TWI377171B - Mathod for making a carbon nanotube/conductive polymer composite - Google Patents

Mathod for making a carbon nanotube/conductive polymer composite Download PDF

Info

Publication number
TWI377171B
TWI377171B TW97133081A TW97133081A TWI377171B TW I377171 B TWI377171 B TW I377171B TW 97133081 A TW97133081 A TW 97133081A TW 97133081 A TW97133081 A TW 97133081A TW I377171 B TWI377171 B TW I377171B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
conductive polymer
acid solution
preparing
polymer composite
Prior art date
Application number
TW97133081A
Other languages
Chinese (zh)
Other versions
TW201008871A (en
Inventor
Chui-Zhou Meng
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97133081A priority Critical patent/TWI377171B/en
Publication of TW201008871A publication Critical patent/TW201008871A/en
Application granted granted Critical
Publication of TWI377171B publication Critical patent/TWI377171B/en

Links

Description

1377171 _ 101年.06月14日修正替換頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本技術方案涉及一種複合材料的製備方法,尤其涉及一 種奈米碳管/導電聚合物複合材料的製備方法。 【先前技術】 _]自U91年日本NEC公司的Iijima發現奈米碳管(Carb〇n1377171 _ 101 years. June 14th revised replacement page 6. Description of the invention: [Technical field of the invention] [0001] The technical solution relates to a method for preparing a composite material, in particular to a carbon nanotube/conductive polymer composite Method of preparation of materials. [Prior Art] _]Nike carbon nanotubes (Carb〇n) discovered by Iijima of NEC Corporation of Japan in U91

Nanotube,CNT)以來(Iilima S·,Nature, 1991, 354,56-58),立即引起科學界及産業界的極大重視。 奈米碳管具有優良的機械和光電性能,被認爲係複合材 ® 料的理想添加物。奈米碳管/聚合物複合材料已成爲世界 科學研究的熱點(Ajjayan P.M., Stephan 0.,Since Nanotube, CNT) (Iilima S·, Nature, 1991, 354, 56-58), it has immediately attracted great attention from the scientific community and industry. The carbon nanotubes have excellent mechanical and optoelectronic properties and are considered to be ideal additions for composite ® materials. Nano carbon nanotube/polymer composites have become a hotspot in scientific research in the world (Ajjayan P.M., Stephan 0.,

Colliex C. , Tranth D. Science. 1 994,265,1212-121 5: Calvert P. , Nature, 1999,399,210-211)。奈米碳管作爲增强體和導電 體,形成的複合材料具有抗靜電,微波吸收和電磁屏蔽 等性能,具有廣泛的應用前景。 [〇〇〇3]先前技術中的奈米碳管/導電聚合物複合材料中的奈米碳 管多爲棒狀物,而導電聚合物以顆粒的形式分佈在奈米 碳管之間的間隙申。當所述奈米碳管/導電聚合物複合材 料應用於超級電容器、太陽能電池的電極時,其中的導 電聚合物充放電時會引起體積收縮和膨脹,而奈米碳管 #中空結構可緩解由上述導電聚合物的體積收縮和膨脹 引起的奈米碳管/導電聚合物複合材料的體積收縮和膨脹 ,而且奈米碳管的高導電性可降低導電聚合物的電阻。 因此,先前技術中的奈米碳管/導電聚合物複合材料具有 09713308#單編號A0101 第3頁/共23頁 1013222523-0 1377171 _______ 101年.06月14日梭正_^頁 較好的導電性和較高的比電容量(大於200法拉/克)。Colliex C., Tranth D. Science. 1 994, 265, 1212-121 5: Calvert P., Nature, 1999, 399, 210-211). As a reinforcement and a conductor, the carbon nanotubes have a composite material with antistatic, microwave absorption and electromagnetic shielding properties, and have broad application prospects. [〇〇〇3] The carbon nanotubes in the prior art carbon nanotube/conductive polymer composite are mostly rods, and the conductive polymers are distributed in the form of particles in the gap between the carbon nanotubes. Shen. When the carbon nanotube/conductive polymer composite is applied to the electrodes of a supercapacitor or a solar cell, the conductive polymer in the charge and discharge causes volume shrinkage and expansion, and the hollow structure of the carbon nanotube can be alleviated by The volume shrinkage and expansion of the carbon nanotube/conductive polymer composite caused by the volume shrinkage and expansion of the above conductive polymer, and the high conductivity of the carbon nanotube can reduce the electrical resistance of the conductive polymer. Therefore, the prior art carbon nanotube/conductive polymer composite has 09713308# single number A0101 page 3 / total 23 page 1013222523-0 1377171 _______ 101 years. June 14th shuttle is _ ^ page better conductive Sex and higher specific capacitance (greater than 200 Farads / gram).

然而,先前技術中的奈米碳管/導電聚合物複合材料通過 採用將奈米碳管分散於硫酸及硝酸等强氧化性酸或表面 活性劑中進行分散,之後再與導電聚合物的單體進行電 化學反應,並最終在工作電極上得到一奈米碳管/導電聚 合物複合材料的薄膜。通過强酸處理,會使得所述奈米 碳管受到一定程度的破壞,而使用表面活性劑處理會使 得表面活性劑在最終的奈米碳管/導電聚合物材料中不易 除去。因而,經强氧化性酸或表面活性劑處理後得到的 奈米碳管/導電聚合物複合材料的性能會受到影響。另, I 由於奈米碳管易團聚,目前一直不能很好的分散,故, 先前技術所製備得到的奈米碳管/導電聚合物複合材料中 的奈米碳管通常無法形成良好的導電網絡,且有些相鄰 奈米碳管之間間距較大,相互間接觸性較差,因而不能 充分發揮奈米碳管的優良導電性及導熱性能,造成所述 奈米碳管/導電聚合物複合材料的内阻較大、比電容量較 低。 « [0004] 有鑒於此,提供一種能夠使奈米碳管均勻分散、並且不 破壞奈米碳管結構的奈米碳管/導電聚合物複合材料的製 備方法實為必要。 【發明内容】 [0005] 一種奈米碳管/導電聚合物複合材料的製備方法,其包括 以下步驟:製備一奈米碳管薄膜;及採用化學原位聚合 法將導電聚合物複合在所述奈米碳管薄膜上,獲得一奈 米碳管/導電聚合物複合材料。 097酬#單編號A0101 1013222523-0 第4頁/共23頁 1377171 101年06月14日核正替換頁 [0006] 相較於先前技術,本技術方案提供的奈米碳管/導電聚合 物複合材料的製備方法具有以下優點:其一,由於奈米 碳管薄膜中的多個奈米碳管均勻分散且相互連接形成導 電網路,故採用化學原位聚合法將所述奈米碳管薄膜與 導電聚合物單體複合,所制得的奈米碳管/導電聚合物複 合材料中奈米碳管均勻分散。其二,由於採用化學原位 聚合法將所述奈米碳管薄膜與導電聚合物單體複合,無 需添加表面活性劑,使得奈米碳管/導電聚合物複合材料 中不包含表面活性劑。其三,本技術方案提供的奈米碳 管/導電聚合物複合材料的製備方法,不需要用強酸氧化 奈米碳管,奈米碳管的結構完整,在製備過程中不會破 壞奈米碳管的結構。其四,採用化學原位聚合法將所述 奈米碳管薄膜與導電聚合物複合,製備工藝簡單,可實 現連續、規模化生產,且成本較低。 【實施方式】 [0007] 以下將結合附圖詳細說明本技術方案提供的奈米碳管/導 電聚合物複合材料的製備方法。 [0008] 請參閱圖1,本技術方案實施例提供一種奈米碳管/導電 聚合物複合材料的製備方法,具體包括以下步驟: [0009] 步驟一,製備一奈米碳管薄膜。 [0010] 所述製備奈米碳管薄膜的方法包括直接生長法、絮化法 、碾壓法及拉膜法等其他方法。所述奈米碳管薄膜包括 複數個均勻分佈的奈米碳管,且該複數個奈米碳管相互 連接形成導電網路結構。 097133081^單編號 A〇101 第5頁/共23頁 1013222523-0 1377171 …_ . _____ _ _ 1101年06月14 B梭正替换頁 [0011] 本實施例採用絮化法製備所述奈米碳管薄膜,該方法具 體包括以下步驟: [0012] ( —)提供一奈米碳管原料。 [0013] 本實施例中,所述奈米碳管原料的製備方法具體包括以 下步驟:(a)提供一平整基底,該基底可選用P型或N型 矽基底,或選用形成有氧化層的矽基底,本實施例優選 為採用4英寸的矽基底;(b)在基底表面均勻形成一催 化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、 鎮(Ni)或其任意組合的合金之一 ;(c)將上述形成有 催化劑層的基底在700~900°C的空氣中退火約30分鐘〜90 分鐘;(d)將處理過的基底置於反應爐中,在保護氣體 環境下加熱到500〜740°C,然後通入碳源氣體反應約 5〜30分鐘,生長得到奈米碳管陣列,其高度大於100奈米 ,優選為100奈米-10毫米;(e)使奈米碳管陣列脫離基 底,獲得奈米碳管原料。 [0014] 該奈米碳管陣列為複數個彼此平行且垂直於基底生長的 奈米碳管形成的純奈米碳管陣列,由於生成的奈米碳管 長度較長,部分奈米碳管會相互纏繞。通過上述控制生 長條件,該超順排奈米碳管陣列中基本不含有雜質,如 無定型碳或殘留的催化劑金屬顆粒等。本實施例中碳源 氣可選用乙炔等化學性質較活潑的碳氫化合物,保護氣 體可選用氮氣、氨氣或惰性氣體。可以理解,本實施例 提供的奈米碳管陣列不限於上述製備方法。本實施例優 選採用刀片或其他工具將奈米碳管從基底刮落,獲得奈 米碳管原料,其中奈米碳管一定程度上保持相互纏繞的 1013222523-0 。97133。8产單編號A0101 第6頁/共23頁 1377171 .101年06月14日修正替換頁 狀態。 [0015] 所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁 奈米碳管中的一種或幾種。該單壁奈米碳管的直fe為0. 5 奈米〜50奈米,該雙壁奈米碳管的直徑為1. 0奈米〜50奈 米,該多壁奈米碳管的直徑為1.5奈米〜50奈米。所述奈 米碳管的長度在100奈米到10毫米之間。 [0016] (二)將上述奈米碳管原料添加到溶劑中並進行絮化處 理獲得奈米碳管絮狀結構。 • [0017] 本實施例中,溶劑可選用水、易揮發的有機溶劑等。絮 化處理可通過採用超聲波分散處理或高強度攪拌等方法 . 。優選地,本實施例採用超聲波將奈米碳管在溶劑中分 散10〜30分鐘。由於奈米碳管具有極大的比表面積,相互 纏繞的奈米碳管之間具有較大的凡德瓦爾力。上述絮化 處理並不會將奈米碳管原料中的奈米碳管完全分散在溶 劑中,奈米碳管之間通過凡德瓦爾力相互吸引、纏繞, 形成網路狀結構。 • [0018] (三)將上述奈米碳管絮狀結構從溶劑中分離,並對該 奈米碳管絮狀結構定型處理以獲得奈米碳管薄膜。 [0019] 本實施例中,分離奈米碳管絮狀結構的方法具體包括以 下步驟:將上述含有奈米碳管絮狀結構的溶劑倒入放有 濾紙的漏斗中;及靜置乾燥一段時間從而獲得分離的奈 米碳管絮狀結構。 [0020] 所述定型處理具體包括以下步驟:將上述奈米碳管絮狀 結構置於一容器中;將奈米碳管絮狀結構按照預定形狀 normn«产單編號A0101However, the prior art carbon nanotube/conductive polymer composite is dispersed by dispersing a carbon nanotube in a strong oxidizing acid such as sulfuric acid or nitric acid or a surfactant, and then a monomer with a conductive polymer. An electrochemical reaction is carried out, and finally a film of a carbon nanotube/conductive polymer composite is obtained on the working electrode. The strong acid treatment causes the carbon nanotubes to be damaged to some extent, and the surfactant treatment makes the surfactant difficult to remove in the final carbon nanotube/conductive polymer material. Therefore, the properties of the carbon nanotube/conductive polymer composite obtained by treatment with a strong oxidizing acid or a surfactant may be affected. In addition, because the carbon nanotubes are easily agglomerated, they have not been well dispersed at present. Therefore, the carbon nanotubes in the carbon nanotube/conductive polymer composite prepared by the prior art generally cannot form a good conductive network. And some adjacent carbon nanotubes have a large spacing between them, and the mutual contact between them is poor, so that the excellent conductivity and thermal conductivity of the carbon nanotubes cannot be fully utilized, resulting in the carbon nanotube/conductive polymer composite. The internal resistance is larger and the specific capacitance is lower. « [0004] In view of the above, it is necessary to provide a method for preparing a carbon nanotube/conductive polymer composite material capable of uniformly dispersing a carbon nanotube and not damaging the structure of the carbon nanotube. SUMMARY OF THE INVENTION [0005] A method for preparing a carbon nanotube/conductive polymer composite, comprising the steps of: preparing a carbon nanotube film; and chemically polymerizing the conductive polymer in the chemical polymerization method On the carbon nanotube film, a carbon nanotube/conductive polymer composite is obtained. 097 reward# single number A0101 1013222523-0 page 4 / total 23 pages 1377171 June 14, 2004 nuclear replacement page [0006] Compared with the prior art, the present technical solution provides carbon nanotube / conductive polymer composite The preparation method of the material has the following advantages: First, since the plurality of carbon nanotubes in the carbon nanotube film are uniformly dispersed and interconnected to form a conductive network, the carbon nanotube film is chemically in situ polymerized. In combination with the conductive polymer monomer, the carbon nanotubes in the obtained carbon nanotube/conductive polymer composite are uniformly dispersed. Second, since the carbon nanotube film is composited with the conductive polymer monomer by chemical in-situ polymerization, no surfactant is added, so that the carbon nanotube/conductive polymer composite does not contain a surfactant. Third, the preparation method of the carbon nanotube/conductive polymer composite provided by the technical solution does not require the oxidation of the carbon nanotubes with a strong acid, and the structure of the carbon nanotubes is intact, and the nanocarbon is not destroyed during the preparation process. The structure of the tube. Fourthly, the carbon nanotube film is combined with the conductive polymer by chemical in-situ polymerization, the preparation process is simple, continuous and large-scale production can be realized, and the cost is low. [Embodiment] [0007] Hereinafter, a method for preparing a carbon nanotube/conductive polymer composite material provided by the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1, an embodiment of the present technical solution provides a method for preparing a carbon nanotube/conductive polymer composite, which specifically includes the following steps: [0009] Step one, preparing a carbon nanotube film. [0010] The method for preparing a carbon nanotube film includes other methods such as a direct growth method, a flocculation method, a rolling method, and a film stretching method. The carbon nanotube film comprises a plurality of uniformly distributed carbon nanotubes, and the plurality of carbon nanotubes are connected to each other to form a conductive network structure. 097133081^单编号A〇101 Page 5 of 23 1013222523-0 1377171 ..._ . _____ _ _ June 1101 14 B shuttle replacement page [0011] This example uses the flocculation method to prepare the nanocarbon The tube film, the method specifically comprises the following steps: [0012] (-) providing a carbon nanotube raw material. [0013] In this embodiment, the method for preparing the carbon nanotube raw material specifically includes the following steps: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or an oxide layer is formed. The substrate is preferably a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co), town (Ni) or any of them. One of the combined alloys; (c) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace for protection Heating to 500~740 ° C in a gaseous environment, and then reacting with a carbon source gas for about 5 to 30 minutes to grow to obtain a carbon nanotube array having a height greater than 100 nm, preferably 100 nm to 10 mm; The carbon nanotube array is detached from the substrate to obtain a carbon nanotube raw material. [0014] The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes that are parallel to each other and perpendicular to the substrate, and because of the long length of the generated carbon nanotubes, some of the carbon nanotubes will Intertwined. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, and the protective gas may be nitrogen, ammonia or an inert gas. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above production method. In this embodiment, it is preferred to use a blade or other tool to scrape the carbon nanotubes from the substrate to obtain a carbon nanotube raw material, wherein the carbon nanotubes are kept to some extent by 1013222523-0. 97133. 8 Production Order No. A0101 Page 6 of 23 1377171 . Fixed the replacement page status on June 14, 2011. [0015] The carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm, the diameter of the multi-walled carbon nanotube. The diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm. For 1.5 nm ~ 50 nm. The carbon nanotubes have a length between 100 nm and 10 mm. [0016] (2) The above carbon nanotube raw material is added to a solvent and subjected to flocculation treatment to obtain a carbon nanotube floc structure. [0017] In the present embodiment, the solvent may be selected from water, a volatile organic solvent, or the like. The flocculation treatment can be carried out by using ultrasonic dispersion treatment or high-intensity stirring. Preferably, this embodiment uses ultrasonic waves to disperse the carbon nanotubes in a solvent for 10 to 30 minutes. Due to the extremely large specific surface area of the carbon nanotubes, there is a large Van der Waals force between the intertwined carbon nanotubes. The above flocculation treatment does not completely disperse the carbon nanotubes in the carbon nanotube raw material in the solvent, and the carbon nanotubes are attracted and entangled by the van der Waals force to form a network structure. [0018] (3) separating the above-mentioned carbon nanotube floc structure from a solvent, and shaping the carbon nanotube floc structure to obtain a carbon nanotube film. [0019] In the embodiment, the method for separating the carbon nanotube floc structure comprises the following steps: pouring the solvent containing the carbon nanotube floc structure into a funnel provided with filter paper; and drying for a period of time Thereby, a separated carbon nanotube floc structure is obtained. [0020] The setting process specifically includes the steps of: placing the above-mentioned carbon nanotube floc structure in a container; and setting the carbon nanotube floc structure according to a predetermined shape normn «production order number A0101

Kf » ^ \J Λ. 第7頁/共23頁 1013222523-0 1377171 ____ ______ 1〇ί年.06月i4日接正替¥頁 攤開;施加一定壓力於攤開的奈米碳管絮狀結構;及將 奈米碳管絮狀結構中殘留的溶劑烘乾或等溶劑自然揮發 後獲得奈米碳管薄膜。可以理解,本實施例可通過控制 奈求碳管絮狀結構攤片的面積來控制奈米碳管薄膜的厚 度和麵密度。攤片的面積越大,則奈米碳管薄膜的厚度 和麵密度就越小。本實施例中獲得的奈米碳管薄膜的厚 度為1微米至2毫米。 [0021] 另,上述分離與定型處理步驟也可直接通過抽濾的方式 獲得奈米碳管薄膜,具體包括以下步驟:提供一微孔濾Kf » ^ \J Λ. Page 7 of 23 1013222523-0 1377171 ____ ______ 1〇ί年.06 i4 day to be replaced by ¥ page; apply a certain pressure on the spread of carbon nanotube floc The structure; and drying the solvent remaining in the nano carbon tube floc structure or the natural evaporation of the solvent to obtain a carbon nanotube film. It can be understood that the present embodiment can control the thickness and areal density of the carbon nanotube film by controlling the area of the carbon tube floc. The larger the area of the tile, the smaller the thickness and areal density of the carbon nanotube film. The carbon nanotube film obtained in this embodiment has a thickness of from 1 μm to 2 mm. [0021] In addition, the above separation and sizing processing steps can also directly obtain the carbon nanotube film by suction filtration, specifically including the following steps: providing a microporous filter

膜及一抽氣漏斗;將上述含有奈米碳管絮狀結構的溶劑 I 經過微孔濾膜倒入柚氣漏斗中;抽濾並乾燥後獲得奈米 碳管薄膜。該微孔濾膜為一表面光滑、孔徑為0. 22微米 的濾膜。由於抽濾方式本身將提供一較大的氣壓作用於 奈米碳管絮狀結構,該奈米碳管絮狀結構經過抽濾會直 接形成一均勻的奈米碳管薄膜。且,由於微孔濾膜表面 光滑,該奈米碳管薄膜容易剝離。 [0022] 採用所述絮化法製備的奈米碳管薄膜,其包括複數個均 | 勻分佈的奈米碳管,該複數個均勻分佈的奈米碳管通過 凡德瓦爾力相互連接形成網路結構,從而形成一具有自 支撐結構的奈米碳管薄膜,該奈米碳管薄膜具有較好的 柔拿刃性。 [0023] 可以理解,所述奈米碳管薄膜的製備方法還可為直接生 長法、碾壓法或拉膜法等其他方法。所述直接生長法為 用化學氣相沈積法於一基板上生長奈米碳管薄膜。該奈 米碳管薄膜為無序奈米碳管薄膜,該奈米碳管薄膜包括 097133081^單编號 A〇101 第8頁/共23頁 1013222523-0 1377171 101年.06月14日修正_頁 複數個無序排列的奈米碳管。所述採用碾壓法製備奈米 碳管薄膜的方法具體包括以下步驟:提供一奈米碳管陣 列形成於一基底;及提供一施壓裝置擠壓上述奈米碳管 陣列,從而得到奈米碳管薄膜。該奈米碳管薄膜為無序 奈米碳管薄膜,且包括複數個沿一個或複數個方向擇優 取向排列的奈米碳管。所述採用拉膜法製備奈米碳管薄 膜的方法包括以下步驟:製備一奈米碳管陣列;從上述 奈米碳管陣列中選定一定寬度的複數個奈米碳管片斷, 優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選 定一定寬度的複數個奈米碳管片斷;及以一定速度沿基 本垂直於奈米碳管陣列生長方向拉伸該複數彳固奈米碳管 片斷,以形成一連續的奈米碳管薄膜。該奈米碳管薄膜 為有序奈米碳管薄膜,其包括複數個通過凡德瓦爾力首 尾相連且沿同一方向排列的奈米碳管。 [0024] 步驟二,採用化學原位聚合法將導電聚合物複合在所述 奈米碳管薄膜上,獲得一奈米碳管/導電聚合物複合材料 〇 [0025] 本技術方案採用化學原位聚合法將所述奈米碳管薄膜與 導電聚合物複合的方法具體包括以下步驟: [0026] 首先,製備一導電聚合物單體的酸溶液,#所述奈米碳 管薄膜浸入所述導電聚合物單體的酸溶液中,形成一包 含奈米碳管薄膜與導電聚合物單體的酸溶液。 [0027] 所述形成一包含奈米碳管薄膜與導電聚合物單體的酸溶 液的方法具體包括以下步驟:提供20~40質量份的導電聚 097翻8产單職A0101 第9頁/共23頁 1013222523-0 1377171 _ _ _____ _______________ _____________ _________10.1 ^.06 j 141 合物單體,配製摩爾濃度為0.1〜5摩爾/升的酸溶液;將 所述導電聚合物單體溶於酸溶液中,得到導電聚合物單 體摩爾濃度為0. 1~5摩爾/升的導電聚合物單體的酸溶液 ,該酸溶液中酸的摩爾濃度為0.1-5摩爾/升;取50~90 質量份的奈米碳管薄膜,將其浸入所述導電聚合物的酸 溶液中,形成一包含奈米碳管薄膜與導電聚合物單體的 酸溶液;及將含有奈米碳管薄膜及導電聚合物單體的酸 溶液在0〜5攝氏度冷藏3〜10小時,以使得導電聚合物單體 在奈米碳管薄膜的奈米碳管形成的網路結構中均勻分散 [0028] 所述酸溶液的濃度較低,因此不會氧化浸入其中的奈米 碳管薄膜,從而避免了對奈米碳管結構的破壞。所述導 電聚合物單體材料為苯胺、吡咯、噻吩、乙炔、對苯及 對苯撐乙烯中的一種或幾種。所述酸溶液為鹽酸溶液、 硫酸溶液、硝酸溶液、磷酸溶液或乙酸溶液中的一種或 幾種的混合。本實施例中,所述導電聚合物單體材料為 苯胺,所述溶液為鹽酸溶液。 g [0029] 本實施例中,所述製備一導電聚合物單體的酸溶液,將 所述奈米碳管薄膜浸入所述導電聚合物單體的酸溶液中 的方法具體包括以下步驟:取一容器,於該容器中配製 40毫升1摩爾/升的鹽酸溶液;用稱量天平稱量0. 74504 克的苯胺單體油狀物( 0.74504克苯胺單體油狀物的物質 的量為0.008摩爾),並放入一容器内,向該容器内注入 40毫升1摩爾/升的鹽酸溶液,使所述笨胺單體油狀物溶 於所述鹽酸溶液中,製備成苯胺的摩爾濃度為0.2摩爾/ 097133081^單編號 A〇101 第10頁/共23頁 1013222523-0 1377171 101年06月14日核正替换頁 升的苯胺的鹽酸溶液;用稱量天平稱量質量為40. 1毫克 的奈米碳管薄膜,將其浸入所述〇. 2摩爾/升的苯胺的鹽 酸溶液當中,將浸有奈米碳管薄膜16的笨胺鹽酸溶液在0 攝氏度〜5攝氏度冷藏3小時,使得苯胺單體在奈米碳管薄 膜的奈米碳管形成的網路結構中均勻分散。 [0030] 其次,製備氧化劑的酸溶液。 [0031] 所述氧化劑的酸溶液的作用為將導電聚合物單體氧化, 從而使導電聚合物單體發生氧化聚合,生成導電聚合物 • 。製備氧化劑的酸溶液的方法具體包括以下步驟:稱量 20~40質量份的氧化劑於一容器中;倒入摩爾濃度為 0.1~5摩爾/升的酸溶液,配製成氧化劑的摩爾濃度為 0, 1 ~ 5摩爾/升的氧化劑的酸溶液;及將所述氧化劑的酸 溶液在0攝氏度~5攝氏度冷藏3〜10小時。 [0032] • 所述氧化劑為過硫酸胺、高錳酸鉀或雙氧水中的一種或 多種。所述酸溶液為鹽酸溶液、硫酸溶液、硝酸溶液、 磷酸溶液或乙酸溶液中的一種或幾種的混合。所述導電 聚合物單體的酸溶液的摩爾濃度與所述氧化劑的酸溶液 的摩爾濃度之比為1:2〜2:1。本實施例中,所述氧化劑為 過硫酸胺,所述酸溶液為鹽酸溶液,所述導電聚合物單 體的酸溶液的摩爾濃度與所述氧化劑的酸溶液的摩爾濃 度之比為1 : 1。 [0033] 本實施例中,所述製備氧化劑的酸溶液的方法具體包括 以下步驟:用稱量天平稱量1. 8256克過硫酸銨粉末,並 將其放置於一 80毫升的容器内;向盛有過硫酸銨粉末的 第11頁/共23頁 im^999C;9Q-〇 097133081^A〇101 1377171 101年0尽月14日核正_頁 容器内注入40毫升1摩爾/升的鹽酸溶液,將過硫酸銨粉 末溶解在鹽酸溶液令,製備成過硫酸銨的摩爾濃度為0.2 摩爾/升的過硫酸銨的鹽酸(1摩爾/升)溶液;及將所述 過硫酸銨的鹽酸溶液在0-5攝氏度冷藏3小時,使得過硫 酸銨更充分的溶解於鹽酸溶液中。 [0034] 最後,將所述氧化劑的酸溶液與浸有奈米碳管薄膜的導 電聚合物單體的酸溶液混合,使導電聚合物單體聚合, 獲得奈米碳管/導電聚合物複合材料。 [0035] 上述導電聚合物單體聚合的方法具體包括以下步驟:將 所述浸有奈米碳管薄膜的導電聚合物單體的酸溶液置於 冰水混合物中;緩慢逐滴加入氧化劑的酸溶液,使得導 電聚合物單體發生聚合反應,形成導電聚合物纖維;及 待所述氧化劑的酸溶液全部滴加完畢,將所述奈米碳管 薄膜的導電聚合物單體的酸溶液與氧化劑的酸溶液的混 合液在0〜5攝氏度冷藏5~20小時。 [0036] 所述冷藏含有奈米碳管薄膜的導電聚合物單體的酸溶液 與氧化劑的酸溶液的混合液5〜20小時,作用係使得導電 聚合物單體被氧化劑充分地氧化,從而使得導電聚合物 單體能夠充分均勻聚合形成導電聚合物纖維,導電聚合 物纖維複合在所述奈米碳管的表面或/和附著在所述奈米 碳管的管壁上,所述導電聚合物纖維還可彼此相互連接 後再複合在所述奈米碳管的表面或/和附著在所述奈米碳 管的管壁上。上述冷藏為可選擇條件,也可直接在室溫 下將含有奈米碳管薄膜的導電聚合物單體的酸溶液與氧 化劑的酸溶液的混合液放置5〜2 0小時,若聚合反應為放 097133081^^^^ Α0101 第12頁/共23頁 1013222523-0 熱及庙、人# 101年.06月14日按正替换頁 久應,冷藏條侔;}-:— 要比室Ό ^ 于,j的奈米碳管/導電聚合物複合材料 性於至啣所得到的奈米碳管/導電聚合物複合材料的導電 因此令技術領域的技術人員可根據實際情況選 〜所述㈣聚合物織維的長度S10H1G毫米,直 您為30奈米〜120奈米。 [0037] ^ 。。施例中,可將所述含有奈米碳管薄膜的導電聚合物 單體的酸溶液與氧化劑的酸溶液的混合液放置於〇〜5攝氏 度的環境中,冷藏10小時,使得聚笨胺纖維複合在所述 $米碳管的表面或/和附著在所述奈米碳管的管壁上,或 者所述聚本案纖維還可彼此相互連接後再複合在所述奈 米碳管的表面或/和附著在所述奈米碳管的管壁上。 [0038] 本技術方案奈米碳管/導電聚合物複合材料的製備方法中 ,採用將50~90質量份的奈米碳管薄膜與20〜40質量份導 電聚合物單體配置的酸溶液混合,再加入由20〜40質量份 的氧化劑配置的氧化劑的酸溶液,使導電聚合物單體氧 化聚合成導電聚合物,從而與奈米碳管薄膜複合形成奈 米碳管/導電聚合物複合材料。上述奈米碳管薄膜、導電 聚合物單體及氧化劑的質量比例關係有利於確保本技術 方案製備的奈米碳管/導電聚合物複合材料中聚苯胺纖維 複合在所述奈米碳管的表面或/和附著在所述奈米碳管的 管壁上,或者所述聚本案纖維還可彼此相互連接後再複 合在所述奈米碳管的表面或/和附著在所述奈米碳管的管 壁上。 [0039] 所述製備奈米碳管/導電聚合物複合材料的製備方法還可 進一步包括一採用清洗溶液清洗並烘乾所述奈米碳管/導 隱麵^單编號A〇101 第13頁/共23頁 1013222523-0 1377171 [0040] [0041] _33(^單编號删1 101:年.06月14日接正替換^ 電聚合物複合材料的步驟。具體地,該步驟可通過以下 方法貫現.首先’將奈米碳官/導電聚合物複合材料從混 合液中取出,將其放入盛有去離子水的容器内清洗多次 ,以除去奈米碳管/導電聚合物複合材料中的離子雜質; 其次’再將其放入盛有乙醇的容器中清洗多次以去除奈 · 米碳管/導電聚合物複合材料中殘留的其他有機雜質;最 後’將奈米碳管/導電聚合物複合材料取出,放入烘箱内 ’在80攝氏度下供乾4小時’將奈米碳管/導電聚合物複 合材料中的乙醇蒸發出來。通過清洗奈米碳管/導電聚合 物複合材料可有效去除奈米碳管/導電聚合物複合材料中 · 存在的其他離子雜質,及殘留其他有機雜質,從而進一 步提尚奈米碳管/導電聚合物複合材料的純度。 請參閱圖2,本技術方案所製備的奈米碳管/導電聚合物 複合材料10包括複數個奈米碳管丨2及複數個導電聚合物 纖維14 »所述複數個奈米碳管12相互連接形成一奈米碳 管薄膜16 ’複數個導電聚合物纖維14複合在所述奈米碳 管12的表面或/和附著在所述奈米碳管12的管壁上,所述 導電聚合物纖維14還可彼此相互連接後再複合在所述奈 · 米碳管12的表面或/和附著在所述奈米碳管12的管壁上。 在上述的奈来碳管/導電聚合物複合材料10中,奈米碳管 12形成的奈米碳管薄膜16起到了骨架作用,導電聚合物 纖維14依附在所述的奈米碳㈣膜16骨架上。進一步地 ’所述奈米碳管12和導電聚合物纖維14均勻分佈於㈣ 奈米碳管/導電聚合物複合材料中。 本技術方案所提供的奈来碳管/導電聚合物複合材料的製 第14頁/共23頁 1013222523-0 [ϊ〇1年-06月14日修正替換頁 備方法具有以下優點:其―,由於採用化學原位聚合法 將所述奈米碳管薄膜與導電聚合物複合,奈米碳管薄膜 . 中複數個奈米碳管均句分散且相互連接形成導電網路,、 . 使得制得的奈米破管/導電聚合物複合材料中奈米碳管均 勻分散。其二,由於採用化學原位聚合法將所述奈来碳 管薄旗與導電聚合物複合’無需添加表面活性劑,使得 纟米破管/導電聚合物複合材料中不包含表面活性劑。其 三,本技術方案提供的奈米碳管/導電聚合物複合材料的 製備方法,不需要用強酸氧化奈米碳管,奈米碳管的結 構完整,在製備過程中不會破壞奈米碳管的結構◊其四 ,採用化學原位聚合法將所述奈米碳管薄膜與導電聚A 物複合,製備工藝簡單,可實現連續、規模化生產,且 成本較低。 [〇〇42] 綜上所述’本技術方案確已符合發明專利之要件,遂依 法提出專利申請。惟,以上所述者僅為本技術方案之較 佳實施例,自不能以此限制本案之申請專利範圍。舉凡 鲁 熟悉本案技藝之人士援依本技術方案之精神所作之等效 修飾或變化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0043] 圖1為本技術方案實施例的奈米碳管/導電聚合物複合材 料的製備方法的流程圖。 圖2為木技術方案實施例的包含無序奈米碳管的奈米碳管 /導電聚合物複合材料的結構示意圖。 【主要元件符號說明】 [0045] 奈米碳管/導電聚合物複合材料:10 〇9?133〇8产單編銳A0101 第15頁/共23頁 1013222523-0 1377171 . - ._ _ _ . [0046] 奈米碳管:12 [0047] 導電聚合物纖維:14 [0048] 奈米碳管薄膜:16 097133081^單編號 A〇101 第16頁/共23頁 101年06月14日接正夸&頁Membrane and an extraction funnel; the solvent I containing the above-mentioned carbon nanotube floc structure is poured into a pomelo funnel through a microporous membrane; after suction filtration and drying, a carbon nanotube film is obtained. The microporous membrane is a filter membrane having a smooth surface and a pore diameter of 0.22 μm. Since the suction filtration method itself will provide a large gas pressure acting on the carbon nanotube floc structure, the carbon nanotube floc structure will directly form a uniform carbon nanotube film by suction filtration. Moreover, since the surface of the microporous membrane is smooth, the carbon nanotube film is easily peeled off. [0022] The carbon nanotube film prepared by the flocculation method comprises a plurality of uniformly distributed carbon nanotubes, and the plurality of uniformly distributed carbon nanotubes are interconnected by van der Waals force to form a net The road structure forms a carbon nanotube film having a self-supporting structure, and the carbon nanotube film has better flexibility. [0023] It can be understood that the preparation method of the carbon nanotube film may be other methods such as direct growth method, rolling method or film drawing method. The direct growth method is a method of growing a carbon nanotube film on a substrate by chemical vapor deposition. The carbon nanotube film is a disordered carbon nanotube film, and the carbon nanotube film includes 097133081^single number A〇101 page 8/total 23 page 1013222523-0 1377171 101. June 14 revision _ Pages are a plurality of randomly arranged carbon nanotubes. The method for preparing a carbon nanotube film by a rolling method specifically comprises the steps of: providing a carbon nanotube array formed on a substrate; and providing a pressing device to extrude the carbon nanotube array to obtain a nanometer Carbon tube film. The carbon nanotube film is a disordered carbon nanotube film and includes a plurality of carbon nanotubes arranged in a preferred orientation along one or more directions. The method for preparing a carbon nanotube film by using a film drawing method comprises the steps of: preparing a carbon nanotube array; selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array, preferably using a tape of a certain width is in contact with the array of carbon nanotubes to select a plurality of carbon nanotube segments of a certain width; and the plurality of carbon nanotube segments are stretched at a rate substantially perpendicular to the growth direction of the carbon nanotube array, To form a continuous carbon nanotube film. The carbon nanotube film is an ordered carbon nanotube film comprising a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in the same direction. [0024] Step 2, using a chemical in-situ polymerization method to composite a conductive polymer on the carbon nanotube film to obtain a carbon nanotube/conductive polymer composite material [0025] The method for polymerizing the carbon nanotube film and the conductive polymer specifically includes the following steps: [0026] First, preparing an acid solution of a conductive polymer monomer, and the carbon nanotube film is immersed in the conductive In the acid solution of the polymer monomer, an acid solution comprising a carbon nanotube film and a conductive polymer monomer is formed. [0027] The method for forming an acid solution comprising a carbon nanotube film and a conductive polymer monomer specifically comprises the steps of: providing 20-40 mass parts of conductive poly 097 turn 8 production single job A0101 page 9 / total 23 pages 1013222523-0 1377171 _ _ _____ _______________ _____________ _________10.1 ^.06 j 141 compound monomer, prepared in a molar concentration of 0.1~5 mol / liter of acid solution; the conductive polymer monomer dissolved in acid solution The acid solution of the conductive polymer monomer having a molar concentration of the conductive polymer monomer of 0.1 to 5 mol / liter, the molar concentration of the acid in the acid solution is 0.1-5 mol / liter; taking 50 ~ 90 mass a portion of the carbon nanotube film, immersed in the acid solution of the conductive polymer to form an acid solution comprising a carbon nanotube film and a conductive polymer monomer; and a carbon nanotube film and conductive polymerization The acid solution of the monomer is chilled at 0 to 5 degrees Celsius for 3 to 10 hours to uniformly disperse the conductive polymer monomer in the network structure formed by the carbon nanotube film of the carbon nanotube film. [0028] The acid solution The concentration is low, so it will not oxidize into it. M carbon nanotube film, thus avoiding damage to the structure of the carbon nanotubes. The conductive polymer monomer material is one or more of aniline, pyrrole, thiophene, acetylene, p-phenylene and p-phenylenevinylene. The acid solution is a mixture of one or more of a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, a phosphoric acid solution or an acetic acid solution. In this embodiment, the conductive polymer monomer material is aniline, and the solution is a hydrochloric acid solution. [0029] In this embodiment, the method for preparing an acid solution of a conductive polymer monomer, and immersing the carbon nanotube film in an acid solution of the conductive polymer monomer comprises the following steps: In a container, 40 ml of a 1 mol/L hydrochloric acid solution was prepared in the container; the weighing of the aniline monomer oil was 0.774504 g (the amount of the substance of 0.74504 g of the aniline monomer oil was 0.008). Molar), and placed in a container, 40 ml of a 1 mol / liter hydrochloric acid solution was injected into the container, and the stearamine monomer oil was dissolved in the hydrochloric acid solution to prepare a molar concentration of aniline. 0.2摩尔/097133081^单单号 A〇101 Page 10 of 23 page 1013222523-0 1377171 On June 14, 101, the replacement of the aniline hydrochloric acid solution was replaced by a weighed balance; The carbon nanotube film is immersed in the hydrochloric acid solution of 〇. 2 mol / liter of aniline, and the solution of the stearamine hydrochloric acid impregnated with the carbon nanotube film 16 is refrigerated at 0 ° C to 5 ° C for 3 hours, so that Formation of aniline monomer in carbon nanotube film of carbon nanotube film Network structure is uniformly dispersed. [0030] Next, an acid solution of the oxidizing agent is prepared. [0031] The acid solution of the oxidizing agent functions to oxidize the conductive polymer monomer to oxidatively polymerize the conductive polymer monomer to form a conductive polymer. The method for preparing the acid solution of the oxidant specifically comprises the steps of: weigh 20-40 parts by mass of the oxidizing agent in a container; pour the acid solution having a molar concentration of 0.1-5 mol/L, and prepare the molar concentration of the oxidizing agent to be 0. , an acid solution of 1 to 5 moles per liter of the oxidizing agent; and chilling the acid solution of the oxidizing agent at 0 degrees Celsius to 5 degrees Celsius for 3 to 10 hours. [0032] The oxidizing agent is one or more of ammonium persulfate, potassium permanganate or hydrogen peroxide. The acid solution is a mixture of one or more of a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, a phosphoric acid solution, or an acetic acid solution. The ratio of the molar concentration of the acid solution of the conductive polymer monomer to the molar concentration of the acid solution of the oxidizing agent is 1:2 to 2:1. In this embodiment, the oxidizing agent is ammonium persulfate, the acid solution is a hydrochloric acid solution, and the ratio of the molar concentration of the acid solution of the conductive polymer monomer to the molar concentration of the acid solution of the oxidizing agent is 1:1. . [0033] In this embodiment, the method for preparing the acid solution of the oxidant specifically comprises the following steps: weighing 1. 8256 g of ammonium persulfate powder with a weighing balance, and placing it in an 80 ml container; Page 11 of 23 per page of ammonium sulphate powder im^999C; 9Q-〇097133081^A〇101 1377171 101 year 0 month 14th nuclear _ page container filled with 40 ml of 1 mol / liter of hydrochloric acid solution Dissolving ammonium persulfate powder in a hydrochloric acid solution to prepare a hydrochloric acid (1 mol/L) solution of ammonium persulfate having a molar concentration of ammonium persulfate of 0.2 mol/liter; and hydrolyzing the ammonium persulfate solution Refrigeration at 0-5 degrees Celsius for 3 hours allows ammonium persulfate to be more fully dissolved in the hydrochloric acid solution. [0034] Finally, the acid solution of the oxidant is mixed with an acid solution of a conductive polymer monomer impregnated with a carbon nanotube film to polymerize the conductive polymer monomer to obtain a carbon nanotube/conductive polymer composite. . [0035] The method for polymerizing the above conductive polymer monomer specifically includes the steps of: placing an acid solution of the conductive polymer monomer impregnated with the carbon nanotube film in an ice water mixture; slowly adding an acid of the oxidizing agent dropwise a solution for polymerizing a conductive polymer monomer to form a conductive polymer fiber; and an acid solution of the conductive polymer monomer of the carbon nanotube film and an oxidizing agent after the acid solution of the oxidizing agent is completely dropped The mixture of acid solutions is chilled at 0 to 5 degrees Celsius for 5 to 20 hours. [0036] the mixture of the acid solution of the conductive polymer monomer containing the carbon nanotube film and the acid solution of the oxidizing agent is chilled for 5 to 20 hours, so that the conductive polymer monomer is sufficiently oxidized by the oxidizing agent, thereby The conductive polymer monomer can be sufficiently uniformly polymerized to form a conductive polymer fiber, and the conductive polymer fiber is composited on the surface of the carbon nanotube or/and attached to the wall of the carbon nanotube, the conductive polymer The fibers may also be interconnected to each other and then composited on the surface of the carbon nanotube or/and attached to the wall of the carbon nanotube. The above refrigeration is optional, and the mixture of the acid solution of the conductive polymer monomer containing the carbon nanotube film and the acid solution of the oxidant may be directly placed at room temperature for 5 to 20 hours, if the polymerization reaction is 097133081^^^^ Α0101 Page 12/Total 23 Pages 1013222523-0 Heat and Temple, People # 101. June 14 Press the replacement page for a long time, refrigerate 侔;}-:- than the room Ό ^ The carbon nanotube/conductive polymer composite material of j is electrically conductive to the obtained carbon nanotube/conductive polymer composite material, so that those skilled in the art can select the (four) polymer according to the actual situation. Weaving dimension length S10H1G mm, straight you 30nm ~ 120nm. [0037] ^. . In the embodiment, the mixture of the acid solution of the conductive polymer monomer containing the carbon nanotube film and the acid solution of the oxidant may be placed in an environment of 〇 5 ° C and refrigerated for 10 hours to make the polyaniline fiber. Recombining on the surface of the carbon nanotubes or/and on the wall of the carbon nanotubes, or the fibers may be interconnected to each other and then composited on the surface of the carbon nanotubes or / and attached to the wall of the carbon nanotube. [0038] In the preparation method of the carbon nanotube/conductive polymer composite material of the present invention, 50 to 90 parts by mass of the carbon nanotube film is mixed with an acid solution of 20 to 40 parts by mass of the conductive polymer monomer. Further, an acid solution of an oxidizing agent disposed in an amount of 20 to 40 parts by mass of an oxidizing agent is added to oxidatively polymerize the conductive polymer monomer into a conductive polymer to form a carbon nanotube/conductive polymer composite by compounding with a carbon nanotube film. . The mass ratio relationship of the above carbon nanotube film, the conductive polymer monomer and the oxidant is favorable for ensuring that the polyaniline fiber in the carbon nanotube/conductive polymer composite prepared by the technical solution is composited on the surface of the carbon nanotube Or/and attached to the wall of the carbon nanotube, or the fibers may be interconnected to each other and then composited on the surface of the carbon nanotube or/and attached to the carbon nanotube On the wall of the tube. [0039] The preparation method of the carbon nanotube/conductive polymer composite material may further comprise: washing and drying the carbon nanotubes with a cleaning solution, and guiding the hidden surface, single number A〇101, 13th Page / A total of 23 pages 1013222523-0 1377171 [0040] _33 (^ single number deletion 1 101: year. June 14th to replace the ^ polymer composite material step. Specifically, this step can be passed The following method is implemented. Firstly, the nano carbon official/conductive polymer composite material is taken out from the mixture, and it is washed in a container containing deionized water several times to remove the carbon nanotubes/conductive polymer. Ionic impurities in the composite; secondly, 'wash it in a container filled with ethanol for multiple times to remove other organic impurities remaining in the carbon nanotube/conductive polymer composite; finally 'turn the carbon nanotubes / Conductive polymer composite material is taken out and placed in an oven for 4 hours at 80 ° C to evaporate the ethanol in the carbon nanotube / conductive polymer composite. By cleaning the carbon nanotube / conductive polymer composite Material can effectively remove carbon nanotubes / conductive polymerization In the composite material, other ionic impurities exist, and other organic impurities remain, thereby further improving the purity of the carbon nanotube/conductive polymer composite. Referring to FIG. 2, the carbon nanotube prepared by the technical solution/conducting The polymer composite 10 includes a plurality of carbon nanotubes 2 and a plurality of conductive polymer fibers 14 » the plurality of carbon nanotubes 12 are interconnected to form a carbon nanotube film 16 'a plurality of conductive polymer fibers 14 Compositely on the surface of the carbon nanotube 12 or/and attached to the wall of the carbon nanotube 12, the conductive polymer fibers 14 may also be connected to each other and then composited in the nanocarbon The surface of the tube 12 or/and the surface of the tube of the carbon nanotube 12. In the above-described carbon nanotube/conductive polymer composite 10, the carbon nanotube film 16 formed by the carbon nanotube 12 is formed. It acts as a skeleton, and the conductive polymer fiber 14 is attached to the skeleton of the nanocarbon (tetra) film 16. Further, the carbon nanotube 12 and the conductive polymer fiber 14 are uniformly distributed in the (tetra) carbon nanotube/conducting In polymer composites. The manufacture of the carbon nanotube/conductive polymer composite material provided by the case is 14 pages/total 23 pages 1013222523-0 [ϊ〇1年-06-14 14 revised replacement page preparation method has the following advantages: The chemical in-situ polymerization method combines the carbon nanotube film with a conductive polymer, and the carbon nanotube film. The plurality of carbon nanotubes are uniformly dispersed and interconnected to form a conductive network, so that the obtained naphthalene is obtained. In the rice pipe/conductive polymer composite, the carbon nanotubes are uniformly dispersed. Second, the chemical bonding polymer is used to combine the carbon nanotubes with the conductive polymer without the addition of a surfactant. The surfactant is not included in the rice tube/conductive polymer composite. Third, the preparation method of the carbon nanotube/conductive polymer composite provided by the technical solution does not require the oxidation of the carbon nanotubes with a strong acid, and the structure of the carbon nanotubes is intact, and the nanocarbon is not destroyed during the preparation process. The structure of the tube is fourth, and the carbon nanotube film is combined with the conductive poly A by chemical in-situ polymerization, the preparation process is simple, continuous and large-scale production can be realized, and the cost is low. [〇〇42] In summary, the technical solution has indeed met the requirements of the invention patent, and the patent application is filed in accordance with the law. However, the above is only a preferred embodiment of the technical solution, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those who are familiar with the skills of this project in accordance with the spirit of this technical solution shall be covered by the following patents. BRIEF DESCRIPTION OF THE DRAWINGS [0043] FIG. 1 is a flow chart showing a method of preparing a carbon nanotube/conductive polymer composite material according to an embodiment of the present technical solution. 2 is a schematic view showing the structure of a carbon nanotube/conductive polymer composite comprising a disordered carbon nanotube according to an embodiment of the wood technical solution. [Main component symbol description] [0045] Nano carbon tube / conductive polymer composite material: 10 〇 9? 133 〇 8 production single edit sharp A0101 page 15 / total 23 page 1013222523-0 1377171 . - ._ _ _ . [0046] Nano carbon tube: 12 [0047] Conductive polymer fiber: 14 [0048] Nano carbon tube film: 16 097133081 ^ single number A 〇 101 page 16 / 23 pages 101 June 14 Boast & page

1013222523-01013222523-0

Claims (1)

1377171 101年06月14日核正替换頁 七、申請專利範圍: 1 . 一種奈米碳管/導電聚合物複合材料的製備方法,其包括 以下步驟: 製備一奈米碳管薄膜; ’ 製備一導電聚合物單體的酸溶液,將所述奈米碳管薄膜浸 入所述導電聚合物單體的酸溶液中,形成一包含奈米碳管 薄膜與導電聚合物單體的酸溶液;. • 製備一氧化劑的酸溶液;及 將所述氧化劑的酸溶液與浸有奈米碳管薄膜的導電聚合物 • 單體的酸溶液混合,使導電聚合物單體聚合,獲得一奈米 碳管/導電聚合物複合材料。 2 .如申請專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述奈米碳管薄膜的製備方法包括 直接生長法、碾壓法、拉膜法及絮化法。 3 .如申請專利範圍第2項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述直接生長法製備奈米碳管薄膜 為用化學氣相沈積法於一基板上生長奈米碳管薄膜。 ® 4 .如申請專利範圍第3項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,該奈米碳管薄膜為無序奈米碳管薄 膜,該奈米碳管薄膜包括複數個無序排列的奈米碳管。 5 .如申請專利範圍第2項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述採用拉膜法製備奈米碳管薄膜 的方法包括以下步驟: 製備一奈米碳管陣列; 從上述奈米碳管陣列中選定一定寬度的複數個奈米碳管片 097133081^ 單編號 A〇101 第17頁/共23頁 1Π1 1377171 . ... ___ 101年.06用14日核正_換頁 斷,優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以 選定一定寬度的複數個奈米碳管片斷;及 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸該複 數個奈米碳管片斷,以形成一連續的奈米碳管薄膜。 6 .如申請專利範圍第5項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述奈米碳管薄膜為有序奈米碳管 薄膜,其包括複數個通過凡德瓦爾力首尾相連且沿同一方 向排列的奈米碳管。 7 .如申請專利範圍第2項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述採用碾壓法製備奈米碳管薄膜 I 的方法具體包括以下步驟: 提供一奈米碳管陣列形成於一基底;及 提供一施壓裝置擠壓上述奈米碳管陣列,從而得到奈米碳 管薄膜^ 8 .如申請專利範圍第7項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述奈米碳管薄膜為無序奈米碳管 薄膜,且包括複數個沿一個或複數個方向擇優取向排列的 奈米碳管。 . 9 .如申請專利範圍第2項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述絮化法製備奈米碳管薄膜包括 以下步驟: 提供一奈米碳管原料; 將上述奈米碳管原料添加到溶劑中並進行絮化處理獲得奈 米碳管絮狀結構;及 將上述奈米碳管絮狀結構從溶劑中分離,並對該奈米碳管 絮狀結構定型處理。 097133。8产單編號A0101 第18頁/共23頁 1013222523-0 10 丨101年.06月14日按ΙΕ®Ϊ1 如申請專圍第9項所制奈米碳管/導電聚合物複合材 料的製備方法,其中,所述絮化法製備的奈米碳管薄膜包 t數個均句分佈的奈米碳管,該複數個均句分佈的奈米 碳管通過凡德瓦爾力相互連卿成·_結構,從而形成一 /、有自支樓結構的奈米碳管薄膜。 11 如申明專利範圍第1項所述的奈米後管/導電聚合物複合材 料的製備方法’其中’所述酸溶液為鹽酸溶液、硫酸溶液 、硝酸溶液、鱗酸溶液及乙酸溶液中的—種或幾種的混合 .如申请專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述形成一包含'奈米碳管薄膜與導 電聚合物單體的酸溶液的方法具體包括以下步驟:提供 20〜40質量份導電聚合物單體’配製摩爾濃度為〇. ^摩 爾/升的酸溶液; 將所述導電聚合物單體溶於酸溶液中,得到導電聚合物單 。體摩爾濃度為0. 1〜5摩爾/升的導電聚合物單體的酸溶液 * ) 取50〜90質量份的奈米碳管薄膜,將其浸入所述導電聚合 物的酸溶液中,形成一包含奈米碳管薄膜與導電聚合物單 體的酸溶液;及 將含有奈米碳管薄膜的導電聚合物單體的酸溶液在0〜5攝 氏度冷藏3~10小時。 13 .如申請專利範圍第12項所述的奈米碳管/導電聚合物複合 材料的製備方法,其中,所述導電聚合物單體材料為苯胺 、。比洛、嗟吩、乙炔、對苯及對苯撐乙稀中的一種或幾種 〇9713308广單編號 A0101 第19頁/共23頁 10!3222523-0 1377171 ______________________ _____________________________ _ i〇l^〇6J.14B 14 .如申請專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述製備一氧化劑的酸溶液的方法 具體包括以下步驟: 稱量20〜40質量份的氧化劑於一容器中; 倒入摩爾濃度為0. 1〜5摩爾/升的酸溶液,配製成氧化劑 ' 的摩爾濃度為0. 1〜5摩爾/升的氧化劑的酸溶液;及 將所述氧化劑的酸溶液在〇~5攝氏度冷藏3〜10小時。 15 .如申請專利範圍第14項所述的奈米碳管/導電聚合物複合 材料的製備方法,其中,所述氧化劑包括過硫酸胺、高錳 酸钟及雙氧水。 β 16 .如申請專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述導電聚合物單體的酸溶液的摩 爾濃度與所述氧化劑的酸溶液的摩爾濃度之比為1 : 2~2 :1 17 .如申請專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述使導電聚合物單體聚合,製備 奈米碳管/導電聚合物複合材料的方法具體包括以下步驟 將所述浸有奈米碳管薄膜的導電聚合物單體的酸溶液置於 冰水混合物中;及 逐滴加入氧化劑的酸溶液,使得導電聚合物單體發生聚合 反應,形成導電聚合物纖維,導電聚合物纖維直接或相互 連接後複合在所述奈米碳管的表面或/和附著在所述奈米 碳管的管壁上。 18 .如申請專利範圍第17項所述的奈米碳管/導電聚合物複合 材料的製備方法,其中,所述使導電聚合物單體聚合,製 1013222523-0 0971^081^單编號Α〇1ίΠ 第20頁/共23頁 1377171 ---- 101年.06月14日梭正替换頁 備奈米碳管/導電聚合物複合材料的方法進一步包括一待 所述氧化劑的酸溶液滴加完畢,將所述含有奈米碳管薄膜 的導電聚合物單體的酸溶液與氧化劑的酸溶液的混合液在 0-5攝氏度冷藏5~20小時的步驟。 ' 19 .如申請專利範圍第1項所述的奈米碳管/導電聚合物複合材 料的製備方法,其中,所述製備奈米碳管/導電聚合物複 • 合材料的方法進一步包括用清洗溶劑清洗所述奈米碳管/ . 導電聚合物複合材料並烘乾,其具體包括以下步驟: 將奈米碳管/導電聚合物複合材料從混合液中取出,將其 • 放入盛有去離子水的容器内清洗多次; 再將其放入盛有乙醇的容器中清洗多次;及 取出奈米碳管/導電聚合物複合材料,放入烘箱内,在80 攝氏度下烘乾2~6小時。 單編號 A0101 第21頁/共23頁 1013222523-01377171 On June 14, 101, the nuclear replacement page VII. Patent application scope: 1. A method for preparing a carbon nanotube/conductive polymer composite material, comprising the steps of: preparing a carbon nanotube film; An acid solution of the conductive polymer monomer, immersing the carbon nanotube film in an acid solution of the conductive polymer monomer to form an acid solution comprising a carbon nanotube film and a conductive polymer monomer; Preparing an acid solution of an oxidizing agent; and mixing an acid solution of the oxidizing agent with an acid solution of a conductive polymer • monomer impregnated with a carbon nanotube film to polymerize the conductive polymer monomer to obtain a carbon nanotube/ Conductive polymer composite. 2. The method for preparing a carbon nanotube/conductive polymer composite according to claim 1, wherein the method for preparing the carbon nanotube film comprises direct growth method, rolling method, and film stretching method. And flocculation method. 3. The method for preparing a carbon nanotube/conductive polymer composite according to claim 2, wherein the direct growth method for preparing a carbon nanotube film is performed by chemical vapor deposition on a substrate. Growing carbon nanotube film. The method for preparing a carbon nanotube/conductive polymer composite according to claim 3, wherein the carbon nanotube film is a disordered carbon nanotube film, the carbon nanotube film Including a plurality of randomly arranged carbon nanotubes. 5. The method for preparing a carbon nanotube/conductive polymer composite according to claim 2, wherein the method for preparing a carbon nanotube film by a film-forming method comprises the steps of: preparing a nanometer Carbon tube array; a plurality of carbon nanotube sheets of a certain width selected from the above carbon nanotube arrays 097133081^ Single number A〇101 Page 17/Total 23 pages 1Π1 1377171 . ... ___ 101 years.06 with 14 The core is positively changed, preferably by contacting the carbon nanotube array with a tape having a certain width to select a plurality of carbon nanotube segments of a certain width; and pulling at a certain speed along a growth direction substantially perpendicular to the growth of the carbon nanotube array The plurality of carbon nanotube segments are stretched to form a continuous carbon nanotube film. 6. The method for preparing a carbon nanotube/conductive polymer composite according to claim 5, wherein the carbon nanotube film is an ordered carbon nanotube film, which comprises a plurality of Dewar force is a carbon nanotube that is connected end to end and arranged in the same direction. 7. The method for preparing a carbon nanotube/conductive polymer composite according to claim 2, wherein the method for preparing a carbon nanotube film I by a rolling method comprises the following steps: The carbon nanotube array is formed on a substrate; and a pressing device is provided to extrude the carbon nanotube array to obtain a carbon nanotube film. The carbon nanotube according to claim 7 is The method for preparing a conductive polymer composite, wherein the carbon nanotube film is a disordered carbon nanotube film, and comprises a plurality of carbon nanotubes arranged in a preferred orientation along one or more directions. 9. The method for preparing a carbon nanotube/conductive polymer composite according to claim 2, wherein the preparing the carbon nanotube film by the flocculation method comprises the steps of: providing a carbon nanotube Raw material; adding the above carbon nanotube raw material to a solvent and performing flocculation treatment to obtain a nano carbon tube floc structure; and separating the above carbon nanotube floc structure from a solvent, and the carbon nanotube floc Shaped structure processing. 097133.8Production No.A0101 Page 18/Total 23 Page 1013222523-0 10 丨101. June 14 Press ΙΕ®Ϊ1 If you apply for the special carbon nanotube/conductive polymer composite made in item 9 a preparation method, wherein the carbon nanotube film prepared by the flocculation method comprises a plurality of carbon nanotubes having a uniform sentence distribution, and the plurality of carbon nanotubes having a uniform sentence distribution are mutually connected by van der Waals force · Structure, thereby forming a carbon nanotube film having a self-supporting structure. 11 The method for preparing a nano-tube/conductive polymer composite according to claim 1, wherein the acid solution is a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, a scaly acid solution and an acetic acid solution. The method for preparing a carbon nanotube/conductive polymer composite according to claim 1, wherein the forming comprises a carbon nanotube film and a conductive polymer monomer. The method of the acid solution specifically comprises the steps of: providing 20 to 40 parts by mass of a conductive polymer monomer 'in a molar concentration of 〇. ^mol/liter of an acid solution; dissolving the conductive polymer monomer in an acid solution, A conductive polymer sheet is obtained. An acid solution of a conductive polymer monomer having a molar concentration of 0.1 to 5 mol/liter*) 50 to 90 parts by mass of a carbon nanotube film, which is immersed in an acid solution of the conductive polymer to form An acid solution comprising a carbon nanotube film and a conductive polymer monomer; and an acid solution of the conductive polymer monomer containing the carbon nanotube film is chilled at 0 to 5 degrees Celsius for 3 to 10 hours. The method for producing a carbon nanotube/conductive polymer composite according to claim 12, wherein the conductive polymer monomer material is aniline. One or more of Bilo, porphin, acetylene, p-phenylene and p-phenylene bromide. 9713308 Wide order number A0101 Page 19 / Total 23 10! 3222523-0 1377171 ______________________ _____________________________ _ i〇l^〇6J The method for preparing a carbon nanotube/conductive polymer composite according to claim 1, wherein the method for preparing an acid solution of an oxidant specifically comprises the following steps: weighing 20 to 40 The oxidizing agent of the oxidizing agent is an acid solution having a molar concentration of 0.1 to 5 moles per liter of the oxidizing agent; and The acid solution of the oxidizing agent is refrigerated at 〇~5 ° C for 3 to 10 hours. The method for producing a carbon nanotube/conductive polymer composite according to claim 14, wherein the oxidizing agent comprises ammonium persulfate, permanganic acid, and hydrogen peroxide. The method for producing a carbon nanotube/conductive polymer composite according to claim 1, wherein a molar concentration of the acid solution of the conductive polymer monomer and an acid solution of the oxidizing agent The method for preparing a carbon nanotube/conductive polymer composite according to claim 1, wherein the conductive polymer monomer is polymerized, and the ratio of the molar concentration is 1:2 to 2:1. The method for preparing a carbon nanotube/conductive polymer composite specifically comprises the steps of: placing an acid solution of the conductive polymer monomer impregnated with a carbon nanotube film in an ice water mixture; and adding an acid of the oxidant dropwise a solution for polymerizing a conductive polymer monomer to form a conductive polymer fiber, and the conductive polymer fiber is directly or interconnected to be composited on the surface of the carbon nanotube or/and a tube attached to the carbon nanotube On the wall. The method for producing a carbon nanotube/conductive polymer composite according to claim 17, wherein the conductive polymer monomer is polymerized to make a single number 10 1013222523-0 0971^081^ 〇1ίΠ Page 20 of 23 1377171 ---- 101. June 14th The method of replacing the page with the carbon nanotube/conductive polymer composite further includes an acid solution to be added to the oxidant. After completion, the mixture of the acid solution of the conductive polymer monomer containing the carbon nanotube film and the acid solution of the oxidizing agent is stored at 0-5 degrees Celsius for 5-20 hours. The method for preparing a carbon nanotube/conductive polymer composite according to claim 1, wherein the method for preparing a carbon nanotube/conductive polymer composite further comprises cleaning Solvent cleaning the carbon nanotube / conductive polymer composite and drying, which specifically comprises the following steps: taking the carbon nanotube / conductive polymer composite from the mixture, and putting it into the possession Wash the container of ionized water several times; then wash it in a container filled with ethanol for several times; and take out the carbon nanotube/conductive polymer composite material, put it into the oven, and dry it at 80 °C 2~ 6 hours. Single Number A0101 Page 21 of 23 1013222523-0
TW97133081A 2008-08-29 2008-08-29 Mathod for making a carbon nanotube/conductive polymer composite TWI377171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133081A TWI377171B (en) 2008-08-29 2008-08-29 Mathod for making a carbon nanotube/conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133081A TWI377171B (en) 2008-08-29 2008-08-29 Mathod for making a carbon nanotube/conductive polymer composite

Publications (2)

Publication Number Publication Date
TW201008871A TW201008871A (en) 2010-03-01
TWI377171B true TWI377171B (en) 2012-11-21

Family

ID=44827645

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133081A TWI377171B (en) 2008-08-29 2008-08-29 Mathod for making a carbon nanotube/conductive polymer composite

Country Status (1)

Country Link
TW (1) TWI377171B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (en) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 Carbon nanotube composite structure and method for making thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391340B (en) * 2018-04-16 2023-03-31 清华大学 Preparation method of polymer solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (en) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 Carbon nanotube composite structure and method for making thereof

Also Published As

Publication number Publication date
TW201008871A (en) 2010-03-01

Similar Documents

Publication Publication Date Title
Cruz-Silva et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling
CN101654555B (en) Method for preparing carbon nano tube/conducting polymer composite material
Lu et al. Carbon nanotube based fiber supercapacitor as wearable energy storage
Wu et al. Advanced carbon materials with different spatial dimensions for supercapacitors
Li et al. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene
Bajpai et al. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes
Liu et al. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns
Jang et al. Fibers of reduced graphene oxide nanoribbons
JP5091208B2 (en) Method for producing carbon nanotube / polymer composite material
Endo et al. Large-scale production of carbon nanotubes and their applications
Di et al. Dry‐Processable Carbon Nanotubes for Functional Devices and Composites
Zhao et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite
Jiang et al. Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
CN101712468A (en) Carbon nanotube composite material and preparation method thereof
JP2013542551A (en) Structural energy storage assembly and method of manufacturing the same
JP2013542551A5 (en)
JP2010260784A (en) Nano-material thin film
Kim et al. Important roles of graphene edges in carbon-based energy storage devices
Le et al. Strategies for fabricating versatile carbon nanomaterials from polymer precursors
CN111170309A (en) Preparation method of ultra-long few-wall carbon nanotube array
Yuan et al. Assembly of MnO/CNC/rGO fibers from colloidal liquid crystal for flexible supercapacitors via a continuous one-process method
Hussain et al. Enhancement of thermal conductivity and thermal stability of capric-lauric acid eutectic phase change material using carbonaceous materials
Li et al. Preparation and structural evolution of well aligned-carbon nanotube arrays onto conductive carbon-black layer/carbon paper substrate with enhanced discharge capacity for Li–air batteries
Zamani et al. Ultralight graphene/graphite hybrid fibers via entirely water-based processes and their application to density-controlled, high performance composites