TW201010940A - Mathod for making carbon nanotube/conductive polymer composite - Google Patents

Mathod for making carbon nanotube/conductive polymer composite Download PDF

Info

Publication number
TW201010940A
TW201010940A TW97135144A TW97135144A TW201010940A TW 201010940 A TW201010940 A TW 201010940A TW 97135144 A TW97135144 A TW 97135144A TW 97135144 A TW97135144 A TW 97135144A TW 201010940 A TW201010940 A TW 201010940A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
conductive polymer
carbon
preparing
film
Prior art date
Application number
TW97135144A
Other languages
Chinese (zh)
Other versions
TWI371429B (en
Inventor
Chui-Zhou Meng
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097135144A priority Critical patent/TWI371429B/en
Publication of TW201010940A publication Critical patent/TW201010940A/en
Application granted granted Critical
Publication of TWI371429B publication Critical patent/TWI371429B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for making a carbon nanotube/conductive polymer composite. The method includes the following steps of: providing a carbon nanotube film; and polymerizing a conductive polymer on the carbon nanotube film by a method of electrochemistry.

Description

201010940 九、發明說明: 【發明所屬之技術領域】 本技術方案涉及一種複合材料的製備方法,尤其 涉及一種奈米碳管/導電聚合物複合材料的製備方法。 【先前技術】 自1991年日本NEC公司的Iijima發現奈米碳管 (Carbon Nanotube,CNT)以來(Iilima S·, Nature,1991, 354, 56-58),立即引起科學界及產業界的極大重視。奈 米碳管具有優良的機械和光電性能,被認爲係複合材料 的理想添加物。奈米碳管/聚合物複合材料已成爲世界科 學研究的熱點(Ajjayan P.M.,Stephan 0.,Colliex C·, Tranth D. Science. 1994,265,1212-1215: Calvert P., Nature,1999, 399, 210-211 )。奈米碳管作爲增强體和導 電體,形成的複合材料具有抗靜電,微波吸收和電磁屏 蔽等性能,具有廣泛的應用前景。 先前技術中的奈米碳管/導電聚合物複合材料中的 奈米碳管多爲棒狀物,而導電聚合物以顆粒的形式分佈 在奈米碳管之間的間隙中。當所述奈米碳管/導電聚合物 複合材料應用於超級電容器、太陽能電池的電極時,其 中的導電聚合物充放電時會引起體積收縮和膨脹,而奈 米碳管的中空結構可緩解由上述導電聚合物的體積收 縮和膨脹引起的奈米碳管/導電聚合物複合材料的體積 收縮和膨脹,而且奈米碳管的高導電性可降低導電聚合 物的電阻。因此,先前技術中的奈米礙管/導電聚合物複 合材料具有較好的導電性和較高的比電容量(大於200 201010940 法拉/克)。然而,先前技術中的奈米碳管/導電聚合物複 合材料通過採用將奈米碳管分散於硫酸及硝酸等强氧 化性酸或表面活性劑中進行分散,之後再與導電聚合物 j單體進行電化學反應,並最終在工作電極上得到一奈 米,管/導電聚合物複合材料的薄膜。通過强酸處理,會 使得所述奈米碳管受到—定程度的破壞,而使用表面活 性劑處理會使得表面活性劑在最終的奈米碳管/導電聚 參 合物材料中不易除去。因而,經强氧化性酸或表面活性 劑處理後得到的奈米碳管/導電聚合物複合材料的性能 會受到影響。另,由於奈来碳管易團聚,目前一直不能 很好的分散’故,先前技術所製備得到的奈米碳管/導電 聚合物複合材料中的奈米碳管通常無法形成良好的導 :網絡’且有些相鄰奈米碳管之間間距較大,相互間接 性較差,因而不能充分發揮奈米碳管的優良導電性及 導熱性能’造成所述奈米碳管/導電聚合物複合材料的内 阻較大、比電容量較低。 有鐾於此,提供一種能夠使奈来碳管均勻分散、並 = 管結構的奈米碳管/導電聚合物複合材 料的製備方法實為必要。 【發明内容】 :種奈米碳管/導電聚合物複合材料的製備方法, =以下步驟:製備一奈米碳管膜;及 導電聚合物複合在所述奈米破管膜上,二 一不米石及管/導電聚合物複合材料。 相車乂於先刚技術,本技術方案提供的奈米碳管/導電 201010940 聚合物複合材料的製備方法具有以下優點:其一,由於 奈米碳管膜中的複數個奈米碳管均句分散且相互連接 : 形成導電網路’故採用電化學原位聚合法將所述夺米石山 . 管膜與導電聚合物單體複合,所制得的奈米碳管/導電ς 合物複合材料中奈米碳管均勻分散。其二,由於採用電 2學原位聚合法將所述奈求碳管膜與導電聚合物單體 複合,無需添加表面活性劑,使得奈米碳管/導電聚合物 複合材料中不包含表面活性劑。其三,本技術方案:供 罾时米碳管/導電聚合物複合材料的製備方法,不需要用 強酸氧化奈米碳管,奈米碳管的結構完整,在製備過程 中不會破壞奈米碳管的結構。其四,採用電化學原位聚 ^法將所述奈米碳管膜與導電聚合物複合,製備工藝簡 單’可實現連續、規模化生產,且成本較低。 【實施方式】 ♦以下將結合附圖詳細說明本技術方案提供的奈米 ❿ 碳管/導電聚合物複合材料的製備方法。 ★月多閱圖1,本技術方案實施例提供一種奈米碳 管/導電聚合物複合材料的製備方法,具體包括以下步 驟· v 步驟一,製備一奈米碳管膜。 、所述製備奈米碳管膜的方法包括直接生長法、絮 化法碼壓法及拉膜法等其他方法。所述奈米碳管膜 =括複數個均勻分佈的奈米碳管,且該複數個奈米碳 官相互連接形成導電網路結構。 8 201010940201010940 IX. Description of the Invention: [Technical Field] The present technical solution relates to a method for preparing a composite material, and more particularly to a method for preparing a carbon nanotube/conductive polymer composite material. [Prior Art] Since the discovery of Carbon Nanotube (CNT) by Iijima of NEC Corporation in Japan in 1991 (Iilima S·, Nature, 1991, 354, 56-58), it has immediately attracted great attention from the scientific community and industry. . Carbon nanotubes have excellent mechanical and optoelectronic properties and are considered to be ideal additives for composites. Nanocarbon tubes/polymer composites have become a hotspot in scientific research worldwide (Ajjayan PM, Stephan 0., Colliex C., Tranth D. Science. 1994, 265, 1212-1215: Calvert P., Nature, 1999, 399 , 210-211). As a reinforcement and a conductor, the carbon nanotubes have a composite material with antistatic, microwave absorption and electromagnetic shielding properties, and have broad application prospects. The carbon nanotubes in the prior art carbon nanotube/conductive polymer composite are mostly rods, and the conductive polymers are distributed in the form of particles in the gap between the carbon nanotubes. When the carbon nanotube/conductive polymer composite is applied to an electrode of a supercapacitor or a solar cell, the conductive polymer in the charge and discharge causes volume shrinkage and expansion, and the hollow structure of the carbon nanotube can be relieved by The volume shrinkage and expansion of the carbon nanotube/conductive polymer composite caused by the volume shrinkage and expansion of the above conductive polymer, and the high conductivity of the carbon nanotube can reduce the electrical resistance of the conductive polymer. Therefore, prior art nanotube/conductive polymer composites have better electrical conductivity and higher specific capacitance (greater than 200 201010940 Farads/gram). However, the prior art carbon nanotube/conductive polymer composite is dispersed by dispersing a carbon nanotube in a strong oxidizing acid such as sulfuric acid or nitric acid or a surfactant, and then with a conductive polymer j monomer. An electrochemical reaction is carried out and finally a film of a nanometer, tube/conductive polymer composite is obtained on the working electrode. By the strong acid treatment, the carbon nanotubes are subjected to a certain degree of damage, and the treatment with the surfactant makes the surfactant difficult to remove in the final carbon nanotube/conductive polymer material. Therefore, the properties of the carbon nanotube/conductive polymer composite obtained by treatment with a strong oxidizing acid or a surfactant may be affected. In addition, since the carbon nanotubes are easily agglomerated, they have not been well dispersed at present. Therefore, the carbon nanotubes in the carbon nanotube/conductive polymer composite prepared by the prior art generally cannot form a good guide: 'And some adjacent carbon nanotubes have a large spacing between each other, and the mutual indirectness is poor, so that the excellent conductivity and thermal conductivity of the carbon nanotubes cannot be fully utilized', resulting in the carbon nanotube/conductive polymer composite. The internal resistance is large and the specific capacitance is low. In view of this, it is necessary to provide a method for preparing a carbon nanotube/conductive polymer composite material capable of uniformly dispersing a carbon nanotubes and having a tube structure. SUMMARY OF THE INVENTION: Preparation method of a carbon nanotube/conductive polymer composite material, = the following steps: preparing a carbon nanotube film; and conducting a polymer composite on the nano tube film, 21 Michal and tube/conductive polymer composites. The preparation method of the carbon nanotube/conductive 201010940 polymer composite provided by the technical scheme has the following advantages: First, due to the plurality of carbon nanotubes in the carbon nanotube film Dispersing and interconnecting: forming a conductive network', the electrochemical carbon in-situ polymerization method is used to combine the rice film and the conductive polymer monomer to produce a carbon nanotube/conductive composite composite. The medium carbon nanotubes are uniformly dispersed. Secondly, since the carbon nanotube film is combined with the conductive polymer monomer by electro-in-situ polymerization, no surfactant is added, so that the surface of the carbon nanotube/conductive polymer composite is not included. Agent. Thirdly, the technical scheme: the preparation method of the carbon nanotube/conductive polymer composite material for the bismuth supply does not require the oxidation of the carbon nanotubes with a strong acid, and the structure of the carbon nanotubes is complete, and the nanometer is not destroyed during the preparation process. The structure of the carbon tube. Fourthly, the carbon nanotube film is combined with the conductive polymer by electrochemical in-situ polymerization method, and the preparation process is simple, and continuous, large-scale production can be realized, and the cost is low. [Embodiment] Hereinafter, a method for preparing a nano-carbon tube/conductive polymer composite material provided by the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , the embodiment of the present invention provides a method for preparing a carbon nanotube/conductive polymer composite material, which specifically includes the following steps: Step 1 , preparing a carbon nanotube film. The method for preparing the carbon nanotube film includes other methods such as a direct growth method, a flocculation method, and a film stretching method. The carbon nanotube film includes a plurality of uniformly distributed carbon nanotubes, and the plurality of nanocarbons are interconnected to form a conductive network structure. 8 201010940

(一)提供一奈米碳管原料。(1) Providing a carbon nanotube raw material.

(Fe )、敍(Co )、 …,央可的矽基底;(b)在基底表 (匕劑層,該催化劑層材料可選用鐵 鎳(Ni)或其任意組合的合金之一; (c)將上述形成有催化劑層的基底在7〇〇〜9〇〇1的空 氣中退火約30分鐘〜90分鐘;(£〇將處理過的基底置 於反應爐中,在保護氣體環境下加熱到5〇〇〜74〇t>c, 然後通入碳源氣體反應約5〜3〇分鐘,生長得到奈米 碳管陣列,其尚度大於1〇〇奈米,優選為1〇〇奈米 毫米;(e)使奈米碳管陣列脫離基底,獲得奈米碳管 • 原料。 該奈米碳管陣列為複數個彼此平行且垂直於基底 生長的奈米碳管形成的純奈米碳管陣列,由於生成的 奈米碳管長度較長,部分奈米碳管會相互纏繞。通過 上述控制生長條件,該超順排奈米碳管陣列中基本不 含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 本實施例中碳源氣可選用乙炔等化學性質較活潑的碳 氫化合物’保護氣體可選用氮氣、氨氣或惰性氣體。 可以理解’本實施例提供的奈米碳管陣列不限於上述 9 201010940 製備方法。本實施例優選採用刀片或其他工具將奈来 碳=從基底刮落,獲得奈米碳管原料,其中奈米碳管 ·, 一疋程度上保持相互纏繞的狀態。 * 料奈米碳管包括單壁奈米碳管、雙壁奈求碳管 .及多壁奈米碳管中的—種或幾種。該單壁奈米碳管的 直控為G.5奈米〜5G奈米,該雙壁奈米碳管的直徑為 1.〇奈米〜5〇奈米’該多壁奈米碳管的直徑為15奈米 ❹〜5〇奈米。所述奈米碳管的長度在100奈米到1〇毫米 之間。 〈二)將上述奈米碳管原料添加到溶劑中並進行 絮化處理獲得奈米碳管絮狀結構。 箄智:上例巾☆劑可選用水、易揮發的有機溶劑 ί等3=過::超聲波分散處理或高強度挽 半優選地’本實施例採用超聲波 ❹ =:Γ0〜30分鐘。由於奈米碳管具有極大的 瓦爾力Κ、目互纏繞的奈米碳管之間具有較大的凡德 乎…二不會將Μ碳管原料中的奈 爾力相互吸引、纏繞,形成網路狀結構。 德瓦 並針f字上述奈来碳管絮狀結構從溶劑中分離, 膜米碳f絮狀結構定型處理以獲得奈米碳管 本貫施例中’分離奈米碳管絮狀結構的方法且 °括以下步驟:將上述含有奈米碳管絮狀結構的i劑 201010940 倒入放有濾紙的漏斗中;及靜置乾燥一段時間從而獲 得分離的奈米碳管絮狀結構。 & ❹(Fe), (Co), ..., the base of the crucible; (b) in the substrate table (the layer of the crucible, the catalyst layer material may be selected from iron nickel (Ni) or any combination thereof; (c) The substrate formed with the catalyst layer is annealed in air of 7 〇〇 to 9 〇〇 1 for about 30 minutes to 90 minutes; (the 基底 the treated substrate is placed in a reaction furnace and heated to a protective atmosphere) 5〇〇~74〇t>c, and then reacted with a carbon source gas for about 5 to 3 minutes to grow to obtain a carbon nanotube array having a degree greater than 1 nanometer, preferably 1 nanometer millimeter. (e) detaching the carbon nanotube array from the substrate to obtain a carbon nanotube • raw material. The carbon nanotube array is a pure carbon nanotube array formed by a plurality of carbon nanotubes that are parallel to each other and grow perpendicular to the substrate. Because of the long length of the formed carbon nanotubes, some of the carbon nanotubes will entangle each other. Through the above controlled growth conditions, the super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst. Metal particles, etc. In this embodiment, the carbon source gas can be selected from chemical properties such as acetylene. The splashed hydrocarbon 'protective gas may be selected from nitrogen, ammonia or an inert gas. It is understood that the carbon nanotube array provided in the present embodiment is not limited to the above-mentioned preparation method of 9 201010940. This embodiment preferably uses a blade or other tool to treat Nai. The carbon is scraped off from the substrate to obtain the carbon nanotube raw materials, wherein the carbon nanotubes are kept in a state of being entangled with each other. * The carbon nanotubes include single-walled carbon nanotubes and double-walled carbon nanotubes. And one or more of the multi-walled carbon nanotubes. The direct control of the single-walled carbon nanotubes is G.5 nanometers to 5G nanometers, and the diameter of the double-walled carbon nanotubes is 1. 〇 nanometer ~ 5 〇 nano 'The diameter of the multi-walled carbon nanotube is 15 nm ❹ ~ 5 〇 nanometer. The length of the carbon nanotube is between 100 nm and 1 〇 mm. The above-mentioned carbon nanotube raw material is added to a solvent and subjected to flocculation treatment to obtain a nano carbon tube floc structure. 箄智: The above example towel ☆ agent can be selected with water, a volatile organic solvent ί, etc. 3=over:: Ultrasonic dispersion treatment or high-strength pull-up is preferably 'this embodiment uses ultrasonic ❹ =: Γ 0~30 minutes. The carbon nanotubes have a large Valli, and the intertwined carbon nanotubes have a large virginity. The two will not attract and entangle the Nile forces in the carbon nanotube raw materials to form a network. The structure of Deva and needle f is the above-mentioned Nailai carbon tube floc structure separated from the solvent, and the film rice carbon f floc structure is shaped to obtain the 'separated carbon nanotube floc structure in the local example of the carbon nanotube. The method comprises the steps of: pouring the above-mentioned agent 201010940 containing a carbon nanotube floc structure into a funnel provided with a filter paper; and allowing to stand for a while to obtain a separated carbon nanotube floc structure. ; ❹

所述定型處理具體包括以下步驟:將上述奈米碳 管絮狀結構置於-容器中;將奈米碳管絮狀結構按照 預定形狀攤開;施加一定壓力於攤開的奈米碳管絮狀 結構,及將奈米碳管絮狀結構中殘留的溶劑烘乾或等 溶劑自然揮發後獲得奈米碳管膜。可以理解,本實施 例可通過控制奈米碳管絮狀結構攤片的面積來控制奈 米碳管膜的厚度和面密度。攤片的面積越大,則奈米 碳管膜的厚度和面密度就越小。本實施射獲得^ 米碳管膜的厚度為i微米至2毫米。 "73與疋型處理步驟也可直接通過抽濾 的方式獲得奈米碳管膜,具體包括以下步驟:提供一 微孔遽膜及-抽氣漏斗;將上述含有奈米碳管絮狀社 構的溶劑經過微孔濾膜倒入抽氣漏斗中;抽濾並乾燥: 後獲得奈米碳管膜1微孔濾膜為—表面光滑、孔徑 為0.22微米的遽臈。由於抽遽方式本身將提供一較: = 奈米碳管絮狀結構’該奈米碳管絮狀結 構紅過抽齡直接形成—均句的奈米碳管膜。且 於微孔it膜表面光滑,該奈米碳管膜容易剝離。 採用所述絮化法製備的奈米碳管膜,其包括複數 =2:的奈米碳管’該複數個均勻分佈的奈米碳 二::凡德瓦爾力相互連接形成網路結構,從而形成 '、有自讀結構的奈米射膜,該奈米碳管膜具有 11 201010940 較好的柔韌性。 :以理解,所述奈米碳管臈的製備方法還可為直 接生長法、礙麗法或拉膜法等其他方法。所述直接生 長法為用化學氣相沈積法於一基板上乎 膜。該奈求碳管臈為無序奈米碳管膜,該奈米碳= 包括複數個無序排列的奈米碳管。所述採用㈣法製 備奈米碳管膜的方法具體包括以下步驟:提供一The setting process specifically includes the steps of: placing the above-mentioned carbon nanotube floc structure in a container; spreading the carbon nanotube floc structure according to a predetermined shape; applying a certain pressure to the spread of the carbon nanotube floc The carbon nanotube film is obtained by drying the solvent remaining in the floc structure of the carbon nanotube or by naturally evaporating the solvent. It will be understood that this embodiment can control the thickness and areal density of the carbon nanotube film by controlling the area of the carbon nanotube floc. The larger the area of the tile, the smaller the thickness and areal density of the carbon nanotube film. The thickness of the carbon nanotube film obtained by the present embodiment is from i micrometer to 2 mm. "73 and 疋 type processing steps can also directly obtain the carbon nanotube film by suction filtration, specifically including the following steps: providing a microporous enamel membrane and a pumping funnel; the above containing carbon nanotube floc The solvent of the structure was poured into a suction funnel through a microporous membrane; suction filtration and drying: After obtaining a microporous membrane of a carbon nanotube membrane, the membrane having a smooth surface and a pore diameter of 0.22 μm was obtained. Since the pumping method itself will provide a comparison: = the carbon nanotube floc structure 'the carbon nanotube flocculation structure red directly through the pumping age - the uniform carbon nanotube membrane. Moreover, the surface of the microporous it membrane is smooth, and the carbon nanotube film is easily peeled off. a carbon nanotube film prepared by the flocculation method, comprising a carbon nanotube having a plurality of = 2: the plurality of uniformly distributed nanocarbons:: van der Waals forces are interconnected to form a network structure, thereby Forming a nano film with a self-reading structure, the carbon nanotube film has a good flexibility of 11 201010940. It is to be understood that the preparation method of the carbon nanotubes may be other methods such as a direct growth method, an obstacle method or a film pulling method. The direct growth method is a film deposition on a substrate by chemical vapor deposition. The carbon nanotubes are unordered carbon nanotube membranes, and the nanocarbons include a plurality of randomly arranged carbon nanotubes. The method for preparing a carbon nanotube film by the method (IV) specifically includes the following steps: providing a

陣?形成於一基底;及提供一施壓裝置擠壓上i 奈米碳管陣列,從而得到奈米碳管膜。該奈米碳管膜 為無序奈米碳管膜,且包括複數個沿一個或複數個方 向擇優取向排列的奈米碳管。所述採用拉膜法製備奈 米碳管膜的方法包括以τ步驟:製備—奈米碳管陣 列:從上述奈米碳管陣列中選定一定寬度的複數個奈 米炭管片斷’優選為採用具有一定寬度的膠帶接觸奈 米碳管陣列以選定一定寬度的複數個奈米碳管片斷; 及以-疋速度沿基本垂直于奈米碳管陣列生長方向拉 伸該複數個奈米碳管片斷,以形成一連續的奈米碳管 膜該奈来碳管膜為有序奈米碳管膜,其包括複數個 通過凡德瓦爾力首尾相連且沿同一方向排列的奈米碳 管0 步驟二’採用電化學原位聚合法將導電聚合物複 合在所述奈米碳管膜上,獲得一奈米碳管/導電聚合物 複合材料。 本技術方案採用電化學原位聚合法將所述奈米碳 12 201010940 管膜與導電聚合物單體複合的方法具體包括以下步 驟.· 首先,製備一導電聚合物單體的酸溶液。 所述製備導電聚合物單體的酸溶液的方法具體包 括以下步驟:提供20〜40質量份的導電聚合物單體; 配製摩爾濃度為0.1〜5摩爾/升的酸溶液;將所述導電 聚合物單體溶於酸溶液中’得到摩爾濃度為〇1〜5摩 爾/升的導電聚合物單體的酸溶液;及將所述導電聚合 物單體的酸溶液置於一容器中,將該導電聚合物單體 的酸溶液作為電解液。所述導電聚合物單體包括苯 胺、吡咯、噻吩、乙炔、對苯及對苯撐乙烯中的一種 或幾種。所述酸溶液為鹽酸溶液、硫酸溶液、硝酸溶 液、磷酸溶液或乙酸溶液中的一種或幾種的混合。本 實施例中,所述導電聚合物單體為苯胺,所述酸溶液 為硫酸溶液。 本實施例中,所述製備一導電聚合物單體的酸溶 液,將所述奈米碳管膜浸入所述聚合物單體的酸溶液 中的方法具體包括以下步驟:取一容器,於該容器中 配製40毫升1摩爾/升的硫酸溶液;用稱量天平稱量 0.74504克的苯胺單體油狀物(〇 745〇4克苯胺單體油 狀物的物質的量為0.008摩爾),並放入一容器内,向 該容器内注入40毫升1摩爾/升的硫酸溶液,使所述 苯胺單體油狀物溶於所述硫酸溶液中,製備成〇 2摩 爾/升的苯胺的硫酸溶液,該苯胺的硫酸溶液用作電解 13 201010940 液。 、人提供一個陰極電極片。 所述陰極電極片包括惰性 片、不銹鋼電極片及層狀太…二極4銘電極 等於奈米碳管膜的面積。戶;= 其面積大於 參Array? Formed on a substrate; and providing a pressing device to press the array of i-carbon nanotubes to obtain a carbon nanotube film. The carbon nanotube film is a disordered carbon nanotube film and includes a plurality of carbon nanotubes arranged in a preferred orientation along one or more directions. The method for preparing a carbon nanotube film by using a pulling film method comprises the steps of: τ: preparing a carbon nanotube array: selecting a plurality of carbon nanotube segments of a certain width from the carbon nanotube array; a tape having a width contacting the array of carbon nanotubes to select a plurality of carbon nanotube segments of a certain width; and stretching the plurality of carbon nanotube segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array at a velocity of -疋To form a continuous carbon nanotube film, the carbon nanotube film is an ordered carbon nanotube film, which comprises a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in the same direction. 'A conductive carbon polymer was composited on the carbon nanotube film by electrochemical in-situ polymerization to obtain a carbon nanotube/conductive polymer composite. The method for synthesizing the nano carbon 12 201010940 tubular film and the conductive polymer monomer by electrochemical in-situ polymerization comprises the following steps: First, preparing an acid solution of a conductive polymer monomer. The method for preparing an acid solution of a conductive polymer monomer specifically includes the steps of: providing 20 to 40 parts by mass of a conductive polymer monomer; formulating an acid solution having a molar concentration of 0.1 to 5 moles per liter; and polymerizing the conductive polymer The monomer is dissolved in the acid solution to obtain an acid solution of the conductive polymer monomer having a molar concentration of 〜1 to 5 mol/liter; and the acid solution of the conductive polymer monomer is placed in a container, An acid solution of a conductive polymer monomer is used as an electrolyte. The conductive polymer monomer includes one or more of aniline, pyrrole, thiophene, acetylene, p-phenylene and p-phenylenevinylene. The acid solution is a mixture of one or more of a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, a phosphoric acid solution or an acetic acid solution. In this embodiment, the conductive polymer monomer is aniline, and the acid solution is a sulfuric acid solution. In this embodiment, the method for preparing an acid solution of a conductive polymer monomer, and immersing the carbon nanotube film in the acid solution of the polymer monomer comprises the following steps: taking a container, 40 ml of a 1 mol/L sulfuric acid solution was prepared in the vessel; 0.74504 g of an aniline monomer oil (0.004 mol of the substance of the aniline monomer oil) was weighed by a weighing balance, and Put into a container, inject 40 ml of a 1 mol / liter sulfuric acid solution into the container, and dissolve the aniline monomer oil in the sulfuric acid solution to prepare a sulfuric acid solution of 苯 2 mol / liter of aniline The aniline sulfuric acid solution was used as the electrolysis 13 201010940 liquid. A person provides a cathode electrode sheet. The cathode electrode sheet includes an inert sheet, a stainless steel electrode sheet, and a layered surface. The two poles and four electrodes are equal to the area of the carbon nanotube film. Household;= its area is larger than

述層狀奈米= =法所 =拉膜法等其他方法所制得的奈米碳管:也 :管線組成的層狀結構或奈米碳管線與奈米 ^膜複口組成的層狀奈米碳管結構,也可為奈米碳 吕。所述層狀奈米碳管結_可為由奈米碳管結構盘 其他材料組成的層狀奈米碳管複合結構,所述其他材 料包括高分子材料、金屬、非金屬。所述高分子材料 為熱固性高分子材料或熱塑性高分子材料,熱固性高 分子材料包括酚醛樹脂、環氧樹脂、雙馬來醯亞胺樹 知、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂和 不飽和聚醯樹脂中的一種或者幾種的混合物。該熱塑 性高分子材料包括聚乙烯、聚氣乙烯、聚四氟乙烯、 聚丙烯’聚苯乙稀、聚曱基丙浠酸甲酯、聚對苯二曱 酸乙二酯、聚碳酸酯、聚對苯二甲酸丁二酯、聚醯胺、 聚醚酮、聚颯、聚醚砜、熱塑性聚醯亞胺、聚醚醯亞 胺、聚苯醚、聚苯硫醚、·聚乙酸乙烯酯、聚對苯撐苯 並雙惡嗤的一種或者幾種的混合物。所述金屬包括 鋼、金或銀等導電性好的金屬或其合金。所述非金屬 201010940 為陶瓷、粘土等。總之,只要該層狀奈米碳管結構具 有較好的導電性即可。本實施例中,所述陰極;極片' ·, 為奈米碳管膜。 < 再次,將一個奈米碳管膜及一個陰極電極片平行 且間隔浸入導電聚合物單體的酸溶液中。 所述奈米碳管膜的質量份均為50〜9〇’所述導電 聚合物單體的酸溶液中的導電聚合物單體與所述奈米 • 碳管膜的質量比為2:9七。所述奈米碳管膜與陰二電 極片之間的距離為0.5厘米〜3厘米。所述奈米碳管膜 的形狀不限,可為各種平面幾何圖形。 本實施例中,可採用兩個面積相等的奈米碳管 膜丄並用稱量天平稱量,使得所述兩個奈米碳管膜的 質量均為40.1毫克,再將所述兩個奈米碳管膜平行且 間隔浸入所述苯胺單體的硫酸溶液中,使其中一個奈 米碳管作陰極電極片,並使得兩個奈米碳管膜之間= Ο 持1厘米的距離。 最後,在奈米碳管膜與陰極電極片之間形成一電 勢差,並使奈米碳管膜與電源正極相連作陽極,陰極 電極片與電源負極相連作陰極,導電聚合物單體在作 為陽極的奈米碳管膜上發生氧化聚合反應,導電聚合 物單體均勻聚合形成導電聚合物纖維,導電聚合物二 維複合在所述奈米碳管膜中奈米碳管的表面或/和附 著在所述奈米碳管的管壁上,導電聚合物纖維還可彼 此相互連接後再複合在所述奈米碳管的表面或/和附 15 201010940 著在所述奈米碳管的管壁上。 、,所述導電聚合物纖維的長度為100奈米〜10毫 米,直彳二為30奈米〜12〇奈米。所述在陽極與陰極之 =幵v成電勢差的方法包括在陽極與陰極之間施加恒 /瓜良壓或掃描電勢等。當陽極與陰極之間形成電勢 差的方法為施加掃描電勢時’電勢範圍為-0.2伏特 〜1.2伏特之間,掃描速度為i毫伏/秒〜丄麵毫伏/秒, =時間為0·5小時〜4小時’或掃描詞刪〇次。 §陽極與陰極之間形成電勢差的方法為施加恒流時, 1流範圍為1〇毫安/克〜1〇安/克’恒流時間為〇5小 ㈣4兰J、時。本實施例中’在正電極與負電極之間形成 壓A f) Γ方法為施加恒壓’陽極與陰極之間施加的電 。特〜1.2伏特,時間為〇·5小時〜4小時導 電聚合物單體在陽極發生氧化聚合。 參 法且例中’奈米碳管膜與聚合物單體複合的方 下步驟:首先,將作為陽極的奈米碳管 臈與電源的正極電遠接 管膜斑雷將作為陰極電極片的奈米碳 l 連接;然後,在正電極與負電極 之間施加0.75伏特的電屢2〜3小 溶液中,正電極為陽& 早體的酸 陽極失電子被^ 為陰極’苯胺單體在 „為陽極的奈米碳管膜t的奈米破管的表面二 ζ附者在所述奈米碳管的管壁上, /聚本胺複合材料。所述聚笨胺纖维的長度為 16 201010940 〜1亳米’直徑為50奈米〜80奈米。作為陰極電極片 的奈米碳管膜與電源負極相連,因此僅起到電極的作 用,並無聚苯胺纖維複合在該奈米碳管膜上。 . 可以理解,當採用奈米碳管膜作陰極電極片時, 導電聚合物單體在作為陽極的奈米碳管膜上充分聚合 形成導電聚合物複合在奈米碳管膜上後,還可通過使 已獲得的奈米碳管/導電聚合物複合材料與電源負極 • 相連作陰極,使奈米碳管膜與電源正極相連作陽極, 由於奈米碳管/導電聚合物複合材料具有較好得導電 性、,從而使導電聚合物單體被氧化,聚合成導電聚合 物並複合在作為陽極的奈米碳管膜上。 所述製備奈米碳管/導電聚合物複合材料的製備 方法還可進-步包括一採用清洗溶液清洗並供乾所述 奈米碳管/導電聚合物複合材料的步驟。具體地,該步 驟為:首先,將奈米碳管/導電聚合物複合材料從電解 =中取出’將其放入盛有去離子水的容器内清洗多 次,以除去奈米碳管/導電聚合物複合材料中的離子。 其次將其放入盛有乙醇的容器中清洗多次以去除 奈米碳管/導電聚合物複合材料中殘留的有機雜質。最 後,將奈米碳管/導電聚合物複合材料取出,放入烘箱 内,f 80攝氏度下烘乾4小時,將奈米碳管/導電聚 δ物複&材料中的乙醇蒸發出來。所述清洗奈米碳管/ 導電聚合物複合材料1〇的目的為去除奈米碳管/導電 聚合物複合材料10中存在的其他離子雜質,及殘留的 17 201010940 其他有機雜質。 本技術方案奈米碳管/導電聚合物複合材料的製 ’· 備方法中,採用將兩個50〜90質量份的奈米碳管膜平 . 彳丁間隔放置在20〜40質量份導電聚合物單體配置的導 電聚合物單體的酸溶液中,在兩個奈米碳管膜之間形 成一電勢差,使導電聚合物單體在陽極氧化聚合成導 電聚合物,從而與奈米碳管膜複合形成奈米碳管/導電 ❿ 聚合物複合材料。上述奈米碳管膜、導電聚合物單體 及的貝量比例關係有利於確保本技術方案製備的奈米 碳管/導電聚合物複合材料中導電聚合物纖維直接或 相連接後複合在所述奈米碳管的表面或/和附著在所 述奈米碳管的管壁上。本技術方案由於採用了兩個相 同的奈米碳管膜,以電化學聚合法製備奈米碳管/導電 聚合物複合材料,還可通過改變奈米碳管膜與奈米碳 管/導電聚合物複合材料上的電極,一次製備獲得兩個 • 奈米碳管/導電聚合物複合材料薄膜,大大提高了生產 效率。 請參閱圖2,本技術方案所製備的奈米碳管/導電 聚合物複合材料10包括複數個奈米碳管12及複數個 導電聚合物纖維14。所述複數個奈米碳管12相互連 接形成一奈米碳管膜16,複數個導電聚合物纖維14 複合在所述奈米碳管12的表面或/和附著在所述奈米 碳管12的管壁上。在上述的奈米碳管/導電聚合物複 合材料10中,奈米碳管12形成的奈米碳管膜16起到 18 201010940 了月架作用,導電聚合物纖維14依附在所述的奈米碳 管膜16骨架上。進一步地,所述奈米碳管12和導電 ’ 聚合物纖維14均勻分佈於所述奈米碳管/導電聚合物 ; 複合材料中。 本技術方案所提供的奈米碳管/導電聚合物複合 材料的製備方法具有以下優點:其一,由於奈米碳管 膜中的複數個奈米碳管均勻分散且相互連接形成導電 ❿ 網路,故採用電化學原位聚合法將所述奈米碳管膜與 V電聚合物單體複合,所制得的奈米碳管/導電聚合物 複〇材料中奈米碳管均勻分散。其二,由於採用電化 2原位聚合法將所述奈米碳管膜與導電聚合物單體複 合,無需添加表面活性劑,使得奈米碳管/導電聚合物 複σ材料中不包含表面活性劑。其三,本技術方案提 供的奈米碳管/導電聚合物複合材料的製備方法,不需 要用強酸氧化奈米碳管,奈米碳管的結構完整,在製 © 冑過程中不會破壞奈米碳管的結構。其四,採用電化 學原位聚合法將所述奈米碳管膜與導電聚合物複合, 製備工藝簡單,可實現連續、規模化生產,且成本較 低。 紅上所述,本技術方案確已符合發明專利之要 件’遂依法提出專利申請。惟,以上所述者僅為本技 術^案之較佳實施例,自不能以此限制本案之申請專 11&圍|凡熟悉本案技藝之人士援依本技術方案之 、神所作之等效修飾或變化,皆應涵蓋於以下申請專 19 201010940 利範圍内。 【圖式簡單說明】 圖1為本技術方案實施例的奈米碳管/導電聚合 物複合材料的製備方法的流程圖。 圖2為本技術方案實施例的包含無序奈米碳 不米碳管/導電聚合物複合材料的結構示意圖。 【主要元件符號說明】The layered nanotube = = method = the membrane method and other methods of carbon nanotubes: also: the layered structure of the pipeline or the nanocarbon pipeline and the layered naphthalene The carbon tube structure can also be nanocarbon. The layered carbon nanotube junction may be a layered carbon nanotube composite structure composed of other materials of a carbon nanotube structured disc, and the other materials include a polymer material, a metal, and a non-metal. The polymer material is a thermosetting polymer material or a thermoplastic polymer material, and the thermosetting polymer material includes a phenol resin, an epoxy resin, a bismaleimide tree, a polybenzoxazine resin, a cyanate resin, and a poly a mixture of one or more of a quinone imine resin and an unsaturated polyfluorene resin. The thermoplastic polymer material comprises polyethylene, polyethylene, polytetrafluoroethylene, polypropylene 'polystyrene, polymethyl phthalate, polyethylene terephthalate, polycarbonate, poly Butylene terephthalate, polydecylamine, polyether ketone, polyfluorene, polyether sulfone, thermoplastic polyimide, polyether phthalimide, polyphenylene ether, polyphenylene sulfide, polyvinyl acetate, A mixture of one or more of polyparaphenylene benzoindoles. The metal includes a conductive metal such as steel, gold or silver or an alloy thereof. The non-metal 201010940 is ceramic, clay, or the like. In short, as long as the layered carbon nanotube structure has good conductivity. In this embodiment, the cathode; the pole piece '·, is a carbon nanotube film. < Again, a carbon nanotube film and a cathode electrode sheet are immersed in parallel and spaced in an acid solution of a conductive polymer monomer. The mass ratio of the carbon nanotube film is 50 to 9 Å. The mass ratio of the conductive polymer monomer in the acid solution of the conductive polymer monomer to the nano carbon tube film is 2:9. Seven. The distance between the carbon nanotube film and the cathode electrode sheet is 0.5 cm to 3 cm. The shape of the carbon nanotube film is not limited and may be various planar geometries. In this embodiment, two carbon nanotube membranes of equal area can be used and weighed by a weighing balance, so that the mass of the two carbon nanotube membranes is 40.1 mg, and the two nanometers are further The carbon nanotube film was immersed in parallel and intermittently immersed in the sulfuric acid solution of the aniline monomer, and one of the carbon nanotubes was used as a cathode electrode sheet, and the distance between the two carbon nanotube films was maintained at a distance of 1 cm. Finally, a potential difference is formed between the carbon nanotube film and the cathode electrode sheet, and the carbon nanotube film is connected to the positive electrode of the power source as an anode, the cathode electrode piece is connected to the negative electrode of the power source as a cathode, and the conductive polymer monomer is used as an anode. An oxidative polymerization reaction occurs on the carbon nanotube film, and the conductive polymer monomer is uniformly polymerized to form a conductive polymer fiber, and the conductive polymer is two-dimensionally composited on the surface or/and attached to the carbon nanotube in the carbon nanotube film. On the wall of the carbon nanotube, the conductive polymer fibers may also be connected to each other and then composited on the surface of the carbon nanotube or/and attached to the wall of the carbon nanotube. on. The conductive polymer fiber has a length of 100 nm to 10 mm, and the straight bismuth is 30 nm to 12 Å. The method of forming a potential difference between the anode and the cathode = 幵v includes applying a constant/guap pressure or a scanning potential or the like between the anode and the cathode. The method of forming a potential difference between the anode and the cathode is to apply a scanning potential when the potential range is between -0.2 volts and 1.2 volts, and the scanning speed is i millivolts per second to one millivolt per second, = time is 0.5. Hours ~ 4 hours' or scan words are deleted. § The method of forming the potential difference between the anode and the cathode is to apply a constant current, and the range of 1 flow is 1 〇 mA / gram to 1 〇 amp / gram. The constant current time is 〇 5 small (4) 4 blue J, hr. In the present embodiment, 'pressure A f is formed between the positive electrode and the negative electrode). The method is to apply a constant voltage 'electrode applied between the anode and the cathode. Specially ~1.2 volts, the time is 〇·5 hours~4 hours Conductive polymer monomer oxidative polymerization at the anode. In the method of reference and in the example, the step of compounding the carbon nanotube film with the polymer monomer: first, the carbon nanotube as the anode and the positive electrode of the power source are connected to the film, and the spot will be used as the cathode electrode sheet. The m-carbon l is connected; then, a small alternating solution of 0.75 volts is applied between the positive electrode and the negative electrode in a 2~3 small solution, and the positive electrode is cation & the acid anode of the early body is lost to electrons. „The surface of the nanotube that is the anode of the carbon nanotube membrane t is attached to the wall of the carbon nanotube, and the length of the polyaminoamine fiber is 16 201010940 ~1亳米' diameter is 50nm~80nm. The carbon nanotube film as the cathode electrode piece is connected to the negative pole of the power supply, so it only acts as an electrode, and no polyaniline fiber is compounded in the nanometer. On the carbon tube film. It can be understood that when a carbon nanotube film is used as the cathode electrode sheet, the conductive polymer monomer is sufficiently polymerized on the carbon nanotube film as the anode to form a conductive polymer composite in the carbon nanotube film. After the above, it can also be obtained by making the obtained carbon nanotube/conductive polymer The material and the negative pole of the power supply are connected as a cathode, and the carbon nanotube film is connected to the positive electrode of the power source as an anode. Since the carbon nanotube/conductive polymer composite has good conductivity, the conductive polymer monomer is oxidized. , polymerized into a conductive polymer and composited on a carbon nanotube film as an anode. The preparation method of the carbon nanotube/conductive polymer composite can further include washing and drying with a cleaning solution. The step of describing the carbon nanotube/conductive polymer composite. Specifically, the step is: first, taking the carbon nanotube/conductive polymer composite from the electrolysis= into the deionized water The container is cleaned several times to remove ions from the carbon nanotube/conductive polymer composite. Secondly, it is washed in a container filled with ethanol to remove residuals in the carbon nanotube/conductive polymer composite. Organic impurities. Finally, the carbon nanotube/conductive polymer composite material is taken out, placed in an oven, and dried at f 80 ° C for 4 hours to reconstitute the carbon nanotubes/conductive polyδ material in the & Evaporation. The purpose of the cleaning of the carbon nanotube/conductive polymer composite is to remove other ionic impurities present in the carbon nanotube/conductive polymer composite 10, and residual organic impurities such as 201010940. In the preparation method of the carbon nanotube/conductive polymer composite material, two 50 to 90 parts by mass of the carbon nanotube film are used flat. The chitin is placed at intervals of 20 to 40 parts by mass of the conductive polymer. In the acid solution of the conductive polymer monomer of the monomer configuration, a potential difference is formed between the two carbon nanotube films, and the conductive polymer monomer is anodized and polymerized into a conductive polymer, thereby forming a film with the carbon nanotube film. Composite forming a carbon nanotube/conductive ❿ polymer composite material. The above-mentioned carbon nanotube film, conductive polymer monomer and the ratio of the amount of the shell are favorable for ensuring the carbon nanotube/conductive polymer composite prepared by the technical solution. The medium conductive polymer fibers are directly or phase-bonded and then composited on the surface of the carbon nanotube or/and attached to the wall of the carbon nanotube. The technical solution adopts two identical carbon nanotube membranes to prepare a carbon nanotube/conductive polymer composite by electrochemical polymerization, and can also change the carbon nanotube membrane and the carbon nanotube/conductive polymerization by changing the carbon nanotube membrane The electrode on the composite material is prepared in one time to obtain two thin carbon nanotube/conductive polymer composite film, which greatly improves the production efficiency. Referring to FIG. 2, the carbon nanotube/conductive polymer composite 10 prepared by the present technical solution includes a plurality of carbon nanotubes 12 and a plurality of conductive polymer fibers 14. The plurality of carbon nanotubes 12 are interconnected to form a carbon nanotube film 16, and a plurality of conductive polymer fibers 14 are composited on the surface of the carbon nanotube 12 or/and attached to the carbon nanotube 12 On the wall of the tube. In the above carbon nanotube/conductive polymer composite material 10, the carbon nanotube film 16 formed by the carbon nanotube 12 functions as a lure for 18 201010940, and the conductive polymer fiber 14 is attached to the nanometer. The carbon tube film 16 is on the skeleton. Further, the carbon nanotubes 12 and the conductive 'polymer fibers 14 are uniformly distributed in the carbon nanotube/conductive polymer; composite material. The preparation method of the carbon nanotube/conductive polymer composite provided by the technical solution has the following advantages: First, since a plurality of carbon nanotubes in the carbon nanotube film are uniformly dispersed and interconnected to form a conductive ❿ network Therefore, the carbon nanotube film is combined with the V-electropolymer monomer by electrochemical in-situ polymerization, and the carbon nanotubes in the obtained carbon nanotube/conductive polymer retanning material are uniformly dispersed. Secondly, since the carbon nanotube film is combined with the conductive polymer monomer by the electrochemical in-situ polymerization method, no surfactant is added, so that the surface of the carbon nanotube/conductive polymer complex σ material is not included. Agent. Thirdly, the preparation method of the carbon nanotube/conductive polymer composite provided by the technical solution does not require the oxidation of the carbon nanotubes with a strong acid, and the structure of the carbon nanotubes is complete, and the naphthalene is not destroyed during the process of manufacturing the crucible. The structure of the carbon tube. Fourthly, the carbon nanotube film is combined with the conductive polymer by electrochemical in-situ polymerization, the preparation process is simple, continuous and large-scale production can be realized, and the cost is low. As stated on the red, this technical solution has indeed met the requirements of the invention patent. However, the above description is only a preferred embodiment of the present technology, and it is not possible to limit the application of the present application. 11& The person skilled in the art can assist the equivalent modification of God according to the technical solution. Or changes, should be covered in the following application scope 19 201010940. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of preparing a carbon nanotube/conductive polymer composite according to an embodiment of the present invention. 2 is a schematic view showing the structure of a disordered nanocarbon carbon nanotube/conductive polymer composite according to an embodiment of the present invention. [Main component symbol description]

奈米碳管/導電聚合物複合材料1〇 奈米碳管 12 導電聚合物纖維 奈米碳管膜 ΊCarbon nanotube / conductive polymer composite 1 奈 carbon nanotube 12 conductive polymer fiber nano carbon tube film Ί

2020

Claims (1)

201010940 十、申請專利範圍 種奈米锬管/導電聚合物複合材料的製備方法, ’ 其包括以下步驟: - 製備一奈米碳管膜;及 =用電化學原位聚合法將導電聚合物複合在所述 不米碳管膜上。 如申明專利範圍第1項所述的奈米碳管/導電聚合 ❹物複合材料的製備方法,其中,所述奈米碳管膜 的製備方法包括直接生長法、拉膜法 絮化法。 3.如申請專利範圍第2項所述的奈米碳管/導電聚合 2複合材料的製備方法,其中,所述直接生長法 ,備奈米碳管膜為用化學氣相沈積法於一基板上 生長奈米碳管膜。 4·如申請專利範圍第2項所述的奈米碳管/導電聚合 物複合材料的製備方法,其卜所述採用拉膜法 製備奈米碳管膜的方法包括以下步驟: 製備一奈米碳管陣列; 從上述奈米碳管陣列中選定一定寬度的複數個夺 米碳管片斷,優選為採用具有一定寬度的膠帶接觸 奈米碳管陣列以選定-定寬度的複數個奈米碳管 片斷;及 以一定速度沿基本垂直于奈米碳管陣列生長方向 拉伸該複數個奈米碳管月斷,以形成一連續的奈^ 21 201010940 碳管膜。 U請專利範圍第2項所述的碳奈米管/導電聚合 材料的製備方法,其,,所述採用減法 備不米碳管膜时法具體包細下步驟: 提供一奈米碳管陣列形成於一基底;及 =-施遷裝麵上述奈米碳管陣 奈米碳管膜。201010940 X. The preparation method of the patented nanotube/conductive polymer composite material, 'which includes the following steps: - preparing a carbon nanotube film; and = electrochemically in-situ polymerization to polymerize the conductive polymer On the carbon nanotube film. The method for preparing a carbon nanotube/conductive polymerized composite material according to the first aspect of the invention, wherein the method for preparing the carbon nanotube film comprises a direct growth method and a film-forming method. 3. The method for preparing a carbon nanotube/conductive polymer 2 composite material according to claim 2, wherein the direct growth method comprises preparing a carbon nanotube film by chemical vapor deposition on a substrate. The carbon nanotube film is grown on it. 4. The method for preparing a carbon nanotube/conductive polymer composite according to claim 2, wherein the method for preparing a carbon nanotube film by using a film-forming method comprises the steps of: preparing a nanometer a carbon tube array; selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes, preferably using a tape having a certain width to contact the carbon nanotube array to select a plurality of carbon nanotubes of a predetermined width And compressing the plurality of carbon nanotubes at a certain speed along a growth direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon film of 201010940. U. The method for preparing a carbon nanotube/conductive polymer material according to item 2 of the patent scope, wherein the method of subtracting the preparation of the carbon nanotube film comprises the following steps: providing a carbon nanotube array Formed on a substrate; and =- moved to the surface of the above-mentioned carbon nanotube array carbon nanotube film. 二明專利範圍第2項所述的奈米碳管/導電聚合 ::合村料的製備方法,其中,所述絮化法製備 不米奴管臈具體包括以下步驟·· 提供一奈米碳管原料; 將上述奈米碳f原料添加到—溶劑巾並進行絮化 處理獲得奈米碳管絮狀結構;及 述;Γ、米奴管絮狀結構從溶劑甲分離,並對該 米碳管絮狀結構定型處理。The invention relates to a method for preparing a carbon nanotube/conductive polymer according to item 2 of the patent scope of the second aspect, wherein the preparation of the bismuth tube by the flocculation method specifically comprises the following steps: providing a nano carbon Pipe raw material; adding the above-mentioned nano carbon f raw material to the solvent towel and performing flocculation treatment to obtain a nano carbon tube floc structure; and describing; the Γ, Minu tube floc structure is separated from the solvent A, and the rice carbon is separated The tube floc structure is shaped and processed. 7·如申請專利範圍第6項所述的奈米碳管/導電聚合 物複合材料的製備方法’其中,所述絮化法製備 的奈米碳管膜包括複數個均勻分佈的奈米碳管, 該複數個均勻分佈的奈米碳管通過凡德瓦爾力相 互連接形成網路結構,從而形成一具有自支禮結 構的奈米碳管膜。 8.如:請專利範圍第1項所述的奈米碳管/導電聚合 物複S材料的製備方法’其中,所述採用電化學 原位聚合法將所述奈米碳管膜與導電聚合物複合 22 201010940 的方法具體包括以下步驟: 製備一導電聚合物單體的酸溶液; * 提供一個陰極電極片; , 將一個奈米碳管膜與所述陰極電極片平行間隔浸 入所述導電聚合物單體的酸溶液中;及 & 在所述奈来碳管膜及陰極電極片之間一形成―電 勢差,導電聚合物單體在奈米碳管膜上氧化,導電 ⑩ 聚合物單體均勻聚合形成導電聚合物纖維,導電聚 合物纖維直接或相互連接後複合在所述奈米碳管 的表面或/和附著在所述奈米碳管的管壁上。 9.如申請專利範圍第8項所述的奈米碳管/導電聚合 物複合材料的製備方法,其中,所述形成一電勢 差的方法為在所述奈米碳管膜及陰極電極片之間 施加恒流,其電流範圍為10毫安m安/克, 恒流時間為0.5小時〜4小時。 « lb申請專圍第8項所述的奈米碳管/導電聚合 物複合材料的製備方法,其中,所述形成一電勢 差的方法為在所述奈米碳管膜及陰極 電極片之間 施加恒壓,其電壓範圍為05伏特~12伏特,恒 壓時間為0.5小時〜4小時。 11::請專利範圍第8項所述的奈米碳管/導電聚合 複°材料的製備方法’其中,所述形成-電勢 A的方法為在所述奈米碳管膜及陰極電極片之間 %加掃描電勢,其電勢範園為-0.2伏特〜1.2伏特, 23 201010940 种强野間為0.5小眭a 忉〜10000次。 小時或掃描次數為 12 .如申請專利範圍第8項所 物複合材料的製備方法,I中不米碳管/導電聚合 為石墨電極片、始電極片錄:;陰極電極片 奈米碳管結構。 不錄鋼電極片或層狀 13.如申請專利編12項所述的7. The method for preparing a carbon nanotube/conductive polymer composite according to claim 6, wherein the carbon nanotube film prepared by the flocculation method comprises a plurality of uniformly distributed carbon nanotubes The plurality of uniformly distributed carbon nanotubes are interconnected by a van der Waals force to form a network structure, thereby forming a carbon nanotube film having a self-supporting structure. 8. For example, the method for preparing a carbon nanotube/conductive polymer complex S material according to the first aspect of the patent range, wherein the carbon nanotube film and the conductive polymerization are carried out by electrochemical in-situ polymerization. The method of composite 22 201010940 specifically comprises the steps of: preparing an acid solution of a conductive polymer monomer; * providing a cathode electrode sheet; and immersing a carbon nanotube film in parallel with the cathode electrode sheet in the conductive polymerization In the acid solution of the monomer; and & a potential difference is formed between the carbon nanotube film and the cathode electrode sheet, and the conductive polymer monomer is oxidized on the carbon nanotube film, and the conductive polymer monomer The polymer polymer fibers are uniformly polymerized to form conductive polymer fibers which are directly or interconnected and then composited on the surface of the carbon nanotubes or/and attached to the tube walls of the carbon nanotubes. 9. The method for preparing a carbon nanotube/conductive polymer composite according to claim 8, wherein the method of forming a potential difference is between the carbon nanotube film and the cathode electrode sheet. A constant current is applied with a current range of 10 mAm/g and a constant current time of 0.5 hr to 4 hr. The method for preparing a carbon nanotube/conductive polymer composite according to Item 8, wherein the method of forming a potential difference is to apply between the carbon nanotube film and the cathode electrode sheet. Constant voltage, the voltage range is from 05 volts to 12 volts, and the constant voltage time is from 0.5 hours to 4 hours. 11: The method for preparing a carbon nanotube/conductive polymer composite material according to item 8 of the patent scope, wherein the method of forming the potential A is in the carbon nanotube film and the cathode electrode sheet. Between % and scan potential, the potential range is -0.2 volts to 1.2 volts, and 23 201010940 species are between 0.5 眭 a 忉 10,000 times. The number of hours or scans is 12. For the preparation method of the composite material according to item 8 of the patent application scope, the carbon nanotubes/conductive polymerization in I are graphite electrode sheets, the initial electrode sheets are recorded; the cathode electrode sheet carbon nanotube structure . Do not record steel electrode sheets or layers 13. As described in the patent application 12 合物複合材料的製備方法, /、 e電聚 碳管結構包括奈米碳管臈、夺f::::奈米 及層狀奈米碳管複合結構。不未碳5線及其組合 14·如申請專利範圍第8項所 物複合材料的製備方法,電聚合 早體為苯胺、料"塞吩、乙块、對苯及對苯= 乙烯中的一種或幾種。 芽 15.如申請專利範圍第8項所述的奈米碳電聚合 物複合材料的製備方法,其中,所述聚合物單^ 與奈米碳管膜的質量比為2: 9〜4:5。 16·如申請專利範圍第15項所述的奈米碳管/導電聚 合物複合材料的製備方法’其中,所述製備導電 聚合物單體的酸溶液的方法具體包括以下步驟: 提供20〜40質量份導電聚合物單體; · 配製0.1〜5摩爾/升的酸溶液;及 將所述導電聚合物單體溶於酸溶液中,得到摩爾濃 度為0.1~5摩爾/升的導電聚合物單體的酸溶液。 24 201010940 聚 所述奈米碳管 17. 如申請專利範圍第16 合物複合材料的製備方法=奈米碳管/導電 臈的質量份為50〜9〇。 、 18. 如申請專利範圍第16 合物葙人所述的奈米碳管/導電聚 鹽酸溶液、硫酸溶液、硝^中,所述酸溶液為 Ψ M A S夂洛液、磷酸溶液或乙 鹱/合液中的一種或幾種的混合。The preparation method of the composite material, /, e-polycarbon tube structure comprises a carbon nanotube 臈, a f:::: nano and a layered carbon nanotube composite structure. No carbon 5 line and its combination 14 · As in the preparation method of the composite material of claim 8 of the patent application, the electropolymerization of the precursor is aniline, material "cephene, b, benzene and p-benzene = ethylene One or several. The method for preparing a nanocarbon electric polymer composite according to claim 8, wherein the mass ratio of the polymer monocarbon to the carbon nanotube film is 2: 9 to 4:5 . The method for preparing a carbon nanotube/conductive polymer composite according to claim 15, wherein the method for preparing an acid solution of the conductive polymer monomer specifically comprises the following steps: providing 20 to 40 a part by mass of a conductive polymer monomer; · preparing an acid solution of 0.1 to 5 moles per liter; and dissolving the conductive polymer monomer in an acid solution to obtain a conductive polymer monomer having a molar concentration of 0.1 to 5 moles per liter Body acid solution. 24 201010940 Polycarbonization of the carbon nanotubes 17. Preparation method of the composite material of the 16th compound of the patent application = the mass fraction of the carbon nanotubes / conductive crucible is 50 to 9 Torr. 18. In the case of the carbon nanotube/conductive polyhydrochloric acid solution, the sulfuric acid solution, and the nitrate solution described in the patent application No. 16, the acid solution is 夂MAS 夂 Luo solution, phosphoric acid solution or acetonitrile / A mixture of one or more of the combined liquids. 19. 如申請專利範圍第8 二 物it入从w ^成的奈来碳管/導電聚合 物複合材料的製備方法, &、+、、# + s A 鑣給从且由a 丹中’所述導電聚合物 纖維的長度為1〇〇奈米〜1〇 〜12〇奈米。 10亳水’直徑為30奈来 2=='圍第8項所述的奈米碳管/導電聚合 二;=製二 ;劑清洗所述奈米破管/導電聚合物;:材料2 乾’其具體包括以下步驟: 將奈米碳管/導電聚合物複合材料從所述酸溶液中 取出,將其放人盛有去離子水的容H内清洗多次; 再將其放入盛有乙醇的容器中清洗多次;及 取出奈米碳管/導電聚合物複合材料,放入烘箱 内,在80攝氏度下烘乾2〜6小時。19. As in the patent application, the 8th item is taken into the preparation method of the n-carbon tube/conductive polymer composite from w ^, &, +, , # + s A 镳 from and from a 丹中' The length of the conductive polymer fiber is 1 〇〇 nanometer ~ 1 〇 ~ 12 〇 nanometer. 10 亳 water ' diameter is 30 奈 2 == 'nano carbon tube / conductive polymerization two according to item 8; = two; agent to clean the nano tube / conductive polymer;: material 2 dry 'The specific steps include the following steps: taking the carbon nanotube/conductive polymer composite material out of the acid solution, and discharging it in a volume H containing deionized water for a plurality of times; The ethanol container is washed several times; and the carbon nanotube/conductive polymer composite material is taken out, placed in an oven, and dried at 80 degrees Celsius for 2 to 6 hours.
TW097135144A 2008-09-12 2008-09-12 Mathod for making carbon nanotube/conductive polymer composite TWI371429B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097135144A TWI371429B (en) 2008-09-12 2008-09-12 Mathod for making carbon nanotube/conductive polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097135144A TWI371429B (en) 2008-09-12 2008-09-12 Mathod for making carbon nanotube/conductive polymer composite

Publications (2)

Publication Number Publication Date
TW201010940A true TW201010940A (en) 2010-03-16
TWI371429B TWI371429B (en) 2012-09-01

Family

ID=44828416

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097135144A TWI371429B (en) 2008-09-12 2008-09-12 Mathod for making carbon nanotube/conductive polymer composite

Country Status (1)

Country Link
TW (1) TWI371429B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094525A (en) * 2011-10-28 2013-05-08 清华大学 Lithium ion battery negative electrode and preparation method thereof
CN103187575A (en) * 2011-12-28 2013-07-03 清华大学 Preparation method for thin-film lithium-ion battery
TWI419182B (en) * 2010-08-12 2013-12-11 Hon Hai Prec Ind Co Ltd Super capacitor
US8822059B2 (en) 2011-12-28 2014-09-02 Tsinghua University Lithium ion battery
US9236607B2 (en) 2011-10-28 2016-01-12 Tsinghua University Method for making lithium ion battery cathode
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
US9537151B2 (en) 2011-12-28 2017-01-03 Tsinghua University Lithium ion battery electrode
US9577265B2 (en) 2011-12-28 2017-02-21 Tsinghua University Thin film lithium ion battery
TWI686969B (en) * 2018-04-16 2020-03-01 鴻海精密工業股份有限公司 Method for making polymer solar cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419182B (en) * 2010-08-12 2013-12-11 Hon Hai Prec Ind Co Ltd Super capacitor
CN103094525A (en) * 2011-10-28 2013-05-08 清华大学 Lithium ion battery negative electrode and preparation method thereof
US9236600B2 (en) 2011-10-28 2016-01-12 Tsinghua University Method for making lithium ion battery anode
US9236607B2 (en) 2011-10-28 2016-01-12 Tsinghua University Method for making lithium ion battery cathode
CN103187575B (en) * 2011-12-28 2015-11-25 清华大学 The preparation method of film lithium ion battery
TWI458168B (en) * 2011-12-28 2014-10-21 Hon Hai Prec Ind Co Ltd Method for making thin film lithium ion battery
TWI452747B (en) * 2011-12-28 2014-09-11 Hon Hai Prec Ind Co Ltd Lithium ion battery
US8822059B2 (en) 2011-12-28 2014-09-02 Tsinghua University Lithium ion battery
CN103187575A (en) * 2011-12-28 2013-07-03 清华大学 Preparation method for thin-film lithium-ion battery
US9466826B2 (en) 2011-12-28 2016-10-11 Tsinghua University Method for making lithium ion battery electrode
US9537151B2 (en) 2011-12-28 2017-01-03 Tsinghua University Lithium ion battery electrode
US9577265B2 (en) 2011-12-28 2017-02-21 Tsinghua University Thin film lithium ion battery
US9774028B2 (en) 2011-12-28 2017-09-26 Tsinghua University Method for making thin film lithium ion battery
TWI686969B (en) * 2018-04-16 2020-03-01 鴻海精密工業股份有限公司 Method for making polymer solar cell

Also Published As

Publication number Publication date
TWI371429B (en) 2012-09-01

Similar Documents

Publication Publication Date Title
CN101659789B (en) Preparation method for carbon nano tube/conducting polymer composite material
TW201010940A (en) Mathod for making carbon nanotube/conductive polymer composite
US8192650B2 (en) Method for manufacturing carbon nanotube-conducting polymer composite
Heme et al. Recent progress in polyaniline composites for high capacity energy storage: A review
Yazdi et al. Carbon nanotube modification of microbial fuel cell electrodes
Niu et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes
Zhang et al. Nanocarbon based composite electrodes and their application in microbial fuel cells
Saha et al. Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device
Erbay et al. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells
Kumar et al. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors
Zhao et al. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells
Wang et al. Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode
Zang et al. Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor
Li et al. Electrical properties of soluble carbon nanotube/polymer composite films
Sohn et al. Water-dispersible, sulfonated hyperbranched poly (ether-ketone) grafted multiwalled carbon nanotubes as oxygen reduction catalysts
De et al. Carbon nanotube as electrode materials for supercapacitors
Tortello et al. Nafion membranes with vertically-aligned CNTs for mixed proton and electron conduction
EP3426818A1 (en) Chemical vapor deposition process to build 3d foam-like structures
Wang et al. Three-dimensional porous architectures of carbon nanotubes and graphene sheets for energy applications
Wang et al. Graphene quantum dot-assisted preparation of water-borne reduced graphene oxide/polyaniline: from composite powder to layer-by-layer self-assembly film and performance enhancement
Xu et al. Hierarchically ordered carbon tube-sheet superstructure via template-directed self-assembly of polyimide
Hou et al. Applications of carbon nanotubes and graphene produced by chemical vapor deposition
Huang et al. A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications
CN109732918B (en) Three-dimensional microbial electrode for 3D printing of gradient porous graphene oxide and preparation method thereof
Zafar et al. Plasma-based synthesis of graphene and applications: a focused review