TW201539956A - Low-light solar boost converter and control method therefor - Google Patents

Low-light solar boost converter and control method therefor Download PDF

Info

Publication number
TW201539956A
TW201539956A TW103112677A TW103112677A TW201539956A TW 201539956 A TW201539956 A TW 201539956A TW 103112677 A TW103112677 A TW 103112677A TW 103112677 A TW103112677 A TW 103112677A TW 201539956 A TW201539956 A TW 201539956A
Authority
TW
Taiwan
Prior art keywords
boost converter
voltage
pulse width
width modulation
solar
Prior art date
Application number
TW103112677A
Other languages
Chinese (zh)
Inventor
Yun-Shan Chang
Original Assignee
Yun-Shan Chang
Lin Da Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yun-Shan Chang, Lin Da Wei filed Critical Yun-Shan Chang
Priority to TW103112677A priority Critical patent/TW201539956A/en
Publication of TW201539956A publication Critical patent/TW201539956A/en

Links

Abstract

The present disclosure provides a low-light solar boost converter and a control method therefore. The control method comprises: the boost converter starting to operate in a PWM mode; determining whether the voltage of the input terminal is larger than a reference input voltage, the boost converter operating in the PWM mode when the voltage of the input terminal is larger than the reference input voltage, otherwise the boost converter operating in a burst mode, wherein a burst period of the burst mode increases when the voltage of the input terminal decreases; during the burst mode determining whether the voltage of the output terminal is less than a first preset output voltage, the boost converter operating in the PWM mode when the voltage of the output terminal is less than the first preset output voltage, otherwise the boost converter operating in the burst mode. And the on-switch period of burst mode is proportional to the output voltage of solar panel. The switching loss is reduced as the incident light intensity is low.

Description

低照度太陽能升壓轉換器及其控制方法 Low illumination solar boost converter and control method thereof

本發明有關於一種升壓轉換器,且特別是一種低照度太陽能升壓轉換器及其控制方法。 The invention relates to a boost converter, and in particular to a low illumination solar boost converter and a control method thereof.

太陽能是一個有前途的乾淨能源。即使很多設計與製造技術在最近五十到六十年被發明,效率和成本結構仍然是此乾淨能源集電的核心議題。基於戶外的可預測的太陽照射與室內的弱光照明,光伏能集電仍然未在我們的生活中普及。因為環境汙染和能源耗盡,在效率和設計上的改進在最近被更多的發明。具有晶體改進與鍍模結構的矽基的太陽能板逐年被推廣到市場中。然而,光伏能轉換仍然是此乾淨能源極電的瓶頸。 Solar energy is a promising clean energy source. Even though many design and manufacturing technologies were invented in the last fifty to six decades, efficiency and cost structures remain the core issues of this clean energy collection. Based on outdoor predictable solar illumination and indoor low-light illumination, photovoltaic energy collection is still not popular in our lives. Improvements in efficiency and design have recently been invented more because of environmental pollution and energy exhaustion. Solar panels with ruthenium-based crystal modification and plated structure have been introduced to the market every year. However, photovoltaic energy conversion is still the bottleneck of this clean energy pole.

現今,根據不同種類的太陽能板存在各種不同的集電方式。歸咎於耐用度與成本結構,相較於III-V族化合物、II-VI族化合物、有機薄膜等,矽基的太陽能板是最可能商業化的太陽能來源。如以下所列舉常見的集電技術仍具有部分缺點。例如:整流輸出升壓(regulated output boost),無法因應電源的波動,以及無法適應環境的變化。整流輸出突發模式升壓(Regulated output Burst mode),僅依賴負載的狀況,且突發週期(Burst period)只設定在單一模式的條件。開關電容幫浦升壓(Switch-cap pumping boost)具有高的電磁干擾(EMI)與較低的轉換效率,且受限於最終電壓的轉換比。固定頻率突發週期切換升壓(Fixed frequency and burst period switch boost),無法調整負載與能量轉換的平衡。 Today, there are various types of current collection methods depending on the types of solar panels. Due to the durability and cost structure, germanium-based solar panels are the most likely source of solar energy compared to III-V compounds, II-VI compounds, organic thin films, and the like. Common collector techniques as listed below still have some disadvantages. For example: regulated output boost, unable to respond to fluctuations in the power supply, and unable to adapt to changes in the environment. The rectified output Burst mode depends only on the condition of the load, and the Burst period is set only in the condition of a single mode. Switch-cap pumping boost has high electromagnetic interference (EMI) and low conversion efficiency, and is limited by the final voltage conversion ratio. Fixed frequency burst period (Fixed frequency and burst period) Switch boost), the balance between load and energy conversion cannot be adjusted.

本發明實施例提供一種低照度太陽能升壓轉換器及其控制方法,利用輸入電壓的整流切換控制,以在低照度時減少能量轉換的損失。 Embodiments of the present invention provide a low illumination solar boost converter and a control method thereof, which utilize rectification switching control of an input voltage to reduce loss of energy conversion in low illumination.

本發明實施例提供一種低照度太陽能升壓轉換器,具有輸入端以及輸出端,輸入端耦接太陽能接收單元,輸出端耦接負載,低照度太陽能升壓轉換器包括升壓轉換器、脈衝寬度調變控制器以及切換控制器。升壓轉換器耦接輸入端以及輸出端。脈衝寬度調變控制器耦接升壓轉換器,提供複數個脈衝至升壓轉換器以調整輸出端之電壓。當輸入端之電壓大於一參考輸入電壓時,脈衝寬度調變控制器操作在一脈衝寬度調變模式(PWM mode)。當輸入端之電壓非大於參考輸入電壓時,脈衝寬度調變控制器操作在一突發模式(Burst mode),所述突發模式之一突發週期時間是隨著輸入端之電壓的降低而增加。切換控制器耦接脈衝寬度調變控制器,判斷輸出端之電壓是否小於一第一設定輸出電壓值。當輸出端之電壓小於第一設定輸出電壓值時,切換控制器控制脈衝寬度調變控制器操作在脈衝寬度調變模式。當輸出端之電壓非小於第一設定輸出電壓值時,切換控制器控制脈衝寬度調變控制器操作在突發模式。 Embodiments of the present invention provide a low illumination solar boost converter having an input end and an output end. The input end is coupled to the solar receiving unit, the output end is coupled to the load, and the low illumination solar boost converter includes a boost converter and a pulse width. Modulation controller and switching controller. The boost converter is coupled to the input and the output. The pulse width modulation controller is coupled to the boost converter and provides a plurality of pulses to the boost converter to adjust the voltage at the output. When the voltage at the input is greater than a reference input voltage, the pulse width modulation controller operates in a PWM mode. When the voltage at the input terminal is not greater than the reference input voltage, the pulse width modulation controller operates in a Burst mode, and one of the burst modes is caused by a decrease in the voltage of the input terminal. increase. The switching controller is coupled to the pulse width modulation controller to determine whether the voltage at the output terminal is less than a first set output voltage value. When the voltage of the output terminal is less than the first set output voltage value, the switching controller controls the pulse width modulation controller to operate in the pulse width modulation mode. When the voltage of the output terminal is not less than the first set output voltage value, the switching controller controls the pulse width modulation controller to operate in the burst mode.

本發明實施例提供一種低照度太陽能升壓轉換器的控制方法,低照度太陽能升壓轉換器具有輸入端以及輸出端,所述控制方法包括以下步驟。首先,使低照度太陽能升壓轉換器起始操作於一脈衝寬度調變模式(PWM mode)。然後,判斷輸入端之電壓是否大於一參考輸入電壓。當輸入端之電壓大於參考輸入電壓時,使低照度太陽能升壓轉換器操作在脈衝寬度調變模式。反之,當輸入端之電壓非大於參考輸入電壓時,使低照度太陽能升壓轉換器操作在一突發模式(Burst mode),所述突發模式之一突發週期 時間是隨著輸入端之電壓的降低而增加。再來,當操作於突發模式時,判斷輸出端之電壓是否小於一第一設定輸出電壓值。當輸出端之電壓小於第一設定輸出電壓值時,使低照度太陽能升壓轉換器操作在脈衝寬度調變模式。反之,當輸出端之電壓非小於第一設定輸出電壓值時,使低照度太陽能升壓轉換器操作在突發模式。 Embodiments of the present invention provide a control method for a low illumination solar boost converter. The low illumination solar boost converter has an input end and an output end, and the control method includes the following steps. First, the low illumination solar boost converter is initially operated in a pulse width modulation mode (PWM mode). Then, it is judged whether the voltage at the input terminal is greater than a reference input voltage. When the voltage at the input is greater than the reference input voltage, the low illumination solar boost converter operates in a pulse width modulation mode. Conversely, when the voltage at the input terminal is not greater than the reference input voltage, the low-illuminance solar boost converter is operated in a burst mode, one of the burst modes The time increases as the voltage at the input decreases. Then, when operating in the burst mode, it is determined whether the voltage at the output terminal is less than a first set output voltage value. When the voltage at the output terminal is less than the first set output voltage value, the low illumination solar boost converter is operated in a pulse width modulation mode. Conversely, when the voltage at the output is not less than the first set output voltage value, the low illumination solar boost converter is operated in a burst mode.

綜上所述,本發明實施例提供一種低照度太陽能升壓轉換器及其控制方法,依據輸出端電壓值得知負載情況,可在負載較輕的情況將升壓轉換器操作於突發模式,其中突發模式之突發週期時間是隨著輸入端之電壓的降低而增加,也就是說當照度越低時突發模式的突發週期也隨之增加。進一步,也依據負載情況判斷是否離開突發模式而進入脈衝寬度調變模式。 In summary, the embodiment of the present invention provides a low-illuminance solar boost converter and a control method thereof, and the load condition is known according to the output terminal voltage value, and the boost converter can be operated in the burst mode when the load is light. The burst cycle time of the burst mode is increased as the voltage of the input terminal decreases, that is, the burst period of the burst mode increases as the illuminance is lower. Further, it is also determined whether to leave the burst mode and enter the pulse width modulation mode according to the load condition.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

1‧‧‧適應性太陽能集電裝置 1‧‧‧Adaptable solar collector

10‧‧‧太陽能接收單元 10‧‧‧Solar receiving unit

11、21‧‧‧升壓轉換器 11, 21‧‧‧ boost converter

12‧‧‧充電功率控制器 12‧‧‧Charging power controller

13‧‧‧電力儲存單元 13‧‧‧Power storage unit

131‧‧‧溫度感測器 131‧‧‧temperature sensor

P1‧‧‧輸入端 P1‧‧‧ input

P2‧‧‧輸出端 P2‧‧‧ output

Vin、Vo、Vin’、Vo’、Vref、VLX、Vout‧‧‧電壓 Vin, Vo, Vin', Vo', Vref, VLX, Vout‧‧‧ voltage

Iin、Io、Iin’、Io’、I-Vin、IL‧‧‧電流 Iin, Io, Iin', Io', I-Vin, IL‧‧‧ current

121‧‧‧負載線控制單元 121‧‧‧Load line control unit

TS‧‧‧溫度感測信號 TS‧‧‧temperature sensing signal

SGND、PGND、OCP、VCC、CC、LX、FB、REF‧‧‧端點 SGND, PGND, OCP, VCC, CC, LX, FB, REF‧‧‧ endpoints

2‧‧‧低照度太陽能升壓轉換器 2‧‧‧Low illumination solar boost converter

22‧‧‧脈衝寬度調變控制器 22‧‧‧ Pulse width modulation controller

23‧‧‧切換控制器 23‧‧‧Switch controller

211‧‧‧電感 211‧‧‧Inductance

212、213‧‧‧電晶體 212, 213‧‧‧Optoelectronics

20‧‧‧積體電路 20‧‧‧ integrated circuit

VIN‧‧‧輸入端 VIN‧‧‧ input

OUT‧‧‧輸出端 OUT‧‧‧ output

201‧‧‧脈衝寬度比較器 201‧‧‧ pulse width comparator

202‧‧‧斜波產生器 202‧‧‧ ramp generator

203‧‧‧振盪器 203‧‧‧Oscillator

204‧‧‧誤差放大器 204‧‧‧Error amplifier

205‧‧‧帶隙參考電路 205‧‧‧ bandgap reference circuit

206‧‧‧限流器 206‧‧‧Restrictor

207‧‧‧過零率比較器 207‧‧‧ Zero-crossing rate comparator

208‧‧‧過電流保護器 208‧‧‧Overcurrent protector

2081‧‧‧比較器 2081‧‧‧ comparator

R‧‧‧電阻 R‧‧‧resistance

C‧‧‧電容 C‧‧‧ capacitor

S100、S110、S120、S130、S140、S150、S160、S200、S210、S220、S230、S240、S250、S260、S215、S217‧‧‧步驟流程 S100, S110, S120, S130, S140, S150, S160, S200, S210, S220, S230, S240, S250, S260, S215, S217‧‧

OSC‧‧‧脈衝信號 OSC‧‧‧ pulse signal

EN_OSC‧‧‧突發週期時間 EN_OSC‧‧‧ burst cycle time

圖1是本發明實施例提供的適應性太陽能集電裝置的電路方塊圖。 FIG. 1 is a circuit block diagram of an adaptive solar power collecting device according to an embodiment of the present invention.

圖2是本發明實施例提供的低照度太陽能升壓轉換器的電路圖。 2 is a circuit diagram of a low illumination solar boost converter according to an embodiment of the present invention.

圖3是本發明實施例提供的低照度太陽能升壓轉換器的控制方法的流程圖。 FIG. 3 is a flowchart of a method for controlling a low illumination solar boost converter according to an embodiment of the present invention.

圖4是本發明另一實施例提供的低照度太陽能升壓轉換器的控制方法的流程圖。 4 is a flow chart of a method for controlling a low illumination solar boost converter according to another embodiment of the present invention.

圖5是本發明實例提供的低照度太陽能升壓轉換器的信號波形圖。 FIG. 5 is a signal waveform diagram of a low illumination solar boost converter provided by an example of the present invention.

圖6是本發明另一實例提供的低照度太陽能升壓轉換器的信 號波形圖。 6 is a letter of a low illumination solar boost converter provided by another example of the present invention. Waveform.

圖7是本發明另一實例提供的低照度太陽能升壓轉換器的信號波形圖。 7 is a signal waveform diagram of a low illumination solar boost converter provided by another example of the present invention.

圖8是本發明另一實例提供的低照度太陽能升壓轉換器的信號波形圖。 FIG. 8 is a signal waveform diagram of a low illumination solar boost converter provided by another example of the present invention.

圖9是本發明另一實例提供的低照度太陽能升壓轉換器的信號波形圖。 9 is a signal waveform diagram of a low illumination solar boost converter provided by another example of the present invention.

〔低照度太陽能升壓轉換器及其控制方法之實施例〕 [Example of Low Illumination Solar Boost Converter and Control Method Therefor]

本發明實施例是對低照度的光伏能集電作進一步改進。太陽能集電的輸出電壓可以依據監控太陽能集電能力與調整轉換的切換率(switching rate),藉此可以在低照度集電時提供有效的方法以節約更多的能量轉換損失。 Embodiments of the present invention further improve low-illuminance photovoltaic energy collection. The output voltage of the solar collector can be based on monitoring the solar power collection capacity and adjusting the switching rate of the conversion, thereby providing an effective method for saving more energy conversion loss during low illumination collection.

請參照圖1,圖1是本發明實施例提供的適應性太陽能集電裝置的電路方塊圖。適應性太陽能集電裝置1包括太陽能接收單元10、升壓轉換器11以及充電功率控制器12。太陽能接收單元10通常是具有多個太陽能電池(solar cell)的太陽能板。適應性太陽能集電裝置1將太陽能接收單元10的電力傳遞至至少一電力儲存單元13。 Please refer to FIG. 1. FIG. 1 is a circuit block diagram of an adaptive solar power collecting device according to an embodiment of the present invention. The adaptive solar power collecting device 1 includes a solar receiving unit 10, a boost converter 11, and a charging power controller 12. The solar energy receiving unit 10 is typically a solar panel having a plurality of solar cells. The adaptive solar power collecting device 1 transmits the power of the solar receiving unit 10 to at least one power storage unit 13.

升壓轉換器11具有輸入端P1以及輸出端P2。升壓轉換器11之輸入端P1耦接太陽能接收單元10,升壓轉換器11透過輸入端P1接收太陽能接收單元10之電力。太陽能接收單元10提供輸入電壓Vin與輸入電流Iin至升壓轉換器11。充電功率控制器12耦接升壓轉換器11之輸出端P2,感測升壓轉換器11之輸出端P2之供應電壓Vo(在充電功率控制器12的輸入端為Vin’),並產生充電電壓Vo’以及充電電流Io’以對至少一電力儲存單元13充電。充電功率控制器12依據來自升壓轉換器11之輸出端P2之供應電 壓Vo作為前饋控制(feed-forward control),而調整充電電流Io’。此前饋控制可自我調適太陽能板能量的採集轉而儲存於可充電的儲存器(電力儲存單元13)內。無論可採集太陽能板能量的多寡,只要所採集的能量大於升壓轉換器11和充電功率控制器12所耗的能量。 The boost converter 11 has an input terminal P1 and an output terminal P2. The input terminal P1 of the boost converter 11 is coupled to the solar receiving unit 10, and the boost converter 11 receives the power of the solar receiving unit 10 through the input terminal P1. The solar receiving unit 10 supplies an input voltage Vin and an input current Iin to the boost converter 11. The charging power controller 12 is coupled to the output terminal P2 of the boost converter 11, senses the supply voltage Vo of the output terminal P2 of the boost converter 11 (in the input end of the charging power controller 12 is Vin'), and generates charging. The voltage Vo' and the charging current Io' are charged to the at least one power storage unit 13. The charging power controller 12 is supplied in accordance with the output from the output terminal P2 of the boost converter 11. The pressure Vo is used as a feed-forward control, and the charging current Io' is adjusted. The feed-forward control can self-adjust the collection of solar panel energy and store it in a rechargeable storage (power storage unit 13). Regardless of the amount of energy that can be collected by the solar panel, as long as the energy collected is greater than the energy consumed by the boost converter 11 and the charging power controller 12.

本發明實施例利用充電功率控制器12對太陽能板(太陽能電池)具有可對負載做適應行調整的集電能力。對於入射光線的不同的照射強度,每一個太陽能電池有其個別的輸出(集電)能力。如果集電負載沒有匹配至太陽能電池的電力產出,太陽能電池的輸出電壓可能會崩潰而掉至接近接地電位,或者在重載的集電狀況下降低電壓值。本發明實施例提供前饋控制來調整光電轉換的輸出級(後級)。每一個升壓時脈週期中,由集得的光電伏(photo-voltaic)轉換至後級的電壓值是可自動調整,以考慮到來自前一級的光電伏的輸出能力。 The embodiment of the present invention utilizes the charging power controller 12 to have a solar panel (solar cell) having a current collecting capability that can be adapted to the load. For different illumination intensities of incident light, each solar cell has its own individual output (collection) capability. If the collector load does not match the power output to the solar cell, the output voltage of the solar cell may collapse and fall to near ground potential, or decrease the voltage value under heavy load current conditions. Embodiments of the present invention provide feedforward control to adjust the output stage (post stage) of the photoelectric conversion. In each boosting clock cycle, the voltage value converted from the collected photo-voltaic to the subsequent stage is automatically adjusted to take into account the output capability of the photovoltaic cell from the previous stage.

電力儲存單元13通常是二次電池,例如鋰鎳電池或鋰鐵電池,但本發明並不因此限定。電力儲存單元13耦接充電功率控制器12,電力儲存單元13接收充電電壓Vo’以及充電電流Io’而被充電。電力儲存單元13更可包括一溫度感測器131,所述溫度感測器131感測電力儲存單元13之溫度,並提供一溫度感測信號TS至充電功率控制器12。溫度感測器131可以在電力儲存單元13的溫度過高時,以溫度感測信號TS指示充電功率控制器12停止對電力儲存單元13充電。藉此,避免電力儲存單元13的溫度過高而造成危險。充電功率控制器12可依據供應電壓Vo調整適應性太陽能集電裝置1對電力儲存單元13充電時之負載線。 The power storage unit 13 is usually a secondary battery such as a lithium nickel battery or a lithium iron battery, but the present invention is not limited thereto. The power storage unit 13 is coupled to the charging power controller 12, and the power storage unit 13 receives the charging voltage Vo' and the charging current Io' to be charged. The power storage unit 13 further includes a temperature sensor 131 that senses the temperature of the power storage unit 13 and provides a temperature sensing signal TS to the charging power controller 12. The temperature sensor 131 may instruct the charging power controller 12 to stop charging the power storage unit 13 with the temperature sensing signal TS when the temperature of the power storage unit 13 is too high. Thereby, the temperature of the power storage unit 13 is prevented from being too high and the danger is caused. The charging power controller 12 can adjust the load line when the adaptive solar power collecting device 1 charges the power storage unit 13 according to the supply voltage Vo.

更進一步,在低照度時,圖1的升壓轉換器11的能量轉換的損失影響升壓轉換器11所能提供的輸出功率。為了在低照度時減少能量轉換的損失,本發明實施例針對升壓轉換器11的控制方法做了進一步的設計。 Further, at low illumination, the loss of energy conversion of the boost converter 11 of FIG. 1 affects the output power that the boost converter 11 can provide. In order to reduce the loss of energy conversion in low illumination, the embodiment of the present invention further designs the control method of the boost converter 11.

請同時參照圖1和圖2,圖2是本發明實施例提供的低照度太陽能升壓轉換器的電路圖。低照度太陽能升壓轉換器2具有輸入端VIN(即升壓轉換器11的輸入端P1,電壓為Vin)以及輸出端OUT(即升壓轉換器11的輸出端P2,電壓為Vo)。輸入端VIN耦接圖1所示的太陽能接收單元10,輸出端OUT耦接負載(例如圖1所示的充電功率控制器12或者是直接耦接電力儲存單元13)。低照度太陽能升壓轉換器2可利用封裝好的積體電路20配合耦接的電感211實現。就電路架構而言,低照度太陽能升壓轉換器2包括升壓轉換器21、脈衝寬度調變控制器22、切換控制器23、脈衝寬度比較器201、斜波產生器202、振盪器203、誤差放大器204、帶隙參考電路205、限流器206、過零率比較器207與過電流保護器208。 Please refer to FIG. 1 and FIG. 2 simultaneously. FIG. 2 is a circuit diagram of a low illumination solar boost converter according to an embodiment of the present invention. The low illumination solar boost converter 2 has an input terminal VIN (ie, the input terminal P1 of the boost converter 11 and a voltage of Vin) and an output terminal OUT (ie, the output terminal P2 of the boost converter 11 having a voltage of Vo). The input terminal VIN is coupled to the solar energy receiving unit 10 shown in FIG. 1 , and the output terminal OUT is coupled to a load (for example, the charging power controller 12 shown in FIG. 1 or directly coupled to the power storage unit 13 ). The low illumination solar boost converter 2 can be implemented by using the packaged integrated circuit 20 with the coupled inductor 211. In terms of circuit architecture, the low illumination solar boost converter 2 includes a boost converter 21, a pulse width modulation controller 22, a switching controller 23, a pulse width comparator 201, a ramp generator 202, an oscillator 203, Error amplifier 204, bandgap reference circuit 205, current limiter 206, zero-crossing rate comparator 207 and overcurrent protector 208.

升壓轉換器21為直流升壓轉換器。升壓轉換器21包括電感211與至少一個與電感211耦接的電晶體212、213。在圖2中,電晶體213是具有背閘極的P型電晶體,電晶體212是N型電晶體。升壓轉換器21耦接輸入端VIN以及輸出端OUT。電感211的一端耦接輸入端VIN,電感211的另一端(端點LX)耦接至少一個電晶體(212、213),所述至少一個電晶體(在圖2中為電晶體213)用以耦接輸出端OUT。圖2中的升壓轉換器21僅是用以幫助說明,並非用以限定本發明。本技術領域具有通常知識者可依據實際需要而改變電感211與耦接的電晶體的連接關係,也可以依據實際需要而改變與電感耦接的電晶體的數目。簡言之,升壓轉換器11具有至少一電晶體,所述電晶體耦接輸出端OUT,脈衝寬度調變控制器產生22之脈衝用以控制所述電晶體的切換。 The boost converter 21 is a DC boost converter. The boost converter 21 includes an inductor 211 and at least one transistor 212, 213 coupled to the inductor 211. In FIG. 2, the transistor 213 is a P-type transistor having a back gate, and the transistor 212 is an N-type transistor. The boost converter 21 is coupled to the input terminal VIN and the output terminal OUT. One end of the inductor 211 is coupled to the input terminal VIN, and the other end of the inductor 211 (end point LX) is coupled to at least one transistor (212, 213), and the at least one transistor (the transistor 213 in FIG. 2) is used for The output terminal OUT is coupled. The boost converter 21 of Figure 2 is for illustrative purposes only and is not intended to limit the invention. Those skilled in the art can change the connection relationship between the inductor 211 and the coupled transistor according to actual needs, and can also change the number of transistors coupled to the inductor according to actual needs. In short, the boost converter 11 has at least one transistor coupled to the output terminal OUT, and the pulse width modulation controller generates a pulse of 22 for controlling the switching of the transistor.

脈衝寬度調變控制器22耦接升壓轉換器21,提供複數個脈衝至升壓轉換器21以調整輸出端OUT之電壓。在本實施例中,脈衝寬度調變控制器22產生的脈衝是用以控制電晶體212、213的切換。當輸入端VIN之電壓大於一參考輸入電壓時,脈衝寬度 調變控制器22操作在一脈衝寬度調變模式(PWM mode),亦即使低照度太陽能升壓轉換器2操作在脈衝寬度調變模式。當輸入端VIN之電壓非大於參考輸入電壓時,脈衝寬度調變控制器22操作在一突發模式(Burst mode),所述突發模式之一突發週期時間EN_OSC是輸入端VIN之電壓的函數(即EN_OSC=f(Vin)),且突發週期時間EN_OSC是隨著輸入端VIN之電壓的降低而增加。 The pulse width modulation controller 22 is coupled to the boost converter 21 to provide a plurality of pulses to the boost converter 21 to adjust the voltage of the output terminal OUT. In the present embodiment, the pulses generated by the pulse width modulation controller 22 are used to control the switching of the transistors 212, 213. Pulse width when the voltage at input VIN is greater than a reference input voltage The modulation controller 22 operates in a pulse width modulation mode (PWM mode), even if the low illumination solar boost converter 2 operates in a pulse width modulation mode. When the voltage of the input terminal VIN is not greater than the reference input voltage, the pulse width modulation controller 22 operates in a Burst mode, and one of the burst modes, the burst cycle time EN_OSC, is the voltage of the input terminal VIN. The function (ie, EN_OSC=f(Vin)), and the burst cycle time EN_OSC increases as the voltage at the input terminal VIN decreases.

切換控制器23耦接脈衝寬度調變控制器22,判斷輸出端OUT之電壓是否小於一第一設定輸出電壓值V1。當輸出端OUT之電壓小於第一設定輸出電壓值V1時,切換控制器23控制脈衝寬度調變控制器22操作在脈衝寬度調變模式。當輸出端OUT之電壓非小於第一設定輸出電壓值V1時,切換控制器23控制脈衝寬度調變控制器22操作在突發模式。 The switching controller 23 is coupled to the pulse width modulation controller 22 to determine whether the voltage of the output terminal OUT is less than a first set output voltage value V1. When the voltage of the output terminal OUT is less than the first set output voltage value V1, the switching controller 23 controls the pulse width modulation controller 22 to operate in the pulse width modulation mode. When the voltage of the output terminal OUT is not less than the first set output voltage value V1, the switching controller 23 controls the pulse width modulation controller 22 to operate in the burst mode.

脈衝寬度調變控制器22的脈衝寬度受控於脈衝寬度比較器201,脈衝寬度比較器201利用斜波產生器202產生的三角波(斜波產生器202依據振盪器203產生三角波)作為參考信號,並將所述三角波與誤差放大器204的輸出電壓做比較而提供控制脈衝寬度的信號給脈衝寬度調變控制器22。誤差放大器204的兩個輸入端分別耦接回授端點FB與參考端點REF,誤差放大器204回授端點FB的電壓(依據輸出端OUT的電壓或電流而產生的回授信號)與參考端點REF的電壓做比較,其中參考端點REF的電壓與帶隙參考電路205產生的電壓有關,其中參考端點REF的電壓Vref為1.258V僅是用以舉例,並非用以限定本發明。限流器206、過零率比較器207與過電流保護器208耦接脈衝寬度調變控制器22,以作為保護電路使用,過電流保護器208例如由比較器2081、電阻R與電容C實現。另外,圖2中的積體電路20的其他端點SGND、PGND、OCP、VCC、CC,以及電路連接關係僅是用以舉例,並非用以限定本發明。積體電路20可以增加其他附屬功能,例如史密斯觸發器(Smith-Trigger)與良好電源(Power Good)信號, 在此予以省略。 The pulse width of the pulse width modulation controller 22 is controlled by the pulse width comparator 201, and the pulse width comparator 201 uses the triangular wave generated by the ramp generator 202 (the ramp generator 202 generates a triangular wave according to the oscillator 203) as a reference signal. The triangular wave is compared with the output voltage of the error amplifier 204 to provide a signal for controlling the pulse width to the pulse width modulation controller 22. The two input terminals of the error amplifier 204 are respectively coupled to the feedback terminal FB and the reference terminal REF, and the error amplifier 204 returns the voltage of the terminal FB (the feedback signal generated according to the voltage or current of the output terminal OUT) and the reference. The voltage at the terminal REF is compared, wherein the voltage at the reference terminal REF is related to the voltage generated by the bandgap reference circuit 205, wherein the voltage Vref of the reference terminal REF is 1.258 V is by way of example only and is not intended to limit the invention. The current limiter 206, the zero-crossing ratio comparator 207 and the overcurrent protector 208 are coupled to the pulse width modulation controller 22 for use as a protection circuit. The overcurrent protector 208 is implemented, for example, by a comparator 2081, a resistor R and a capacitor C. . In addition, the other terminals SGND, PGND, OCP, VCC, CC, and circuit connection relationship of the integrated circuit 20 in FIG. 2 are only for exemplification and are not intended to limit the present invention. The integrated circuit 20 can add other auxiliary functions such as a Smith-Trigger and a Power Good signal. It is omitted here.

請同時參照圖2與圖3,圖3是本發明實施例提供的低照度太陽能升壓轉換器的控制方法的流程圖。首先,在步驟S100中,使低照度太陽能升壓轉換器2起始操作於一脈衝寬度調變模式(PWM mode)。然後,在步驟S110中,判斷輸入端VIN之電壓是否大於一參考輸入電壓(VIN_REF,圖中未繪示),所述參考輸入電壓可以做為判斷此升壓轉換器是否要操作在脈衝寬度調變模式的依據,當輸入電壓過低(非大於參考輸入電壓),則代表太陽的照度可能較低而無法提供較大的能量,因此此升壓轉換器需要節省電力消耗。當輸入端VIN之電壓大於參考輸入電壓(VIN_REF)時,進行步驟S120,使低照度太陽能升壓轉換器2操作在脈衝寬度調變模式。在步驟S120之後,再次進行步驟S110。反之,當輸入端VIN之電壓非大於參考輸入電壓(VIN_REF)時,進行步驟S130,使低照度太陽能升壓轉換器2操作在一突發模式(Burst mode),所述突發模式之一突發週期時間EN_OSC是隨著輸入端VIN之電壓的降低而增加。 Please refer to FIG. 2 and FIG. 3 simultaneously. FIG. 3 is a flowchart of a method for controlling a low illumination solar boost converter according to an embodiment of the present invention. First, in step S100, the low-illuminance solar boost converter 2 is caused to operate in a pulse width modulation mode (PWM mode). Then, in step S110, it is determined whether the voltage of the input terminal VIN is greater than a reference input voltage (VIN_REF, not shown), and the reference input voltage can be used to determine whether the boost converter is to be operated in a pulse width modulation. The basis of the variable mode, when the input voltage is too low (not greater than the reference input voltage), it means that the illuminance of the sun may be low and cannot provide a large amount of energy, so the boost converter needs to save power consumption. When the voltage of the input terminal VIN is greater than the reference input voltage (VIN_REF), step S120 is performed to operate the low-illuminance solar boost converter 2 in the pulse width modulation mode. After step S120, step S110 is performed again. On the contrary, when the voltage of the input terminal VIN is not greater than the reference input voltage (VIN_REF), step S130 is performed to operate the low-illuminance solar boost converter 2 in a burst mode, one of the burst modes The cycle time EN_OSC increases as the voltage at the input terminal VIN decreases.

再來,當操作於突發模式時,進行步驟S140,判斷輸出端OUT之電壓是否小於第一設定輸出電壓值V1。當輸出端OUT之電壓小於第一設定輸出電壓值V1時,進行步驟S150,使低照度太陽能升壓轉換器2操作在脈衝寬度調變模式。反之,當輸出端OUT之電壓非小於第一設定輸出電壓值V1時,再次進行步驟S130,使低照度太陽能升壓轉換器2操作在突發模式。在步驟S150之後,進行步驟S160,在一設定時間△T內監測輸出端OUT之電流I_load是否小於設定負載電流。當輸出端OUT之電流I_load小於設定負載電流時,再次進行步驟S130,使低照度太陽能升壓轉換器2操作在突發模式。反之,當輸出端OUT之電流I_load非小於設定負載電流時,再次進行步驟S150,使低照度太陽能升壓轉換器2操作在脈衝寬度調變模式。步驟S160的用途僅是,利用設定 時間△T以檢測輸出端OUT的電流,以避免雜訊或電流波動而影響的整個系統的穩定度。值得一提的是,在其他實施例中,步驟S160可以被替換成其他的決策動作,以判定是否要維持操作在脈衝寬度調變模式或者改操作在突發模式,例如:利用與步驟S140相同(或類似)的步驟,以決定是否離開脈衝寬度調變模式而進入突發模式。 Then, when operating in the burst mode, step S140 is performed to determine whether the voltage of the output terminal OUT is less than the first set output voltage value V1. When the voltage of the output terminal OUT is less than the first set output voltage value V1, step S150 is performed to operate the low-illuminance solar boost converter 2 in the pulse width modulation mode. On the other hand, when the voltage of the output terminal OUT is not smaller than the first set output voltage value V1, step S130 is performed again to operate the low-illuminance solar boost converter 2 in the burst mode. After step S150, step S160 is performed to monitor whether the current I_load of the output terminal OUT is less than the set load current for a set time ΔT. When the current I_load of the output terminal OUT is less than the set load current, step S130 is performed again to operate the low-illuminance solar boost converter 2 in the burst mode. On the other hand, when the current I_load of the output terminal OUT is not less than the set load current, step S150 is performed again to operate the low-illuminance solar boost converter 2 in the pulse width modulation mode. The purpose of step S160 is only to use the setting. Time ΔT to detect the current at the output terminal OUT to avoid the stability of the entire system affected by noise or current fluctuations. It should be noted that in other embodiments, step S160 may be replaced with other decision actions to determine whether to maintain the operation in the pulse width modulation mode or to operate in the burst mode, for example, using the same as step S140. (or similar) steps to determine whether to leave the pulse width modulation mode and enter burst mode.

請同時參照圖3與圖4,圖4是本發明另一實施例提供的低照度太陽能升壓轉換器的控制方法的流程圖。圖4的流程圖與圖3的流程圖大致相同,其差異僅在於增加了步驟S215和S217,其他步驟S200、S220、S230、S240、S250、S260則分別與圖3的步驟S100、S120、S130、S140、S150、S160相同。相同的步驟不再贅述,在此僅說明圖4中增加的步驟。在判斷輸入端VIN之電壓是否小於參考輸入電壓(VIN_REF)的步驟(S210)之後,在操作在突發模式的步驟(S230)之前更包括步驟S215和步驟S217。在步驟S215中,判斷輸出端OUT之電壓是否大於第二設定輸出電壓值V2。當輸出端OUT之電壓大於第二設定輸出電壓值V2時,使低照度太陽能升壓轉換器2操作在突發模式,即進行步驟S230。當輸出端OUT之電壓非大於第二設定輸出電壓值V2時,使低照度太陽能升壓轉換器2操作在脈衝寬度調變模式,即進行步驟S217,在步驟S217結束後,再次進行步驟S215。步驟S215和步驟S217是用以在進行突發模式前,先行檢測輸出端OUT是重載或輕載。同時,步驟S215和步驟S240的功效大致相同,用以檢測負載狀況,其中第二設定輸出電壓值V2可以與第一設定輸出電壓值V1相同或者是不同,本發明並不因此限定。 Please refer to FIG. 3 and FIG. 4 simultaneously. FIG. 4 is a flowchart of a method for controlling a low illumination solar boost converter according to another embodiment of the present invention. The flowchart of FIG. 4 is substantially the same as the flowchart of FIG. 3, except that steps S215 and S217 are added, and other steps S200, S220, S230, S240, S250, and S260 are respectively performed with steps S100, S120, and S130 of FIG. S140, S150, and S160 are the same. The same steps will not be described again, and only the steps added in FIG. 4 will be described here. After the step of determining whether the voltage of the input terminal VIN is less than the reference input voltage (VIN_REF) (S210), the step S215 and the step S217 are further included before the step (S230) of operating in the burst mode. In step S215, it is determined whether the voltage of the output terminal OUT is greater than the second set output voltage value V2. When the voltage of the output terminal OUT is greater than the second set output voltage value V2, the low-illuminance solar boost converter 2 is operated in the burst mode, that is, the process proceeds to step S230. When the voltage of the output terminal OUT is not greater than the second set output voltage value V2, the low-illuminance solar boost converter 2 is operated in the pulse width modulation mode, that is, the process proceeds to step S217, and after the end of step S217, the process proceeds to step S215. Steps S215 and S217 are used to detect that the output terminal OUT is overloaded or lightly loaded before the burst mode is performed. At the same time, the functions of step S215 and step S240 are substantially the same to detect the load condition, wherein the second set output voltage value V2 may be the same as or different from the first set output voltage value V1, and the present invention is not limited thereto.

請同時參照圖2與圖5至圖9,圖5顯示了當輸入端VIN的電壓(Vin)為1.2V時,端點LX的電壓值VLX,輸入端VIN的電流I-Vin,電感211的電流IL與脈衝寬度調變種器22產生的脈衝信號OSC。圖6更顯示了當輸入端VIN的電壓為1.2V時的突發週 期時間EN_OSC為979us。圖7顯示的當輸入端VIN的電壓(Vin)為1.1V時,且電路由突發模式(Burst mode)改變至脈衝寬度調變模式(PWM mode)再改變為突發模式的信號波形圖,其中在脈衝寬度調變模式時的負載電流為25mA。圖8顯示了當輸入端VIN的電壓(Vin)為3V時,突發週期時間EN_OSC縮短為399us。圖9則顯示了當輸入端VIN的電壓(Vin)為3V時,電路由突發模式(Burst mode)改變至脈衝寬度調變模式(PWM mode)再改變為突發模式的信號波形圖,其中在脈衝寬度調變模式時的負載電流為200mA。 由圖9可明顯看出,突發模式的脈衝信號OSC的間隔(突發週期時間EN_OSC)相較於圖7是較短的。 Please refer to FIG. 2 and FIG. 5 to FIG. 9 at the same time. FIG. 5 shows the voltage value VLX of the terminal LX, the current I-Vin of the input terminal VIN, and the inductance 211 when the voltage (Vin) of the input terminal VIN is 1.2V. The current IL and the pulse signal OSC generated by the pulse width modulation transformer 22. Figure 6 shows the burst week when the voltage at the input terminal VIN is 1.2V. The time period EN_OSC is 979us. FIG. 7 shows a signal waveform diagram when the voltage (Vin) of the input terminal VIN is 1.1 V, and the circuit is changed from the Burst mode to the PWM mode and then changed to the burst mode. The load current in the pulse width modulation mode is 25 mA. Figure 8 shows that when the voltage (Vin) at the input VIN is 3V, the burst cycle time EN_OSC is shortened to 399us. Figure 9 shows the signal waveform of the circuit changing from Burst mode to PWM mode and then changing to burst mode when the voltage (Vin) of the input terminal VIN is 3V. The load current in the pulse width modulation mode is 200 mA. As is apparent from Fig. 9, the interval (burst cycle time EN_OSC) of the burst signal OSC is shorter than that of Fig. 7.

〔實施例的可能功效〕 [Possible effects of the examples]

綜上所述,本發明實施例所提供的低照度太陽能升壓轉換器及其控制方法,依據輸出端電壓值得知負載情況,可在負載較輕的情況將升壓轉換器操作於突發模式,其中突發模式之突發週期時間是隨著輸入端之電壓的降低而增加,也就是說當照度越低時突發模式的突發週期也隨之增加。進一步,也依據負載情況判斷是否離開突發模式而進入脈衝寬度調變模式。藉此,可在低照度集電時提節約更多的能量轉換損失,並提升能量轉換效率。 In summary, the low-illuminance solar boost converter and the control method thereof according to the embodiments of the present invention can learn the load condition according to the voltage value of the output terminal, and can operate the boost converter in the burst mode in a light load condition. The burst cycle time of the burst mode is increased as the voltage of the input terminal decreases, that is, the burst period of the burst mode is also increased when the illuminance is lower. Further, it is also determined whether to leave the burst mode and enter the pulse width modulation mode according to the load condition. Thereby, more energy conversion loss can be saved in low illumination current collection, and energy conversion efficiency can be improved.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

S100、S110、S120、S130、S140、S150、S160‧‧‧步驟流程 S100, S110, S120, S130, S140, S150, S160‧‧‧ steps flow

Claims (10)

一種低照度太陽能升壓轉換器,具有一輸入端以及一輸出端,該輸入端耦接一太陽能接收單元,該輸出端耦接一負載,該低照度太陽能升壓轉換器包括:一升壓轉換器,耦接該輸入端以及該輸出端;一脈衝寬度調變控制器,耦接該升壓轉換器,提供複數個脈衝至該升壓轉換器以調整該輸出端之電壓,其中當該輸入端之電壓大於一參考輸入電壓時,該脈衝寬度調變控制器操作在一脈衝寬度調變模式(PWM mode),當該輸入端之電壓非大於該參考輸入電壓時,該脈衝寬度調變控制器操作在一突發模式(Burst mode),該突發模式之一突發週期時間是隨著該輸入端之電壓的降低而增加;一切換控制器,耦接該脈衝寬度調變控制器,判斷該輸出端之電壓是否小於一第一設定輸出電壓值,當該輸出端之電壓小於該第一設定輸出電壓值時,該切換控制器控制該脈衝寬度調變控制器操作在該脈衝寬度調變模式,當該輸出端之電壓非小於該第一設定輸出電壓值時,該切換控制器控制該脈衝寬度調變控制器操作在該突發模式。 A low-illuminance solar boost converter has an input end and an output end, the input end is coupled to a solar receiving unit, the output end is coupled to a load, and the low-illuminance solar boost converter comprises: a boost converter And a pulse width modulation controller coupled to the boost converter to provide a plurality of pulses to the boost converter to adjust the voltage of the output, wherein the input When the voltage of the terminal is greater than a reference input voltage, the pulse width modulation controller operates in a PWM mode, and when the voltage of the input terminal is not greater than the reference input voltage, the pulse width modulation control The device operates in a Burst mode, and one of the burst modes is increased as the voltage of the input terminal decreases; a switching controller coupled to the pulse width modulation controller, Determining whether the voltage of the output terminal is less than a first set output voltage value, and when the voltage of the output terminal is less than the first set output voltage value, the switching controller controls the pulse width modulation The controller operates in the pulse width modulation mode, and when the voltage of the output terminal is not less than the first set output voltage value, the switching controller controls the pulse width modulation controller to operate in the burst mode. 根據請求項第1項之低照度太陽能升壓轉換器,其中該切換控制器判斷該輸出端之電壓是否大於一第二設定輸出電壓值,當該輸出端之電壓大於該第二設定輸出電壓值時,該切換控制器使該脈衝寬度調變控制器操作在該突發模式,當該輸出端之電壓非大於該第一設定輸出電壓值時,該切換控制器使該脈衝寬度調變控制器操作在該脈衝寬度調變模式。 The low illumination solar boost converter according to claim 1, wherein the switching controller determines whether the voltage of the output terminal is greater than a second set output voltage value, and when the voltage of the output terminal is greater than the second set output voltage value The switching controller causes the pulse width modulation controller to operate in the burst mode, and when the voltage of the output terminal is not greater than the first set output voltage value, the switching controller causes the pulse width modulation controller Operate in this pulse width modulation mode. 根據請求項第1項之低照度太陽能升壓轉換器,其中該升壓轉換器為一直流升壓轉換器。 A low illumination solar boost converter according to claim 1 wherein the boost converter is a DC-boost converter. 根據請求項第1項之低照度太陽能升壓轉換器,其中該升壓轉換器具有至少一電晶體,該電晶體耦接該輸出端,該脈衝寬度調 變控制器產生之該些脈衝用以控制該電晶體的切換。 The low illumination solar boost converter of claim 1, wherein the boost converter has at least one transistor coupled to the output, the pulse width modulation The pulses generated by the variable controller are used to control the switching of the transistor. 一種低照度太陽能升壓轉換器的控制方法,該低照度太陽能升壓轉換器具有一輸入端以及一輸出端,該控制方法包括:使該低照度太陽能升壓轉換器起始操作於一脈衝寬度調變模式(PWM mode);判斷該輸入端之電壓是否大於一參考輸入電壓;當該輸入端之電壓大於該參考輸入電壓時,使該低照度太陽能升壓轉換器操作在該脈衝寬度調變模式;當該輸入端之電壓非大於該參考輸入電壓時,使該低照度太陽能升壓轉換器操作在一突發模式(Burst mode),該突發模式之一突發週期時間是隨著該輸入端之電壓的降低而增加;當操作於該突發模式時,判斷該輸出端之電壓是否小於一第一設定輸出電壓值;當該輸出端之電壓小於該第一設定輸出電壓值時,使該低照度太陽能升壓轉換器操作在該脈衝寬度調變模式;以及當該輸出端之電壓非小於該第一設定輸出電壓值時,使該低照度太陽能升壓轉換器操作在該突發模式。 A control method for a low illumination solar boost converter, the low illumination solar boost converter having an input end and an output end, the control method comprising: causing the low illumination solar boost converter to start operating at a pulse width modulation a PWM mode; determining whether the voltage of the input terminal is greater than a reference input voltage; and operating the low-illuminance solar boost converter in the pulse width modulation mode when the voltage of the input terminal is greater than the reference input voltage When the voltage of the input terminal is not greater than the reference input voltage, the low-illuminance solar boost converter is operated in a Burst mode, and one of the burst modes is followed by the input The voltage of the terminal is increased; when operating in the burst mode, determining whether the voltage of the output terminal is less than a first set output voltage value; when the voltage of the output terminal is less than the first set output voltage value, The low illumination solar boost converter operates in the pulse width modulation mode; and when the voltage of the output terminal is not less than the first set output voltage value, The low illumination solar boost converter is operated in the burst mode. 根據請求項第5項之低照度太陽能升壓轉換器的控制方法,其中在判斷該輸入端之電壓是否小於該參考輸入電壓的步驟之後,在操作在該突發模式的步驟之前更包括:判斷該輸出端之電壓是否大於一第二設定輸出電壓值;當該輸出端之電壓大於該第二設定輸出電壓值時,使該低照度太陽能升壓轉換器操作在該突發模式;以及當該輸出端之電壓非大於該第二設定輸出電壓值時,使該低照度太陽能升壓轉換器操作在該脈衝寬度調變模式。 The control method of the low-illuminance solar boost converter according to claim 5, wherein after the step of determining whether the voltage of the input terminal is less than the reference input voltage, before the step of operating the burst mode, the method further comprises: determining Whether the voltage of the output terminal is greater than a second set output voltage value; when the voltage of the output terminal is greater than the second set output voltage value, causing the low illumination solar boost converter to operate in the burst mode; When the voltage at the output terminal is not greater than the second set output voltage value, the low illumination solar boost converter operates in the pulse width modulation mode. 根據請求項第5項之低照度太陽能升壓轉換器的控制方法,其中在當該輸出端之電壓小於該第一設定輸出電壓值時,使該低照度太陽能升壓轉換器操作在該脈衝寬度調變模式的步驟之後,更 包括:在一設定時間內監測該輸出端之電流是否小於一設定負載電流;當該輸出端之電流小於該設定負載電流時,使該低照度太陽能升壓轉換器操作在該突發模式;以及當該輸出端之電流非小於該設定負載電流時,使該低照度太陽能升壓轉換器操作在該脈衝寬度調變模式。 The control method of the low illumination solar boost converter according to claim 5, wherein the low illumination solar boost converter is operated at the pulse width when the voltage of the output terminal is less than the first set output voltage value After the step of modulation mode, more The method includes: monitoring whether the current of the output terminal is less than a set load current within a set time; and operating the low-illuminance solar boost converter in the burst mode when the current of the output terminal is less than the set load current; When the current of the output terminal is not less than the set load current, the low illumination solar boost converter is operated in the pulse width modulation mode. 根據請求項第5項之低照度太陽能升壓轉換器的控制方法,其中該低照度太陽能升壓轉換器包括一升壓轉換器、一脈衝寬度調變控制器以及一切換控制器,該切換控制器用以控制該脈衝寬度調變控制器產生複數個脈衝,該些脈衝用以控制該升壓轉換器以調整該輸出端之電壓。 The control method of the low illumination solar boost converter according to claim 5, wherein the low illumination solar boost converter comprises a boost converter, a pulse width modulation controller, and a switching controller, the switching control The controller is configured to control the pulse width modulation controller to generate a plurality of pulses for controlling the boost converter to adjust the voltage of the output terminal. 根據請求項第8項之低照度太陽能升壓轉換器的控制方法,其中該升壓轉換器為一直流升壓轉換器。 A method of controlling a low illumination solar boost converter according to claim 8 wherein the boost converter is a DC-boost converter. 根據請求項第8項之低照度太陽能升壓轉換器的控制方法,其中該升壓轉換器具有至少一電晶體,該電晶體耦接該輸出端,該脈衝寬度調變控制器產生之該些脈衝用以控制該電晶體的切換。 The control method of the low-illuminance solar boost converter according to claim 8 , wherein the boost converter has at least one transistor coupled to the output, and the pulse width modulation controller generates the A pulse is used to control the switching of the transistor.
TW103112677A 2014-04-07 2014-04-07 Low-light solar boost converter and control method therefor TW201539956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103112677A TW201539956A (en) 2014-04-07 2014-04-07 Low-light solar boost converter and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103112677A TW201539956A (en) 2014-04-07 2014-04-07 Low-light solar boost converter and control method therefor

Publications (1)

Publication Number Publication Date
TW201539956A true TW201539956A (en) 2015-10-16

Family

ID=54851513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112677A TW201539956A (en) 2014-04-07 2014-04-07 Low-light solar boost converter and control method therefor

Country Status (1)

Country Link
TW (1) TW201539956A (en)

Similar Documents

Publication Publication Date Title
JP5453508B2 (en) Isolated flyback converter with efficient light load operation
TWI492483B (en) Step - up battery charge management system and its control method
JP4630952B1 (en) DC stabilized power supply
CN104218646B (en) A kind of portable power source charging circuit
US20130181655A1 (en) Power control device, power control method, and feed system
CN202435294U (en) Pulse width modulation switch power supply controller and switch power supply
CN103702486A (en) LED driving circuit system, control circuit and control method
JP2002199614A (en) Photovoltaic power charger
US9991715B1 (en) Maximum power point tracking method and apparatus
CN203722871U (en) LED drive circuit system and LED drive control circuit
CN101540542A (en) Single-inductor switch direct current voltage converter and 4-mode control method
CN105375798A (en) Self-adaptive sampling circuit, primary side feedback constant voltage system and switching power supply system
CN109802556B (en) Photovoltaic power generation system with photovoltaic inverter and starting method of inverter
JP2008257309A (en) Step-up maximum power point tracking device and control method
TWI487253B (en) Switching regulator controlling method and circuit
CN102904302A (en) High-efficiency solar charging device and charging method thereof
CN110729897A (en) Fast mode conversion for power converters
US20150381041A1 (en) Low-light solar boost converter and control method therefor
CN104184396A (en) Photovoltaic power supply system and control method thereof
CN115549578A (en) Photovoltaic energy management chip based on hybrid MPPT algorithm and control method thereof
TWI413350B (en) Switching mode power supply with burst mode operation
US20160056724A1 (en) Switching Power Supplies And Methods Of Operating Switching Power Supplies
Vieira et al. A high-performance stand-alone solar pv power system for led lighting
CN112306139A (en) Micro-power solar self-adaptive collection system
CN105024542A (en) Solar energy boost converter and control method thereof