TW200923991A - Super capacitor and method for making the same - Google Patents

Super capacitor and method for making the same Download PDF

Info

Publication number
TW200923991A
TW200923991A TW96143507A TW96143507A TW200923991A TW 200923991 A TW200923991 A TW 200923991A TW 96143507 A TW96143507 A TW 96143507A TW 96143507 A TW96143507 A TW 96143507A TW 200923991 A TW200923991 A TW 200923991A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
supercapacitor
nanotube film
substrate
carbon
Prior art date
Application number
TW96143507A
Other languages
Chinese (zh)
Other versions
TWI387987B (en
Inventor
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96143507A priority Critical patent/TWI387987B/en
Publication of TW200923991A publication Critical patent/TW200923991A/en
Application granted granted Critical
Publication of TWI387987B publication Critical patent/TWI387987B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a super capacitor. The super capacitor includes two electrodes, two current collector, a separator, an electrolyte and a shell. Each of the electrodes includes a film of carbon nanotubes. The carbon nanotubes are uniformly distributed in the film and parallel to a surface of the film. The present invention also relates to a method for making the above-described super capacitor. The method includes the steps of: providing a substrate having an array of carbon nanotubes formed thereon; directly pressing the array of carbon nanotubes to form a film of carbon nanotubes; providing a separator disposed between two films of carbon nanotubes, providing a shell and placing the separator and the films in the shell; and providing an electrolyte and injecting the electrolyte into the shell, whereby obtain the super capacitor.

Description

200923991 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種超級電容器及其製備方法,尤其涉及 一種基於奈米碳管的超級電容器及其製備方法。 【先前技術】 超級電容器(Super Capacitor),又叫電化學電容器、電 =層電容器。超級電容器具有高的比功率和長的循環壽 r工作溫度範圍寬。在移動通訊、資訊技術、電動汽車、 航空航天和國防科技等方面都有著極其重要和廣闊的應 超級電容ϋ包括電極、隔膜和電解液溶液,該電極禾 ==在該電解液溶液中。該電極包括-集電體及惠 ,甬心:’體上的電極材料。先前超級電容器的製備方沒 u係將電極材料充分研磨後,在其巾加人 劑擾拌均勾,再通過模壓法、冷編法 愿製方法壓製在泡沫録、石W、…/、,、轉愚法$ 電體上,即可製成—定=”片或銅片等集 隔膜的電解液丄極設置在含 複雜。 τ ρτ&成超級電容器。該製備方法較 超級電容器中影變直六甘 〜a其合置的決定因素係電極材料。 想的電極材料要求沾S庳古 孔隹中,二曰度回、導電性好、比表面積大、. 孔木中在—疋的範圍内 電容器材料主要有··、' ; _)。先前的超』 活性糊咖二! 和過渡金屬氧化物系列 、、^泠電性較差,所得電容器等效串聯電ρ 200923991 大。而且該活性碳系列的比表面積實際利用率不超過 30%,電解質離子難以進入,因此不適於用作超級電容器 • 的電極材料。過渡金屬氧化物用作電極材料在提高超級電 • 容器的容量方面具有良好的效果。但其成本太高,無法推 廣使用。 奈米石炭管(Carbon Nanotube,CNT)的出現為超級電 容器的開發提供了新的機遇。奈米碳管係一種奈米級無缝 管狀石墨結構碳材料,管徑為幾奈米到幾十奈米,管長為 幾微米到幾十微米。奈米碳管比表面積大,結晶度高,導 電性好,管内外徑可通過合成工藝加以控製,可使比表面 利用率達到100%。因而可以成為一種理想的超級電容器 材料。 奈米碳管用作超級電容器材料的研究最早見諸於 Chunming Niu 等的報導(請參見 High power electrochemical capacitors based on carbon nanotube electrodes, Apply Physics Letter, Chunming Niu et al., vol 70, pl480-1482(1997))。他們購買了純的多壁奈米碳管粉 末,將其用硝酸進行化學改性後,放入水中進行反復的過 濾和洗滌,經過乾燥後即可製成薄膜電極。將所述的兩個 薄膜電極設置在質量分數為38%的H2S04電解液溶液中, 封裝製得一超級電容器。在該薄膜電極的製備方法中,由 於所用的奈米碳管原料為粉末狀,極易發生團聚,製成的 薄膜電極中奈米碳管分佈不均勻,故需要對奈米碳管進行 化學改性。然而,即使經過化學改性後的奈米碳管仍然會 8 200923991 出現團聚現象,造成所製得的薄膜電極韌性差,容易斷裂, 影響了超級電容器的性能。 有鑒于此,提供一種具有電容量高和功率密度大的超 級電容器及其製備方法實為必要。 【發明内容】 一種超級電容器,其包括:一第一電極,該第一電極 包括一第一奈米碳管薄膜;一第一集電體,該第一奈米碳 管薄膜設置在該第一集電體之上;一第二電極,該第二電 極包括一第二奈米碳管薄膜;一第二集電體,該第二奈米 碳管薄膜設置在該第二集電體之上;一隔膜,該隔膜設置 在所述第一電極和第二電極之間,並分別與所述第一電極 和第二電極間隔設置;一電解液溶液,所述的第一電極、 第二電極、第一集電體、第二集電體和隔膜均設置在該電 解液溶液中;一外殼,所述第一電極、第二電極、第一集 電體、第二集電體、隔膜和電解液溶液均設置在該外殼内。 該第一奈米碳管薄膜和第二奈米碳管薄膜中奈米碳管均勻 分佈,且平行於該奈米碳管薄膜的表面。 一種超級電容器的製備方法,其包括以下步驟:提供 一奈米碳管陣列形成於一基底;提供一施壓裝置,擠壓上 述奈米碳管陣列獲得一奈米碳管薄膜;提供一隔膜,將上 述兩個相同的奈米碳管薄膜用該隔膜分隔後,並裝入一外 殼中;提供一電解液溶液,將該電解液溶液注入進上述外 殼中,封裝製得一超級電容器。 所述的奈米碳管薄膜的製備方法,進一步包括,將該 9 200923991 奈米碳管薄膜切割成預定的尺寸和形狀。 n、先刚技術相比較,所述的超級電容器及1製備方法 具有以下優點:其—,太 〃i備方法 身的比声 不/、反s八有良好的導電性能且本 和電㈣.:二’ C的超級電容器具有較高的比電容量 的,故不-要薄膜中奈米碳管係均句分佈 韌性的奈米碳管薄臈,可以 、八有較子 ^ ^ is * # - 來衣作各種形狀的超級電容 °二,奈米碳管薄膜係通過-施壓裝置擠壓夺乎 •陣列獲得’製備方法簡單…依據施:= 可控製奈米碳管薄膜中奈米碳管為各向同性或沿一 口疋方向取向或不同方向取向排列。 【實施方式】 X下將、,、口 口附圖詳細說明本技術方案超級電容器及其 製備方法。 〃 請參閱圖1,本技術方案實施例提供一種超級電容器 ,該超級電容器具有平板型的結構,包括:一第一電極 101’該第-電極101包括一第—奈米碳管薄膜;―第—集 電,103,該第-電極101言史置在該第一集電體1〇3之上: 弟電極102,5亥第一電極1〇2包括一第二奈米碳管薄 膜,一第二集電體1〇4,該第二電極1〇2設置在該第二集 電體104之上;一隔膜105,該隔膜1〇5設置在所述的第 一電極ιοί和第二電極102之間,並分別與該第一電極ι〇ι 和第二電極102間隔設置;一電解液溶液106,所述的第 一電極101、第二電極102、第一集電體1〇3、第二集電體 10 200923991 104和隔膜105均設置在該電解液溶液106中;一外殼 1〇7’所述的第一電極1〇1、第二電極102、第一集電體103、 第一木電體104、隔膜1〇5和電解液溶液1〇6均設置在該 外成107内。所述第一奈米碳管薄膜和第二奈米碳管薄膜 中,奈米碳管均勻分佈,且平行於該奈米碳管薄膜的表面。 進一步地,該第一奈米碳管薄膜和第二奈米碳管薄膜 包括多個奈米碳管,所述的多個奈米碳管為各向同性或沿 一固定方向取向或不同方向取向排列。該第一奈米碳管薄 膜和第二奈米碳管薄膜中奈米碳管之間通過凡德瓦爾力相 互吸引,S密結合,形成一自支樓結構,使得該第一奈米 碳管薄膜和第二奈米碳管薄膜具有很好的勒性,可以腎 折。故本技術方案實施例中的第一奈米碳管薄膜和第二夺 管薄膜可為平面結構也可為曲面結構。該第一奈米碳 官薄膜和第二奈米碳管薄膜的長度和寬度不限,可根據實 際需要製成具有任意長度和寬度的奈米碳管薄膜。該第— ;奈米碳管薄膜和第二奈米碳管薄膜的厚度為工微米〜工毫 米。 電 12 所述的隔膜20為玻璃纖維或者聚合物膜,其允許上述 解液溶液22中的電解質離子流通過而阻止該第一電^ 和第二電極14相接觸。 所述的電解液溶液 ^ 4、/分^ j匕^^水^ 溶液、硫酸水溶液“肖酸水溶液、高氯㈣的碳酸丙稀⑪ 溶液、四敗硼酸四乙基銨的碳酸丙烯酿溶液,或壬: 組合的混合液。 4 11 200923991 所述的外殼107為玻璃外殼或者不銹鋼外殼。 所述集電體的材料可為石墨、錄、紹或鋼等等在 電體可為一金屬基板,優選為銅片。該集電體的形狀二 不限’可依據實際需要進行改變。該奈米碳管薄 ir:::上τ奈米碳管薄膜可以直接_在該集電 奈米碳管薄膜通過一枯結劑點附在該 集電體的表面上。 所述超級電容器10中的集電體為一可 為奈米碳管薄膜具有良好的導電性能和一定的自支;:: 毅性,實際應用時,可直接在該奈米碳管_表^覆 一層導電膠而不需要上述的集電體。 可以理解,該超級電容器的結構類型不限 硬幣型或者捲繞型。 請參閱圖2’本技術方案實施例提供一種製備上述超 級電容器10的方法,具體包括以下步驟·· 步驟提供-奈米碳管陣列形成於—基底優選地 s亥陣列為定向排列的奈米碳管陣列。 —本技術方案實施例提供的奈米碳管陣列為單壁奈米破 管陣列、雙壁奈米碳管陣収多壁奈米碳管陣列中的-種。該奈米碳管陣列的製備方法採用化學氣相沈積法,其 ㈣步驟包括:(〇提供一平整基底,該基底可選用^ 基底’或選用形成有氧化層的石夕基底,本技術方 =實施例優選為採用4英寸的石夕基底;(b)在基底表面均 勾形成-催化劑層,該催化劑層材料可選用鐵(Fe)、鈷 200923991 (Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在7〇〇它〜9〇〇°C的空氣中退火約30 分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,在保 .5蔓氣體環境下加熱到500°C〜74(TC,然後通入碳源氣體反 應約5分鐘〜3〇分鐘,生長得到奈米碳管陣列。該奈米碳 官陣列為多個彼此平行且垂直於基底生長的奈米碳管形成 的純奈米碳管陣列。該奈米碳管陣列的高度大於1〇〇微 米其與上述基底面積基本相同,其中部分奈米峻管相互 纏繞。通過上述控製生長條件,該定向排列的奈米碳管陣 列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆 粒等。 本技術方案實施例中碳源氣可選用乙炔、乙烯 '曱烷 等化學性質較活潑的碳氫化合物,本技術方案實施例優選 的碳源氣為乙块;保護氣體為氮氣或惰性氣體,本技術方 案實施例優選的保護氣體為氬氣。 彳以理解’本技術方案實施例提供的奈来碳管陣列不 限於上述製備方法,也可為石墨電極恒流電孤放電沈積 法、錯射蒸發沈積法等等。 步驟二.提供一施壓裝置,撥廢該奈米碳管陣列獲得 一奈米碳管薄膜。 該施壓裝置施加-定的壓力於上述奈米碳管陣列上。 在施壓的過程中,奈米碳管陣列在壓力的作用下會盘生長 的基底分離’從而形成由多個奈米碳管組成的具有自支二 結構的奈米碳管薄膜,且所述的多個奈采碳管基本上^ 13 200923991 米碳管薄膜的表面平行。本技術方案實施例中,施壓裝置 為一壓頭,壓頭表面光滑,壓頭的形狀及擠壓方向決定製 備的奈米碳管薄膜中奈米碳管的排列方式。具體地,當採 用平面壓頭沿垂直於上述奈米碳管陣列生長的基底的方向 擠壓時,可獲得奈米碳管為各向同性排列的奈米碳管薄膜 (請參閱圖3 );當採用滾軸狀壓頭沿某一固定方向碾壓 時,可獲得奈米碳管沿該固定方向取向排列的奈米碳管薄 膜(請參閱圖4);當採用滾轴狀壓頭沿不同方向碾壓時, 可獲得奈米碳管沿不同方向取向排列的奈米碳管薄膜。 可以理解,當採用上述不同方式擠壓上述的奈米碳管 陣列時’ I米碳管會在壓力的作用下傾㈣,並與相鄰的奈 ,碳管通過凡德瓦爾力相互吸引、連接形成由多個奈来碳 管組成的具有自支撐結構的奈米碳管薄膜。所述的多個奈 米碳管與該奈米碳管薄膜的表面基本平行並為各向同性或 沿 回疋万向取向或不同方向取向排列。另外,在壓力的 作用下,奈米碳管陣列會與生長的基底分離,從而使得該 奈米碳管薄膜容易與基底脫離。 本技術領域技術人員應明白,上述奈米碳管障列的傾 倒程度(傾角)與壓力的大小㈣,壓力越大,傾角越大。 製備的奈米碳管薄膜的厚度取決於奈米碳管陣列的高度及 壓力大j不米石反g陣列的高度越大而施加的壓力越小, ㈣備的奈㈣管薄膜的厚度越大;反之,奈求碳管陣列 的南度越小而施加的题六^. . 的座力越大,則製備的奈米碳管薄膜的 厚度越小。 14 200923991 另外,所述步驟二中製備的奈米碳管薄膜還可進— 使用有機溶劑處理。具體的,可通過試管將有機溶劑滴: 在該奈米碳管薄膜表面浸潤整個奈米碳管薄膜。該々 劑為揮發性有機溶劑,^醇'曱醇、丙酮、二氣乙^ 虱仿’本技術方案實施例中優選採用乙醇。該奈米碳 膜經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力 的作用下’該奈米碳管薄膜中平行的奈米碳管片斷會部分 聚集成奈米碳管束’因此’該奈㈣管薄膜表面體積比小, 滅降低’且具有良好的機械強度及純,應时機溶 處理後的奈米碳管薄膜能方便地應用於宏觀領域。月 本技術方案實施例中,該奈米碳管薄膜的寬度食太米 碳管陣列所生長的基底的尺寸㈣,該奈米碳”膜:長 度不限,可根據實際需求製得。本技術方案實施例中採用 4英寸的基底生長定向排列的奈米碳管陣列。 可以理解,本技術方案實施例中該奈米碳管薄膜可祀 據實際應用㈣成預定的形狀和尺寸,以擴大其應用範圍: 步驟三:提供一隔膜1〇5,將上述的兩個奈米碳管薄 膜間隔地設置在該隔膜105的兩側,並裝入—外殼1〇7中。 將上述的奈米碳管薄膜切割製成兩個具有一定形狀和 面積的第-㈣101和第二電極搬。將該第一電極1〇; 和第二電極1〇2放入真空烘箱烘乾至第一電極101和第二 電極102恒重為止。將該第一電極1〇1和第二電極搬= 隔設置,並將所述隔膜105間隔設置在所述第一電極ι〇ι 和第二電極102之間。本技術方案實施例採用無紡布作為 15 200923991 隔膜105。 所述的第一電極101和第二電極102進一步還可以分 - 別設置於一第一集電體103和一第二集電體104之上。該 • 第一集電體103和第二集電體104的材料可為石墨、鎳、 鋁或銅等等。該第一集電體1〇3和第二集電體104可為一 金屬基板,優選為銅片。該第一集電體103和第二集電體 104的形狀大小不限,可依據實際需要進行改變。由於本 技術方案實施例步驟一中提供的定向排列的奈米碳管陣列 中的奈米碳管非常純淨,且由於奈米碳管本身的比表面積 非常大,故該奈米碳管薄膜本身具有較強的粘性。本技術 方案實施例步驟三中該奈米碳管薄膜可利用其本身的粘性 直接粘附於所述的第一集電體103和第二集電體104的表 面上。或者通過一粘結劑將該奈米碳管薄膜粘附於該第一 集電體103和第二集電體104的表面上。 所述超級電容器電極10中的集電體為一可選擇的結 構,因為奈米碳管薄膜具有良好的導電性能和一定的自支 撐性及穩定性,實際應用時,可直接在該奈米碳管薄膜表 面塗覆一層導電膠而不需要上述的第一集電體103和第二 集電體104。 步驟四,提供一電解液溶液106,將該電解液溶液106 注入進上述外殼107中,封裝製得一超級電容器10。 該電解液溶液106注入進該外殼107中,上述的第一 電極101、第二電極102、第一集電體103、第二集電體104 和隔膜105均設置在該電解液溶液106中。整個超級電容 16 200923991 .器10的封裝過程都在充滿惰性氣體的手套乾燥箱中進行。 請參閱圖5,該圖係本技術方案實施例的超級電容器 在電流為3毫安時的充放電循環曲線圖。從圖中可以看 出,該充放電曲線具有明顯的近似三角形對稱分饰,在恒 流充放電㈣件下,電壓隨_變化具有賴的線性關 係。這表明該超級電容器電極反應的可逆性很好。經恒流 放電測試得出該電流強度下該超級電容器的比電 100法/克。 該超級電容器10採用了上述的奈米碳管薄膜作為電 極、。該奈未碳管薄膜中奈米石炭管分饰均勾,且為各向同性 :咬沿-個固定方向取向或不同方向取向排列。該奈米碳管 缚膜在作為超級電容器的電極時’具有很高的比表面積利 用率。而且,該奈米碳管薄膜中,奈米碳管均勾分佈。、該 奈米碳管薄膜具有較好的動性,可以彎折成具有任意形狀 的%極,用於製備各種結構的超級電容器。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專射請。惟’以上所述者僅為本發明之較佳實施例, 自不能以此限製本案之中請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆 盍於以下申請專利範圍内。 17 200923991 【圖式簡單說明】 圖1係本技術方案貫施例的超級電容器的結構不意 - 圖。 - 圖2係本技術方案實施例的超級電容器的製備方法的 流程示意圖。 圖3係本技術方案實施例獲得的各向同性奈米碳管薄 膜的掃描電鏡照片。 圖4係本技術方案實施例獲得的擇優取向奈米碳管薄 ^ 膜的掃描電鏡照片。 圖5係本技術方案實施例的超級電容器的恒流充放電 曲線。 【主要元件符號說明】 超級電容器 10 第一奈米碳管薄膜 101 第二奈米碳管薄膜 102 第一集電體 103 第二集電體 104 隔膜 105 電解液 106 外殼 107 18200923991 IX. Description of the Invention: [Technical Field] The present invention relates to a supercapacitor and a method of fabricating the same, and more particularly to a supercapacitor based on a carbon nanotube and a preparation method thereof. [Prior Art] Super Capacitor, also known as electrochemical capacitors, electrical layer capacitors. Supercapacitors have a high specific power and a long cycle life with a wide operating temperature range. In mobile communications, information technology, electric vehicles, aerospace and defense technology, there are extremely important and broad requirements for supercapacitors, including electrodes, diaphragms and electrolyte solutions, which are in the electrolyte solution. The electrode includes a current collector and a core material: an electrode material on the body. In the preparation of the previous supercapacitor, the electrode material was not fully ground, and then the agent was scrambled in the towel, and then pressed by the molding method and the cold knitting method to suppress the foam recording, the stone W, ..., Turning on the fool's law $ on the electric body, you can make it - set = "plate or copper sheet, etc. The electrolyte of the separator is set to contain complex τ ρτ & into a supercapacitor. The preparation method is straighter than the supercapacitor. The determinant of the combination of Liugan~a is the electrode material. The desired electrode material is required to be stained with S庳古孔隹, with two twists, good conductivity, large specific surface area, and capacitor material in the range of 木· There are mainly ···, ' ; _). The previous super 』 active paste two! And the transition metal oxide series, ^ 泠 electrical properties are poor, the resulting capacitor equivalent series ρ 200923991 large. And the ratio of the activated carbon series The actual utilization of the surface area does not exceed 30%, and electrolyte ions are difficult to enter, so it is not suitable as an electrode material for supercapacitors. The transition metal oxide is used as an electrode material and has a good capacity for improving the capacity of a super electric container. However, its cost is too high to be promoted. The emergence of carbon nanotubes (CNTs) provides new opportunities for the development of supercapacitors. Nano carbon nanotubes are a kind of nano-series seamless tubular graphite structure carbon. The material has a diameter of several nanometers to several tens of nanometers and a tube length of several micrometers to several tens of micrometers. The carbon nanotube has a large specific surface area, high crystallinity and good electrical conductivity, and the inner and outer diameters of the tube can be controlled by a synthetic process. The specific surface utilization rate is 100%, which can be an ideal supercapacitor material. The research on the use of nano carbon tubes as supercapacitor materials was first reported in Chunming Niu et al. (see High power electrochemical capacitors based on carbon nanotube electrodes). , Applied Physics Letter, Chunming Niu et al., vol 70, pl480-1482 (1997)). They purchased pure multi-walled carbon nanotube powder, chemically modified it with nitric acid, and then placed in water for repeated Filtration and washing, after drying, can be made into a thin film electrode. The two thin film electrodes are set at a mass fraction of 38% H2S04 electrolyte In the liquid, a supercapacitor is prepared by encapsulation. In the preparation method of the thin film electrode, since the raw material of the carbon nanotube used is powdery, agglomeration is extremely likely to occur, and the carbon nanotubes in the prepared thin film electrode are unevenly distributed. Therefore, it is necessary to chemically modify the carbon nanotubes. However, even the chemically modified carbon nanotubes will still agglomerate on the 8200923991, resulting in poor toughness and easy fracture of the prepared membrane electrode, which affects the supercapacitor. Performance. In view of the above, it is necessary to provide a super capacitor having a high capacitance and a large power density and a method of manufacturing the same. SUMMARY OF THE INVENTION A supercapacitor includes: a first electrode, the first electrode includes a first carbon nanotube film; a first current collector, the first carbon nanotube film is disposed at the first Above the current collector; a second electrode comprising a second carbon nanotube film; a second current collector, the second carbon nanotube film being disposed on the second current collector a diaphragm disposed between the first electrode and the second electrode and spaced apart from the first electrode and the second electrode, respectively; an electrolyte solution, the first electrode and the second electrode a first current collector, a second current collector, and a separator are disposed in the electrolyte solution; an outer casing, the first electrode, the second electrode, the first current collector, the second current collector, the diaphragm, and The electrolyte solutions are all disposed within the outer casing. The carbon nanotubes in the first carbon nanotube film and the second carbon nanotube film are uniformly distributed and parallel to the surface of the carbon nanotube film. A method for preparing a supercapacitor, comprising the steps of: providing a carbon nanotube array formed on a substrate; providing a pressing device, extruding the carbon nanotube array to obtain a carbon nanotube film; providing a separator The two identical carbon nanotube films are separated by the separator and filled into a casing; an electrolyte solution is supplied, and the electrolyte solution is injected into the outer casing to form a supercapacitor. The method for preparing a carbon nanotube film further comprises cutting the 9 200923991 carbon nanotube film into a predetermined size and shape. n, compared with the first technology, the described supercapacitor and 1 preparation method has the following advantages: - the 比 〃 备 方法 方法 的 的 比 、 、 、 、 、 、 、 、 、 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有 有: The two 'C's supercapacitors have a higher specific capacitance, so it is not necessary to have a nanocarbon tube with a uniform distribution of toughness in the carbon nanotubes of the film, which can be compared with the other. ^ ^ is * # - To make a supercapacitor of various shapes. Second, the carbon nanotube film is extruded by a pressure device. The preparation method is simple... According to the application: = The nano carbon in the carbon nanotube film can be controlled. The tubes are oriented in an isotropic manner or in an orientation in a direction or in a different direction. [Embodiment] A supercapacitor of the present technical solution and a preparation method thereof will be described in detail with reference to the drawings. 〃 Referring to FIG. 1 , an embodiment of the present technical solution provides a supercapacitor having a flat type structure, including: a first electrode 101 ′, the first electrode 101 includes a first carbon nanotube film; Collecting electricity, 103, the first electrode 101 is placed on the first current collector 1〇3: the second electrode 1〇2 of the second electrode 1〇2 includes a second carbon nanotube film, a second current collector 1〇4, the second electrode 1〇2 is disposed on the second current collector 104; a diaphragm 105 disposed on the first electrode ιοί and the second electrode Between 102 and spaced apart from the first electrode ι〇ι and the second electrode 102 respectively; an electrolyte solution 106, the first electrode 101, the second electrode 102, the first current collector 1〇3, The second current collector 10 200923991 104 and the diaphragm 105 are both disposed in the electrolyte solution 106; the first electrode 1〇1, the second electrode 102, the first current collector 103, and the first housing 1〇7' A wood electric body 104, a diaphragm 1〇5, and an electrolyte solution 1〇6 are disposed in the outer casing 107. In the first carbon nanotube film and the second carbon nanotube film, the carbon nanotubes are uniformly distributed and parallel to the surface of the carbon nanotube film. Further, the first carbon nanotube film and the second carbon nanotube film comprise a plurality of carbon nanotubes, the plurality of carbon nanotubes being isotropic or oriented in a fixed direction or oriented in different directions arrangement. The first carbon nanotube film and the second carbon nanotube film in the second carbon nanotube film are mutually attracted by the van der Waals force, and the S is combined to form a self-supporting structure, so that the first carbon nanotube The film and the second carbon nanotube film have good character and can be folded in the kidney. Therefore, the first carbon nanotube film and the second tube film in the embodiment of the present technical solution may be a planar structure or a curved structure. The length and width of the first nano carbon film and the second carbon nanotube film are not limited, and a carbon nanotube film having any length and width can be formed according to actual needs. The thickness of the first-nanocarbon tube film and the second carbon nanotube film is a micron to a working millimeter. The separator 20 described in the electric 12 is a glass fiber or polymer film which allows the passage of the electrolyte ions in the above-mentioned solution solution 22 to prevent the first electrode and the second electrode 14 from coming into contact. The electrolyte solution ^ 4, / min ^ j 匕 ^ ^ water ^ solution, sulfuric acid aqueous solution "chamoic acid aqueous solution, high chloride (four) of propylene carbonate 11 solution, tetrakis tetraborate tetraethylammonium carbonated brewing solution, Or 壬: The combined mixture. 4 11 200923991 The outer casing 107 is a glass outer casing or a stainless steel outer casing. The material of the current collector may be graphite, recording, steel or the like, and the electric body may be a metal substrate. Preferably, the copper sheet. The shape of the current collector is not limited to 'can be changed according to actual needs. The carbon nanotube thin ir::: upper τ nano carbon tube film can be directly _ in the collecting carbon nanotube The film is attached to the surface of the current collector by a deadting agent. The current collector in the supercapacitor 10 is a carbon nanotube film having good electrical conductivity and a certain self-support; For practical use, the conductive material can be directly coated on the carbon nanotubes without the need for the current collector. It can be understood that the structure type of the supercapacitor is not limited to a coin type or a winding type. Figure 2 'The embodiment of the technical solution provides a preparation of the above super The method of the step capacitor 10 includes the following steps: step providing - the carbon nanotube array is formed on the substrate, preferably the array of aligned carbon nanotubes. The nanocarbon provided by the embodiment of the present technical solution The tube array is a single-walled nano tube array, and the double-walled carbon nanotube array is a multi-walled carbon nanotube array. The method for preparing the carbon nanotube array is by chemical vapor deposition, and (4) steps. Including: (providing a flat substrate, the substrate may be selected from a substrate) or a stone substrate formed with an oxide layer, the technical embodiment = preferably using a 4 inch stone base; (b) on the surface of the substrate Hook-forming a catalyst layer, the catalyst layer material may be selected from one of iron (Fe), cobalt 200923991 (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is at 7 〇退火 anneal it to air at ~9 ° ° C for about 30 minutes to 90 minutes; (d) place the treated substrate in a reaction furnace and heat it to 500 ° C ~ 74 (TC) in a gas atmosphere of 5 vines And then pass through the carbon source gas for about 5 minutes to 3 minutes to grow. Obtaining a carbon nanotube array. The nanocarbon array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes parallel to each other and perpendicular to the substrate. The height of the carbon nanotube array is greater than 1 micron. It has substantially the same area as the above-mentioned substrate, wherein a part of the nanotubes are intertwined with each other. The aligned carbon nanotube arrays contain substantially no impurities, such as amorphous carbon or residual catalyst metal particles, by controlling the growth conditions. In the embodiment of the technical solution, the carbon source gas may be a chemically active hydrocarbon such as acetylene or ethylene 'decane. The preferred carbon source gas in the embodiment of the technical solution is a block; the shielding gas is nitrogen or an inert gas. The preferred shielding gas of the embodiment of the present invention is argon. 彳 To understand that the carbon nanotube array provided by the embodiment of the present technical solution is not limited to the above preparation method, and may also be a graphite electrode constant current electric soli discharge deposition method or a mis-evaporation method. Deposition method and so on. Step 2. Provide a pressure applying device, and waste the carbon nanotube array to obtain a carbon nanotube film. The pressure applying device applies a predetermined pressure to the carbon nanotube array. In the process of applying pressure, the carbon nanotube array is separated by a substrate under pressure by pressure, thereby forming a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes, and The multiple carbon nanotubes of the carbon nanotubes are basically parallel to the surface of the 200923991 carbon nanotube film. In the embodiment of the technical solution, the pressing device is an indenter, the surface of the indenter is smooth, the shape of the indenter and the direction of extrusion determine the arrangement of the carbon nanotubes in the prepared carbon nanotube film. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the carbon nanotube array, a carbon nanotube film is obtained which is isotropically arranged (see FIG. 3); When the roller-shaped indenter is pressed in a certain fixed direction, a carbon nanotube film in which the carbon nanotubes are aligned in the fixed direction can be obtained (refer to FIG. 4); when the roller-shaped indenter is used When the direction is rolled, a carbon nanotube film in which the carbon nanotubes are aligned in different directions can be obtained. It can be understood that when the above-mentioned carbon nanotube array is extruded in the above different manners, the 'I-meter carbon tube will be inclined under the action of pressure (4), and the adjacent carbon nanotubes are attracted and connected to each other through the van der Waals force. A carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes is formed. The plurality of carbon nanotubes are substantially parallel to the surface of the carbon nanotube film and are isotropic or aligned along the universal orientation or in different directions. In addition, under the action of pressure, the carbon nanotube array is separated from the grown substrate, so that the carbon nanotube film is easily detached from the substrate. Those skilled in the art will appreciate that the degree of tilt (inclination) of the above-mentioned carbon nanotube barrier and the magnitude of the pressure (four), the greater the pressure, the greater the inclination. The thickness of the prepared carbon nanotube film depends on the height and pressure of the carbon nanotube array. The higher the height of the non-millimeter anti-g array, the smaller the pressure applied. (4) The thickness of the prepared (four) tube film is larger. On the contrary, the smaller the southness of the carbon tube array is, the larger the seat force of the problem is, the smaller the thickness of the prepared carbon nanotube film is. 14 200923991 In addition, the carbon nanotube film prepared in the second step can also be treated with an organic solvent. Specifically, the organic solvent can be dropped through a test tube: the entire carbon nanotube film is infiltrated on the surface of the carbon nanotube film. The bismuth agent is a volatile organic solvent, and the alcohol is preferably octanol, acetone, or dioxin. In the embodiment of the present invention, ethanol is preferably used. After the nano carbon film is infiltrated by the organic solvent, the parallel carbon nanotube segments in the carbon nanotube film partially aggregate into the carbon nanotube bundle under the action of the surface tension of the volatile organic solvent. Nai (4) tube film surface volume ratio is small, reduced and reduced 'have good mechanical strength and purity, the carbon nanotube film after the time machine treatment can be conveniently applied to the macroscopic field. In the embodiment of the present invention, the size of the substrate on which the width of the carbon nanotube film is grown (4), the nano carbon film: the length is not limited, and can be prepared according to actual needs. In the embodiment, a 4 inch substrate is used to grow the aligned carbon nanotube array. It can be understood that the carbon nanotube film in the embodiment of the technical solution can be expanded into a predetermined shape and size according to the practical application (4). Application range: Step 3: Provide a membrane 1〇5, and arrange the above two carbon nanotube membranes on both sides of the membrane 105 at intervals, and load them into the outer casing 1〇7. The tube film is cut into two (-)th and a second electrode having a certain shape and area. The first electrode 1〇 and the second electrode 1〇2 are placed in a vacuum oven to be dried to the first electrode 101 and The first electrode 1〇1 and the second electrode are disposed apart from each other, and the separator 105 is spaced apart between the first electrode ι〇 and the second electrode 102. The technical solution embodiment adopts a non-woven fabric as 15 200923991 The first electrode 101 and the second electrode 102 may further be disposed on a first current collector 103 and a second current collector 104. The first current collector 103 and the first collector The material of the second collector 104 may be graphite, nickel, aluminum or copper, etc. The first collector 1〇3 and the second collector 104 may be a metal substrate, preferably a copper sheet. The shape of the electric body 103 and the second current collector 104 are not limited, and may be changed according to actual needs. Since the carbon nanotubes in the aligned carbon nanotube array provided in the first step of the embodiment of the present technical solution are very pure. Because the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. In the third step of the embodiment of the technical solution, the carbon nanotube film can be directly adhered by its own viscosity. Attached to the surfaces of the first current collector 103 and the second current collector 104. Or the carbon nanotube film is adhered to the first current collector 103 and the second current collector by a binder. On the surface of the body 104. The current collector in the supercapacitor electrode 10 is an optional Structure, because the carbon nanotube film has good electrical conductivity and a certain degree of self-supporting and stability, in practical applications, a layer of conductive adhesive can be directly coated on the surface of the carbon nanotube film without the first set mentioned above. The electric body 103 and the second current collector 104. Step 4, an electrolyte solution 106 is provided, and the electrolyte solution 106 is injected into the outer casing 107 to form a supercapacitor 10. The electrolyte solution 106 is injected into the electrolyte solution 106. In the outer casing 107, the first electrode 101, the second electrode 102, the first current collector 103, the second current collector 104, and the diaphragm 105 are all disposed in the electrolyte solution 106. The entire super capacitor 16 200923991 . The packaging process is carried out in a glove drying oven filled with inert gas. Please refer to FIG. 5, which is a graph of charge and discharge cycles of a supercapacitor of the embodiment of the present invention at a current of 3 mA. It can be seen from the figure that the charge-discharge curve has a distinct approximation of the triangular symmetry. Under constant current charge and discharge (four), the voltage has a linear relationship with the _ change. This indicates that the reluctance of the supercapacitor electrode reaction is very good. The constant current discharge test shows that the specific capacitance of the supercapacitor is 100 Ω/g. The supercapacitor 10 employs the above-described carbon nanotube film as an electrode. The nano-carbon tube of the nai carbon tube film is hooked and is isotropic: the biting is oriented along a fixed direction or in different directions. The carbon nanotube film has a high specific surface area utilization rate when it is used as an electrode of a supercapacitor. Moreover, in the carbon nanotube film, the carbon nanotubes are branched. The carbon nanotube film has good dynamic properties and can be bent into a % pole having an arbitrary shape for preparing supercapacitors of various structures. In summary, the present invention has indeed met the requirements of the invention patent, and has proposed a special shot in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent in this case. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are within the scope of the following claims. 17 200923991 [Simplified description of the drawings] Fig. 1 is a schematic diagram of the structure of a supercapacitor according to the embodiment of the present technical solution. - Figure 2 is a flow chart showing a method of preparing a supercapacitor according to an embodiment of the present technical solution. Fig. 3 is a scanning electron micrograph of an isotropic carbon nanotube film obtained in an embodiment of the present technical solution. Fig. 4 is a scanning electron micrograph of a preferred orientation carbon nanotube thin film obtained in an embodiment of the present technical solution. Fig. 5 is a graph showing a constant current charge and discharge curve of the supercapacitor of the embodiment of the present technical solution. [Main component symbol description] Supercapacitor 10 First carbon nanotube film 101 Second carbon nanotube film 102 First collector 103 Second collector 104 Diaphragm 105 Electrolyte 106 Housing 107 18

Claims (1)

200923991 十、申請專利範圍 1. 一種超級電容器,包括:兩個電極;一隔膜,該 設置在所述的兩個電極之間,並與所述的兩個電、 隔設置;一電解液溶液,所述的兩個電極和隔犋均i 置在該電解液溶液中,其改良在於,所述的電極= —奈米碳管薄膜,該奈米碳管薄膜中奈米碳管均=八 佈,且平行於該奈米碳管薄膜的表面。 二刀 2. 如申請專利範圍第丄項所述的超級電容器, 述的超級電容器具有平板型的結構。 如申呀專利範圍第i項所述的超級電容器, ^超級電容器包括兩個集電體,所述的兩個電極分 "又置在所述的兩個集電體之上,該 < 刀 電體和所述的隔膜之間。 5又置在該集 4.如申請專利範圍第!項所述的超 述的超級電容哭句扛.^ 其中,所 包括一外设,所述的兩個集電體、 料電解液均設置在該外殼内。 ^ I太申請山專利範㈣1項所述的超級電容器,其中,所 方向…:各向同性或沿-個固定 Q取向或不同方向取向排列。 =明專利範圍第丄項所述的超級, 吸弓奈米碳管之間通過凡德瓦爾力相互 結構。合,形成由多個奈米碳管組成的自支樓 申Μ專利乾圍第i項所述的超級電容器,其中,所 19 200923991 述的奈米碳管薄膜的厚度為i微米至】毫米。 8. —種超級電容器的製備方法,包括以下步驟: 提供一奈米碳管陣列形成於一基底; 提供一施壓裝置,擠壓上述奈米碳管陣列獲得一奈米 碳管薄膜; 提供一隔膜,將上述兩個相同的奈米碳管薄膜間隔地 。又置在該隔膜的兩側,並裝入一外殼中;及 提供一電解液溶液,將該電解液溶液注入進上述外殼 中’封裝製得一超級電容器。 9. 如申明專利範圍第8項所述的超級電容器的製備方 法,其中,所述的奈米碳管陣列的製備方法包括以下 步驟: 提供一平整基底,該基底可選用p型矽基底、N型矽 基底或形成有氧化層的石夕基底; 在基底表面均勻形成一催化劑層,該催化劑層材料可 k用鐵(Fe)、钻(c〇)、鎳(Ni)或其任意組合的合 金之一; 將上述形成有催化劑層的基底在700。(:〜90CTC的空氣 中退火約3〇分鐘〜9〇分鐘; ” 將處理過的基底置於反應爐中,在保護氣體環境下加 熱到50(TC〜74(rc,然後通入碳源氣體反應約$分鐘 30分鐘’生長得到奈米碳管陣列’該奈米碳管陣列 中的部分奈米碳管相互纏繞。 1〇.如申請專利範圍第8項所述的超級電容器的製備方 20 200923991 法’其中,所述的施壓裝置為—平面壓頭。 11. 鴆 ' 12. 13. f Η. 15. \· 16. 17. 如申請專利範圍第8項所述的超級電容器的製備方 法’其中,所述的施壓裝置為一滚轴狀壓頭。 如申凊專利範圍第1〇項所述的超級電容器的製備方 法,其中,所述的擠壓奈米碳管陣列的過程為採用平 面壓頭沿垂直於上述奈米碳管陣列生長的基底的方 向擠壓。 如申凊專利範圍第η項所述的超級電容器的製備方 去,其中,所述的擠壓奈米碳管陣列的過程為採用滾 車由狀壓頭沿某一固定方向儀壓。 如申請專利範圍第11項所述的超級電容器的製備方 去,其中,所述的擠壓奈米碳管陣列的過程為採用滾 車由狀壓頭沿不同方向碾壓。 如申睛專利範圍第8項所述的超級電容器的製備方 法’其中,所述的奈米碳管薄膜的製備方法進—步包 括以下步驟:提供兩個集電體,將所述的兩個奈米碳 嘗/專臈分別設置在該兩個集電體之上。 如申睛專利範圍第15項所述的超級電容器的製備方 去’其中,所述的奈米碳管薄膜直接粘附在該集電體 表面或者採用粘結劑將該奈米碳管薄膜粘附在 電體表面。 μ本 如申睛專利範圍第8項所述的超級電容器的製備方 去’其中,進一步包括將所述的奈米碳管薄膜切割成 預定的尺寸和形狀。 21200923991 X. Patent application scope 1. A supercapacitor comprising: two electrodes; a diaphragm disposed between the two electrodes and disposed with the two electrodes; an electrolyte solution, The two electrodes and the separator are disposed in the electrolyte solution, and the improvement is that the electrode=-nanocarbon tube film, the carbon nanotube film in the carbon nanotube film is = eight cloth And parallel to the surface of the carbon nanotube film. Two-knife 2. As described in the supercapacitor of the scope of the patent application, the supercapacitor described has a flat type structure. The supercapacitor according to the item i of the patent patent scope, the supercapacitor comprises two current collectors, and the two electrodes are further disposed on the two current collectors, the < Between the knife body and the diaphragm. 5 is placed in the episode 4. As claimed in the patent scope! The above-mentioned supercapacitor crying sentence ^. ^, including a peripheral device, the two current collectors, the material electrolyte are disposed in the outer casing. ^ I too apply for the supercapacitor described in the mountain patent (4), wherein the directions are: isotropic or aligned along a fixed Q orientation or a different orientation. = The patents described in the third paragraph of the patent scope are super-structured between the suction tube and the carbon nanotubes through the van der Waals force. The supercapacitor described in the above-mentioned item is the self-supporting building composed of a plurality of carbon nanotubes, wherein the thickness of the carbon nanotube film described in 19 200923991 is from i micrometer to millimeter. 8. A method for preparing a supercapacitor, comprising the steps of: providing a carbon nanotube array formed on a substrate; providing a pressing device, extruding the carbon nanotube array to obtain a carbon nanotube film; providing a The diaphragm separates the two identical carbon nanotube membranes described above. Further disposed on both sides of the separator and loaded into a casing; and an electrolyte solution is supplied, and the electrolyte solution is injected into the outer casing to package a supercapacitor. 9. The method for preparing a supercapacitor according to claim 8, wherein the method for preparing the carbon nanotube array comprises the steps of: providing a flat substrate, the substrate being selectable with a p-type germanium substrate, N a ruthenium-based substrate or a shishan substrate formed with an oxide layer; a catalyst layer uniformly formed on the surface of the substrate, the catalyst layer material being an alloy of iron (Fe), diamond (c), nickel (Ni) or any combination thereof One; the substrate on which the catalyst layer is formed is at 700. (: ~90CTC is annealed in air for about 3 minutes~9〇 minutes; ” The treated substrate is placed in a reaction furnace and heated to 50 (TC~74 (rc, then carbon source gas) under protective gas atmosphere The reaction is about [minutes 30 minutes] 'growth to obtain a carbon nanotube array'. A part of the carbon nanotubes in the array of carbon nanotubes are intertwined. 1〇. Preparation of the supercapacitor according to claim 8 of the scope of claim 8 200923991 Method 'where the pressure applying device is a plane indenter. 11. 鸩' 12. 13. f Η. 15. \· 16. 17. Preparation of the supercapacitor as described in claim 8 The method of preparing a supercapacitor according to the first aspect of the invention, wherein the process of extruding a carbon nanotube array In order to use a planar indenter to be extruded in a direction perpendicular to the substrate grown by the above-described carbon nanotube array. The preparation of the supercapacitor as described in claim n, wherein the extruded nanocarbon The process of the tube array is to adopt a rolling car The method of preparing a supercapacitor according to claim 11, wherein the process of extruding the carbon nanotube array is rolling in different directions by rolling the head The method for preparing a supercapacitor according to the eighth aspect of the invention, wherein the method for preparing the carbon nanotube film further comprises the steps of: providing two current collectors, the two The carbon nanotubes/specials are respectively disposed on the two current collectors. The preparation of the supercapacitor according to claim 15 of the scope of the patent application goes to the case where the carbon nanotube film is directly adhered. Attached to the surface of the current collector or adhere the carbon nanotube film to the surface of the electric body by using a binder. The preparation of the supercapacitor according to the eighth aspect of the patent application scope is further included The carbon nanotube film is cut into a predetermined size and shape.
TW96143507A 2007-11-16 2007-11-16 Super capacitor and method for making the same TWI387987B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96143507A TWI387987B (en) 2007-11-16 2007-11-16 Super capacitor and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96143507A TWI387987B (en) 2007-11-16 2007-11-16 Super capacitor and method for making the same

Publications (2)

Publication Number Publication Date
TW200923991A true TW200923991A (en) 2009-06-01
TWI387987B TWI387987B (en) 2013-03-01

Family

ID=44728858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96143507A TWI387987B (en) 2007-11-16 2007-11-16 Super capacitor and method for making the same

Country Status (1)

Country Link
TW (1) TWI387987B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427651B (en) * 2010-03-16 2014-02-21 Hon Hai Prec Ind Co Ltd Supercapacitor
US8810995B2 (en) 2009-10-23 2014-08-19 Tsinghua University Carbon nanotube composite, method for making the same, and electrochemical capacitor using the same
TWI506842B (en) * 2011-03-21 2015-11-01 Cheng Yan Kao The Carrier of the Carbon Carbide Power System with High Storage Efficiency
TWI564442B (en) * 2012-12-11 2017-01-01 英特爾股份有限公司 Charge storage fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810995B2 (en) 2009-10-23 2014-08-19 Tsinghua University Carbon nanotube composite, method for making the same, and electrochemical capacitor using the same
TWI427651B (en) * 2010-03-16 2014-02-21 Hon Hai Prec Ind Co Ltd Supercapacitor
TWI506842B (en) * 2011-03-21 2015-11-01 Cheng Yan Kao The Carrier of the Carbon Carbide Power System with High Storage Efficiency
TWI564442B (en) * 2012-12-11 2017-01-01 英特爾股份有限公司 Charge storage fiber
US9711284B2 (en) 2012-12-11 2017-07-18 Intel Corporation Structure to make supercapacitor

Also Published As

Publication number Publication date
TWI387987B (en) 2013-03-01

Similar Documents

Publication Publication Date Title
CN101425380B (en) Super capacitor and preparing method therefor
CN101425381B (en) Super capacitor and preparing method therefor
JP5313811B2 (en) Method for producing carbon nanotube / polymer composite material
JP5091208B2 (en) Method for producing carbon nanotube / polymer composite material
JP5363260B2 (en) Carbon nanotube composite material and manufacturing method thereof
CN101471184B (en) Super capacitor
Wang et al. Polypyrrole composites with carbon materials for supercapacitors
Reit et al. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates
CN101937776B (en) Super capacitor
JP5437965B2 (en) Carbon nanotube composite
KR101995465B1 (en) Electrode structure having roll shape, electrode and electric device including the electrode structure, and method of manufacturing the electrode structure
JP2007527099A (en) Carbon nanotube or carbon nanofiber electrode containing sulfur or metal nanoparticles as an adhesive and method for producing the electrode
TW201142874A (en) Mesoporous carbon material, fabrication method thereof and supercapacitor
KR20160139002A (en) Electroconductive porous body, solid polymer fuel cell, and method for manufacturing electroconductive porous body
US20130106025A1 (en) Method for making lithium ion battery anode
JP2004127737A (en) Carbon nanotube conductive material and its manufacturing method
TWI464762B (en) Super capacitor
TWI411574B (en) Carbon nanotube composite material and method for making the same
TW200923991A (en) Super capacitor and method for making the same
TWI486971B (en) Superconducting wire
Wang et al. Sustainable synthesis of Co NPs@ Graphited carbon microspheres as an efficient electrocatalyst for the oxygen-evolution reaction
KR101940795B1 (en) Electrode structure having roll shape, electrode and electric device including the electrode structure, and method of manufacturing the electrode structure
TWI427651B (en) Supercapacitor
CN108615609A (en) A kind of preparation method of graphene/carbon nano-tube two-dimensional layer combination electrode material for ultracapacitor
TWI446383B (en) Super capacitor and method for making the same