TWI668902B - Electrode and electrochemical energy storage device - Google Patents

Electrode and electrochemical energy storage device Download PDF

Info

Publication number
TWI668902B
TWI668902B TW107111935A TW107111935A TWI668902B TW I668902 B TWI668902 B TW I668902B TW 107111935 A TW107111935 A TW 107111935A TW 107111935 A TW107111935 A TW 107111935A TW I668902 B TWI668902 B TW I668902B
Authority
TW
Taiwan
Prior art keywords
carbon
conductive
electrode sheet
scope
item
Prior art date
Application number
TW107111935A
Other languages
Chinese (zh)
Other versions
TW201943127A (en
Inventor
沈銘振
洪啟昌
陳博明
Original Assignee
臺灣塑膠工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣塑膠工業股份有限公司 filed Critical 臺灣塑膠工業股份有限公司
Priority to TW107111935A priority Critical patent/TWI668902B/en
Priority to CN201810900571.9A priority patent/CN109036859A/en
Priority to JP2018158335A priority patent/JP2019186512A/en
Application granted granted Critical
Publication of TWI668902B publication Critical patent/TWI668902B/en
Publication of TW201943127A publication Critical patent/TW201943127A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

本發明提供一種電極片,其包含導電基材和導電層。導電層包含活性物質、導電輔助材料和黏結劑。所述活性物質包含活性碳。所述導電輔助材料包括含碳零維材料及含碳二維材料。本發明也提供一種包含上述電極片的電化學儲能元件。 The invention provides an electrode sheet, which comprises a conductive substrate and a conductive layer. The conductive layer contains an active material, a conductive auxiliary material, and a binder. The active substance contains activated carbon. The conductive auxiliary material includes a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material. The invention also provides an electrochemical energy storage element including the electrode sheet.

Description

電極片與電化學儲能元件 Electrode sheet and electrochemical energy storage element

本發明是有關於一種電極片與電化學儲能元件,且特別是有關於一種包含由含碳零維材料和含碳二維材料所形成之導電層的電極片,及包含上述電極片的電化學儲能元件。 The present invention relates to an electrode sheet and an electrochemical energy storage element, and in particular, to an electrode sheet including a conductive layer formed of a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material, and an electrochemical device including the electrode sheet. Learn energy storage components.

目前用於電化學儲能元件的電極片的製造通常是以活性碳做為導電層的主要材料,並藉由黏結劑將活性碳附著於導電基材上。 Currently, the manufacture of electrode sheets for electrochemical energy storage elements usually uses activated carbon as the main material of the conductive layer, and the activated carbon is attached to the conductive substrate by a binder.

為改善電化學儲能元件的電學性質(例如充放電率),目前提出下述幾種方式。其一是使用奈米級的石墨烯、奈米級碳黑與活性碳混合,並經黏結劑來形成導電層。然而,上述方式需要使用大量的奈米級的石墨烯和奈米級碳黑,且所製得的電化學儲能元件的電容量隨電流密度的增加大幅下降。 In order to improve the electrical properties (such as the charge and discharge rate) of electrochemical energy storage elements, the following methods are currently proposed. One is to use nanometer-level graphene, nanometer-level carbon black and activated carbon to mix and form a conductive layer through a binder. However, the above method requires the use of a large amount of nanometer-level graphene and nanometer-level carbon black, and the capacitance of the prepared electrochemical energy storage element decreases significantly with the increase of the current density.

另一種方式是使用曲面的石墨烯片來取代活性碳,並以離子液體做為電解質。然而,除了離子液體價格昂貴、增加生產成本外,上述方法所製得的電極片之電化學儲 能元件的電容量也隨電流密度的增加而大幅下降。 Another way is to use curved graphene sheets instead of activated carbon and use ionic liquids as electrolytes. However, in addition to the expensive ionic liquids and increased production costs, the electrochemical storage of the electrode sheets prepared by the above method The capacitance of energy devices also decreases significantly with increasing current density.

還有另外一種方式是將活性碳、石墨烯和碳黑分層堆疊,以形成多層結構的電極片,來減少介面阻抗和增加介面強度。然而,此種方法的結構特殊、製程手段較複雜,且所能提升的電學性質有限。 There is another way to stack activated carbon, graphene, and carbon black layer by layer to form a multi-layered electrode sheet to reduce the interface resistance and increase the interface strength. However, this method has a special structure, complicated manufacturing methods, and limited electrical properties that can be improved.

因此,目前亟需提出一種電極片和包含此電極片的電化學儲能裝置。上述電極片可具有高電容量、良好的電容量維持率,使其電容量不隨電流密度增加而大幅降低。此外,此種電極片的製造過程簡單(例如形成單層導電層)。 Therefore, there is an urgent need to propose an electrode sheet and an electrochemical energy storage device including the electrode sheet. The electrode sheet can have a high capacitance and a good capacitance retention rate, so that its capacitance does not decrease significantly with the increase of the current density. In addition, the manufacturing process of such an electrode sheet is simple (for example, forming a single conductive layer).

因此,本發明的一個態樣在於提供一種電極片,其包含由不同空間維度的含碳材料所形成的導電層,可幫助電子於導電層中的傳導,從而具有良好的電學性能。 Therefore, one aspect of the present invention is to provide an electrode sheet including a conductive layer formed of carbonaceous materials with different spatial dimensions, which can help electrons conduct in the conductive layer, thereby having good electrical performance.

本發明的另一個態樣在於提供一種電化學儲能元件,其包含上述的電極片。 Another aspect of the present invention is to provide an electrochemical energy storage element including the above-mentioned electrode sheet.

根據本發明的上述態樣,提出一種電極片。在一些實施例中,上述電極片包含導電基材和導電層。導電層包含活性物質、導電輔助材料和黏結劑。所述活性物質包含活性碳,其中活性碳具有100m2/g至3500m2/g之第一表面積和0.1μm至500μm之第一粒徑,且活性碳為粒狀。所述導電輔助材料包括含碳零維材料及含碳二維材料,其中含碳零維材料包含粒徑為0.001μm至50μm之碳黑,且含碳二維材料包含直徑為0.1μm至100μm之石墨烯片。基於活 性物質、導電輔助材料以及黏結劑之總使用量為100重量百分比(wt.%),活性物質的使用量為80wt.%至96.5wt.%,導電輔助材料的一使用量為0.5wt.%至10wt.%,以及黏結劑的使用量為3wt.%至10wt.%。 According to the above aspect of the present invention, an electrode sheet is proposed. In some embodiments, the electrode sheet includes a conductive substrate and a conductive layer. The conductive layer contains an active material, a conductive auxiliary material, and a binder. The active material includes activated carbon, wherein the activated carbon has a first surface area of 100 m 2 / g to 3500 m 2 / g and a first particle diameter of 0.1 μm to 500 μm, and the activated carbon is granular. The conductive auxiliary material includes a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material, wherein the carbon-containing zero-dimensional material includes carbon black having a particle diameter of 0.001 μm to 50 μm, and the carbon-containing two-dimensional material includes a diameter of 0.1 μm to 100 μm Graphene sheet. Based on the total amount of active material, conductive auxiliary material and adhesive used is 100 weight percent (wt.%), The amount of active material used is 80wt.% To 96.5wt.%, And the amount of conductive auxiliary material used is 0.5wt. % To 10 wt.%, And the binder is used in an amount of 3 to 10 wt.%.

依據本發明的一些實施例,所述石墨烯片具有1m2/g至2630m2/g之第二表面積及1μm至50μm之直徑,所述碳黑具有1m2/g至3000m2/g之第三表面積及0.01μm至小於1μm的粒徑,且碳黑為圓形顆粒狀。 According to some embodiments of the present invention, the graphene sheet having a diameter of 50μm and 1m 2 / g to 2630m 2 / g surface area of the second to 1μm, said carbon black having a 1m 2 / g to 3000m 2 second / g of Three surface areas and a particle size of 0.01 μm to less than 1 μm, and the carbon black is round particles.

依據本發明的一些實施例,石墨烯片與碳黑之使用量比例為1:3至1:19。 According to some embodiments of the present invention, the usage ratio of the graphene sheet to the carbon black is 1: 3 to 1:19.

依據本發明的一些實施例,導電輔助材料更包括含碳一維材料,此含碳一維材料包含奈米碳管、碳纖維或奈米碳帶。 According to some embodiments of the present invention, the conductive auxiliary material further includes a carbon-containing one-dimensional material, and the carbon-containing one-dimensional material includes a nano carbon tube, a carbon fiber, or a nano carbon ribbon.

依據本發明的一些實施例,導電層之厚度為0.001mm至1mm。 According to some embodiments of the present invention, the thickness of the conductive layer is 0.001 mm to 1 mm.

依據本發明的一些實施例,所述導電層是將導電組成物塗佈於所述導電基材之表面上,並經烘烤步驟而形成,所述導電組成物包含活性物質、導電輔助材料、黏結劑及溶劑,且導電組成物的總固含量為10%至50%。 According to some embodiments of the present invention, the conductive layer is formed by coating a conductive composition on the surface of the conductive substrate and undergoing a baking step. The conductive composition includes an active material, a conductive auxiliary material, A binder and a solvent, and the total solid content of the conductive composition is 10% to 50%.

依據本發明的一些實施例,黏結劑包含聚四氟乙烯、聚偏氟乙烯、聚伸苯基乙烯化合物、聚氧化乙烯、聚乙烯醇、聚二氧乙烯噻吩、聚苯胺、聚吡咯、磺酸聚氟碳化物、聚二氟乙烯或上述之任意組合。 According to some embodiments of the invention, the binder comprises polytetrafluoroethylene, polyvinylidene fluoride, polyphenylene vinyl compound, polyethylene oxide, polyvinyl alcohol, polydioxyethylene thiophene, polyaniline, polypyrrole, sulfonic acid Polyfluorocarbon, polydifluoroethylene, or any combination thereof.

依據本發明的一些實施例,導電基材包含金屬 片材。 According to some embodiments of the invention, the conductive substrate comprises a metal Sheet.

根據本發明的上述態樣,提出一種電化學儲能元件。在一些實施例中,所述電化學儲能元件包括腔體、二電極片、隔離件和電解液。所述二電極片、隔離件和電解液係容置於腔體中。所述二電極片的至少一者為如前所述之電極片。 According to the above aspect of the present invention, an electrochemical energy storage element is proposed. In some embodiments, the electrochemical energy storage element includes a cavity, a two-electrode sheet, a separator, and an electrolyte. The two electrode sheets, the separator and the electrolyte are contained in the cavity. At least one of the two electrode sheets is the electrode sheet as described above.

依據本發明的一些實施例,所述電化學儲能元件包含超電容或鋰電池。 According to some embodiments of the present invention, the electrochemical energy storage element includes a super capacitor or a lithium battery.

本發明的電極片的導電層是由不同維度的含碳材料所構成的三維導電網絡,此種導電網絡可改善電子於導電層中的傳輸效率。因此,包含上述電極片的電化學儲能元件可具有高電容量、在不同充放電率(或電流密度)下良好的電容量維持率。 The conductive layer of the electrode sheet of the present invention is a three-dimensional conductive network composed of carbon-containing materials of different dimensions. Such a conductive network can improve the transmission efficiency of electrons in the conductive layer. Therefore, the electrochemical energy storage element including the electrode sheet can have a high capacity and a good capacity retention rate at different charge / discharge rates (or current densities).

100、223A、223B‧‧‧導電層 100, 223A, 223B‧‧‧ conductive layer

101、221A、221B‧‧‧導電基材 101, 221A, 221B‧‧‧ conductive substrate

110‧‧‧活性物質 110‧‧‧active substance

120‧‧‧含碳零維材料 120‧‧‧Carbon zero-dimensional materials

130‧‧‧含碳二維材料 130‧‧‧ carbon-containing two-dimensional material

140、150‧‧‧路徑 140, 150‧‧‧ paths

200‧‧‧電化學儲能元件 200‧‧‧ Electrochemical Energy Storage Element

210‧‧‧腔體 210‧‧‧ Cavity

220A、220B‧‧‧電極片 220A, 220B‧‧‧ electrode pads

230‧‧‧隔離件 230‧‧‧Isolator

240‧‧‧電解液 240‧‧‧ Electrolyte

301、302、303、304、305、306、307、308、309‧‧‧線段 301, 302, 303, 304, 305, 306, 307, 308, 309‧‧‧ line segments

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:[圖1]係根據本發明之一實施例繪示導電層中活性物質和導電輔助材料的分布之示意圖。 In order to make the above and other objects, features, advantages, and embodiments of the present invention more comprehensible, the detailed description of the drawings is as follows: [FIG. 1] An active material in a conductive layer according to an embodiment of the present invention And the distribution of conductive auxiliary materials.

[圖2]係依據本發明的一些實施例繪示電化學儲能元件的示意剖面圖。 FIG. 2 is a schematic cross-sectional view illustrating an electrochemical energy storage element according to some embodiments of the present invention.

[圖3]繪示實施例1至4及比較例1之超電容的電流密度與電容量的折線圖。 [Fig. 3] A line chart showing the current density and capacitance of the supercapacitors of Examples 1 to 4 and Comparative Example 1. [Fig.

[圖4]繪示實施例2和5及比較例1之超電容的充放電率與電容量的折線圖。 [Fig. 4] A line chart showing charge and discharge rates and capacitances of the ultracapacitors of Examples 2 and 5 and Comparative Example 1. [Fig.

[圖5]繪示比較例1至4之超電容的電流密度與電容量的折線圖。 [Fig. 5] A line chart showing the current density and capacitance of the ultracapacitors of Comparative Examples 1 to 4. [Fig.

本發明提供一種電極片和包含此電極片的電化學儲能元件。所述電極片包含導電基材和導電層,其中導電層是由不同維度的含碳材料所構成,以提供三維導電網絡。此種三維導電網絡可有效提升電子和離子的傳導效率,達到提升功率密度和能量密度的效果,例如:包含此電極片的電化學儲能元件可具有良好的電學性質,如:高電容量、高充放電率(c-rate)下的電容量維持率高,及較佳充放電的循環性能。 The invention provides an electrode sheet and an electrochemical energy storage element including the electrode sheet. The electrode sheet includes a conductive substrate and a conductive layer, wherein the conductive layer is composed of carbon-containing materials of different dimensions to provide a three-dimensional conductive network. Such a three-dimensional conductive network can effectively improve the conduction efficiency of electrons and ions, and achieve the effect of increasing power density and energy density. For example, an electrochemical energy storage element including the electrode sheet can have good electrical properties, such as: high capacitance, Capacitance retention rate is high at high charge-discharge rate (c-rate), and better charge-discharge cycle performance.

在一實施例中,前述導電基材包含金屬片材。所述金屬片材可包括但不限於不鏽鋼、金、銀、銅、鉬、鋁、鈦或上述之任意組合。 In one embodiment, the conductive substrate includes a metal sheet. The metal sheet may include, but is not limited to, stainless steel, gold, silver, copper, molybdenum, aluminum, titanium, or any combination thereof.

在一實施例中,所述導電層包含活性物質、導電輔助材料和黏結劑,以下分述之。 In one embodiment, the conductive layer includes an active material, a conductive auxiliary material, and a binder, which are described below.

活性物質Active substance

本發明此處所稱之活性物質包含活性碳。在一些例子中,此活性碳可具有100m2/g至3500m2/g之表面積和0.1μm至500μm之粒徑。在另一些例子中,此活性碳可為粒狀。具體而言,此活性碳可為圓形或不規則破碎狀顆 粒。 The active substance referred to herein in the present invention contains activated carbon. In some examples, this activated carbon may have a surface area of 100 m 2 / g to 3500 m 2 / g and a particle size of 0.1 μm to 500 μm. In other examples, the activated carbon may be granular. Specifically, the activated carbon may be round or irregularly broken particles.

較佳的,活性碳可具有1000m2/g至3000m2/g的表面積。較佳的,活性碳可具有1μm至50μm的粒徑。 Preferably, the activated carbon may have a surface area of 1000 m 2 / g to 3000 m 2 / g. Preferably, the activated carbon may have a particle diameter of 1 μm to 50 μm.

當活性碳的粒徑過小時,過多的介面會增加阻抗。當活性碳的粒徑過大時,導電接觸點過少,電子及/或離子的傳導效率差。 When the particle size of activated carbon is too small, too much interface will increase the resistance. When the particle size of the activated carbon is too large, there are too few conductive contact points, and the conduction efficiency of electrons and / or ions is poor.

在一實施例中,活性碳可利用任何已知的技術手段進行活化,本發明此處並無特別限制。例如:可使用化學活化法來活化此活性碳。具體而言,化學活化法使用可提供氧化力的化學材料來進行,如氯化鋅、磷酸、硫酸、氯化鈣、氫氧化鈉、二鉻酸鉀、過錳化鉀及其類似物。或者,在另外一些例子中,活性碳可使用物理活化法來活化。此物理活化法使用蒸氣、丙烷氣體、從燃燒氣體中產生的廢氣(二氧化碳和水的混合物)、二氧化碳氣體及其類似物來進行。 In one embodiment, the activated carbon can be activated by any known technical means, and the invention is not particularly limited herein. For example, chemical activation can be used to activate this activated carbon. Specifically, the chemical activation method is performed using a chemical material capable of providing oxidizing power, such as zinc chloride, phosphoric acid, sulfuric acid, calcium chloride, sodium hydroxide, potassium dichromate, potassium permanganate, and the like. Alternatively, in other examples, the activated carbon may be activated using a physical activation method. This physical activation method is performed using steam, propane gas, exhaust gas (a mixture of carbon dioxide and water) generated from a combustion gas, carbon dioxide gas, and the like.

基於活性物質、後述之導電輔助材料及黏結劑的總使用量為100重量百分比(wt.%),活性物質的使用量為80wt.%至96.5wt.%。當活性物質的使用量過高或過低時,都會造成電子及/或離子的傳導效率不佳。進一步而言,由於活性物質的粒徑相對較大,導電層中的活性物質過多也會造成導電接觸點變少,因而影響電子及/或離子的傳導效率。 Based on the total used amount of the active material, the conductive auxiliary material and the binder described later, it is 100 weight percent (wt.%), And the used amount of the active material is 80 wt.% To 96.5 wt.%. When the amount of the active material is too high or too low, the conduction efficiency of electrons and / or ions will be poor. Furthermore, since the particle size of the active material is relatively large, too much active material in the conductive layer will also cause the conductive contact points to decrease, thereby affecting the conduction efficiency of electrons and / or ions.

導電輔助材料Conductive auxiliary material

本發明的導電輔助材料至少同時包括含碳零維 材料和含碳二維材料。藉由同時包含不同維度的導電輔助材料,可幫助電極片中電子與離子的傳導。在一些實施例中,導電輔助材料可進一步包括含碳一維材料。以下分別說明含碳零維材料、含碳一維材料和含碳二維材料的具體性質。 The conductive auxiliary material of the present invention includes at least a carbon-containing zero-dimensional Materials and carbon-containing 2D materials. By including conductive auxiliary materials of different dimensions at the same time, the conduction of electrons and ions in the electrode sheet can be facilitated. In some embodiments, the conductive auxiliary material may further include a carbon-containing one-dimensional material. The specific properties of carbon-containing zero-dimensional materials, carbon-containing one-dimensional materials, and carbon-containing two-dimensional materials are described below.

含碳零維材料Carbon-containing zero-dimensional materials

本發明此處所稱之零維材料可包含粒徑為0.001μm至50μm之碳黑。較佳的,此碳黑的粒徑可為0.01μm至小於1μm。換言之,本發明之含碳零維材料較佳為奈米級的含碳顆粒材料。在一些例子中,碳黑可具有1m2/g至3000m2/g的表面積。較佳地,碳黑可具有10m2/g至1500m2/g的表面積。在一些例子中,此碳黑為圓形顆粒狀。 The zero-dimensional material referred to herein in the present invention may include carbon black having a particle diameter of 0.001 μm to 50 μm. Preferably, the particle size of the carbon black may be 0.01 μm to less than 1 μm. In other words, the carbon-containing zero-dimensional material of the present invention is preferably a nano-scale carbon-containing particulate material. In some examples, the carbon black may have a surface area from 1 m 2 / g to 3000 m 2 / g. Preferably, the carbon black may have a surface area of 10 m 2 / g to 1500 m 2 / g. In some examples, the carbon black is round and granular.

特別說明的是,雖然含碳零維材料單獨即可做為導電輔助材料來使用,然而單獨使用含碳零維材料(特別是奈米級的含碳零維材料),因電子及/或離子傳輸時需經過的介面過多,導致阻抗上升,從而致使包含此電極片的電化學儲能元件的電學性質劣化。 In particular, although carbon-containing zero-dimensional materials can be used alone as conductive auxiliary materials, carbon-only zero-dimensional materials (especially nano-scale carbon-containing zero-dimensional materials) are used alone because of electrons and / or ions. There are too many interfaces to pass through during transmission, leading to an increase in impedance, thereby deteriorating the electrical properties of the electrochemical energy storage element including the electrode sheet.

再者,倘若含碳零維材料的尺寸過大時,導電接觸短減少,所形成的導電通路網絡不完全,影響電子或離子的傳輸效率。 Furthermore, if the size of the carbon-containing zero-dimensional material is too large, the conductive contact is shortened, and the formed conductive path network is incomplete, which affects the transmission efficiency of electrons or ions.

為了改善上述介面多造成阻抗上升的問題。本發明提出在導電輔助材料中併用含碳零維材料和含碳二維材料。 In order to improve the above interface, the problem of impedance rise is often caused. The invention proposes to use a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material in a conductive auxiliary material.

含碳二維材料Carbonaceous two-dimensional material

本發明此處所稱之含碳二維材料可為直徑為 0.1μm至100μm之石墨烯片。較佳的,石墨烯片可具有1μm至50μm的直徑。換言之,本發明的含碳二維材料較佳為微米級的材料。在一些實施例中,石墨烯片具有1m2/g至2630m2/g的表面積。較佳的,石墨烯片具有10m2/g至500m2/g的表面積。在另一些實施例中,石墨烯片的層數為1至10層。較佳的,石墨烯片的層數為5至10層。更佳的,石墨烯片的層數為6至10層。 The carbon-containing two-dimensional material referred to herein in the present invention may be a graphene sheet having a diameter of 0.1 μm to 100 μm. Preferably, the graphene sheet may have a diameter of 1 μm to 50 μm. In other words, the carbon-containing two-dimensional material of the present invention is preferably a micron-scale material. In some embodiments, the graphene sheet has a 2 / g to 2630m 2 g surface area of 1m /. Preferably, the graphene sheet has a surface area of 10 m 2 / g to 500 m 2 / g. In other embodiments, the number of layers of the graphene sheet is 1 to 10. Preferably, the number of layers of the graphene sheet is 5 to 10 layers. More preferably, the number of layers of the graphene sheet is 6 to 10.

本發明在導電輔助材料中添加含碳二維材料,電子或離子可沿著石墨烯片的平面傳導,從而減少傳導路徑中經過的介面數量,因此可有效改善電子或離子的傳導效率。進一步而言,由於本發明的含碳二維材料使用近微米級或微米級的材料,可提供電子或離子導電通道並減少介面數量。而前述奈米級的含碳零維材料則可填充在微米級含碳二維材料和活性物質的空隙處,從而建構出三維導電網絡,提高電子或離子的傳輸效率。 In the present invention, a carbon-containing two-dimensional material is added to the conductive auxiliary material, and electrons or ions can be conducted along the plane of the graphene sheet, thereby reducing the number of interfaces passing through the conduction path, and thus can effectively improve the conduction efficiency of electrons or ions. Further, since the two-dimensional carbon-containing material of the present invention uses a material on the order of micrometers or micrometers, it can provide electronic or ion conductive channels and reduce the number of interfaces. The aforementioned nano-scale carbon-containing zero-dimensional material can fill the gaps between the micro-scale carbon-containing two-dimensional material and the active material, thereby constructing a three-dimensional conductive network and improving the transmission efficiency of electrons or ions.

然而,需說明的是,倘若完全以含碳二維材料做為導電輔助材料,除了因含碳二維材料尺寸較大,所形成的網絡不完全外,過多的含碳二維材料增高其二維平面與導電基材平行(即與電子和離子的傳導方向垂直)的機率,反而使電子和離子的傳導被阻擋,降低傳導效率。 However, it should be noted that if the carbon-containing two-dimensional material is completely used as the conductive auxiliary material, in addition to the incomplete network formed due to the large size of the carbon-containing two-dimensional material, excessive carbon-containing two-dimensional materials increase the second. The probability that the dimension plane is parallel to the conductive substrate (that is, perpendicular to the conduction direction of the electrons and ions), instead, the conduction of the electrons and ions is blocked, reducing the conduction efficiency.

請參考圖1,圖1係根據本發明之一實施例繪示導電層100中活性物質和導電輔助材料的分布之示意圖。如圖1所示,活性物質110、含碳零維材料120和含碳二維材料130係平均分布於導電基材101的表面上。在活性物質110 和含碳二維材料130的孔隙處,分佈有粒徑相對較小的含碳零維材料120。因此,在此導電層100中,電子和離子可經由含碳零維材料120和活性物質110傳導,如路徑140所示。或者,電子和離子也可以含碳二維材料130的平面做為導電通道來傳導,如路徑150所示。特別是,路徑150減少傳導過程中所需經過的介面數量,從而可達到良好的傳導效率。 Please refer to FIG. 1, which is a schematic diagram illustrating the distribution of active materials and conductive auxiliary materials in the conductive layer 100 according to an embodiment of the present invention. As shown in FIG. 1, the active material 110, the carbon-containing zero-dimensional material 120, and the carbon-containing two-dimensional material 130 are evenly distributed on the surface of the conductive substrate 101. 110 in active substance And the pores of the carbon-containing two-dimensional material 130, a carbon-containing zero-dimensional material 120 having a relatively small particle size is distributed. Therefore, in this conductive layer 100, electrons and ions can be conducted via the carbon-containing zero-dimensional material 120 and the active material 110, as shown by a path 140. Alternatively, electrons and ions can also be conducted through the plane of the carbon-containing two-dimensional material 130 as a conductive channel, as shown by the path 150. In particular, the path 150 reduces the number of interfaces that need to be passed during the conduction process, thereby achieving good conduction efficiency.

含碳一維材料Carbonaceous one-dimensional material

本發明的導電輔助材料可進一步包括含碳一維材料。具體而言,此處所稱之含碳一維材料可包含奈米碳管、碳纖維、奈米碳帶或其任意組合。在一實施例中,奈米碳管和奈米碳帶的長度可例於不大於30μm。此外,奈米碳管的管徑及/或奈米碳帶的寬度可例如為7奈米至15奈米。在另一實施例中,碳纖維的長度可例如不大於10mm。 The conductive auxiliary material of the present invention may further include a carbon-containing one-dimensional material. Specifically, the carbon-containing one-dimensional material referred to herein may include a nano carbon tube, a carbon fiber, a nano carbon ribbon, or any combination thereof. In one embodiment, the lengths of the nano carbon tubes and the nano carbon ribbons can be exemplified by not more than 30 μm. In addition, the diameter of the nano carbon tube and / or the width of the nano carbon ribbon may be, for example, 7 nm to 15 nm. In another embodiment, the length of the carbon fiber may be, for example, not more than 10 mm.

含碳一維材料也可提供電子或離子通路,減少傳導過程中所經過的介面。再者,含碳一維材料也可進一步緻密化導電層中的三維導電網絡,因此可進一步改善電子及/或離子的傳導效率。 Carbon-containing one-dimensional materials can also provide electronic or ion pathways, reducing the interface through which conduction occurs. Furthermore, carbon-containing one-dimensional materials can further densify the three-dimensional conductive network in the conductive layer, and thus can further improve the conduction efficiency of electrons and / or ions.

在一實施例中,基於活性物質、後述之導電輔助材料及黏結劑的總使用量為100重量百分比(wt.%),導電輔助材料的使用量為0.5wt.%至10wt.%。導電輔助材料的使用量過高或過低都會影響電子或離子的傳導效率。 In one embodiment, based on the total usage of the active material, the conductive auxiliary material and the binder described later is 100 weight percent (wt.%), And the usage of the conductive auxiliary material is 0.5 wt.% To 10 wt.%. Too much or too little conductive auxiliary material will affect the conduction efficiency of electrons or ions.

在又一實施例中,導電輔助材料中的含碳二維材料和含碳零維材料的使用量比較佳為1:3至1:19。更佳 的,上述使用量比可為1:7至1:19。當含碳二維材料和含碳零維材料的使用量比介於上述範圍時,可進一步改善電子或離子的傳導效率。 In another embodiment, the use amount of the carbon-containing two-dimensional material and the carbon-containing zero-dimensional material in the conductive auxiliary material is preferably 1: 3 to 1:19. Better The above-mentioned usage ratio may be 1: 7 to 1:19. When the usage ratio of the carbon-containing two-dimensional material and the carbon-containing zero-dimensional material is within the above range, the conduction efficiency of electrons or ions can be further improved.

黏結劑Adhesive

本發明此處所稱之黏結劑可包括聚四氟乙烯、聚偏氟乙烯、聚伸苯基乙烯化合物、聚氧化乙烯、聚乙烯醇、聚二氧乙烯噻吩、聚苯胺、聚吡咯、磺酸聚氟碳化物、聚二氟乙烯或上述之任意組合。 In the present invention, the binder may include polytetrafluoroethylene, polyvinylidene fluoride, polyphenylene vinyl compound, polyethylene oxide, polyvinyl alcohol, polydioxyethylene thiophene, polyaniline, polypyrrole, and sulfonic acid polymer. Fluorocarbide, polydifluoroethylene, or any combination thereof.

在一實施例中,基於活性物質、導電輔助材料以及黏結劑之總使用量為100重量百分比(wt.%),黏結劑的使用量為3wt.%至10wt.%。當黏結劑過多時,導電層中活性物質和導電輔助材料的含量相對減少,因此影響電子及/或離子的傳導效率。另一方面,當黏結劑的使用量過少時,導電層不易成形且其中的活性物質及/或導電輔助材料容易脫落,造成導電層的缺陷。 In one embodiment, based on the total usage of the active material, the conductive auxiliary material and the adhesive is 100% by weight (wt.%), And the usage of the adhesive is from 3wt.% To 10wt.%. When the binder is too much, the content of the active material and the conductive auxiliary material in the conductive layer is relatively reduced, thus affecting the conduction efficiency of electrons and / or ions. On the other hand, when the amount of the binder is too small, the conductive layer is not easy to be formed and the active material and / or the conductive auxiliary material therein are liable to fall off, causing defects in the conductive layer.

在一實施例中,上述導電層是將導電組成物塗佈於導電基材的表面上,並經烘烤步驟而形成。具體而言,所述導電組成物可包含具有上述使用量的活性物質、導電輔助材料、黏結劑以及溶劑,其中導電組成物的總固含量為10%至50%。在一實施例中,所述溶劑可包括但不限於水、乙醇、丙酮、N-甲基吡咯烷酮或其他適合的溶劑。 In one embodiment, the conductive layer is formed by coating a conductive composition on a surface of a conductive substrate and performing a baking step. Specifically, the conductive composition may include an active material, a conductive auxiliary material, a binder, and a solvent having the above-mentioned usage amounts, wherein the total solid content of the conductive composition is 10% to 50%. In one embodiment, the solvent may include, but is not limited to, water, ethanol, acetone, N-methylpyrrolidone, or other suitable solvents.

在一實施例中,本發明之導電層(如圖1所示之導電層100)的厚度較佳為0.001mm至1mm。此導電層的厚度過薄,則電化學儲能元件的電容量不足。然而,若此導 電層的厚度過厚則會導致阻抗變大。 In an embodiment, the thickness of the conductive layer (such as the conductive layer 100 shown in FIG. 1) of the present invention is preferably 0.001 mm to 1 mm. If the thickness of this conductive layer is too thin, the capacity of the electrochemical energy storage element is insufficient. However, if this guide If the thickness of the electrical layer is too thick, the impedance will increase.

本發明提供一種電化學儲能元件。請參考圖2,圖2係依據本發明的一些實施例繪示電化學儲能元件200的示意剖面圖。在一實施例中,如圖2所示的電化學儲能元件200為一超電容,其包括腔體210、電極片220A、電極片220B、隔離件230和電解液240。電極片220A、電極片220B、隔離件230和電解液240設置在腔體210中。電極片220A包含導電基材221A和設置在導電基材221A的表面上的導電層223A。相似地,電極片220B包含導電基材221B和設置在導電基材221B的表面上的導電層223B。電極片220A和電極片220B的導電層223A和導電層223B相對設置,且隔離件230是設置在導電層223A和導電層223B之間。在此實施例中,電極片220A和電極片220B與前述圖1所示的電極片(包含導電層100及導電基材101)相似。 The invention provides an electrochemical energy storage element. Please refer to FIG. 2, which is a schematic cross-sectional view of an electrochemical energy storage device 200 according to some embodiments of the present invention. In one embodiment, the electrochemical energy storage device 200 shown in FIG. 2 is a super capacitor, which includes a cavity 210, an electrode sheet 220A, an electrode sheet 220B, a separator 230, and an electrolyte 240. The electrode sheet 220A, the electrode sheet 220B, the separator 230, and the electrolytic solution 240 are disposed in the cavity 210. The electrode sheet 220A includes a conductive substrate 221A and a conductive layer 223A provided on a surface of the conductive substrate 221A. Similarly, the electrode sheet 220B includes a conductive substrate 221B and a conductive layer 223B provided on the surface of the conductive substrate 221B. The conductive layer 223A and the conductive layer 223B of the electrode sheet 220A and the electrode sheet 220B are oppositely disposed, and the separator 230 is provided between the conductive layer 223A and the conductive layer 223B. In this embodiment, the electrode sheet 220A and the electrode sheet 220B are similar to the electrode sheet (including the conductive layer 100 and the conductive substrate 101) shown in FIG. 1 described above.

在電化學儲能元件200為超電容的實施例中,所述電解液240可進一步包含電解質和有機溶劑。在一些例子中,電解質包含四乙基氨四氟硼酸(tetraethyl ammonium tetra-fluoroborate;TEABF4或三乙基甲基氨四氟硼酸。在另一些例子中,有機溶劑包含乙腈或碳酸丙烯酯。 In an embodiment where the electrochemical energy storage element 200 is a supercapacitor, the electrolytic solution 240 may further include an electrolyte and an organic solvent. In some examples, the electrolyte contains tetraethyl ammonium tetra-fluoroborate; TEABF 4 or triethylmethylaminotetrafluoroborate. In other examples, the organic solvent includes acetonitrile or propylene carbonate.

在另一些例子中,電化學儲能元件200為鋰電池。在此例子中,腔體210、電極片220A、電極片220B、隔離件230和電解液240的設置方式與電化學儲能元件200為超電容的例子相同。不同的是,電極片220A做為鋰電池 的正極,且電極片220A之導電層223A的材料為層狀的含鋰化合物。本發明此處並未限制所使用的含鋰化合物的種類,舉例而言,含鋰化合物可包括但不限於磷酸鐵鋰、鈷酸鋰、錳酸鋰、鋰鎳鈷錳等。 In other examples, the electrochemical energy storage device 200 is a lithium battery. In this example, the cavity 210, the electrode sheet 220A, the electrode sheet 220B, the separator 230, and the electrolyte 240 are disposed in the same manner as the example in which the electrochemical energy storage element 200 is a super capacitor. The difference is that the electrode sheet 220A is used as a lithium battery The material of the conductive layer 223A of the electrode sheet 220A is a layered lithium-containing compound. The invention does not limit the type of lithium-containing compound used here. For example, the lithium-containing compound may include, but is not limited to, lithium iron phosphate, lithium cobaltate, lithium manganate, lithium nickel cobalt manganese, and the like.

在電化學儲能元件200為鋰電池的實施例中,所述電解液240包含鋰鹽,或者可進一步包含鈉鹽。具體而言,所述鋰鹽可包括但不限於高氯酸鋰、六氟磷酸鋰、四氟硼酸鋰等。 In an embodiment where the electrochemical energy storage element 200 is a lithium battery, the electrolytic solution 240 includes a lithium salt, or may further include a sodium salt. Specifically, the lithium salt may include, but is not limited to, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, and the like.

在一實施例中,所述隔離件230(鋰電池或超電容)可例如為高分子聚合物膜。在具體的例子中,所述高分子聚合物膜可包括聚乙烯或聚丙烯。 In one embodiment, the separator 230 (lithium battery or super capacitor) may be, for example, a polymer film. In a specific example, the high molecular polymer film may include polyethylene or polypropylene.

以下使用複數個實施例及比較例具體說明本發明的實施方式及評價結果。 Hereinafter, embodiments and evaluation results of the present invention will be specifically described using a plurality of examples and comparative examples.

實施例1Example 1

實施例1係使用如圖2所示的電化學儲能元件200(超電容)來進行電學性質的測量。具體而言,實施例1的超電容之導電層的組成包含90wt.%的活性碳(AC)、0.2wt.%的石墨烯片(GPh)、3.8wt.%的碳黑(CB)以及6wt.%的黏結劑(聚偏氟乙烯;polyvinylidene difluoride;PVDF),而導電基材為鋁。實施例1的超電容所使用的電解液為1M的四氟硼酸四乙基銨(TEABF4)。關於實施例1之超電容中的組成,悉如表1所示。實施例1的評價結果如圖3所示。 Embodiment 1 uses an electrochemical energy storage device 200 (supercapacitor) as shown in FIG. 2 to measure electrical properties. Specifically, the composition of the conductive layer of the ultracapacitor of Example 1 includes 90wt.% Activated carbon (AC), 0.2wt.% Graphene sheet (GPh), 3.8wt.% Carbon black (CB), and 6wt. .% Adhesive (polyvinylidene difluoride; PVDF), and the conductive substrate is aluminum. The electrolyte used in the supercapacitor of Example 1 was 1M tetraethylammonium tetrafluoroborate (TEABF 4 ). Regarding the composition in the supercapacitor of Example 1, it is shown in Table 1. The evaluation results of Example 1 are shown in FIG. 3.

實施例2至5及比較例1至4Examples 2 to 5 and Comparative Examples 1 to 4

實施例2至5及比較例1至4係使用如實施例1所述的超電容進行,不同的是,實施例2至5及比較例1至4改變超電容中導電層的組成。關於實施例2至5及比較例1至4之導電層的組成,悉如表1所示,此處不另贅述。實施例2至4及比較例1的評價結果如圖3所示,實施例2和5的評價結果如圖4所示,以及比較例1至4的評價結果如圖5所示。 Examples 2 to 5 and Comparative Examples 1 to 4 were performed using the ultracapacitor as described in Example 1, except that Examples 2 to 5 and Comparative Examples 1 to 4 changed the composition of the conductive layer in the ultracapacitor. Regarding the composition of the conductive layers of Examples 2 to 5 and Comparative Examples 1 to 4, it is shown in Table 1 and will not be repeated here. The evaluation results of Examples 2 to 4 and Comparative Example 1 are shown in FIG. 3, the evaluation results of Examples 2 and 5 are shown in FIG. 4, and the evaluation results of Comparative Examples 1 to 4 are shown in FIG. 5.

AC:活性碳,表面積為2000±200m2/g,粒徑為6.5±1.5μm。 AC: Activated carbon with a surface area of 2000 ± 200 m 2 / g and a particle size of 6.5 ± 1.5 μm.

GPh:石墨烯片,表面積為25~50m2/g,直徑為10~25μm,層數為6~10。 GPh: Graphene sheet with a surface area of 25-50 m 2 / g, a diameter of 10-25 μm, and a number of layers of 6-10.

CB:碳黑,表面積為62m2/g,粒徑為40nm。 CB: carbon black with a surface area of 62 m 2 / g and a particle size of 40 nm.

CNT:奈米碳管,直徑為7~15nm,長度為5~15μm,表面積為200~250m2/g。 CNT: carbon nanotubes with a diameter of 7 to 15 nm, a length of 5 to 15 μm, and a surface area of 200 to 250 m 2 / g.

G:大片石墨基材,表面積為20m2/g,粒徑為5.8~7.1μm。 G: Large graphite substrate, with a surface area of 20 m 2 / g, and a particle size of 5.8 to 7.1 μm .

評價方式Evaluation method

1. 電容量Electric capacity

本發明此處所稱之電容量是指電化學儲能元件初始電容量。本發明此處以電容量大於70F/mL為佳。 The electric capacity referred to herein in the present invention refers to the initial electric capacity of the electrochemical energy storage element. In the present invention, the electric capacity is preferably greater than 70 F / mL.

2. 不同充放電率下的電容量維持率2. Capacitance maintenance rate under different charge and discharge rates

本發明此處所稱之不同充放電率下的電容量維持率係觀察實施例1至5和比較例1至4的電化學儲能元件的電容量,在不同大小之充放電率(或電流密度)下的變化。隨充放電率(或電流密度)大小之改變而改變的超電容的電容量越小,代表電容量維持率越佳。進一步而言,電容量維持率佳者可具有較佳的充放電循環性能(例如經多次充放電而電容量不大幅衰減),代表此電極適用於超電容或鋰電池等領域。 In the present invention, the capacity retention rate under different charge and discharge rates is observed by observing the capacitances of the electrochemical energy storage elements of Examples 1 to 5 and Comparative Examples 1 to 4 at different sizes of charge and discharge rates (or current density). ). The smaller the capacitance of the supercapacitor that changes with the change of the charge and discharge rate (or current density), the better the capacitance retention rate. Further, those with a good capacity retention rate can have better charge-discharge cycle performance (for example, the capacity does not significantly decay after repeated charge and discharge), which means that this electrode is suitable for use in fields such as ultracapacitors or lithium batteries.

請參考圖3,圖3繪示實施例1至4(分別為線段301、線段302、線段303和線段304)及比較例1(線段306)之超電容的電流密度與電容量的折線圖。如圖3所示,當使用本發明主張的組成的導電層時,超電容的電容量大於70F/mL,且具有良好的電容量維持率(例如所施加的電流密度從0A/g增加至6A/g時,實施例1至4的超電容之電容量可維持在大於60F/mL)。特別是,當石墨烯片和碳黑的使用比例在特定範圍時,電容量維持率更佳(電容量幾乎不隨電流變化而變化,例如維持率可達約98%)。此外,少量添加 含碳二維材料(例如0.5wt.%)即可增加大於10%的電容量(與後述之比較例1相比)。 Please refer to FIG. 3. FIG. 3 shows a line chart of the current density and capacitance of the supercapacitors in Examples 1 to 4 (respectively, the segments 301, 302, 303, and 304) and Comparative Example 1 (the segment 306). As shown in FIG. 3, when the conductive layer with the composition claimed in the present invention is used, the capacitance of the supercapacitor is greater than 70F / mL, and has a good capacitance retention rate (for example, the applied current density is increased from 0A / g to 6A (g), the capacitance of the ultracapacitors of Examples 1 to 4 can be maintained at more than 60F / mL). In particular, when the use ratio of the graphene sheet and the carbon black is within a specific range, the capacity retention rate is better (capacitance is hardly changed with current change, for example, the retention rate can reach about 98%). In addition, add a small amount The carbon-containing two-dimensional material (for example, 0.5 wt.%) Can increase the capacitance by more than 10% (compared to Comparative Example 1 described later).

接著請參考圖4和圖5。圖4繪示實施例2和5(分別為線段302和線段305)和比較例1(線段306)之超電容的充放電率和電容量的折線圖。圖5繪示比較例1至4(分別為線段306、線段307、線段308和線段309)之超電容的電流密度與電容量的折線圖。當未使用本發明主張的組成之導電層時(即未同時包括含碳零維材料和含碳二維材料),使用此種電極片的超電容的電容量差及/或電容量維持率不佳,如圖4和圖5所示。 Please refer to FIG. 4 and FIG. 5. FIG. 4 is a line chart showing the charge and discharge rates and capacitances of the supercapacitors in Examples 2 and 5 (line segments 302 and 305, respectively) and Comparative Example 1 (line segment 306). FIG. 5 is a line chart of the current density and capacitance of the supercapacitors of Comparative Examples 1 to 4 (respectively, line segments 306, 307, 308, and 309). When a conductive layer with a composition as claimed in the present invention is not used (that is, a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material are not included at the same time), the capacitance difference and / or the capacity retention rate of the supercapacitor using such an electrode sheet are not Good, as shown in Figures 4 and 5.

應用本發明的電極片和電化學儲能元件,因著電極片的導電層是由零維和二維(或進一步包含一維)的含碳材料所構成的三維導電網絡,可改善電子於導電層中的傳輸效率,提升功率密度和能量密度。因此,包含上述電極片的電化學儲能元件可具有高電容量、在不同充放電率(或電流密度)下具有良好的電容量維持率,及較佳的充放電循環性能。 By applying the electrode sheet and the electrochemical energy storage element of the present invention, since the conductive layer of the electrode sheet is a three-dimensional conductive network composed of zero-dimensional and two-dimensional (or further including one-dimensional) carbon-containing materials, electrons in the conductive layer can be improved. In the transmission efficiency, power density and energy density are improved. Therefore, the electrochemical energy storage element including the electrode sheet can have a high capacity, a good capacity maintenance rate under different charge and discharge rates (or current densities), and better charge and discharge cycle performance.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with several embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field to which the present invention pertains can make various modifications without departing from the spirit and scope of the present invention. Changes and retouching, so the protection scope of the present invention shall be determined by the scope of the appended patent application.

Claims (10)

一種電極片,包含:一導電基材;以及一導電層,包含:一活性物質,包含活性碳,其中該活性碳具有100m2/g至3500m2/g之一第一表面積及0.1μm至500μm之一第一粒徑,且該活性碳為粒狀;一導電輔助材料,包括含碳零維材料及含碳二維材料,其中該含碳零維材料包含粒徑為0.001μm至50μm之碳黑,且該含碳二維材料包含直徑為0.1μm至100μm之石墨烯片;以及一黏結劑,其中基於該活性物質、該導電輔助材料以及該黏結劑之一總使用量為100重量百分比(wt.%),該活性物質的使用量為80wt.%至96.5wt.%,該導電輔助材料的一使用量為0.5wt.%至10wt.%,以及該黏結劑的一使用量為3wt.%至10wt.%。An electrode sheet includes: a conductive substrate; and a conductive layer including: an active material including activated carbon, wherein the activated carbon has a first surface area of 100 m 2 / g to 3500 m 2 / g and 0.1 μm to 500 μm One of the first particle size, and the activated carbon is granular; a conductive auxiliary material, including a carbon-containing zero-dimensional material and a carbon-containing two-dimensional material, wherein the carbon-containing zero-dimensional material includes carbon having a particle diameter of 0.001 μm to 50 μm Black, and the carbon-containing two-dimensional material includes a graphene sheet having a diameter of 0.1 μm to 100 μm; and a bonding agent, wherein a total amount of one based on the active material, the conductive auxiliary material, and the bonding agent is 100% by weight ( wt.%), the use amount of the active material is 80wt.% to 96.5wt.%, a use amount of the conductive auxiliary material is 0.5wt.% to 10wt.%, and a use amount of the adhesive is 3wt. % To 10wt.%. 如申請專利範圍第1項所述之電極片,其中該石墨烯片具有1m2/g至2630m2/g之一第二表面積及1μm至50μm之該直徑,該碳黑具有1m2/g至3000m2/g之一第三表面積及0.01μm至小於1μm的該粒徑,且該碳黑為圓形顆粒狀。The application of the electrode sheet patentable scope of item 1, wherein the graphene sheet has one of 1m 2 / g to 2630m 2 / g and a surface area of the second diameter of 1μm to 50μm, the carbon black having a 1m 2 / g to One of the third surface areas of 3000 m 2 / g and the particle diameter of 0.01 μm to less than 1 μm, and the carbon black is in the shape of round particles. 如申請專利範圍第2項所述之電極片,其中該石墨烯片與該碳黑之一使用量比例為1:3至1:19。The electrode sheet according to item 2 of the scope of patent application, wherein the ratio of the amount of graphene sheet to one of the carbon black is 1: 3 to 1:19. 如申請專利範圍第1項所述之電極片,其中該導電輔助材料更包括含碳之一維材料,該含碳之一維材料包含奈米碳管、碳纖維、奈米碳帶或其組合。The electrode sheet according to item 1 of the scope of patent application, wherein the conductive auxiliary material further includes a carbon-containing one-dimensional material, and the carbon-containing one-dimensional material includes a nano carbon tube, a carbon fiber, a nano carbon ribbon, or a combination thereof. 如申請專利範圍第1項所述之電極片,其中該導電層之一厚度為0.001mm至1mm。The electrode sheet according to item 1 of the scope of patent application, wherein one of the conductive layers has a thickness of 0.001 mm to 1 mm. 如申請專利範圍第1項所述之電極片,其中該導電層是將一導電組成物塗佈於該導電基材之一表面上,並經一烘烤步驟而形成,該導電組成物包含該活性物質、該導電輔助材料、該黏結劑及一溶劑,且該導電組成物的一總固含量為10%至50%。The electrode sheet according to item 1 of the scope of the patent application, wherein the conductive layer is formed by coating a conductive composition on a surface of the conductive substrate and undergoing a baking step, and the conductive composition includes the The active material, the conductive auxiliary material, the adhesive and a solvent, and a total solid content of the conductive composition is 10% to 50%. 如申請專利範圍第1項所述之電極片,其中該黏結劑包含聚四氟乙烯、聚偏氟乙烯、聚伸苯基乙烯化合物、聚氧化乙烯、聚乙烯醇、聚二氧乙烯噻吩、聚苯胺、聚吡咯、磺酸聚氟碳化物、聚二氟乙烯或上述之任意組合。The electrode sheet according to item 1 of the scope of the patent application, wherein the binder comprises polytetrafluoroethylene, polyvinylidene fluoride, polyphenylene vinyl compound, polyethylene oxide, polyvinyl alcohol, polydiethylene thiophene, poly Aniline, polypyrrole, sulfonic polyfluorocarbon, polydifluoroethylene, or any combination thereof. 如申請專利範圍第1項所述之電極片,其中該導電基材包含金屬片材。The electrode sheet according to item 1 of the patent application scope, wherein the conductive substrate comprises a metal sheet. 一種電化學儲能元件,包含一腔體、二電極片、一隔離件以及一電解液,其中該二電極片、該隔離件和該電解液係容置於該腔體中,且該二電極片之至少一者為如申請專利範圍第1至8項中任一項所述的電極片。An electrochemical energy storage element includes a cavity, two electrode sheets, a separator, and an electrolyte, wherein the two electrode sheets, the separator, and the electrolyte are contained in the cavity, and the two electrodes At least one of the sheets is the electrode sheet according to any one of claims 1 to 8 of the patent application scope. 如申請專利範圍第9項所述之電化學儲能元件,包含一超電容或一鋰電池。The electrochemical energy storage element according to item 9 of the scope of the patent application includes an ultracapacitor or a lithium battery.
TW107111935A 2018-04-03 2018-04-03 Electrode and electrochemical energy storage device TWI668902B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107111935A TWI668902B (en) 2018-04-03 2018-04-03 Electrode and electrochemical energy storage device
CN201810900571.9A CN109036859A (en) 2018-04-03 2018-08-09 Electrode plate and electrochemical energy storage element
JP2018158335A JP2019186512A (en) 2018-04-03 2018-08-27 Electrode sheet and electrochemical energy storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107111935A TWI668902B (en) 2018-04-03 2018-04-03 Electrode and electrochemical energy storage device

Publications (2)

Publication Number Publication Date
TWI668902B true TWI668902B (en) 2019-08-11
TW201943127A TW201943127A (en) 2019-11-01

Family

ID=64632418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107111935A TWI668902B (en) 2018-04-03 2018-04-03 Electrode and electrochemical energy storage device

Country Status (3)

Country Link
JP (1) JP2019186512A (en)
CN (1) CN109036859A (en)
TW (1) TWI668902B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776111B (en) * 2019-12-20 2022-09-01 大陸商宣城亨旺新材料有限公司 Composite graphene conductive agent, method for preparing high-conductivity conductive paste using the same, and lithium battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504000A (en) * 2010-12-22 2014-02-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Electrode plate and method for preparing the same, super capacitor and lithium ion battery
US20140234680A1 (en) * 2013-02-18 2014-08-21 Samsung Corning Precision Materials Co., Ltd. Electrode structure having roll shape, electrode and electric device including the same, and method of manufacturing the electrode structure
CN105789553A (en) * 2014-12-25 2016-07-20 北京有色金属研究总院 Positive electrode of lithium ion battery
CN106159199A (en) * 2015-04-28 2016-11-23 扈胜禄 A kind of 3D Graphene electrodes for highly dense accumulator, prepare and apply

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2834818B1 (en) * 2002-01-14 2006-09-15 Atofina MICROCOMPOSITE POWDER BASED ON GRAPHITE PLATES AND A FLUOROPOLYMER AND OBJECTS MADE WITH THE POWDER
CA2754372A1 (en) * 2011-10-04 2013-04-04 Hydro-Quebec Positive-electrode material for lithium-ion secondary battery and method of producing same
KR101652921B1 (en) * 2013-12-27 2016-08-31 주식회사 엘지화학 Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
EP3117474B1 (en) * 2014-07-10 2018-01-24 Repsol, S.A. Cathode for lithium batteries
CN104658757B (en) * 2014-12-17 2017-09-29 宁波中车新能源科技有限公司 The process for dispersing of combined conductive agent in a kind of lithium-ion capacitor electrode slurry
CN105225847B (en) * 2015-08-14 2018-02-13 宁波中车新能源科技有限公司 A kind of electrode of super capacitor preparation technology
CN105489388A (en) * 2015-12-28 2016-04-13 宁波南车新能源科技有限公司 Lithium-ion capacitor electrode and preparation method thereof
CN110073531B (en) * 2016-10-28 2022-09-02 爱德温工业公司 Conductive flake reinforced, polymer stabilized electrode compositions and methods of making
CN106684320B (en) * 2017-01-09 2020-05-05 宁德时代新能源科技股份有限公司 Positive pole piece, preparation method thereof and secondary battery
CN107768145A (en) * 2017-10-16 2018-03-06 池州市修典新能源科技有限公司 A kind of energy storage electrode and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504000A (en) * 2010-12-22 2014-02-13 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Electrode plate and method for preparing the same, super capacitor and lithium ion battery
US20140234680A1 (en) * 2013-02-18 2014-08-21 Samsung Corning Precision Materials Co., Ltd. Electrode structure having roll shape, electrode and electric device including the same, and method of manufacturing the electrode structure
CN105789553A (en) * 2014-12-25 2016-07-20 北京有色金属研究总院 Positive electrode of lithium ion battery
CN106159199A (en) * 2015-04-28 2016-11-23 扈胜禄 A kind of 3D Graphene electrodes for highly dense accumulator, prepare and apply

Also Published As

Publication number Publication date
CN109036859A (en) 2018-12-18
JP2019186512A (en) 2019-10-24
TW201943127A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
Ma et al. Graphene‐based materials for lithium‐ion hybrid supercapacitors
Leng et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance
Hu et al. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics
KR101778541B1 (en) Graphene lithium ion capacitor
JP5372318B2 (en) Method for manufacturing electrochemical capacitor
CN105470576B (en) A kind of high pressure lithium battery electric core and preparation method thereof, lithium ion battery
JP4924966B2 (en) Lithium ion capacitor
WO2012115050A1 (en) Electrode foil, current collector, electrode, and energy storage element using same
US8520365B2 (en) Charge storage device architecture for increasing energy and power density
KR101214727B1 (en) Electrodes, method for preparing the same, and electrochemical capacitor comprising the same
KR20120056556A (en) Multi layered electrodes and super capacitor comprising the same
Cai et al. Performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes/graphite composite as negative electrode
JP2009231829A (en) Ionic liquid-containing electrode membrane and electrode, process for producing them, and electric storage device
CN106848210B (en) Electrode, preparation method of electrode and battery
JP2013135223A (en) Electrode active material-conductive agent composite, method for preparing the same, and electrochemical capacitor comprising the same
JP6504378B1 (en) Hybrid capacitor
JP2014064030A (en) Electrochemical capacitor
JP2020043254A (en) Electrode using graphene, method of manufacturing the same, and power storage device using the same
TWI668902B (en) Electrode and electrochemical energy storage device
KR20130093805A (en) Electrode, method for preparing the same, and super capacitor using the same
WO2020080520A1 (en) Capacitor, and capacitor electrode
KR20130047885A (en) Method for fabrication of charge storage in multi-walled carbon nanotube-niooh nano composites
TWI546831B (en) Carbon electrode for electric double layer capacitor, fabrication method thereof, and electric double layer capacitor
JP2013098575A (en) Electrode active material composition and method of manufacturing the same, and electrochemical capacitor with the same
US20130194724A1 (en) Electrode, method for fabricating the same, and electrochemical capacitor including the same