware, jewelry, buttons and knobs.

聚合物部件可包含塑膠、橡膠、熱塑性彈性體、聚合物基質複合材料、橡膠基質複合材料、或其組合。在某些實施方式中,聚合物部件包含熱塑性塑膠、熱固性樹脂、互穿網路、橡膠、熱塑性彈性體、天然聚合物、或其組合。在某些較佳的實施方式中,聚合物部件包含選自以下各項的塑膠:丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丙烯腈共聚物(SAN)、聚碳酸酯、聚醯胺或尼龍、聚苯乙烯、聚丙烯酸酯、聚乙烯、聚丙烯、聚縮醛、聚酯、聚醚、聚醚碸、聚醚醚酮(PEEK)、聚碸、聚苯醚(PPO)、聚氯乙烯(PVC)、聚醯亞胺、聚醯胺醯亞胺、聚氨酯、聚脲、或其組合。 The polymer component may include plastic, rubber, thermoplastic elastomer, polymer matrix composite material, rubber matrix composite material, or a combination thereof. In certain embodiments, the polymer component comprises thermoplastics, thermosetting resins, interpenetrating networks, rubber, thermoplastic elastomers, natural polymers, or combinations thereof. In some preferred embodiments, the polymer component comprises a plastic selected from the group consisting of: acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), polycarbonate Ester, polyamide or nylon, polystyrene, polyacrylate, polyethylene, polypropylene, polyacetal, polyester, polyether, polyether ether, polyether ether ketone (PEEK), polyether, polyphenylene ether (PPO), polyvinyl chloride (PVC), polyimide, polyimide, polyurethane, polyurea, or a combination thereof.

在表面金屬化的聚合物製品中,被鍍金屬較佳的是選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、其合金、或其組合。 In polymer products with metallized surfaces, the metal to be plated is preferably selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, alloys thereof, or combinations thereof.

官能化石墨烯片或CNT可以進一步用催化金屬的奈米級顆粒或塗層(具有從0.5nm至100nm的直徑或厚度)進行修飾,該催化金屬選自鈷、鎳、銅、 鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、其合金、或其組合,並且其中該催化金屬在化學組成上與被鍍金屬不同。催化金屬顆粒或塗層被至少一層被鍍金屬覆蓋。 The functionalized graphene sheet or CNT can be further modified with nano-scale particles or coatings (having a diameter or thickness from 0.5 nm to 100 nm) of a catalytic metal selected from the group consisting of cobalt, nickel, copper, Iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, alloys thereof, or combinations thereof, and wherein the catalytic metal is chemically different from the metal to be plated. The catalytic metal particles or coating are covered by at least one layer of metal plating.

在某些實施方式中,聚合物部件表面在沈積有石墨烯片的第一層之前僅含具有的直徑或深度為<0.1μm的小開口或孔。 In some embodiments, the surface of the polymer component only contains small openings or holes with a diameter or depth of <0.1 μm before depositing the first layer of graphene sheet.

在某些實施方式中,將多個石墨烯片用黏合劑樹脂結合到聚合物部件表面,具有從1/5000至1/10、較佳的是從1/1000至1/100的黏合劑與石墨烯重量比。 In some embodiments, a plurality of graphene sheets are bonded to the surface of the polymer part with an adhesive resin, with an adhesive and a resin ranging from 1/5000 to 1/10, preferably from 1/1000 to 1/100. Graphene weight ratio.

以下實例用於說明關於實踐本揭露的最佳模式的一些具體細節並且不應該被解釋為限制本揭露的範圍。 The following examples are used to illustrate some specific details about the best mode of practicing the present disclosure and should not be construed as limiting the scope of the present disclosure.

實例1:來自MCMB的硫酸插層和膨化的氧化石墨烯 Example 1 : Sulfuric acid intercalation and expanded graphene oxide from MCMB

MCMB(中間相碳微珠)由中國鋼鐵化工股份有限公司(China Steel Chemical Co.)供應。這種材料具有約2.24g/cm3的密度和約16μm的中值粒徑。用酸溶液(4:1:0.05比率的硫酸、硝酸和過錳酸鉀)對MCMB(10克)進行48小時的插層處理。在反應完成後,將混合物倒入去離子水中並過濾。在HCl的5%溶液中反復地洗滌經插層的MCMB以除去大部分硫酸根離子。然後用去離子水反復地洗滌樣品直至濾液的pH為中性。將漿液乾燥並儲存在60℃下的真空烘箱中保持24小時。將乾燥的粉末樣品置於石英管中並插入預設在所需溫度800℃-1,100℃下的水平管式爐中30秒至90秒,以獲得石墨烯片。將一定量的石墨烯片與水混合並以60W功率超音波處理10分鐘以獲得石墨烯分散體。 MCMB (Mesophase Carbon Microbeads) is supplied by China Steel Chemical Co. (China Steel Chemical Co.). This material has a density of about 2.24 g/cm 3 and a median particle size of about 16 μm. MCMB (10 grams) was intercalated with acid solution (4:1:0.05 ratio of sulfuric acid, nitric acid and potassium permanganate) for 48 hours. After the reaction was completed, the mixture was poured into deionized water and filtered. The intercalated MCMB was washed repeatedly in a 5% solution of HCl to remove most of the sulfate ions. The sample was then washed repeatedly with deionized water until the pH of the filtrate was neutral. The slurry was dried and stored in a vacuum oven at 60°C for 24 hours. The dried powder sample is placed in a quartz tube and inserted into a horizontal tube furnace preset at a desired temperature of 800°C-1,100°C for 30 seconds to 90 seconds to obtain graphene sheets. A certain amount of graphene flakes were mixed with water and ultrasonically processed at 60W power for 10 minutes to obtain a graphene dispersion.

將少量取樣、乾燥並用TEM研究,表明大部分NGP在1層與10層之間。所產生的石墨烯粉末(GO或RGO)的氧含量為從0.1%至約25%,取決於膨化溫度和時間。 A small amount was sampled, dried, and studied by TEM, which showed that most of the NGP is between layer 1 and layer 10. The oxygen content of the produced graphene powder (GO or RGO) ranges from 0.1% to about 25%, depending on the expansion temperature and time.

幾種石墨烯分散體分別添加有各種酸、金屬鹽和氧化劑物種用於聚 合物的金屬化。 Several graphene dispersions are added with various acids, metal salts and oxidant species for polymerization The metalization of the compound.

實例2:天然石墨的氧化和膨化 Example 2 : Oxidation and expansion of natural graphite

根據Hummers的方法[美國專利案號2,798,878,1957年7月9日],藉由用處於4:1:0.05比率的硫酸、硝酸鈉和過錳酸鉀在30℃氧化石墨薄片持續48小時來製備氧化石墨。在反應完成後,將混合物倒入去離子水中並過濾。然後將樣品用5%的HCl溶液洗滌以去除大部分硫酸根離子和殘留鹽,並且然後用去離子水反復沖洗直到濾液的pH係大約4。意圖係將所有硫酸和硝酸殘留物從石墨間隙去除。將漿液乾燥並儲存在60℃下的真空烘箱中保持24小時。 According to the method of Hummers [US Patent No. 2,798,878, July 9, 1957], it is prepared by oxidizing graphite flakes with sulfuric acid, sodium nitrate and potassium permanganate at a ratio of 4:1:0.05 at 30°C for 48 hours. oxidised graphite. After the reaction was completed, the mixture was poured into deionized water and filtered. The sample was then washed with a 5% HCl solution to remove most of the sulfate ions and residual salts, and then repeatedly washed with deionized water until the pH of the filtrate was approximately 4. The intention is to remove all sulfuric acid and nitric acid residues from the graphite interstices. The slurry was dried and stored in a vacuum oven at 60°C for 24 hours.

藉由將樣品置於插入預設在1,050℃的水平管式爐中的石英管中來膨化經乾燥的、插層(氧化)的化合物,以獲得高度膨化的石墨。將膨化的石墨與1%表面活性劑一起在45℃下分散在平底燒瓶中的水中,並使所得的懸浮液經受超音波處理持續15分鐘的時間段以獲得氧化石墨烯(GO)片的分散體。 The dried, intercalated (oxidized) compound was expanded by placing the sample in a quartz tube inserted in a horizontal tube furnace preset at 1,050°C to obtain highly expanded graphite. The expanded graphite and 1% surfactant were dispersed in water in a flat-bottomed flask at 45°C, and the resulting suspension was subjected to ultrasonic treatment for a period of 15 minutes to obtain the dispersion of graphene oxide (GO) flakes body.

實例3:原生石墨烯的製備 Example 3 : Preparation of primary graphene

原生石墨烯片藉由使用直接超音波處理或液相膨化製程來生產。在典型的程序中,將磨碎至約20μm尺寸的5克石墨薄片分散在1,000mL去離子水(含有0.1重量%的分散劑,來自杜邦公司(DuPont)的Zonyl® FSO)中以獲得懸浮液。使用85W的超音波能量水平(Branson S450超音波發生器)用於石墨烯片的膨化、分離和尺寸減小持續15分鐘至2小時的時間段。所得石墨烯片係從未被氧化並且是無氧的和相對沒有缺陷的原生石墨烯。 The raw graphene sheet is produced by using direct ultrasonic processing or liquid phase expansion process. In a typical procedure, 5 grams of graphite flakes ground to a size of about 20 μm are dispersed in 1,000 mL of deionized water (containing 0.1% by weight of dispersant, Zonyl® FSO from DuPont) to obtain a suspension . The ultrasonic energy level of 85W (Branson S450 ultrasonic generator) is used for the expansion, separation and size reduction of graphene sheets for a period of 15 minutes to 2 hours. The resulting graphene sheet is a raw graphene that has never been oxidized and is oxygen-free and relatively defect-free.

實例4:氟化石墨烯的製備 Example 4 : Preparation of fluorinated graphene

我們已經使用了幾種製程來生產GF,但是本文作為實例只描述了一種製程。在典型的程序中,高度膨化的石墨(HEG)由插層化合物C2F.xClF3製備。HEG被三氟化氯蒸氣進一步氟化以產生氟化的高度膨化的石墨(FHEG)。將預先冷卻的特氟隆反應器填充有20mL-30mL預先冷卻的液體ClF3,並且然後 將反應器關閉並冷卻至液氮溫度。隨後,將不超過1g的HEG放入容器中,該容器具有用於ClF3氣體進入反應器的孔。在7-10天後,形成了具有近似式C2F的灰米色產物。然後將GF片分散在鹵化溶劑中以形成懸浮液。 We have used several processes to produce GF, but this article describes only one process as an example. In a typical procedure, highly expanded graphite (HEG) consists of the intercalation compound C 2 F. x ClF 3 preparation. HEG is further fluorinated by chlorine trifluoride vapor to produce fluorinated highly expanded graphite (FHEG). The pre-cooled Teflon reactor was filled with 20 mL-30 mL of pre-cooled liquid ClF 3 , and then the reactor was closed and cooled to liquid nitrogen temperature. Subsequently, no more than 1 g of HEG was put into a container with holes for ClF 3 gas to enter the reactor. After 7-10 days, a gray beige product with the approximate formula C 2 F was formed. The GF flakes are then dispersed in a halogenated solvent to form a suspension.

實例5:氮化石墨烯的製備 Example 5 : Preparation of Nitride Graphene

將實例2中合成的氧化石墨烯(GO)用不同比例的脲精細研磨,並將造粒的混合物在微波反應器中加熱(900W)30s。產物用去離子水洗滌數次並真空乾燥。在這種方法中,氧化石墨烯被同時還原並摻雜有氮。將用1/0.5、1/1和1/2的石墨烯/脲質量比獲得的產物分別命名為N-1、N-2和N-3,並且如藉由元素分析測定的這些樣品的氮含量分別為14.7wt.%、18.2wt.%和17.5wt.%。這些氮化石墨烯片保持可分散在水中。 The graphene oxide (GO) synthesized in Example 2 was finely ground with different ratios of urea, and the granulated mixture was heated (900W) in a microwave reactor for 30s. The product was washed several times with deionized water and dried under vacuum. In this method, graphene oxide is simultaneously reduced and doped with nitrogen. The products obtained with graphene/urea mass ratios of 1/0.5, 1/1, and 1/2 are named N-1, N-2, and N-3, respectively, and the nitrogen of these samples is determined by elemental analysis. The contents are 14.7wt.%, 18.2wt.% and 17.5wt.%, respectively. These nitrided graphene sheets remain dispersible in water.

實例6:石墨烯結合/活化的ABS Example 6: Graphene-bound/activated ABS

將第一組幾個各自具有50cm2表面的ABS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 The first group of several ABS plastic rectangular strips each with a surface of 50 cm 2 were immersed in an etching solution composed of 4M H 2 SO 4 and 3.5M CrO 3 at 70° C. for 3 minutes. Rinse these strips with water. On a separate basis, a second set of several strips of the same size was used, but no etching was performed.

將兩組樣本在40℃下在實例1中製備的RGO-水溶液中浸泡30秒的時間段,並且然後從該溶液中移出並在空氣中乾燥。隨後,將RGO結合的ABS條在含硫酸的銅電解質中鍍銅。我們出人意料地觀察到,本揭露的方法能夠在不進行蝕刻的情況下成功地對ABS和多種塑膠進行金屬化。由石墨烯片介導的結合金屬層在表面硬度、耐刮擦性和對加熱/冷卻循環的耐久性方面表現同樣好。 The two sets of samples were immersed in the RGO-water solution prepared in Example 1 for a period of 30 seconds at 40°C, and then removed from the solution and dried in the air. Subsequently, the RGO-bonded ABS strip was copper-plated in a sulfuric acid-containing copper electrolyte. We have unexpectedly observed that the disclosed method can successfully metallize ABS and various plastics without etching. The bonding metal layer mediated by the graphene sheet performs equally well in terms of surface hardness, scratch resistance, and durability against heating/cooling cycles.

對比實例6a:Pd/Sn活化的ABS Comparative example 6a: Pd/Sn activated ABS

將第一組幾個各自具有50cm2表面的ABS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 The first group of several ABS plastic rectangular strips each with a surface of 50 cm 2 were immersed in an etching solution composed of 4M H 2 SO 4 and 3.5M CrO 3 at 70° C. for 3 minutes. Rinse these strips with water. On a separate basis, a second set of several strips of the same size was used, but no etching was performed.

將兩組樣本在40℃下在含Pd/Sn膠體的溶液中浸泡5分鐘的時間段, 該溶液含有250mg/L的鈀、10g/L的錫(II)和110g/L的HCl。隨後,將這些樣本在水中沖洗並在含硫酸的銅電解質中鍍銅。我們觀察到,在沒有重度蝕刻的情況下,即使在蝕刻表面上實施了一些大量的昂貴稀有金屬(例如Pd)時,ABS塑膠表面也不能適當地(均勻地)金屬化。 The two sets of samples were immersed in a solution containing Pd/Sn colloid at 40°C for 5 minutes, The solution contains 250 mg/L of palladium, 10 g/L of tin (II), and 110 g/L of HCl. Subsequently, these samples were rinsed in water and copper-plated in a sulfuric acid-containing copper electrolyte. We have observed that without heavy etching, even when some large amounts of expensive rare metals (such as Pd) are implemented on the etched surface, the ABS plastic surface cannot be properly (uniformly) metallized.

實例7:石墨烯結合/活化的高抗沖聚苯乙烯(HIPS) Example 7: Graphene bonded/activated high impact polystyrene (HIPS)

將第一組幾個各自具有50cm2表面的HIPS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 The first group of several HIPS plastic rectangular strips each having a surface of 50 cm 2 were immersed in an etching solution composed of 4M H 2 SO 4 and 3.5M CrO 3 at 70° C. for 3 minutes. Rinse these strips with water. On a separate basis, a second set of several strips of the same size was used, but no etching was performed.

此後,用含有5重量%的石墨烯片和0.01重量%的環氧樹脂的原生石墨烯-黏合劑溶液噴塗塑膠製品。在除去液體介質(丙酮)並在150℃下固化15分鐘後,石墨烯片很好地結合到塑膠表面上。 Thereafter, the plastic product was sprayed with a native graphene-binder solution containing 5 wt% of graphene sheets and 0.01 wt% of epoxy resin. After removing the liquid medium (acetone) and curing at 150°C for 15 minutes, the graphene sheet was well bonded to the plastic surface.

在此處理之後,使石墨烯結合的塑膠製品經受電化學鍍鎳。為此,將製品在Watts電解質中處理15分鐘,該電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3。初始電流為0.3A/dm2,並且鍍鎳在40℃下進行。 After this treatment, the graphene-bonded plastic product is subjected to electrochemical nickel plating. To this end, the product was treated for 15 minutes in a Watts electrolyte containing 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5MH 3 BO 3 . The initial current is 0.3A/dm 2 , and nickel plating is performed at 40°C.

對比實例7a:硫化物活化的高抗沖聚苯乙烯(HIPS) Comparative Example 7a: Sulfide activated high impact polystyrene (HIPS)

將第一組幾個各自具有50cm2表面的HIPS塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。在單獨的基礎上,使用第二組幾個相同尺寸的條,但不進行蝕刻。 The first group of several HIPS plastic rectangular strips each having a surface of 50 cm 2 were immersed in an etching solution composed of 4M H 2 SO 4 and 3.5M CrO 3 at 70° C. for 3 minutes. Rinse these strips with water. On a separate basis, a second set of several strips of the same size was used, but no etching was performed.

此後,將塑膠製品在含有0.5M CuSO4.5H2O的氨溶液中處理30秒,該溶液具有9.5的pH值以及20℃的溫度。然後將塑膠製品在蒸餾水中浸沒20秒,並且隨後在20℃下用含有0.1M Na2S2的硫化物溶液處理30秒。在此處理之後,再次在冷水中洗滌塑膠製品。這之後進行電化學鍍鎳。為此,將製品在Watts電解質中處理15分鐘,該電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3。初始電流為0.3A/dm2,並且鍍鎳在40℃下進行。我們觀察到,在沒有重 度蝕刻的情況下,使用硫化物播種方法不能均勻地金屬化HIPS塑膠表面。相比之下,本發明的石墨烯介導方法使得幾乎所有種類的金屬都能成功地鍍在不僅HIPS表面上而且鍍在任何其他類型的聚合物表面上。 Thereafter, the plastic article 30 seconds in an ammonia solution containing 0.5M CuSO 4. 5H 2 O in the solution having a pH of 9.5 and the temperature 20 ℃. The plastic product was then immersed in distilled water for 20 seconds, and then treated with a sulfide solution containing 0.1 M Na 2 S 2 at 20° C. for 30 seconds. After this treatment, the plastic products are washed again in cold water. After this, electrochemical nickel plating is performed. To this end, the product was treated for 15 minutes in a Watts electrolyte containing 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5MH 3 BO 3 . The initial current is 0.3A/dm 2 , and nickel plating is performed at 40°C. We have observed that in the absence of heavy etching, the use of sulfide seeding methods cannot uniformly metallize the surface of HIPS plastic. In contrast, the graphene-mediated method of the present invention enables almost all kinds of metals to be successfully plated not only on HIPS surfaces but also on any other types of polymer surfaces.

實例8:石墨烯實現的基於聚氨酯的熱塑性彈性體(TPE) Example 8: Polyurethane-based thermoplastic elastomer (TPE) realized by graphene

將TPE條浸泡在含有5g/L氫氧化鈉和0.5g/L GO的鹼性水溶液中15分鐘。然後從該溶液(實際上是石墨烯分散體)中移出這些條,使得氧化石墨烯片能夠在除去水的同時塗覆到TPE表面上。用水沖洗掉殘留的NaOH。 Soak the TPE strips in an alkaline aqueous solution containing 5g/L sodium hydroxide and 0.5g/L GO for 15 minutes. The strips are then removed from the solution (actually the graphene dispersion) so that the graphene oxide flakes can be coated on the surface of the TPE while removing water. Rinse the remaining NaOH with water.

使GO塗覆的條在含氨的鎳電解質中在30℃下經受無電鍍鎳10分鐘。在單獨的基礎上,將Ni層直接電化學沈積到GO塗覆的TPE表面上。發現兩種方法都提供了具有高硬度、耐刮擦性和光澤度的Ni層。這種簡潔簡單的兩步製程在提供多種多樣的金屬化聚合物製品方面出人意料地有效。 The GO-coated bars were subjected to electroless nickel plating at 30°C for 10 minutes in an ammonia-containing nickel electrolyte. On a separate basis, the Ni layer was electrochemically deposited directly onto the GO-coated TPE surface. It was found that both methods provide a Ni layer with high hardness, scratch resistance and gloss. This simple and simple two-step process is surprisingly effective in providing a wide variety of metallized polymer products.

相比之下,如果不使用強鉻硫酸作為蝕刻劑來產生深度大於0.3μm的大尺寸微洞(表面空洞),則不能在Pd/Sn催化劑種子的說明下均勻地金屬化TPE零件。在30℃下將經蝕刻的TPE樣本浸泡在含有80mg/L鈀、10g/L錫(II)和110g/L HCl的含Pd/Sn膠體的溶液中10分鐘後,這種Pd/Sn催化劑沈積到TPE的大表面空洞上。 In contrast, if strong chromium sulfuric acid is not used as an etchant to generate large-size micro-holes (surface voids) with a depth greater than 0.3 μm, the TPE parts cannot be metalized uniformly under the instructions of the Pd/Sn catalyst seed. After immersing the etched TPE sample in a Pd/Sn colloid solution containing 80mg/L palladium, 10g/L tin(II) and 110g/L HCl at 30°C for 10 minutes, the Pd/Sn catalyst deposits To the large surface cavity of TPE.

實例9:石墨烯結合的玻璃纖維增強的聚酯複合材料 Example 9: Graphene bonded glass fiber reinforced polyester composite

催化金屬可以使用以下多種製程沈積到石墨烯表面上:物理氣相沈積、濺射、化學氣相沈積、化學還原/氧化、電化學還原/氧化等。在此實例中,Co用作代表性催化金屬,並將來自溶液的化學氧化/還原用於在石墨烯表面上沈積奈米顆粒。 Catalytic metals can be deposited on the surface of graphene using various processes: physical vapor deposition, sputtering, chemical vapor deposition, chemical reduction/oxidation, electrochemical reduction/oxidation, etc. In this example, Co is used as a representative catalytic metal, and chemical oxidation/reduction from the solution is used to deposit nano particles on the graphene surface.

使用鈷鹽溶液作為金屬鹽溶液。鈷(II)鹽水溶液含有1g/L至10g/L的CoSO4.7H2O和一種氧化劑,即過氧化氫。將氧化石墨烯片分散在溶液中以形成分散體。加熱此種分散體使得至少部分鈷(II)被H2O2氧化成鈷(III),鈷(III) 在進一步加熱時沈積在石墨烯表面上。然後允許進行複合表面的電解直接金屬化。將該複合表面在鎳浴中電鍍,其中將0.3A/dm2的初始電流密度用於電化學鍍鎳,其後來增加到3A/dm2。電化學鍍鎳在Watts電解質中在30℃至40℃下進行10分鐘至15分鐘的處理時間。Watts電解質含有1.2M NiSO4.7H2O、0.2M NiCl2.6H2O和0.5M H3BO3A cobalt salt solution is used as the metal salt solution. Cobalt (II) salt aqueous solution containing 1g / L to 10g / L of CoSO 4 .7H 2 O and an oxidizing agent, i.e. hydrogen peroxide. The graphene oxide flakes are dispersed in the solution to form a dispersion. Heating this dispersion causes at least part of the cobalt (II) to be oxidized by H 2 O 2 to cobalt (III), which is deposited on the graphene surface when further heated. The electrolytic direct metallization of the composite surface is then allowed to proceed. The composite surface was electroplated in a nickel bath, where an initial current density of 0.3 A/dm 2 was used for electrochemical nickel plating, which was later increased to 3 A/dm 2 . Electrochemical nickel plating is performed in Watts electrolyte at 30°C to 40°C for a treatment time of 10 minutes to 15 minutes. Watts electrolyte contains 1.2M NiSO 4 .7H 2 O, 0.2M NiCl 2 .6H 2 O and 0.5MH 3 BO 3 .

實例10:官能化石墨烯-和CNT-結合的聚醚醚酮(PEEK)和其他聚合物部件 Example 10: Functionalized graphene- and CNT-bound polyether ether ketone (PEEK) and other polymer components

將第一組幾個各自具有50cm2表面的PEEK塑膠矩形條在70℃下浸泡在由4M H2SO4和3.5M CrO3組成的蝕刻溶液中3分鐘。用水沖洗這些條。單獨地,使用第二組幾個相同尺寸的條,但不進行蝕刻。 The first group of several PEEK plastic rectangular strips each having a surface of 50 cm 2 were immersed in an etching solution composed of 4M H 2 SO 4 and 3.5M CrO 3 at 70° C. for 3 minutes. Rinse these strips with water. Separately, a second set of several strips of the same size was used, but no etching was performed.

隨後,將塑膠製品浸漬到含有5重量%的石墨烯片或碳奈米管(CNT)和0.01重量%的環氧樹脂或聚氨酯的官能化石墨烯/CNT-黏合劑分散體中。本研究中涉及的化學官能基包括疊氮化合物(2-疊氮基乙醇)、烷基矽烷、羥基基團、羧基基團、胺基團、磺酸基團(--SO3H)和二伸乙基三胺(DETA)。這些官能化的石墨烯片和CNT由台灣台北市的台灣石墨烯股份有限公司(Taiwan Graphene Co.)供應。在除去液體介質(丙酮)並在150℃下固化15分鐘後,石墨烯片和CNT很好地結合到塑膠表面上。 Subsequently, the plastic product was dipped into a functionalized graphene/CNT-binder dispersion containing 5 wt% of graphene sheets or carbon nanotubes (CNT) and 0.01 wt% of epoxy resin or polyurethane. The chemical functional groups involved in this study include azide compounds (2-azidoethanol), alkyl silanes, hydroxyl groups, carboxyl groups, amine groups, sulfonic acid groups (--SO 3 H), and two Ethylene triamine (DETA). These functionalized graphene sheets and CNTs were supplied by Taiwan Graphene Co. in Taipei, Taiwan. After removing the liquid medium (acetone) and curing at 150°C for 15 minutes, the graphene sheets and CNTs were well bonded to the plastic surface.

在此處理之後,使石墨烯-和CNT-結合的塑膠製品經受化學鍍鎳或化學鍍銅。對於鍍鎳,將官能化的石墨烯-和CNT-結合的製品在含有1.2M NiSO4.7H2O的化學鍍液中在40℃下處理15分鐘。對於鍍Cu,將官能化的石墨烯-和CNT-結合的塑膠零件浸漬在含0.5M CuSO4.5H2O的氨溶液中30秒,該溶液具有9.5的pH值以及20℃的溫度。 After this treatment, the graphene-and CNT-combined plastic product is subjected to electroless nickel plating or electroless copper plating. For nickel plating, the functionalized graphene-and CNT-combined product contains 1.2M NiSO 4 . Treat in a 7H 2 O electroless plating solution at 40°C for 15 minutes. For plating Cu, the functionalized graphene - CNT- plastic parts and immersed in the ammonia solution containing binding 0.5M CuSO 4. 5H 2 O in 30 seconds, the solution has a pH value of 9.5 and the temperature 20 ℃.

對於其他聚合物部件的金屬化也進行了類似的程序,包括炭黑填充的天然橡膠、矽酮橡膠、氯化橡膠、聚碳酸酯、ABS、聚對苯二甲酸乙二醇酯 (PET)和短切的凱芙拉(Kevlar)纖維填充的酚醛樹脂。 Similar procedures have been carried out for the metallization of other polymer parts, including carbon black filled natural rubber, silicone rubber, chlorinated rubber, polycarbonate, ABS, polyethylene terephthalate (PET) and chopped Kevlar fiber filled phenolic resin.

我們已經觀察到,一般來講,即使沒有進行蝕刻處理,使用本揭露的官能化石墨烯介導方法也可以很好地金屬化聚合物部件。在所有實例中,金屬與聚合物部件表面良好結合,這些表面具有優異的無光澤外觀和傑出的耐刮擦性。如果單獨包含官能化石墨烯片或與官能化CNT相結合,與在浸漬分散體中單獨使用官能化CNT相比,金屬化表面通常更光滑。 We have observed that, in general, even if no etching process is performed, the functionalized graphene-mediated method of the present disclosure can also metalize polymer parts well. In all cases, the metal and polymer part surfaces are well bonded, and these surfaces have an excellent matt appearance and outstanding scratch resistance. If functionalized graphene sheets are included alone or in combination with functionalized CNTs, the metalized surface is generally smoother than when functionalized CNTs are used alone in an impregnated dispersion.

本揭露具有以下意想不到的優點: This disclosure has the following unexpected advantages:

1.即使不使用鉻酸或鉻硫酸,也可以經由官能化的石墨烯片介導和/或官能化的CNT介導來實現沈積的金屬層與輕度蝕刻的聚合物表面之間的強黏附。這些良好結合的金屬層顯示出耐高溫循環性,並且經受住所有通常的溫度循環衝擊。 1. Even if chromic acid or chromium sulfuric acid is not used, it is possible to achieve strong adhesion between the deposited metal layer and the lightly etched polymer surface through the mediation of functionalized graphene sheets and/or the mediation of functionalized CNTs . These well-bonded metal layers show high temperature cycle resistance and withstand all usual temperature cycle shocks.

2.多種多樣的化學官能基可以附接到使得聚合物部件能夠快速金屬化的介導石墨烯片或碳奈米管的邊緣或表面上。 2. A variety of chemical functional groups can be attached to the edges or surfaces of media-mediated graphene sheets or carbon nanotubes that enable rapid metallization of polymer parts.

3.所揭露的製程可以在只需要短的時間段的非常溫和的條件下進行。在不重複先前技術製程通常所需的製程步驟的情況下,也可實現最佳結果。 3. The disclosed manufacturing process can be performed under very mild conditions requiring only a short period of time. The best results can be achieved without repeating the process steps normally required in the prior art process.

4.高品質的金屬層可沈積在聚合物部件表面上,而無需巨大資金投入和大量材料消耗。此外,可以以最終影響金屬層品質的在功能上安全且簡單的方式控制該製程。 4. High-quality metal layers can be deposited on the surface of polymer parts without huge capital investment and material consumption. In addition, the process can be controlled in a functionally safe and simple manner that ultimately affects the quality of the metal layer.

5.出人意料的多種多樣的聚合物(不僅包括塑膠還包括橡膠和複合材料)都可以有效地金屬化。相比之下,用先前技術製程只能對有限數量的塑膠進行令人滿意的金屬化。 5. An unexpected variety of polymers (not only plastic but also rubber and composite materials) can be effectively metallized. In contrast, with the prior art process, only a limited amount of plastic can be satisfactorily metallized.

6.由於不需要在高溫下蝕刻塑膠表面,因此可以實現節能。由於只在必要時在極少情況下(例如,高度平滑的超高分子量PE表面)需要溫和蝕刻條件,因此可以使用更廣泛範圍的溫和蝕刻溶液;避免了使用受環境限制的化 學品的需要。 6. Since there is no need to etch the plastic surface at high temperature, energy saving can be achieved. Since mild etching conditions are required only when necessary and in rare cases (for example, highly smooth ultra-high molecular weight PE surfaces), a wider range of mild etching solutions can be used; the use of environmentally-restricted chemical solutions is avoided. The need for academic quality.

7.本揭露的製程或方法可以僅涉及兩個步驟:使聚合物部件表面與石墨烯或CNT分散體接觸(例如浸漬步驟),以及使石墨烯/CNT結合的聚合物部件表面與化學鍍液或電化學鍍液接觸(例如另一快速浸漬步驟)。相比之下,先前技術製程需要許多步驟:預處理、化學蝕刻、活化、化學金屬化、和多個金屬層的電解沈積(因此,另外的多個步驟)。 7. The process or method of the present disclosure may only involve two steps: contacting the surface of the polymer part with graphene or CNT dispersion (such as the dipping step), and contacting the surface of the graphene/CNT-bound polymer part with an electroless plating solution Or electrochemical plating solution contact (for example, another rapid dipping step). In contrast, the prior art process requires many steps: pretreatment, chemical etching, activation, chemical metallization, and electrolytic deposition of multiple metal layers (hence, additional multiple steps).

Claims (22)

一種表面金屬化的聚合物製品,所述聚合物製品包括:具有表面的聚合物部件、塗覆在所述聚合物部件表面上的多個石墨烯片的第一層、以及沈積在所述第一層上的被鍍金屬的第二層,所述第二層係僅由鍍金屬所構成之鍍金屬層,其中所述多個石墨烯片包含選自原生石墨烯材料或非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且其中所述多個石墨烯片在有或沒有黏合劑樹脂的情況下結合到所述聚合物部件表面上,並且所述第一層具有從0.34nm至30μm的厚度。 A polymer product with a metalized surface, the polymer product comprising: a polymer part having a surface, a first layer of a plurality of graphene sheets coated on the surface of the polymer part, and a first layer deposited on the first A metal-plated second layer on one layer, the second layer is a metal-plated layer composed only of metal-plated, wherein the plurality of graphene sheets comprise selected from primary graphene materials or non-primary graphene materials Single-layer or few-layer graphene sheets, wherein the non-native graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene Graphene, nitrided graphene, doped graphene, chemically functionalized graphene, or a combination thereof, and wherein the plurality of graphene sheets are bonded to the surface of the polymer component with or without a binder resin And the first layer has a thickness from 0.34 nm to 30 μm. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述第二層具有從0.5nm至1.0mm的厚度。 The polymer product with a metalized surface as described in item 1 of the scope of the patent application, wherein the second layer has a thickness from 0.5 nm to 1.0 mm. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述聚合物部件包含塑膠、橡膠、熱塑性彈性體、聚合物基質複合材料、橡膠基質複合材料、或其組合。 According to the first item of the scope of patent application, the surface metallized polymer product, wherein the polymer component comprises plastic, rubber, thermoplastic elastomer, polymer matrix composite material, rubber matrix composite material, or a combination thereof. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述聚合物部件包含熱塑性塑膠、熱固性樹脂、互穿網路、橡膠、熱塑性彈性體、天然聚合物、或其組合。 According to the first item of the scope of patent application, the surface metallized polymer product, wherein the polymer component comprises a thermoplastic, a thermosetting resin, an interpenetrating network, a rubber, a thermoplastic elastomer, a natural polymer, or a combination thereof. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述聚合物部件包含選自以下各項的塑膠:丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丙烯腈共聚物(SAN)、聚碳酸酯、聚醯胺或尼龍、聚苯乙烯、高抗沖聚苯乙烯(HIPS)、聚丙烯酸酯、聚乙烯、聚丙烯、聚縮醛、聚酯、聚醚、聚醚碸、聚醚醚酮(PEEK)、聚碸、聚苯醚(PPO)、聚氯乙烯(PVC)、聚醯亞胺、聚醯胺醯亞胺、聚氨酯、聚脲、或其組合。 The surface metallized polymer product described in the first item of the scope of patent application, wherein the polymer component comprises a plastic selected from the group consisting of: acrylonitrile-butadiene-styrene copolymer (ABS), styrene -Acrylonitrile copolymer (SAN), polycarbonate, polyamide or nylon, polystyrene, high impact polystyrene (HIPS), polyacrylate, polyethylene, polypropylene, polyacetal, polyester, Polyether, polyether ether, polyether ether ketone (PEEK), polyether, polyphenylene ether (PPO), polyvinyl chloride (PVC), polyimide, polyimide imine, polyurethane, polyurea, or Its combination. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述被鍍金屬選自銅、鎳、鋁、鉻、錫、鋅、鈦、銀、金、銠、其合金、或其組合。 The polymer product with surface metallization as described in item 1 of the scope of patent application, wherein the metal to be plated is selected from copper, nickel, aluminum, chromium, tin, zinc, titanium, silver, gold, rhodium, alloys thereof, or Its combination. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述石墨烯片進一步用催化金屬的具有從0.5nm至100nm的直徑或厚度的奈米級顆粒或塗層進行修飾,所述催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、鈀、鉑、銠、其合金、或其組合,並且其中所述催化金屬在化學組成上不同於所述被鍍金屬。 As described in the first item of the scope of the patent application, the surface metallized polymer product, wherein the graphene sheet is further modified with nano-scale particles or coatings of catalytic metal having a diameter or thickness from 0.5 nm to 100 nm, The catalytic metal is selected from cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, palladium, platinum, rhodium, alloys thereof, or combinations thereof, and wherein the catalytic metal is in a chemical composition The above is different from the metal to be plated. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述摻雜石墨烯包括氮摻雜石墨烯、硼摻雜石墨烯、磷摻雜石墨烯、或其組合。 According to the first item of the scope of patent application, the surface metallized polymer product, wherein the doped graphene includes nitrogen-doped graphene, boron-doped graphene, phosphorus-doped graphene, or a combination thereof. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述聚合物部件表面在沈積有所述第一層之前僅包含具有<0.1μm的直徑或深度的小開口或孔。 The polymer product with a metalized surface as described in the first item of the scope of the patent application, wherein the surface of the polymer component only contains small openings or holes with a diameter or depth of <0.1 μm before the first layer is deposited. 如申請專利範圍第1項所述之表面金屬化的聚合物製品,其中所述多個石墨烯片用黏合劑樹脂結合到所述聚合物部件表面上,具有從1/5000至1/10的黏合劑與石墨烯重量比。 The surface metallized polymer product as described in the first item of the scope of patent application, wherein the plurality of graphene sheets are bonded to the surface of the polymer component with an adhesive resin, with a ratio of from 1/5000 to 1/10 The weight ratio of binder to graphene. 一種生產如申請專利範圍第1項所述之表面金屬化的聚合物製品的方法,所述方法包括:a)對聚合物部件的表面進行化學、物理或機械處理以製備經表面處理的聚合物部件;b)提供包含分散在液體介質中的多個石墨烯片的石墨烯分散體,使所述經表面處理的聚合物部件與所述石墨烯分散體接觸並促進所述石墨烯片沈積到所述經表面處理的聚合物部件的表面上,其中所述石墨烯片結 合到所述表面上以形成結合的石墨烯片的層;以及c)在所述結合的石墨烯片的層上化學、電化學或電解地沈積金屬層,以形成所述表面金屬化的聚合物製品。 A method for producing a polymer product with a metalized surface as described in item 1 of the scope of the patent application, the method comprising: a) chemically, physically or mechanically treating the surface of a polymer component to prepare a surface-treated polymer Component; b) providing a graphene dispersion containing a plurality of graphene sheets dispersed in a liquid medium, contacting the surface-treated polymer component with the graphene dispersion and promoting the deposition of the graphene sheets to On the surface of the surface-treated polymer component, wherein the graphene sheet is bonded Bonded to the surface to form a layer of bonded graphene sheets; and c) depositing a metal layer chemically, electrochemically, or electrolytically on the layer of bonded graphene sheets to form a polymerized surface metallization Products. 一種用於藉由如申請專利範圍第11項所述之方法使聚合物表面金屬化的石墨烯分散體,所述石墨烯分散體包含分散在液體介質中的多個石墨烯片,其中所述多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且所述石墨烯分散體進一步包含選自以下的一種或多種物種:(i)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(ii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鎳、鐵、錳、錫、鉛、鉍、鈀、其合金、或其組合;或(iii)其組合。 A graphene dispersion for metalizing the surface of a polymer by the method described in claim 11, the graphene dispersion comprising a plurality of graphene sheets dispersed in a liquid medium, wherein the The plurality of graphene sheets includes a single-layer or few-layer graphene sheet selected from a primary graphene material having substantially 0% non-carbon elements or a non-primary graphene material having 0.001% to 25% by weight of non-carbon elements , Wherein the non-native graphene is selected from graphene oxide, reduced graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene, nitrided graphene, doped graphene Heterographene, chemically functionalized graphene, or a combination thereof, and the graphene dispersion further comprises one or more species selected from the following: (i) an etchant selected from an acid, an oxidizing agent, a metal salt, or a combination thereof (Ii) Nano-scale particles or coatings of catalytic metal having a diameter or thickness from 0.5nm to 100nm, the catalytic metal selected from nickel, iron, manganese, tin, lead, bismuth, palladium, alloys thereof, or Combination; or (iii) its combination. 一種用於生產表面金屬化的聚合物製品之連續方法,所述方法包括:a)將聚合物製品連續浸泡到包含分散在液體介質中的多個石墨烯片的石墨烯分散體中持續一段浸泡時間,並且然後將所述聚合物製品從所述分散體中退出,從而使得石墨烯片能夠沈積到所述聚合物製品的表面上以形成石墨烯附著的聚合物製品;b)連續地將所述石墨烯附著的聚合物製品移動到乾燥或加熱區,以使石墨烯片能夠結合到所述表面上以形成石墨烯覆蓋的聚合物製品;以及c)將所述石墨烯覆蓋的聚合物製品連續移動到金屬化區中,在所述金屬化區中,將金屬層化學、電化學或電解地沈積到所述石墨烯覆蓋的聚合 物製品的表面上,以形成所述表面金屬化的聚合物製品。 A continuous method for producing a polymer product with a metallized surface, the method comprising: a) continuously immersing the polymer product into a graphene dispersion containing a plurality of graphene sheets dispersed in a liquid medium for a period of immersion Time, and then withdraw the polymer article from the dispersion so that graphene sheets can be deposited on the surface of the polymer article to form a graphene-attached polymer article; b) continuously The graphene-attached polymer product is moved to a drying or heating zone, so that the graphene sheet can be bonded to the surface to form a graphene-covered polymer product; and c) the graphene-covered polymer product Move continuously into the metallization zone, in the metallization zone, the metal layer is chemically, electrochemically or electrolytically deposited on the graphene-covered polymer On the surface of the article to form a metalized polymer article on the surface. 如申請專利範圍第13項所述之方法,進一步包括在步驟(a)之前的將聚合物製品連續移動到表面處理區中以處理所述聚合物製品的表面的額外步驟。 The method described in item 13 of the scope of patent application further includes an additional step of continuously moving the polymer article to the surface treatment zone to treat the surface of the polymer article before step (a). 如申請專利範圍第14項所述之方法,其中所述額外步驟包括使所述聚合物製品的表面經受使用選自酸、氧化劑、金屬鹽、及其組合的蝕刻劑進行的蝕刻處理。 The method according to claim 14, wherein the additional step includes subjecting the surface of the polymer article to an etching treatment using an etchant selected from the group consisting of acids, oxidizers, metal salts, and combinations thereof. 如申請專利範圍第14項所述之方法,其中所述額外步驟包括使所述聚合物製品的表面經受不含鉻酸或鉻硫酸的蝕刻處理。 The method according to claim 14, wherein the additional step includes subjecting the surface of the polymer article to an etching treatment without chromic acid or chromium sulfuric acid. 如申請專利範圍第13項所述之方法,其中所述液體介質進一步包含溶解在所述液體介質中的過錳酸、磷酸、硝酸、或其組合。 The method according to claim 13, wherein the liquid medium further comprises permanganic acid, phosphoric acid, nitric acid, or a combination thereof dissolved in the liquid medium. 如申請專利範圍第13項所述之方法,其中所述石墨烯分散體進一步包含黏合劑樹脂,具有從1/5000至1/10的黏合劑與石墨烯重量比。 The method described in item 13 of the scope of the patent application, wherein the graphene dispersion further comprises a binder resin having a weight ratio of the binder to the graphene from 1/5000 to 1/10. 如申請專利範圍第13項所述之方法,其中所述石墨烯分散體包含分散在液體介質中的多個石墨烯片,其中所述多個石墨烯片包含選自具有基本上0%的非碳元素的原生石墨烯材料或者具有0.001重量%至25重量%的非碳元素的非原生石墨烯材料的單層或少層石墨烯片,其中所述非原生石墨烯選自氧化石墨烯、還原的氧化石墨烯、氟化石墨烯、氯化石墨烯、溴化石墨烯、碘化石墨烯、氫化石墨烯、氮化石墨烯、摻雜石墨烯、化學官能化石墨烯、或其組合,並且所述石墨烯分散體進一步包含選自以下的一種或多種物種:(i)溶解或分散在所述液體介質中的黏合劑樹脂,其中黏合劑與石墨烯重量比為從1/5000至1/10;(ii)選自酸、氧化劑、金屬鹽、或其組合的蝕刻劑;(iii)具有從0.5nm至100nm的直徑或厚度的催化金屬的奈米級顆粒或塗層,該催化金屬選自鈷、鎳、銅、鐵、錳、錫、鋅、鉛、鉍、銀、金、 鈀、鉑、其合金、或其組合;以及(iv)其組合。 The method according to item 13 of the scope of the application, wherein the graphene dispersion comprises a plurality of graphene sheets dispersed in a liquid medium, and wherein the plurality of graphene sheets comprises a non-volatile material having substantially 0% Carbon element primary graphene material or a single-layer or few-layer graphene sheet of non-carbon element non-primary graphene material with 0.001% to 25% by weight, wherein the non-primary graphene is selected from graphene oxide, reduction Of graphene oxide, fluorinated graphene, chlorinated graphene, brominated graphene, iodized graphene, hydrogenated graphene, nitrided graphene, doped graphene, chemically functionalized graphene, or a combination thereof, and The graphene dispersion further includes one or more species selected from the following: (i) a binder resin dissolved or dispersed in the liquid medium, wherein the weight ratio of the binder to the graphene is from 1/5000 to 1/ 10; (ii) An etchant selected from an acid, an oxidizer, a metal salt, or a combination thereof; (iii) A nano-scale particle or coating of a catalytic metal with a diameter or thickness from 0.5 nm to 100 nm, the catalytic metal is selected From cobalt, nickel, copper, iron, manganese, tin, zinc, lead, bismuth, silver, gold, Palladium, platinum, alloys thereof, or combinations thereof; and (iv) combinations thereof. 一種表面金屬化的聚合物製品,所述聚合物製品包括:具有表面的聚合物部件;塗覆在所述聚合物部件表面上的具有第一化學官能基的多個官能化石墨烯片、具有第二化學官能基的多個官能化碳奈米管、或兩者的組合的第一層;並且還包括沈積在所述第一層上的被鍍金屬的第二層,所述第二層係僅由鍍金屬所構成之鍍金屬層,其中所述多個官能化石墨烯片包含單層或少層石墨烯片並且所述多個官能化碳奈米管包含單壁或多壁碳奈米管,並且其中所述多個官能化石墨烯片或官能化碳奈米管在有或沒有黏合劑樹脂的情況下結合到所述聚合物部件表面上,並且所述第一層具有從0.34nm至30μm的厚度。 A polymer product with a metallized surface, the polymer product comprising: a polymer part having a surface; a plurality of functionalized graphene sheets with a first chemical functional group coated on the surface of the polymer part; A first layer of a plurality of functionalized carbon nanotubes or a combination of the second chemical functional group; and also includes a second layer of metal plated deposited on the first layer, the second layer It is a metal-plated layer composed of metal-plated only, wherein the plurality of functionalized graphene sheets comprise single-layer or few-layer graphene sheets and the plurality of functionalized carbon nanotubes comprise single-wall or multi-wall carbon nanotubes Meter tube, and wherein the plurality of functionalized graphene sheets or functionalized carbon nanotubes are bonded to the surface of the polymer component with or without a binder resin, and the first layer has a thickness from 0.34 The thickness is from nm to 30μm. 如申請專利範圍第20項所述之表面金屬化的聚合物製品,其中所述第二層具有從0.5nm至1.0mm的厚度。 The polymer product with a metalized surface as described in item 20 of the scope of the patent application, wherein the second layer has a thickness from 0.5 nm to 1.0 mm. 如申請專利範圍第20項所述之表面金屬化的聚合物製品,其中所述第一層包含黏合劑樹脂,所述黏合劑樹脂將所述官能化石墨烯片或所述官能化碳奈米管化學結合到所述聚合物部件表面上。 The surface metallized polymer product described in the scope of the patent application described in item 20, wherein the first layer comprises a binder resin, and the binder resin connects the functionalized graphene sheet or the functionalized carbon nano The tube is chemically bonded to the surface of the polymer component.
TW107140377A 2017-11-15 2018-11-14 Graphene-mediated metal-plated polymer article and production method TWI720365B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15/813,996 2017-11-15
US15/813,996 US20190144621A1 (en) 2017-11-15 2017-11-15 Graphene-Mediated Metal-Plated Polymer Article and Production Method
US15/914,224 US10730070B2 (en) 2017-11-15 2018-03-07 Continuous process for manufacturing graphene-mediated metal-plated polymer article
US15/914,224 2018-03-07
US15/922,024 US11332830B2 (en) 2017-11-15 2018-03-15 Functionalized graphene-mediated metallization of polymer article
US15/922,024 2018-03-15

Publications (2)

Publication Number Publication Date
TW201922880A TW201922880A (en) 2019-06-16
TWI720365B true TWI720365B (en) 2021-03-01

Family

ID=66539099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140377A TWI720365B (en) 2017-11-15 2018-11-14 Graphene-mediated metal-plated polymer article and production method

Country Status (2)

Country Link
TW (1) TWI720365B (en)
WO (1) WO2019099061A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3699321A1 (en) * 2019-02-19 2020-08-26 BGT Materials Limited Method of forming copper metal layer on non-metallic material
CN110512246B (en) * 2019-09-29 2020-11-03 太仓陶氏电气有限公司 Preparation process of foam metal for electronic component heat dissipation system
CN113860888A (en) * 2021-11-04 2021-12-31 四川恒力盛泰石墨烯科技有限公司 Preparation method of graphene heat dissipation film for electronic equipment
CN116552068B (en) * 2023-07-12 2023-10-27 厦门凯纳石墨烯技术股份有限公司 Metal/graphene composite material and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712948B1 (en) * 1998-11-13 2004-03-30 Enthone Inc. Process for metallizing a plastic surface
KR20140028381A (en) * 2012-08-28 2014-03-10 (주)그랜드 텍 Method for preparing a graphene
US9833913B2 (en) * 2012-12-28 2017-12-05 Nanotek Instruments, Inc. Graphene composite hand-held and hand-heated thawing tool
US10102973B2 (en) * 2014-09-12 2018-10-16 Nanotek Instruments, Inc. Graphene electrode based ceramic capacitor

Also Published As

Publication number Publication date
WO2019099061A1 (en) 2019-05-23
TW201922880A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
TWI784124B (en) Products containing graphene-mediated metallized polymer component
US20190292722A1 (en) Process for graphene-mediated metallization of fibers, yarns, and fabrics
TWI720365B (en) Graphene-mediated metal-plated polymer article and production method
US20190292675A1 (en) Process for graphene-mediated metallization of polymer films
US20190292721A1 (en) Process for graphene-mediated metallization of fibers, yarns, and fabrics
US20190283377A1 (en) Conductive graphene mixture-mediated metallization of polymer article
US20190143656A1 (en) Products containing graphene-mediated metallized polymer component
US10730070B2 (en) Continuous process for manufacturing graphene-mediated metal-plated polymer article
US20190283379A1 (en) Graphene-mediated metallization of polymer films
US20190143369A1 (en) Process for graphene-mediated metallization of polymer article
US20190292671A1 (en) Metal matrix nanocomposite containing oriented graphene sheets and production process
US20190292720A1 (en) Graphene-Mediated Metallization of Fibers, Yarns, and Fabrics
US20190283378A1 (en) Apparatus for graphene-mediated production of metallized polymer articles
US11629420B2 (en) Production process for metal matrix nanocomposite containing oriented graphene sheets
US11332830B2 (en) Functionalized graphene-mediated metallization of polymer article
Wang et al. Electromagnetic interference shielding MWCNT-Fe3O4@ Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability
Xu et al. Lightweight Ti2CT x MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature
Wei et al. Adhesion and cohesion of epoxy-based industrial composite coatings
WO2019183205A1 (en) Graphene-mediated metallization of fibers, yarns, and fabrics
Tien et al. Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive
US20190292676A1 (en) Process for graphene-mediated metallization of polymer films
US20190144621A1 (en) Graphene-Mediated Metal-Plated Polymer Article and Production Method
Ren et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption
KR20180094874A (en) Chemical-free manufacturing of graphene reinforced polymer matrix composites
WO2019191014A1 (en) Metal matrix nanocomposite containing oriented graphene sheets and production process